Stoichiometric characteristics of soils and dominant shrub leaves and their responses to water addition in different seasons in degraded karst areas in Southern Yunnan of China
Hong-Xia JING1, Ning-Xiao SUN2, UMAIR Muhammad2, Chun-Jiang LIU2, Hong-Mei DU,1,*1School of Design, Shanghai Jiao Tong University, Shanghai 200240, China 2School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract Aims Drought is a limiting factor for plant growth in southern karst areas. Climate change may affect the amount and distribution pattern of precipitation in these areas. It is important to understand the stoichiometric characteristics of soil and plants and how they respond to increasing precipitation in karst areas. Methods In Jianshui karst areas in southern Yunnan, a water addition experiment was conducted since April 2017 and the concentrations of carbon (C), hydrogen (H), nitrogen (N), phosphorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), aluminum (Al), sodium (Na), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu) in the soils and leaves of two dominant shrubs (Bauhinia brachycarpa and Carissa spinarum) were measured in the dry season (April) and rainy season (August) in 2018. Important findings Water addition affected the content of C, N and Na in the soil. Compared with the dry season, the concentrations of Na and S in the soil significantly decreased in the rainy season. The remaining soil elements did not show any significant differences between treatments and seasons. With the increase of soil moisture content, the concentrations of K decreased while Ca in both plant species increased. These results also indicated that soil moisture changes could significantly affect plant ecological traits. With soil moisture changes, the stabilities of leaf elements were related to their contents. The closer the leaf element contents are to the corresponding maximum or minimum values, the smaller are the coefficients of variation. And the variation coefficients of P, S and Mg with the concentrations close to 1 mg·g-1were the highest. Under the changes of soil moisture conditions, the stability of C, N, P and other major elements in C. spinarum was significantly higher than that B. brachycarpa. Changes in soil water content, which was caused by both rainfall changes and water addition, had different effects on different the contents of different elements in both soil and plants. These results may shed light on the restoration of soil and plants in karst regions. Keywords:karst landform;water addition;stoichiometry;leaf;shrub;soil
PDF (1877KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 敬洪霞, 孙宁骁, Muhammad UMAIR, 刘春江, 杜红梅. 滇南喀斯特地区不同季节土壤和灌木叶片化学计量特征及对水分添加的响应. 植物生态学报, 2020, 44(1): 56-69. DOI: 10.17521/cjpe.2019.0230 JING Hong-Xia, SUN Ning-Xiao, Muhammad UMAIR, LIU Chun-Jiang, DU Hong-Mei. Stoichiometric characteristics of soils and dominant shrub leaves and their responses to water addition in different seasons in degraded karst areas in Southern Yunnan of China. Chinese Journal of Plant Ecology, 2020, 44(1): 56-69. DOI: 10.17521/cjpe.2019.0230
