Improvement of continuous microbial environment in peanut rhizosphere soil by Funneliformis mosseae
Li CUI1,2,3, Feng GUO1,2,3, Jia-Lei ZHANG1,2,3, Sha YANG1,2,3, Jian-Guo WANG1,2,3, Jing-Jing MENG1,2,3, Yun GENG1,2,3, Xin-Guo LI,,1,2,3,*, Shu-Bo WAN,2,3,4,*1Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China 2Key Laboratory of Crop Genetic Improvement and Ecological Physiology of Shandong Province, Jinan 250100, China 3Scientific Observation and Experiment Station of Crop Cultivation in East China, Ministry of Agriculture and Rural Affairs, Jinan 250100, China 4Shandong Academy of Agricultural Sciences, Jinan 250100, China
National Natural Science Foundation of China(31601261) China Postdoctoral Science Foundation(2016M592236) National Peanut Industry Technology System(CARS-13) Major Science and Technology Innovation Project of Shandong Province(2018YFJH0601) Major Basic Research Project of Shandong Natural Science Foundation(2018GHZ007)
Abstract Aims Long-time continuing cropping of peanut (Arachis hypogaea) would result in soil deterioration, which would seriously affect the productivity and the quality of peanut. Arbuscular mycorrhizal fungi (AMF) have been used as a fertilizer that may improve root microenvironment, increase nutrient uptake and stress resistance of the plants. This study investigated the effects of Funneliformis mosseae on peanut rhizosphere microenvironment under continuing peanut cropping. Methods We conducted an experiment to examine soil properties, peanut productivity and quality between the treatments of: (1) peanut seedlings inoculated with F. mosseae in continuous cropping soil, and (2) peanut seedlings without the inoculation. Important findings We observed that F. mosseae significantly enhanced the activity of sucrase, urease, alkaline phosphatase and nitrate reductase in soil, significantly increased the soil contents of total nitrogen, total phosphorus, total potassium, available phosphorus and available potassium. Meanwhile, the abundances of Aspergillus, Fusarium and Gibberella in the rhizosphere soil of continuous cropping were decreased, while the abundances of Gaiella was significantly increased comparing to the treatment without F. mosseae inoculation. In addition, F. mosseae significantly increased the peanut yield and quality, including protein, oleic acid and linoleic acid content. Our results suggested that F. mosseae improve the peanut rhizosphere environment, alleviate the obstacles of continuous cropping. Keywords:peanut;continuous cropping;arbuscular mycorrhizal fungi;rhizosphere microecology;microorganism
PDF (5713KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 崔利, 郭峰, 张佳蕾, 杨莎, 王建国, 孟静静, 耿耘, 李新国, 万书波. 摩西斗管囊霉改善连作花生根际土壤的微环境. 植物生态学报, 2019, 43(8): 718-728. DOI: 10.17521/cjpe.2019.0036 CUI Li, GUO Feng, ZHANG Jia-Lei, YANG Sha, WANG Jian-Guo, MENG Jing-Jing, GENG Yun, LI Xin-Guo, WAN Shu-Bo. Improvement of continuous microbial environment in peanut rhizosphere soil by Funneliformis mosseae. Chinese Journal of Plant Ecology, 2019, 43(8): 718-728. DOI: 10.17521/cjpe.2019.0036
花生(Arachis hypogaea)是我国重要的油料作物, 在保障我国食用植物油安全等方面具有举足轻重的地位。近年来花生主产区相对集中, 加上种植土壤和种植面积受限, 在花生主产区连作现象十分严重(万书波等, 2007)。连作花生植株表现为根系活力降低、形态矮小、光合作用减弱、病虫害几率增加、产量降低、品质下降等连作障碍现象(封海胜等, 1999; 李孝刚等, 2015; 滕应等, 2015)。研究表明, 花生长期连作导致土壤中各种酶活性降低(李忠等, 2018)。孙秀山等(2001)研究发现, 随着连作年限的增加, 土壤中蔗糖酶、脲酶和磷酸酶的活性呈下降趋势。土壤酶活性的降低造成了土壤中磷、钾、钙、硼、铁等元素匮乏, 导致植株不能从土壤中吸收所需的营养元素, 从而影响其正常生长发育(封海胜等, 1999; 滕应等, 2015)。另外, 长期花生连作严重影响土壤微生物平衡, 土壤真菌中病原性真菌数量明显增加, 而有益真菌多样性和数量则相应减少(Chen et al., 2012; Li et al., 2014)。土壤中的有益细菌也被连作障碍定向选择, 土壤微生物从细菌型向真菌型转变(Chen et al., 2014)。土壤微生物菌落结构失衡是连作花生病虫害加剧, 产量和品质下降的一个重要原因。
Fig. 1Effects of inoculation with Funneliformis mosseae on enzyme activities of solid-sucrase (S-SC)(A), solid-urease (S-UE)(B), solid alkaline-phosphatase (S-AKP/ALP)(C) and solid-nitrate reductase (S-NR)(D) in rhizosphere soil of continuing cropping peanut at different growth stages (mean ± SE). * indicates significant difference between the two treatments (p < 0.05). ▲, without F. mosseae inoculation; △, F. mosseae inoculation.
