Shoot beetle damage to Pinus yunnanensis monitored by infrared thermal imaging at needle scale
Jing-Xu WANG,, Hua-Guo HUANG,*, Qi-Nan LIN, Bing WANG, Kan HUANGKey Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
Abstract Aims To explore the feasibility of thermal infrared technology for monitoring the shoot beetle damage to Yunnan pine (Pinus yunnanensis), the relationship between temperature and biochemical and/or physiological factors of healthy and damaged shoots of Yunnan pine was analyzed.Methods The temperatures were extracted with the software FLIR-TOOLS from the thermal images of damaged shoots. The temperature differences between damaged shoots and healthy shoots (ΔT) in the same thermal image were analyzed. The relationships between ΔT and physiological and biochemical parameters were used to clarify the mechanism that caused needle temperature increase with infested duration.Important findings Results indicated: (1) The chlorophyll and water content of damaged shoots decreased with the infested duration, and the chlorophyll content decreased faster than water content; (2) The net photosynthetic rate (Pn), stomata conductance (Gs) and transpiration rate (Tr) also decreased with infested duration, and the temperature difference between needle and atmosphere (ΔTl-a) increased with infested duration; (3) ΔT reached the maximum at 14:00 to 15:00; the temperature differences of lightly-infested, mid-infested and heavily-infested needles reached 0.6, 0.7 and 2.5 °C, respectively; (4) A strong negative correlation was found between ΔT and Gs, water content. Our study concluded that the water imbalance of damaged needles caused needle temperature changes. Therefore, thermal infrared technology could be applied to monitor shoot beetle damage of Yunnan pine at different stages. Keywords:thermal infrared;needle temperature;stomata conductance;leaf water content;pest monitoring
PDF (8035KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 王景旭, 黄华国, 林起楠, 王冰, 黄侃. 红外热成像监测云南松切梢小蠹虫害: 针叶尺度 观测. 植物生态学报, 2019, 43(11): 959-968. DOI: 10.17521/cjpe.2019.0180 WANG Jing-Xu, HUANG Hua-Guo, LIN Qi-Nan, WANG Bing, HUANG Kan. Shoot beetle damage to Pinus yunnanensis monitored by infrared thermal imaging at needle scale. Chinese Journal of Plant Ecology, 2019, 43(11): 959-968. DOI: 10.17521/cjpe.2019.0180
Fig. 2Utilizing FLIR Tools to extract the temperature of the needles of Pinus yunnanensis. A, Visible image to show heavily- infested and healthy shoots. B, Thermal infrared image to show heavily-infested and healthy shoots. C, Visible image to show lightly-infested and healthy shoots. D, Thermal infrared image to show lightly-infested and healthy shoots.
Table 2 表2 表2试验测量参数、仪器、测量间隔及用途 Table 2Parameters, instruments, measurement intervals of the observation and their purposes
测量参数 Measured parameter
缩写 Abbreviation
测量方法 Measured method
测量间隔时间 Measured interval times
用途 Purpose
光谱反射率 Spectral reflectance
Ref
光谱仪联合互补观测AvaSpec-EDU-VIS和AvaSpec-NIR1.7
7 d
评估光谱对受害程度的响应 Assess the spectral response to the damaged degrees
叶绿素含量 Chlorophyll content of leaf
CCL
CCM-300
7 d
解释光谱变化并划分不同受害阶段 Interpret spectral changes and divide into the damaged stages
叶片含水量 Water content of leaf
WCL
烘干 Oven drying
7 d
分析不同受害阶段叶片含水量与叶片温度的关系 Analyze the relationship between leaf water content and leaf temperature at different damaged stages
叶片温度 Leaf temperature
Tleaf
FLIR T420
1 h
分析不同受害阶段叶片温度日变化 Analyze diurnal changes of leaf temperature at different damaged stages
气孔导度 Stomata conductance
Gs
LI-6400
2 h
解释不同受害阶段叶片温度的变化 Explain leaf temperature changes at different damaged stages
净光合速率 Net photosynthetic rate
Pn
蒸腾速率 Transpiration rate
Tr
叶片与大气温差 Temperature difference between leaf and atmosphere
Fig. 6Correlation of normalized difference vegetation index (NDVI) with leaf chlorophyll content (CCL) and the correlation of normalized difference water index (NDWI) and leaf water content (WCL) of Pinus yunnanensis. Error bar indicates standard deviation.
Fig. 7Daily changes of net photosynthetic rate (Pn), stomata conductance (Gs), transpiration rate (Tr) and temperature differences between leaf and atmosphere (ΔTl-a) of damaged needles of Pinus yunnanensis at different stages.
Fig. 8The diurnal changes of temperature differences between damaged shoots and healthy shoots (ΔT) of damaged needles of Pinus yunnanensis at different stages.