Table 1 表1 表1滇南喀斯特地区不同水分处理组旱季(4月)和雨季(8月)的土壤相关指标(平均值±标准误差) Table 1Soil variables under different water treatments and in different months in degraded karst areas in Southern Yunnan of China (mean ± SE)
指标 Index
4月 April
8月 August
Pr
CK
T1
T2
T3
CK
T1
T2
T3
f1
f2
f1 × f2
pH
6.25 ± 0.07
6.38 ± 0.13
6.26 ± 0.07
6.32 ± 0.12
6.13 ± 0.12
6.27 ± 0.11
6.23 ± 0.06
6.31 ± 0.06
VWC (%)
3.11 ± 0.39
5.79 ± 0.40
8.09 ± 0.21
6.59 ± 0.72
10.33 ± 0.19
19.72 ± 0.25
26.81 ± 0.32
26.19 ± 0.32
Temperature (℃)
18.96 ± 0.17
18.64 ± 0.16
19.49 ± 0.19
18.82 ± 0.15
21.91 ± 0.07
21.89 ± 0.07
22.11 ± 0.08
22.15 ± 0.07
C (mg·g-1)
86.76 ± 6.03
98.75 ± 2.47
114.86 ± 6.47
98.85 ± 5.24
99.04 ± 4.31
89.68 ± 2.88
101.40 ± 4.73
113.68 ± 8.00
0.01
0.76
0.02
H (mg·g-1)
24.32 ± 0.32
24.28 ± 0.88
24.52 ± 0.66
23.94 ± 1.30
25.56 ± 0.46
23.60 ± 0.51
24.98 ± 0.44
25.90 ± 0.86
0.50
0.17
0.34
N (mg·g-1)
7.52 ± 0.18
7.38 ± 0.16
8.60 ± 0.37
9.60 ± 0.41
7.66 ± 0.36
7.15 ± 0.10
7.96 ± 0.35
8.98 ± 0.31
0.00
0.12
0.52
S (mg·g-1)
2.62 ± 0.15
2.51 ± 0.14
2.55 ± 0.15
2.37 ± 0.09
2.17 ± 0.08
2.09 ± 0.06
2.20 ± 0.07
2.01 ± 0.19
0.35
0.00
0.98
P (mg·g-1)
0.89 ± 0.06
0.94 ± 0.03
0.97 ± 0.02
1.02 ± 0.06
0.91 ± 0.06
0.91 ± 0.04
0.97 ± 0.02
0.92 ± 0.07
0.33
0.48
0.65
Fe (mg·g-1)
58.82 ± 3.31
58.59 ± 1.67
61.63 ± 2.85
58.97 ± 3.49
55.56 ± 3.40
62.35 ± 3.00
61.25 ± 2.44
56.77 ± 0.85
0.27
0.60
0.81
Al (mg·g-1)
54.76 ± 2.62
54.05 ± 1.85
53.40 ± 3.25
54.25 ± 2.23
55.78 ± 0.88
53.54 ± 2.50
53.36 ± 2.18
51.18 ± 1.95
0.70
0.58
0.82
K (mg·g-1)
6.07 ± 0.15
6.87 ± 0.38
6.42 ± 0.36
7.03 ± 0.69
7.15 ± 0.50
6.60 ± 0.34
6.38 ± 0.40
5.99 ± 0.70
0.91
0.84
0.18
Ca (mg·g-1)
5.84 ± 0.62
7.83 ± 0.43
6.87 ± 0.66
6.02 ± 0.67
6.01 ± 0.68
5.28 ± 0.46
6.28 ± 0.20
7.36 ± 0.90
0.59
0.35
0.02
Na (mg·g-1)
2.62 ± 0.05
2.18 ± 0.08
2.19 ± 0.05
2.02 ± 0.09
1.95 ± 0.07
1.89 ± 0.08
1.90 ± 0.03
1.59 ± 0.08
0.00
0.00
0.03
Mn (mg·g-1)
1.52 ± 0.09
1.63 ± 0.01
1.64 ± 0.07
1.68 ± 0.10
1.55 ± 0.12
1.52 ± 0.12
1.61 ± 0.04
1.56 ± 0.10
0.71
0.37
0.78
Mg (mg·g-1)
1.01 ± 0.04
1.56 ± 0.13
1.24 ± 0.08
1.36 ± 0.14
1.24 ± 0.12
1.21 ± 0.08
1.30 ± 0.14
1.39 ± 0.21
0.16
0.92
0.16
Zn (mg·g-1)
0.35 ± 0.03
0.39 ± 0.04
0.43 ± 0.03
0.46 ± 0.03
0.42 ± 0.04
0.42 ± 0.02
0.44 ± 0.03
0.43 ± 0.05
0.34
0.36
0.63
Cu (mg·g-1)
0.108 ± 0.002
0.111 ± 0.004
0.105 ± 0.004
0.105 ± 0.002
0.107 ± 0.003
0.107 ± 0.003
0.106 ± 0.004
0.095 ± 0.004
0.09
0.20
0.50
Pr, the result of two-way analysis of variance; f1, the p-value for different water treatment; f2, the p-value for different periods; f1 × f2, the p-value of the interaction of two factors; VWC, volumetric water content. Pr为双因素方差分析的结果; f1表示水分处理因素的p值; f2为时期因素的p值; f1 × f2为两因素交互的p值; VWC, 体积含水量。
Fig. 1Relationship between coefficients of variation and log2FC of soil element concentrations in degraded karst areas in Southern Yunnan of China. FC = “mean value of soil elemental concentration in the plot”/“mean value of national soil elemental concentration”, if log2FC > 0, it means that the elemental concentration in the plot is higher than the national average.