Table 1 表1 表1接种和未接种摩西斗管囊霉的连作花生根际土壤全氮、全磷和全钾含量比较(平均值±标准误差, n = 3) Table 1Comparison of soil contents of total nitrogen, total phosphorus and total potassium between the treatments with and without Funneliformis mosseae inoculation under continuing cropping of peanuts (mean ± SE, n = 3)
处理 Treatment
全氮 Total N (g·kg-1)
全磷 Total P (g·kg-1)
全钾 Total K (mg·g-1)
盛花期 Anthesis
收获期 Harvest period
盛花期 Anthesis
收获期 Harvest period
盛花期 Anthesis
收获期 Harvest period
-AMF
1.23 ± 0.06
0.74 ± 0.02
0.59 ± 0.06
0.37 ± 0.04
6.67 ± 0.22
3.57 ± 0.67
+AMF
1.44 ± 0.06*
0.82 ± 0.03*
0.70 ± 0.03*
0.47 ± 0.07*
7.41 ± 0.57
5.39 ± 0.73*
* indicates significant difference (p < 0.05). -AMF, without F. mosseae inoculation; +AMF, F. mosseae inoculation. *表示差异显著(p < 0.05)。-AMF, 未接种摩西斗管囊霉; +AMF, 接种摩西斗管囊霉。
Table 2 表2 表2接种摩西斗管囊霉对连作花生根际土壤碱解氮、速效磷和速效钾含量的影响(平均值±标准误差, n = 3) Table 2Effects of Funneliformis mosseae inoculation on the soil contents of alkaline nitrogen, available phosphorus and available potassium (mean ± SE, n = 3)
处理 Treatment
碱解氮 Alkaline N (mg·kg-1)
速效磷 Effective P (g·kg-1)
速效钾 Effective K (mg·kg-1)
盛花期 Anthesis
收获期 Harvest period
盛花期 Anthesis
收获期 Harvest period
盛花期 Anthesis
收获期 Harvest period
-AMF
73.39 ± 3.66
75.77 ± 3.66
0.18 ± 0.01
0.15 ± 0.01
15.40 ± 0.56
11.03 ± 0.64
+AMF
74.86 ± 5.54
81.67 ± 7.00
0.21 ± 0.02*
0.18 ± 0.00*
16.17 ± 0.47
13.20 ± 0.66*
Sample size n = 3; *, p < 0.05. -AMF, without F. mosseae inoculation; +AMF, F. mosseae inoculation. 表中数据为3次试验的平均值; *, p < 0.05。-AMF, 未接种摩西斗管囊霉; +AMF, 接种摩西斗管囊霉。
新窗口打开|下载原图ZIP|生成PPT 图2接种和未接种摩西斗管囊霉对花生连作土壤真菌群落结构及多度的影响。A, 不同时期不同处理间真菌分类操作单元丰度的韦恩图。B, 接种摩西斗管囊霉改变花生连作土壤真菌门的多度。C, 接种摩西斗管囊霉对盛花期花生根际土壤真菌属影响不显著(平均值±标准误差, n = 3)。D, 接种摩西斗管囊霉对收获期花生根际土壤真菌属影响显著(平均值±标准误差, n = 3)。-AMF, 未接种摩西斗管囊霉; +AMF, 接种摩西斗管囊霉。F(-AMF), 未接种摩西斗管囊霉的盛花期花生根际土壤; F(+AMF), 接种摩西斗管囊霉的盛花期花生根际土壤; H(-AMF), 未接种摩西斗管囊霉的收获期花生根际土壤; H(+AMF), 接种摩西斗管囊霉的收获期花生根际土壤。*, p < 0.05; **, p < 0.01。
Fig. 2Effects of with and without Funneliformis mosseae inoculation on the structure and abundance of soil fungi community under continuing cropping of peanut. A, The Venn figure shows the number of fungal operational taxonomic units in different treatments. B, Abundance of soil fungi in continuing cropping of peanut was changed by F. mosseae. C, Abundance of fungal genera were not significantly different between with and without F. mosseae inoculation in the flowering period of continuing cropping peanuts (mean ± SE, n = 3). D, Abundance of some fungal genera were significantly different between with and without F. mosseae inoculation at harvest period (mean ± SE, n = 3). -AMF, without F. mosseae inoculation; +AMF, F. mosseae inoculation. F(-AMF), peanut rhizosphere soil without F. mosseae inoculation during the flowering period; F(+AMF), rhizosphere soil of peanut with F. mosseae inoculation; H(-AMF), peanut rhizosphere soil without F. mosseae inoculation during the harvest period; H(+AMF), peanut rhizosphere soil with F. mosseae inoculation during the harvest period. *, p < 0.05; **, p < 0.01.