Fig. 9Correlation analysis between temperature difference (ΔT) and stomata conductance, and water content of damaged needles at different stages in Pinus yunnanensis. Error bar indicates standard deviation.
AbdullahH, DarvishzadehR, SkidmoreAK, GroenTA, HeurichM ( 2018). European spruce bark beetle ( Ips typographus L.) green attack affects foliar reflectance and biochemical properties , 64, 199-209. [本文引用: 1]
BerdugoC, HillnhütterC, SikaroR, OerkeEC ( 2012). A resistance bioassay for Rhizoctonia root and crown rot and damping-off caused by the anastomosis groups AG 2-2IIIB and AG 4 in sugar beet , 294-302. [本文引用: 1]
Blonquist JrJM, NormanJM, BugbeeB ( 2009). Automated measurement of canopy stomatal conductance based on infrared temperature , 149, 1931-1945. [本文引用: 1]
BouchePS, LarterM, DomecJC, BurlettR, GassonP, JansenS, DelzonS ( 2014). A broad survey of hydraulic and mechanical safety in the xylem of conifers , 65, 4419-4431. [本文引用: 1]
ChaerleL, van CaeneghemW, MessensE, LambersH, van MontaguM, van der StraetenD ( 1999). Presymptomatic visualization of plant-virus interactions by thermography , 17, 813-816. [本文引用: 1]
ChengQ, HuangCY, WangDW, XiaoLJ ( 2012). Correlation between cotton canopy CWSI and photosynthesis characteristics based on infrared thermography Cotton Science, 24, 341-347. [本文引用: 1]
ChoatB ( 2013). Predicting thresholds of drought-induced mortality in woody plant species , 33, 669-671. [本文引用: 1]
CoopsNC, JohnsonM, WulderMA, WhiteJC ( 2006). Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation , 103, 67-80. [本文引用: 1]
FanL ( 2017). Multi-source Data Estimating Soil Moisture and Its Application on Forest Fire Risk Assessment PhD dissertation, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing. [本文引用: 1]
GitelsonAA, MerzlyakMN ( 1996). Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll , 148, 494-500. [本文引用: 1]
HeC, LiuKZ, ShuLF, HongXF, ZhangSY ( 2018). The diagnostic methods for resurgences of smoldering fire in the forests by infrared thermal imaging Spectroscopy and Spectral Analysis, 38, 326-332. [本文引用: 1]
HuangMF, XingXF, WangPJ, WangCZ ( 2006). Comparison between three different methods of retrieving surface temperature from Landsat TM thermal infrared band Arid Land Geography, 29, 132-137. [本文引用: 1]
JonesHG ( 1998). Stomatal control of photosynthesis and transpiration , 49, 387-398. [本文引用: 1]
JonesHG, VaughanRA ( 2010). . Oxford University Press, New York. [本文引用: 1]
LauschA, HeurichM, GordallaD, DobnerHJ, Gwillym-?MargiantoS, SalbachC ( 2013). Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales , 308, 76-89. [本文引用: 1]
LinQN, HuangHG, YuLF, WangJX ( 2018). Detection of shoot beetle stress on Yunnan pine forest using a coupled LIBERTY2-INFORM simulation , 10, 1133. DOI: 10.3390/rs10071133. [本文引用: 1]
LiuY, DingJQ, SuBQD, LiaoDQ, ZhaoJR, LiJS ( 2009). Identification of maize drought-tolerance at seeding stage based on leaf temperature using infrared thermography Scientia Agricultura Sinica, 42, 2192-2201. [本文引用: 1]
MarkusI, ClementA ( 2014). Early detection of bark beetle infestation in norway spruce ( Picea abies L.) using WorldView-2 Data 5, 351-367. [本文引用: 2]
MarxA ( 2010). Detection and classification of bark beetle infestation in pure Norway spruce stands with multi-temporal RapidEye imagery and data mining techniques , 2010, 243-252. [本文引用: 1]
N?siR, HonkavaaraE, Lyytik?inen-SaarenmaaP, BlomqvistM, LitkeyP, HakalaT, ViljanenN, KantolaT, Tanhuanp??T, HolopainenM ( 2015). Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level , 7, 15467-15493. [本文引用: 1]