Table 2 表2 表2滇南喀斯特地区两种植物叶片中元素间的相关系数 Table 2Correlation indices between element concentrations in leaves of the two plant species in degraded karst areas in Southern Yunnan of China
Table 3 表3 表3不同水分处理鞍叶羊蹄甲旱季(4月)和雨季(8月)叶片元素含量和化学计量比(平均值±标准误差) Table 3Leat element contentrations and stoichiometric ratios in Bauhinia brachycarpa under different water treatments nd in different months (mean ± SE)
Pr为双因素方差分析的结果; f1表示水分处理因素的p值; f2为时期因素的p值; f1 × f2为两因素交互的p值。 Pr, the result of two-way analysis of variance; f1, the p-value for different water treatment; f2, the p-value for different periods; f1 × f2, the p-value of the interaction of two factors
Table 4 表4 表4不同水分处理假虎刺叶片旱季(4月)和雨季(8月)叶片元素含量和化学计量比(平均值±标准误差) Table 4Leat element contentrations and stoichiometric ratios in Carissa spinarum under different water treatments nd in different months (mean ± SE)
Pr为双因素方差分析的结果; f1表示水分处理因素的p值; f2为时期因素的p值; f1 × f2为两因素交互的p值。 Pr, the result of two-way analysis of variance; f1, the p-value for different water treatment; f2, the p-value for different periods; f1 × f2, the p-value of the interaction of two factors
Fig. 2Relationship between coef?cients of variation and mean values of leaf element concentrations in degraded karst areas in Southern Yunnan of China. A1, A2, Bauhinia brachycarp. B1, B2, Carissa spinarum.
新窗口打开|下载原图ZIP|生成PPT 图3滇南喀斯特地区两种植物叶片元素浓度(化学计量比)对土壤体积含水量的简单线性回归标准化系数。A, 叶片元素。B, 化学计量比。*, p < 0.05; **, p < 0.01。
Fig. 3Standardization regression slops of the simple linear regressions between leaf elemental concentration (or stoichiometric ratios) of the two plant species and soil volumetric water content in degraded karst areas in Southern Yunnan of China. A, Leaf elements. B, Stoichiometric ratio. *, p < 0.05; **, p < 0.01.
Fig. 4Relationships between the leaf elemental concentrations (or stoichiometric ratios) of the two plant species and soil volumetric water content in degraded karst areas in Southern Yunnan of China.
Fig. 5Relationships between leaf elemental concentrations of Bauhinia brachycarpa and soil volumetric water content in degraded karst areas in Southern Yunnan of China.