新窗口打开|下载原图ZIP|生成PPT 图3接种摩西斗管囊霉对花生连作土壤细菌群落结构及丰度的影响。A, 不同时期不同处理间细菌操作分类单元丰度的韦恩图。B, 接种摩西斗管囊霉改变细菌门多度。C, 接种摩西斗管囊霉显著改变盛花期花生根际土壤细菌属的多度(平均值±标准误差, n = 3)。D, 接种摩西斗管囊霉显著改变收获期花生根际土壤细菌属的多度(平均值±标准误差, n = 3)。-AMF, 未接种摩西斗管囊霉; +AMF, 接种摩西斗管囊霉。F(-AMF), 未接种摩西斗管囊霉的盛花期花生根际土壤; F (+AMF), 接种摩西斗管囊霉的盛花期花生根际土壤; H(-AMF), 未接种摩西斗管囊霉的收获期花生根际土壤; H(+AMF), 接种摩西斗管囊霉的收获期花生根际土壤。*, p < 0.05。
Fig. 3Effects of Funneliformis mosseae on the structure and abundance of soil bacterial community in rhizosphere soil of peanut under continuing cropping. A, The Venn figure shows the number of bacterial operational taxonomic units in the two treatments. B, Abundance of soil bacteria in continuous cropping of peanut changed in the F. mosseae inoculation tratement C, Abundance of bacterial genera were significantly different between with and without F. mosseae inoculation in the flowering period of continuing cropping peanuts (mean ± SE, n = 3). D, Abundance of bacterial genera were significantly different between with and without F. mosseae inoculation in the harvesting period of continuous cropping peanuts (mean ± SE, n = 3). -AMF, without F. mosseae inoculation; +AMF, F. mosseae inoculation. F(-AMF), peanut rhizosphere soil without F. mosseae inoculation during the flowering period; F(+AMF), rhizosphere soil of peanut with F. mosseae inoculation; H(-AMF), peanut rhizosphere soil without F. mosseae inoculation during the harvest period; H(+AMF), peanut rhizosphere soil with F. mosseae inoculation during the harvest period. *, p < 0.05.
Table 3 表3 表3接种摩西斗管囊霉对连作花生产量和品质的影响 Table 3Effects of Funneliformis mosseae inoculation on the yield and quality of continuous cropping peanut
处理 Treatment
单株结果数 Pod number per plant
单株果质量 Pod mass per plant (g)
饱果率 Full fruit rate (%)
蛋白质 Protein (%)
总氨基酸 Total amino acid (%)
油酸 Oleic (%)
亚油酸 Linoleic (%)
-AMF
34.67 ± 2.08
41.85 ± 2.87
60.82 ± 0.02
18.34 ± 0.17
18.29 ± 1.68
52.46 ± 1.16
24.12 ± 1.37
+AMF
39.33 ± 0.58*
52.05 ± 0.79*
70.33 ± 0.04*
21,89 ± 0.22*
21.30 ± 0.97*
57.38 ± 1.32*
27.20 ± 1.19*
Sample size n = 3; *, p < 0.05. -AMF, without F. mosseae inoculation; +AMF, F. mosseae inoculation. 表中数据为3次试验的平均值; *, p < 0.05。-AMF, 未接种摩西斗管囊霉; +AMF, 接种摩西斗管囊霉。
AdolfssonL, NzienguiH, AbreuIN, ?imuraJ, BeeboA, HerdeanA, AboalizadehJ, ?irokáJ, MoritzT, NovákO, LjungK, SchoefsB, SpeteaC (2017). Enhanced secondary- and hormone metabolism in leaves of arbuscular mcorrhizal 175, 392-411. [本文引用: 1]
Azcón-AguilarC, BareaJM (1997). Arbuscular mycorrhizas and biological control of soil-borne plant pathogens—An overview of the mechanisms involved 6, 457-464. [本文引用: 1]
BagyarajDJ, ManjunathA, PatilRB (1979). Interaction between a vesicular-arbuscular mycorrhiza and rhizobium and their effects on soybean in the field 82, 141-145. [本文引用: 1]
ChenMN, LiX, YangQL, ChiXY, PanLJ, ChenN, YangZ, WangT, WangM, YuSL (2012). Soil eukaryotic microorganism succession as affected by continuous cropping of peanut-pathogenic and beneficial fungi were selected 7, e40659. DOI: 10.1371/journal.pone.0040659. [本文引用: 2]
ChenMN, LiX, YangQL, ChiXY, PanLJ, ChenN, YangZ, WangT, WangM, YuSL (2014). Dynamic succession of soil bacterial community during continuous cropping of peanut ( Arachis hypogaea L.) , 9, e101355. DOI: 10.1371/journal.pone.0101355. [本文引用: 1]