OerkeEC, Fr?hlingP, SteinerU ( 2011). Thermographic assessment of scab disease on apple leaves , 12, 699-715. [本文引用: 1]
SandholtI, RasmussenK, AndersenJ ( 2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status , 79, 213-224. [本文引用: 1]
ScherrerD, BaderMKF, K?rnerC ( 2011). Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies , 151, 1632-1640. [本文引用: 1]
SeeligHD, HoehnA, StodieckLS, KlausDM, AdamsWW, EmeryWJ ( 2008). The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared , 29, 3701-3713. [本文引用: 1]
SkakunRS, WulderMA, FranklinSE ( 2003). Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage , 86, 433-443. [本文引用: 1]
SprintsinM, ChenJM, CzurylowiczP ( 2011). Combining land surface temperature and shortwave infrared reflectance for early detection of mountain pine beetle infestations in western Canada , 5(1), 053566. DOI: 10.1117/1.3662866. [本文引用: 1]
StollM, SchultzHR, BaeckerG, Berkelmann-LoehnertzB ( 2008). Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery , 9, 407-417. [本文引用: 1]
WulderMA, WhiteJC, BentzB, AlvarezMF, CoopsNC ( 2006). Estimating the probability of mountain pine beetle red-attack damage , 101, 150-166. [本文引用: 1]
YuLF, HuangJX, ZongSX, HuangHG, LuoYQ ( 2018). Detecting shoot beetle damage on Yunnan pine using landsat time-series data , 9, 39. DOI: 10.3390/f9010039. [本文引用: 1]
Zarco-TejadaPJ, González-DugoV, BerniJAJ ( 2012). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera , 117, 322-337. [本文引用: 1]
ZhangWZ, HanYD, DuHJ, HuangRD, ChenWF ( 2007). Relationship between canopy temperature and soil water content, yield components at flowering stage in rice Chinese Journal Rice Science, 21, 99-102. [本文引用: 1]
ZhaoTX, GuoB, AnXM, ZhangWJ ( 2012). The study of stomatal conductance estimation of Populus deltoids Bartr. × Populus ussuriensis Kom. by infrared thermography Chinese Agricultural Science Bulletin, 28, 65-70. [本文引用: 1]
Detection and classification of bark beetle infestation in pure Norway spruce stands with multi-temporal RapidEye imagery and data mining techniques 1 2010
... 目前利用遥感对森林虫害监测大多为可见光和近红外波段遥感数据, 其通过对森林反射光谱的变化来对森林状态进行判断(Lausch et al., 2013; Abdullah et al., 2018).这些方法可以对受害表现明显的虫害中后期森林进行监测和估算, 但对于早期阶段监测受限(Marx, 2010; Näsi et al., 2015).在森林受胁迫早期, 森林的水分亏缺还没有达到植物生理的极限值, 森林冠层的形态状况和光谱特征都还未发生改变, 但是会引起植被水分的变化, 从而导致植被冠层温度的异常.通过对森林冠层温度数据的分析处理, 热红外遥感可以对森林虫害进行监测, 并有潜力发现森林遭受的早期健康危害.热红外遥感通过温度的变化对虫害胁迫进行监测, 但不能对类似的虫害加以区分.在未来的研究中, 多源遥感数据的配合使用, 可以获取更丰富的胁迫信息, 用于虫害胁迫的监测. ...
Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level 1 2015
... 目前利用遥感对森林虫害监测大多为可见光和近红外波段遥感数据, 其通过对森林反射光谱的变化来对森林状态进行判断(Lausch et al., 2013; Abdullah et al., 2018).这些方法可以对受害表现明显的虫害中后期森林进行监测和估算, 但对于早期阶段监测受限(Marx, 2010; Näsi et al., 2015).在森林受胁迫早期, 森林的水分亏缺还没有达到植物生理的极限值, 森林冠层的形态状况和光谱特征都还未发生改变, 但是会引起植被水分的变化, 从而导致植被冠层温度的异常.通过对森林冠层温度数据的分析处理, 热红外遥感可以对森林虫害进行监测, 并有潜力发现森林遭受的早期健康危害.热红外遥感通过温度的变化对虫害胁迫进行监测, 但不能对类似的虫害加以区分.在未来的研究中, 多源遥感数据的配合使用, 可以获取更丰富的胁迫信息, 用于虫害胁迫的监测. ...
Do water-limiting conditions predispose Norway spruce to bark beetle attack? 1 2015
... 以往的研究表明, 在森林虫害爆发后期阶段, 即红色攻击和灰色攻击阶段, 利用遥感数据进行监测比较容易, 而对于早期森林虫害, 即绿色攻击阶段的监测较为困难(Markus & Clement, 2014).在红色攻击阶段, 光学遥感利用叶片光谱信息的变化对健康林分和受害林分进行分类, 精度较高(Skakun et al., 2003; Coops et al., 2006; Wulder et al., 2006).在绿色攻击阶段, 叶片光谱变化较小, 仅从树冠外表上无法分辨出是否受害.目前已有的研究通过遥感数据提取水分、温度等相关的植被指数尝试对绿色攻击阶段进行研究(Sprintsin et al., 2011; Netherer et al., 2015).Markus和Clement (2014)利用WorldView-2对受害云杉(Picea abies)和健康云杉进行分类判别, 并在地面分别选取了1 200株参考树进行精度验证, 包括健康树、处于绿色攻击阶段的树木及死树.结果发现对于这三类的总体判别精度在70%左右, 死树的判别精度几乎达到100%, 但是健康树和处于绿色攻击阶段的树木较易混淆, 精度在60%-70%之间.国内外对于森林虫害监测的研究大多采用分辨率较高的光学遥感数据, 通过光谱之间的差异来判别健康林分和受害林分.虽然光学遥感提供了大面积虫害监测的可能性, 但是对绿色攻击阶段的监测精度不高, 而热红外遥感的潜力则尚未挖掘. ...