在本研究中, 同旱季相比, 雨季两种灌木叶片K含量显著降低。我们知道, K是细胞渗透调节的主要成分, 能提高叶片气孔运动能力以及调控蒸腾作用, 同时增强水分胁迫下相关保护酶系统的活性, 即K能提高植物的抗旱性, 因而植物在水分匮乏时期K含量较高。例如, Erica multiflora叶片在水分胁迫下K含量显著增加(Rivas-Ubach et al., 2012)。干旱条件下番木瓜(Carica papaya)幼苗恢复灌溉后, 叶片和根系中K含量均显著下降(Mahouachi et al., 2006)。
BaiYB, LiJ, ZhangBL, XinSG, BuN, MaLJ, LiXM (2013). Research advance on effect of drought stress on mineral elements of plant Biotechnology Bulletin, (3), 15-18. [本文引用: 1]
ChengYF, WangJX, XuLY, WangJW, ZhangL (2015). Surface soil moisture variation in the degradation of primary red soil in karst hills of the Yunnan Plateau Jiangsu Agricultural Sciences, 43(11), 433-437. [本文引用: 1]
CraineJM, NippertJB, ElmoreAJ, SkibbeAM, HutchinsonSL, BrunsellNA (2012). Timing of climate variability and grassland productivity Proceedings of the National Academy of Sciences of the United States of America, 109, 3401-3405. [本文引用: 1]
DuMY, FanSH, LiuGL, FengHY, GuoBH, TangXL (2016). Stoichiometric characteristics of carbon, nitrogen and phosphorus in Phyllostachys edulis forests of China Chinese Journal of Plant Ecology, 40, 760-774. [本文引用: 1]
HanWX, FangJY, ReichPB, Ian WoodwardF, WangZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China Ecology Letters, 14, 788-796. [本文引用: 3]
HuZL, PanGX, LiLQ, DuYX, WangXZ (2009). Changes in pools and heterogeneity of soil organic carbon, nitrogen and phosphorus under different vegetation types in Karst mountainous area of central Guizhou Province, China Acta Ecologica Sinica, 29, 4187-4195. [本文引用: 1]
HuangJ (2009). Studies on Characteristics of Degradation of Vegetation and Soil from Stone-forest Limestone Region in Yunnan Province Master degree dissertation, Nanjing Forestry University, Nanjing. 25-32. [本文引用: 1]
HuangJY, YuHL, LiuJL, MaF, HanL (2018). Effects of precipitation levels on the C:N:P stoichiometry in plants, microbes, and soils in a desert steppe in China Acta Ecologica Sinica, 38, 5362-5373. [本文引用: 1]
JiangZC, LianYQ, QinXQ (2014). Rocky desertification in Southwest China: Impacts, causes, and restoration Earth-Science Reviews, 132, 1-12. [本文引用: 1]
JiménezMA, JaksicFM, ArmestoJJ, GaxiolaA, MeservePL, KeltDA, GutiérrezJR (2011). Extreme climatic events change the dynamics and invasibility of semi-arid annual plant communities Ecology Letters, 14, 1227-1235. [本文引用: 1]
KoerselmanW, MeulemanAFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation Journal of Applied Ecology, 33, 1441-1450. [本文引用: 2]
LiK, DongL, ChenQ, ChenDS (2017). Communities characteristics of vegetation ecological restoration in rocky desertification area in Yunnan Chinese Landscape Architecture, 33, 41-46. [本文引用: 1]
LiRL, GengS (2013). Impacts of climate change on agriculture and adaptive strategies in China Journal of Integrative Agriculture, 12, 1402-1408. [本文引用: 1]
LiSJ, GouW, WangH, WuGQ, SuPX (2019). Characteristics of C, N, P, and their response to soil water and salt in leaves of Lycium ruthenicum in the lower reaches of the Heihe River Acta Ecologica Sinica, 39, 7189-7196. [本文引用: 1]