CuiL, GuoF, ZhangJL, YangS, MengJJ, GengY, WangQ, LiXG, WanSB (2019). Arbuscular mycorrhizal fungi combined with exogenous calcium improves the growth of peanut ( Arachis hypogaea L.) seedlings under continuous cropping 18, 407-416. [本文引用: 1]
DehneH, SchonbeckF, BaltruschatH (1978). The influence of endotrophic mycorrhiza on plant disease. 3. Chitinase-?activity and ornithine-cylce 85, 666-678. [本文引用: 1]
DesjardinsAE (2003). Gibberella from A (venaceae) to Z (eae) 41, 177-198. [本文引用: 1]
FengHS, WanSB, ZuoXQ, ChengB (1999). Changes of main microbial groups in soil and rhizosphere of peanut continuous cropping and their correlation with yield Peanut Science and Technology, (Suppl. 1), 277-283. [本文引用: 3]
FengY (2017). Effects of arbuscular mycorrhizal fungi (AMF) on soil microbes and nutrients in rhizosphere of Salvia miltiorrhiza China Agriculture Information, (10), 57-58. [本文引用: 1]
FuXF, ZhangGP, ZhangXW, RenJH (2016). Effects of PSB and AMF on growth, microorganisms and soil enzyme activities in the rhizosphere of Taxus chinensis var mairei seedlings. Acta Botanica Boreali-Occidentalia Sinica, 36, 353-360. [本文引用: 1]
HanB, GuoSR, HeCX, YanY, YuXC (2012). Effects of arbuscular mycorrhiza fungi on the plant growth, fruit yield and fruit quality of cucumber under salt stress Chinese Journal of Applied Ecology, 23, 154-158. [本文引用: 1]
HuangYQ, HanXR, YangJF, LiuN, LiuXH (2011). Studies on the changes of soil microbial communities under peanuts continuous cropping Chinese Journal of Soil Science, 42, 552-556. [本文引用: 2]
LeBlancN, KinkelL, KistlerHC (2017). Plant diversity and plant identity influence Fusarium communities in soil 109, 128-139. [本文引用: 1]
LehmannA, RilligMC (2015). Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops—A meta-analysis 81, 147-158. [本文引用: 1]
LeiH, WangJZ, TanY, ZengM (2019). Effects of reduced fertilization and inoculation with AMF on growth and soil enzyme activities of potted citrus South China Fruits, 48(2), 11-17. [本文引用: 1]
LiH, ChenXW, WongMH (2016). Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains 145, 224-230. [本文引用: 1]
LiXG, DingCF, ZhangTL, WangXX (2014). Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing 72, 11-18. [本文引用: 2]
LiXG, ZhangTL, WangXX (2015). Advances in mechanism of peanut continuous cropping obstacle Soils, 47, 266-271. [本文引用: 1]
LuoWQ, LiJ, MaXN, NiuH, HouSW, WuFY (2019). Effect of arbuscular mycorrhizal fungi on uptake of selenate, selenite, and selenomethionine by roots of winter wheat 438, 71-83. [本文引用: 1]
MarschnerP, CrowleyD, LiebereiR (2001). Arbuscular mycorrhizal infection changes the bacterial 16S rDNA community composition in the rhizosphere of maize 11, 297-302. [本文引用: 1]
NingCH, LiWB, LiuRJ (2019). Research advances in plant symbiotic Actinomyces. Chinese Journal of Ecology, 38, 256-266. [本文引用: 1]
OzgonenH, AkgulDS, ErkiliA (2010). The effects of arbuscular mycorrhizal fungi on yield and stem rot caused by Sclerotium rolfsii Sacc. in peanut 5(2), 128-132. [本文引用: 1]
PozoMJ, López-RáezJA, Azcón-AguilarC, García-GarridoJM (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses 205, 1431-1436. [本文引用: 1]
QuMH, YuYC, LiS, ZhangJC (2019). Advances in research on activation of mineral nutrients by arbuscular mycorrhizal fungi Journal of Zhejiang A&F University, 36, 394-405. [本文引用: 1]
RouphaelY, FrankenP, SchneiderC, SchwarzD, GiovannettiM, AgnolucciM, De PascaleS, BoniniP, CollaG (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops 196, 91-108. [本文引用: 1]