Thermographic assessment of scab disease on apple leaves 1 2011
Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage 1 2003
... 以往的研究表明, 在森林虫害爆发后期阶段, 即红色攻击和灰色攻击阶段, 利用遥感数据进行监测比较容易, 而对于早期森林虫害, 即绿色攻击阶段的监测较为困难(Markus & Clement, 2014).在红色攻击阶段, 光学遥感利用叶片光谱信息的变化对健康林分和受害林分进行分类, 精度较高(Skakun et al., 2003; Coops et al., 2006; Wulder et al., 2006).在绿色攻击阶段, 叶片光谱变化较小, 仅从树冠外表上无法分辨出是否受害.目前已有的研究通过遥感数据提取水分、温度等相关的植被指数尝试对绿色攻击阶段进行研究(Sprintsin et al., 2011; Netherer et al., 2015).Markus和Clement (2014)利用WorldView-2对受害云杉(Picea abies)和健康云杉进行分类判别, 并在地面分别选取了1 200株参考树进行精度验证, 包括健康树、处于绿色攻击阶段的树木及死树.结果发现对于这三类的总体判别精度在70%左右, 死树的判别精度几乎达到100%, 但是健康树和处于绿色攻击阶段的树木较易混淆, 精度在60%-70%之间.国内外对于森林虫害监测的研究大多采用分辨率较高的光学遥感数据, 通过光谱之间的差异来判别健康林分和受害林分.虽然光学遥感提供了大面积虫害监测的可能性, 但是对绿色攻击阶段的监测精度不高, 而热红外遥感的潜力则尚未挖掘. ...
Combining land surface temperature and shortwave infrared reflectance for early detection of mountain pine beetle infestations in western Canada 1 2011
... 以往的研究表明, 在森林虫害爆发后期阶段, 即红色攻击和灰色攻击阶段, 利用遥感数据进行监测比较容易, 而对于早期森林虫害, 即绿色攻击阶段的监测较为困难(Markus & Clement, 2014).在红色攻击阶段, 光学遥感利用叶片光谱信息的变化对健康林分和受害林分进行分类, 精度较高(Skakun et al., 2003; Coops et al., 2006; Wulder et al., 2006).在绿色攻击阶段, 叶片光谱变化较小, 仅从树冠外表上无法分辨出是否受害.目前已有的研究通过遥感数据提取水分、温度等相关的植被指数尝试对绿色攻击阶段进行研究(Sprintsin et al., 2011; Netherer et al., 2015).Markus和Clement (2014)利用WorldView-2对受害云杉(Picea abies)和健康云杉进行分类判别, 并在地面分别选取了1 200株参考树进行精度验证, 包括健康树、处于绿色攻击阶段的树木及死树.结果发现对于这三类的总体判别精度在70%左右, 死树的判别精度几乎达到100%, 但是健康树和处于绿色攻击阶段的树木较易混淆, 精度在60%-70%之间.国内外对于森林虫害监测的研究大多采用分辨率较高的光学遥感数据, 通过光谱之间的差异来判别健康林分和受害林分.虽然光学遥感提供了大面积虫害监测的可能性, 但是对绿色攻击阶段的监测精度不高, 而热红外遥感的潜力则尚未挖掘. ...
Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery 1 2008
Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera 1 2012
... 针叶中水分及养分的传输由于受害而下降, 导致叶片水分供给不足, 而叶片气孔细胞的开闭对叶片内水分含量又比较敏感(Zarco-Tejada et al., 2012), 气孔细胞随着受害程度加深逐渐失水并丧失调节功能, 因此Gs随受害程度增大而下降.这也导致了叶片用于调节表面温度的Tr下降, 蒸腾作用作为调节叶片温度的主要手段, 其变化对于叶片温度会产生直接的影响, 造成针叶表面温度升高(Sandholt et al., 2002).轻度受害针叶处于受害初期, 叶片内水分还能维持叶片生理活动, 气孔细胞也能够通过蒸腾作用保持叶片与大气之间的温度平衡.但是由于叶片内部水分的异常, 轻度受害针叶气孔会发生不正常的开闭, 对叶片温度造成影响. ...