LiYB, WangSJ, XiongKN (2003). On the research for eco-hydrological effects in southwest China karst mountain area Carsologica Sinica, 22, 24-27. [本文引用: 1]
LiuCC, LiuYG, GuoK, WangSJ, YangY (2014). Concentrations and resorption patterns of 13 nutrients in different plant functional types in the karst region of south- western China Annals of Botany, 113, 873-885. [本文引用: 3]
LiuL, YangF, LiuZG, HuangDG, HuangJM, FangHY, YangGH (2008). Determination of heavy metals in soils and plants with microwave digestion and ICP-AES Environmental Chemistry, 27, 511-514. [本文引用: 1]
LuY (2007). Investigation and Research of Remote Sensing to the Desertification in Lujiang Catchment, Yunnan Province Master degree dissertation, China University of Geosciences, Beijing. 41-47. [本文引用: 1]
LyuX, TaoZ, GaoQ, PengH, ZhouM (2018). Chemical weathering and riverine carbonate system driven by human activities in a subtropical karst basin, South China Water, 10, 1524. [本文引用: 1]
MaWT, FanWG (2007). Effect of drought stress on mineral nutrient contents in leaves of seedling plant of C. tangerina Hort., C. sinensis Osbeck and C. grandis Osbeck Southwest China Journal of Agricultural Sciences, 20, 630-633. [本文引用: 1]
MaathuisFJ (2009). Physiological functions of mineral macronutrients Current Opinion in Plant Biology, 12, 250-258. [本文引用: 1]
MahouachiJ, SocorroAR, TalonM (2006). Responses of papaya seedlings (Carica papaya L.) to water stress and re-hydration: Growth, photosynthesis and mineral nutrient imbalance Plant and Soil, 281, 137-146. [本文引用: 1]
MarschnerH (1995). Mineral Nutrition of Higher Plants. Academic Press, London. [本文引用: 1]
MatzekV, VitousekPM (2009). N:P stoichiometry and protein: RNA ratios in vascular plants: An evaluation of the growth-rate hypothesis Ecology Letters, 12, 765-771. [本文引用: 1]
PeiJ, WangL, WangXY, NiuZ, KellyM, SongXP, HuangN, GengJ, TianHF, YuY, XuSG, WangL, YingQ, CaoJH (2019). Time series of landsat imagery shows vegetation recovery in two fragile karst watersheds in southwest China from 1988 to 2016 Remote Sensing, 11, 2044. [本文引用: 1]
PiaoSL, CiaisP, HuangY, ShenZH, PengSS, LiJS, ZhouLP, LiuHY, MaYC, DingYH, FriedlingsteinP, LiuCZ, TanK, YuYQ, ZhangTY, FangJY (2010). The impacts of climate change on water resources and agriculture in China Nature, 467, 43-51. [本文引用: 1]
PlanchetE, RannouO, RicoultC, Boutet-MerceyS, Maia- GrondardA, LimamiAM (2011). Nitrogen metabolism responses to water deficit act through both abscisic acid (ABA)-dependent and independent pathways in Medicago truncatula during post-germination Journal of Experimental Botany, 62, 605-615. [本文引用: 2]
PiFJ, ShuLX, YuLF, YanLB, ZhouC, WuZH, YuanCJ (2017). Study on ecological stoichiometry characteristics and correlation of plants within different organs of 10 dominant tree species in Karst Region of Central Guizhou Ecology and Environmental Sciences, 26, 628-634. [本文引用: 1]