ShenML, ZhaoC, LiaoP, LiJ, ChengXF, LiCC, ZhangQ, LiYB, ZhangLL, ZhaoK (2018). The isolation and identification of endophytic actinobacteria from Glycyrrhiza glabra in the Tarim basin and their stress resistance and ability to promote plant growth Pratacultural Science, 35, 1624-1633. [本文引用: 1]
SunXS, FengHS, WanSB, ZuoXQ (2001). Changes of main microbial strains and enzymes activities in peanut continuous cropping soil and their interactions Acta Agronomica Sinica, 27, 617-621. [本文引用: 2]
SunXX, HeCX, LiYS, YuXC (2017). Effects of arbuscular mycorrhizal fungi on microbial community and function in the rhizosphere soil of cucumber plants Mycosystema, 36, 892-903. [本文引用: 1]
WangJ, BiYL, ZhangYX, HongTC, QiuL, ChenSL (2014). Effects of arbuscular mycorrhiza on soil microorganisms and enzyme activities in disturbed coal mine areas Journal of Southern Agriculture, 45, 1417-1423. [本文引用: 2]
ZhangCS (2013). Study on the Distribution, Aflatoxin Production and Genetic Diversity of Aspergillus flavus in Soils of Peanut Fields in Four Agroecological Zones of China PhD dissertation, Chinese Academy of Agricultural Science, Beijing. [本文引用: 1]
ZhouBL, ZhengJD, BiXH, CaiLL, GuoWW (2015). Effects of mycorrhizal fungi on eggplant verticillium wilt and eggplant growth Chinese Journal of Ecology, 34, 1026-1030. [本文引用: 1]
Soil eukaryotic microorganism succession as affected by continuous cropping of peanut-pathogenic and beneficial fungi were selected 2 2012
... 花生(Arachis hypogaea)是我国重要的油料作物, 在保障我国食用植物油安全等方面具有举足轻重的地位.近年来花生主产区相对集中, 加上种植土壤和种植面积受限, 在花生主产区连作现象十分严重(万书波等, 2007).连作花生植株表现为根系活力降低、形态矮小、光合作用减弱、病虫害几率增加、产量降低、品质下降等连作障碍现象(封海胜等, 1999; 李孝刚等, 2015; 滕应等, 2015).研究表明, 花生长期连作导致土壤中各种酶活性降低(李忠等, 2018).孙秀山等(2001)研究发现, 随着连作年限的增加, 土壤中蔗糖酶、脲酶和磷酸酶的活性呈下降趋势.土壤酶活性的降低造成了土壤中磷、钾、钙、硼、铁等元素匮乏, 导致植株不能从土壤中吸收所需的营养元素, 从而影响其正常生长发育(封海胜等, 1999; 滕应等, 2015).另外, 长期花生连作严重影响土壤微生物平衡, 土壤真菌中病原性真菌数量明显增加, 而有益真菌多样性和数量则相应减少(Chen et al., 2012; Li et al., 2014).土壤中的有益细菌也被连作障碍定向选择, 土壤微生物从细菌型向真菌型转变(Chen et al., 2014).土壤微生物菌落结构失衡是连作花生病虫害加剧, 产量和品质下降的一个重要原因. ...
... 长期花生连作严重影响土壤微生物群落结构平衡, 真菌中病原性真菌数量明显增加, 如尖孢镰孢菌和曲霉菌属中的一些致病菌种, 而有益真菌多样性和数量则相应减少, 如木霉属, 被孢霉属, 球囊霉属等(Chen et al., 2012; Li et al., 2014).镰刀菌属中大部分是致病性镰刀菌, 有的致病性镰刀菌能够侵染植物, 导致植物腐烂、枯萎, 从而导致作物产量和品质降低, 甚至绝产(LeBlanc et al., 2017).赤霉属常作为镰刀菌属真菌的有性阶段, 许多赤霉属 可以引起具有破坏性的植物病害, 而且其产生的特定毒素或活性代谢物对人和动物具有毒害作用(Desjardins, 2003).另外, 土壤是花生曲霉菌的主要来源, 曲霉菌属中有的种类能够产生高致癌性和高毒性的次级代谢产物黄曲霉素(张初署, 2013).前人研究表明, AMF能够减轻花生的茎腐病、黄瓜立枯病、烟草青枯病(贺忠群等, 2010; Ozgonen et al., 2010; 刘先良等, 2014).在本研究中, 摩西斗管囊霉减少了连作花生根际土壤中镰刀菌属、赤霉属和曲霉菌属的多度, 这可能因为AM共生体引起了植物根系细胞膜透性、分泌物和渗出物等发生改变, 形成了独特微生物区系保护层, 从而使根际真菌病原菌减少(Dehne et al., 1978; Marschner et al., 2001; 高萍等, 2017).这说明摩西斗管囊霉可以减少连作花生土壤有害真菌的相对含量, 降低花生被病原真菌侵染的几率. ...
Dynamic succession of soil bacterial community during continuous cropping of peanut ( Arachis hypogaea L.) 1 2014
... 花生(Arachis hypogaea)是我国重要的油料作物, 在保障我国食用植物油安全等方面具有举足轻重的地位.近年来花生主产区相对集中, 加上种植土壤和种植面积受限, 在花生主产区连作现象十分严重(万书波等, 2007).连作花生植株表现为根系活力降低、形态矮小、光合作用减弱、病虫害几率增加、产量降低、品质下降等连作障碍现象(封海胜等, 1999; 李孝刚等, 2015; 滕应等, 2015).研究表明, 花生长期连作导致土壤中各种酶活性降低(李忠等, 2018).孙秀山等(2001)研究发现, 随着连作年限的增加, 土壤中蔗糖酶、脲酶和磷酸酶的活性呈下降趋势.土壤酶活性的降低造成了土壤中磷、钾、钙、硼、铁等元素匮乏, 导致植株不能从土壤中吸收所需的营养元素, 从而影响其正常生长发育(封海胜等, 1999; 滕应等, 2015).另外, 长期花生连作严重影响土壤微生物平衡, 土壤真菌中病原性真菌数量明显增加, 而有益真菌多样性和数量则相应减少(Chen et al., 2012; Li et al., 2014).土壤中的有益细菌也被连作障碍定向选择, 土壤微生物从细菌型向真菌型转变(Chen et al., 2014).土壤微生物菌落结构失衡是连作花生病虫害加剧, 产量和品质下降的一个重要原因. ...