QinHL, ZhuJS, LuoYJ, ZhangJL, CaoSX, ZhangH (2018). Research progress on cyclic process of soil C and N under dry-wet alternation Hubei Agricultural Sciences, 57, 11-14. [本文引用: 1]
Rivas-UbachA, SardansJ, Pérez-TrujilloM, EstiarteM, Pe?uelasJ (2012). Strong relationship between elemental stoichiometry and metabolome in plants Proceedings of the National Academy of Sciences of the United States of America, 109, 4181-4186. [本文引用: 1]
SardansJ, Pe?uelasJ, PrietoP, EstiarteM (2008). Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean shrubland Plant and Soil, 306, 261-271. [本文引用: 1]
SardansJ, Rivas-UbachA, Pe?uelasJ (2012). The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives Perspectives in Plant Ecology, Evolution and Systematics, 14, 33-47. [本文引用: 1]
ShaZM, YuanJ, ZhaoZ, YueYB, YaoJ, CaoLK (2016). Ionome of rice seed response to rice cultivation patterns Chinese Journal of Eco-Agriculture, 24, 600-607. [本文引用: 1]
TianHQ, ChenG, ZhangCS, MelilloJM, HallCAS (2010). Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data Biogeochemistry, 98, 139-151. [本文引用: 1]
TownsendAR, ClevelandCC, HoultonBZ, AldenCB, WhiteJW (2011). Multi-element regulation of the tropical forest carbon cycle Frontiers in Ecology and the Environment, 9, 9-17. DOI:10.1890/100047URL [本文引用: 1]
WangGB, YuanAQ, CaoFL, JingM, PanJX (2005). The effects of water stress on nutrient element contents in root, stem and leaf of Ginkgo Journal of Nanjing Forestry University (Natural Science Edition), 29(6), 15-18. [本文引用: 1]
WangJ, MengJJ (2007). Characteristics and tendencies of climate change in the southwestern karst region of China in the recent 45 years Acta Scientiarum Naturalium Universitatis Pekinensis, 43, 223-229. [本文引用: 1]
WangK, ShenC, SunB, WangXN, WeiD, LyuLY (2018). Effects of drought stress on C, N and P stoichiometry of Ulmus pumila seedlings in Horqin sandy land, China Chinese Journal of Applied Ecology, 29, 2286-2294. [本文引用: 1]
WangL, YuYH, XingRR, QinSY (2018). Ecological stoichiometry characteristics of carbon, nitrogen, phosphorus, and potassium of different economic tree species in the karst frigid and arid area Acta Ecologica Sinica, 38, 5393-5403. [本文引用: 1]
WangLC, ZengCF, MengHH, ChangWN (2016). Water geochemistry and dissolution rates of the karst-dominated Houzhai River basin, China Toxicological & Environmental Chemistry, 98, 648-657. [本文引用: 1]
WeiFS, ChenJS, WuYY, ZhengCJ (1991). Study on the background contents on 61 elements of soils in China Acta Scientiae Circumstantiae, 12, 12-19, 94. [本文引用: 1]
YangH, ZhuTB, WangXH, PuJB, LiJH, ZhangT, CaoJH (2018). Soil element contents of typical small watershed in the plateau area of karst fault basin, Yunnan Ecology and Environmental Sciences, 27, 859-865. [本文引用: 3]
YangYX, LiuDL, HanJG, ZhaoGQ, HanJ, WangXS (2010). Effects of ABA on the content of mineral element and proline of two alfalfa varieties under NaCl stress condition Pratacultural Science, 27, 57-61.
ZhangMH, LiGW, HuangW, BiT, ChenGY, TangZC, SuWA, SunWN (2010). Proteomic study of Carissa spinarum in response to combined heat and drought stress Proteomics, 10, 3117-3129. DOI:10.1002/pmic.200900637URL [本文引用: 1]
ZhangW, LiuCQ, LiuTZ, LiXD, ZhangLL (2010). Sulfur species and isotopic compositions in limestone soils on slopes of karst regions Geochimica, 39, 251-257. [本文引用: 1]
ZhengYC, WangSJ (2002). Geological cause of calcareous soil erosion and land rocky desertification in karst area, Guizhou province Resources and Environment in the Yangtze Basin, 11, 461-465. [本文引用: 1]
ZhouYC (1997). A study on the part plants’ main nutrient elements content of Guizhou Karst region Journal of Guizhou Agricultural College, 16(1), 11-16. [本文引用: 1]
ZhuLJ, LiJY (2004). Weathering and Carbonate Formation of Carbonate Rock and Its Environmental Effects. Geological Publishing House, Beijing. 7-10. [本文引用: 3]
N:P stoichiometry and protein: RNA ratios in vascular plants: An evaluation of the growth-rate hypothesis 1 2009
... 生长速率假说提出, 由于生物体生长需要大量的RNA指导蛋白质的合成, 因而RNA中的重要元素P的含量对初级消费者的生长速率有重要影响, 具有高生长速率的初级消费者其食物中C:P、C:N较低, 同时N:P含量也较低(Elser et al., 2000), 而在陆地上的植物中却并未发现相似的规律(Matzek & Vitousek, 2009).有研究发现, 空气中CO2增加会使C3植物叶片中C:N、C:P含量显著升高, 而C4植物无显著变化(Sardans et al., 2012), 这可能与两种植物对CO2的固定方式有关, CO2对C4植物光合作用的限制远小于C3植物.而在本研究中, 鞍叶羊蹄甲叶片中C:N、C:P值以及N、P含量在不同水分处理组以及干湿季间均表现出显著的差异, 这可能与豆科植物在水分胁迫下对N代谢的调控有关(Planchet et al., 2011).而假虎刺作为我国干旱地区的优势植物, 具有极强的抗旱能力(Zhang et al., 2010), 在季节和水分添加影响下, 其叶片中C:N、C:P以及N、P含量均未表现出显著差异.在外界水分变化下, 相比于鞍叶羊蹄甲, 假虎刺能更好地维持叶片中C、N、P含量及化学计量比的稳定. ...
Time series of landsat imagery shows vegetation recovery in two fragile karst watersheds in southwest China from 1988 to 2016 1 2019
... 近年来全球范围内极端气候频发(Jiménez et al., 2011), 而未来的气候预测中也包含更大的降水变异性和温度变异性, 因而研究生态系统对未来气候变化加剧的敏感性, 对未来生态系统的演替发展等具有极为重要的作用(Li & Geng, 2013; Pei et al., 2019).此外气候变异性发生的时间不同, 对生态系统的影响也存在差异: 在温带草地生态系统中, 干旱和强降水仅使4月草产量降低, 对7、8月草产量没有明显影响(Craine et al., 2012).随着气候变化, 我国南方地区未来降水量呈现增加趋势(Piao et al., 2010).区域性降水量增加, 会影响到这些处于干旱条件下的喀斯特生态系统过程和功能.另外, 近年来喀斯特地区石漠化治理、植被修复工程正在大规模进行, 也需要了解土壤和植物对水分变化的响应.在本次研究中, 选择云南省建水县典型的退化喀斯特植物群落, 进行人工加水实验, 研究在不同季节下, 土壤和植物元素含量和化学计量性状对水分变化的响应特点和机制, 其主要目的是为该地区喀斯特地区植被修复和治理提供依据和参考. ...
The impacts of climate change on water resources and agriculture in China 1 2010
... 近年来全球范围内极端气候频发(Jiménez et al., 2011), 而未来的气候预测中也包含更大的降水变异性和温度变异性, 因而研究生态系统对未来气候变化加剧的敏感性, 对未来生态系统的演替发展等具有极为重要的作用(Li & Geng, 2013; Pei et al., 2019).此外气候变异性发生的时间不同, 对生态系统的影响也存在差异: 在温带草地生态系统中, 干旱和强降水仅使4月草产量降低, 对7、8月草产量没有明显影响(Craine et al., 2012).随着气候变化, 我国南方地区未来降水量呈现增加趋势(Piao et al., 2010).区域性降水量增加, 会影响到这些处于干旱条件下的喀斯特生态系统过程和功能.另外, 近年来喀斯特地区石漠化治理、植被修复工程正在大规模进行, 也需要了解土壤和植物对水分变化的响应.在本次研究中, 选择云南省建水县典型的退化喀斯特植物群落, 进行人工加水实验, 研究在不同季节下, 土壤和植物元素含量和化学计量性状对水分变化的响应特点和机制, 其主要目的是为该地区喀斯特地区植被修复和治理提供依据和参考. ...
Nitrogen metabolism responses to water deficit act through both abscisic acid (ABA)-dependent and independent pathways in Medicago truncatula during post-germination 2 2011