Arbuscular mycorrhizal fungi combined with exogenous calcium improves the growth of peanut ( Arachis hypogaea L.) seedlings under continuous cropping 1 2019
Indigenous arbuscular mycorrhizal (AM) fungi contribute to wheat phosphate uptake in a semi-arid field environment, shown by tracking with radioactive phosphorus 1 2015
... 伴随着花生连作年限的增加, 土壤酶活性逐渐降低, 土壤中有效养分含量减少, 从而导致植物根系对养分吸收降低(滕应等, 2015).封海胜等(1999)对中等肥力的花生连作土壤研究表明, 土壤中速效磷和速效钾的含量随着连作年限的增加而减少, 而碱解氮含量变化不大.AMF能够活化土壤中矿物质营养, 增加植物对氮、锌、铜、钾、钙、铁等矿质营养元素的吸收(Lehmann & Rilling, 2015).本研究结果表明, 摩西斗管囊霉提高花生连作土壤中全氮的含量, 这是摩西斗管囊霉提高土壤中脲酶、硝酸还原酶活性和土壤硝化螺旋菌属多度的结果, 因为这三者在土壤氮循环中起到重要的作用.同时, 摩西斗管囊霉提高了连作花生根际土壤中磷的含量, 这与AMF促进植物对难溶性元素磷的吸收结果一致(Smith et al., 2015; Li et al., 2016), 其原因可能是AMF提高土壤中磷酸酶的活性和诱导植物根系中磷转运基因的表达(Adolfsson et al., 2017).另外, 摩西斗管囊霉提高了连作花生土壤中钾的含量, 而土壤中钾增加可能是土壤酶活性提高的结果, 这也是AMF提高植物吸收K+原因(Garcia et al., 2017). ...
... 花生属于豆科植物, 其根瘤具有固氮功能, 因此对氮的吸收较少, 而对磷、钾、硼、铁等元素的吸收较多(滕应等, 2015).花生长期连作势必会使土壤酶活性及微生物区系平衡受到破坏, 导致矿物质元素的匮乏, 从而严重影响花生的产量和品质(Kunoh, 2002).AMF通过提高寄主植物对营养元素的吸收和对逆境胁迫的抗性来增加植物的产量, 改善品质(孙秀秀等, 2017; Luo et al., 2019).本研究结果表明, 接种摩西斗管囊霉的连作花生产量和品质都有所提高, 这与摩西斗管囊霉增加土壤酶活性、提高土壤中矿物质含量、减少土壤中有害真菌镰刀菌属和曲霉菌属的多度、增加有益细菌放线菌门的多度有密切关系. ...
AM真菌对黄瓜根围土壤微生物群落功能的影响 1 2017
... 花生属于豆科植物, 其根瘤具有固氮功能, 因此对氮的吸收较少, 而对磷、钾、硼、铁等元素的吸收较多(滕应等, 2015).花生长期连作势必会使土壤酶活性及微生物区系平衡受到破坏, 导致矿物质元素的匮乏, 从而严重影响花生的产量和品质(Kunoh, 2002).AMF通过提高寄主植物对营养元素的吸收和对逆境胁迫的抗性来增加植物的产量, 改善品质(孙秀秀等, 2017; Luo et al., 2019).本研究结果表明, 接种摩西斗管囊霉的连作花生产量和品质都有所提高, 这与摩西斗管囊霉增加土壤酶活性、提高土壤中矿物质含量、减少土壤中有害真菌镰刀菌属和曲霉菌属的多度、增加有益细菌放线菌门的多度有密切关系. ...
花生连作障碍发生机理研究进展 4 2015
... 花生(Arachis hypogaea)是我国重要的油料作物, 在保障我国食用植物油安全等方面具有举足轻重的地位.近年来花生主产区相对集中, 加上种植土壤和种植面积受限, 在花生主产区连作现象十分严重(万书波等, 2007).连作花生植株表现为根系活力降低、形态矮小、光合作用减弱、病虫害几率增加、产量降低、品质下降等连作障碍现象(封海胜等, 1999; 李孝刚等, 2015; 滕应等, 2015).研究表明, 花生长期连作导致土壤中各种酶活性降低(李忠等, 2018).孙秀山等(2001)研究发现, 随着连作年限的增加, 土壤中蔗糖酶、脲酶和磷酸酶的活性呈下降趋势.土壤酶活性的降低造成了土壤中磷、钾、钙、硼、铁等元素匮乏, 导致植株不能从土壤中吸收所需的营养元素, 从而影响其正常生长发育(封海胜等, 1999; 滕应等, 2015).另外, 长期花生连作严重影响土壤微生物平衡, 土壤真菌中病原性真菌数量明显增加, 而有益真菌多样性和数量则相应减少(Chen et al., 2012; Li et al., 2014).土壤中的有益细菌也被连作障碍定向选择, 土壤微生物从细菌型向真菌型转变(Chen et al., 2014).土壤微生物菌落结构失衡是连作花生病虫害加剧, 产量和品质下降的一个重要原因. ...
... ; 滕应等, 2015).另外, 长期花生连作严重影响土壤微生物平衡, 土壤真菌中病原性真菌数量明显增加, 而有益真菌多样性和数量则相应减少(Chen et al., 2012; Li et al., 2014).土壤中的有益细菌也被连作障碍定向选择, 土壤微生物从细菌型向真菌型转变(Chen et al., 2014).土壤微生物菌落结构失衡是连作花生病虫害加剧, 产量和品质下降的一个重要原因. ...
... 伴随着花生连作年限的增加, 土壤酶活性逐渐降低, 土壤中有效养分含量减少, 从而导致植物根系对养分吸收降低(滕应等, 2015).封海胜等(1999)对中等肥力的花生连作土壤研究表明, 土壤中速效磷和速效钾的含量随着连作年限的增加而减少, 而碱解氮含量变化不大.AMF能够活化土壤中矿物质营养, 增加植物对氮、锌、铜、钾、钙、铁等矿质营养元素的吸收(Lehmann & Rilling, 2015).本研究结果表明, 摩西斗管囊霉提高花生连作土壤中全氮的含量, 这是摩西斗管囊霉提高土壤中脲酶、硝酸还原酶活性和土壤硝化螺旋菌属多度的结果, 因为这三者在土壤氮循环中起到重要的作用.同时, 摩西斗管囊霉提高了连作花生根际土壤中磷的含量, 这与AMF促进植物对难溶性元素磷的吸收结果一致(Smith et al., 2015; Li et al., 2016), 其原因可能是AMF提高土壤中磷酸酶的活性和诱导植物根系中磷转运基因的表达(Adolfsson et al., 2017).另外, 摩西斗管囊霉提高了连作花生土壤中钾的含量, 而土壤中钾增加可能是土壤酶活性提高的结果, 这也是AMF提高植物吸收K+原因(Garcia et al., 2017). ...
... 花生属于豆科植物, 其根瘤具有固氮功能, 因此对氮的吸收较少, 而对磷、钾、硼、铁等元素的吸收较多(滕应等, 2015).花生长期连作势必会使土壤酶活性及微生物区系平衡受到破坏, 导致矿物质元素的匮乏, 从而严重影响花生的产量和品质(Kunoh, 2002).AMF通过提高寄主植物对营养元素的吸收和对逆境胁迫的抗性来增加植物的产量, 改善品质(孙秀秀等, 2017; Luo et al., 2019).本研究结果表明, 接种摩西斗管囊霉的连作花生产量和品质都有所提高, 这与摩西斗管囊霉增加土壤酶活性、提高土壤中矿物质含量、减少土壤中有害真菌镰刀菌属和曲霉菌属的多度、增加有益细菌放线菌门的多度有密切关系. ...
花生连作障碍发生机理研究进展 4 2015
... 花生(Arachis hypogaea)是我国重要的油料作物, 在保障我国食用植物油安全等方面具有举足轻重的地位.近年来花生主产区相对集中, 加上种植土壤和种植面积受限, 在花生主产区连作现象十分严重(万书波等, 2007).连作花生植株表现为根系活力降低、形态矮小、光合作用减弱、病虫害几率增加、产量降低、品质下降等连作障碍现象(封海胜等, 1999; 李孝刚等, 2015; 滕应等, 2015).研究表明, 花生长期连作导致土壤中各种酶活性降低(李忠等, 2018).孙秀山等(2001)研究发现, 随着连作年限的增加, 土壤中蔗糖酶、脲酶和磷酸酶的活性呈下降趋势.土壤酶活性的降低造成了土壤中磷、钾、钙、硼、铁等元素匮乏, 导致植株不能从土壤中吸收所需的营养元素, 从而影响其正常生长发育(封海胜等, 1999; 滕应等, 2015).另外, 长期花生连作严重影响土壤微生物平衡, 土壤真菌中病原性真菌数量明显增加, 而有益真菌多样性和数量则相应减少(Chen et al., 2012; Li et al., 2014).土壤中的有益细菌也被连作障碍定向选择, 土壤微生物从细菌型向真菌型转变(Chen et al., 2014).土壤微生物菌落结构失衡是连作花生病虫害加剧, 产量和品质下降的一个重要原因. ...
... ; 滕应等, 2015).另外, 长期花生连作严重影响土壤微生物平衡, 土壤真菌中病原性真菌数量明显增加, 而有益真菌多样性和数量则相应减少(Chen et al., 2012; Li et al., 2014).土壤中的有益细菌也被连作障碍定向选择, 土壤微生物从细菌型向真菌型转变(Chen et al., 2014).土壤微生物菌落结构失衡是连作花生病虫害加剧, 产量和品质下降的一个重要原因. ...
... 伴随着花生连作年限的增加, 土壤酶活性逐渐降低, 土壤中有效养分含量减少, 从而导致植物根系对养分吸收降低(滕应等, 2015).封海胜等(1999)对中等肥力的花生连作土壤研究表明, 土壤中速效磷和速效钾的含量随着连作年限的增加而减少, 而碱解氮含量变化不大.AMF能够活化土壤中矿物质营养, 增加植物对氮、锌、铜、钾、钙、铁等矿质营养元素的吸收(Lehmann & Rilling, 2015).本研究结果表明, 摩西斗管囊霉提高花生连作土壤中全氮的含量, 这是摩西斗管囊霉提高土壤中脲酶、硝酸还原酶活性和土壤硝化螺旋菌属多度的结果, 因为这三者在土壤氮循环中起到重要的作用.同时, 摩西斗管囊霉提高了连作花生根际土壤中磷的含量, 这与AMF促进植物对难溶性元素磷的吸收结果一致(Smith et al., 2015; Li et al., 2016), 其原因可能是AMF提高土壤中磷酸酶的活性和诱导植物根系中磷转运基因的表达(Adolfsson et al., 2017).另外, 摩西斗管囊霉提高了连作花生土壤中钾的含量, 而土壤中钾增加可能是土壤酶活性提高的结果, 这也是AMF提高植物吸收K+原因(Garcia et al., 2017). ...
... 花生属于豆科植物, 其根瘤具有固氮功能, 因此对氮的吸收较少, 而对磷、钾、硼、铁等元素的吸收较多(滕应等, 2015).花生长期连作势必会使土壤酶活性及微生物区系平衡受到破坏, 导致矿物质元素的匮乏, 从而严重影响花生的产量和品质(Kunoh, 2002).AMF通过提高寄主植物对营养元素的吸收和对逆境胁迫的抗性来增加植物的产量, 改善品质(孙秀秀等, 2017; Luo et al., 2019).本研究结果表明, 接种摩西斗管囊霉的连作花生产量和品质都有所提高, 这与摩西斗管囊霉增加土壤酶活性、提高土壤中矿物质含量、减少土壤中有害真菌镰刀菌属和曲霉菌属的多度、增加有益细菌放线菌门的多度有密切关系. ...
连作花生的生育特性研究 1 2007
... 花生(Arachis hypogaea)是我国重要的油料作物, 在保障我国食用植物油安全等方面具有举足轻重的地位.近年来花生主产区相对集中, 加上种植土壤和种植面积受限, 在花生主产区连作现象十分严重(万书波等, 2007).连作花生植株表现为根系活力降低、形态矮小、光合作用减弱、病虫害几率增加、产量降低、品质下降等连作障碍现象(封海胜等, 1999; 李孝刚等, 2015; 滕应等, 2015).研究表明, 花生长期连作导致土壤中各种酶活性降低(李忠等, 2018).孙秀山等(2001)研究发现, 随着连作年限的增加, 土壤中蔗糖酶、脲酶和磷酸酶的活性呈下降趋势.土壤酶活性的降低造成了土壤中磷、钾、钙、硼、铁等元素匮乏, 导致植株不能从土壤中吸收所需的营养元素, 从而影响其正常生长发育(封海胜等, 1999; 滕应等, 2015).另外, 长期花生连作严重影响土壤微生物平衡, 土壤真菌中病原性真菌数量明显增加, 而有益真菌多样性和数量则相应减少(Chen et al., 2012; Li et al., 2014).土壤中的有益细菌也被连作障碍定向选择, 土壤微生物从细菌型向真菌型转变(Chen et al., 2014).土壤微生物菌落结构失衡是连作花生病虫害加剧, 产量和品质下降的一个重要原因. ...
连作花生的生育特性研究 1 2007
... 花生(Arachis hypogaea)是我国重要的油料作物, 在保障我国食用植物油安全等方面具有举足轻重的地位.近年来花生主产区相对集中, 加上种植土壤和种植面积受限, 在花生主产区连作现象十分严重(万书波等, 2007).连作花生植株表现为根系活力降低、形态矮小、光合作用减弱、病虫害几率增加、产量降低、品质下降等连作障碍现象(封海胜等, 1999; 李孝刚等, 2015; 滕应等, 2015).研究表明, 花生长期连作导致土壤中各种酶活性降低(李忠等, 2018).孙秀山等(2001)研究发现, 随着连作年限的增加, 土壤中蔗糖酶、脲酶和磷酸酶的活性呈下降趋势.土壤酶活性的降低造成了土壤中磷、钾、钙、硼、铁等元素匮乏, 导致植株不能从土壤中吸收所需的营养元素, 从而影响其正常生长发育(封海胜等, 1999; 滕应等, 2015).另外, 长期花生连作严重影响土壤微生物平衡, 土壤真菌中病原性真菌数量明显增加, 而有益真菌多样性和数量则相应减少(Chen et al., 2012; Li et al., 2014).土壤中的有益细菌也被连作障碍定向选择, 土壤微生物从细菌型向真菌型转变(Chen et al., 2014).土壤微生物菌落结构失衡是连作花生病虫害加剧, 产量和品质下降的一个重要原因. ...