删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

围封对内蒙古典型草原与荒漠草原植被-土壤系统碳密度的影响

本站小编 Free考研考试/2022-01-01

闫宝龙, 王忠武,*, 屈志强*, 王静*, 韩国栋,*内蒙古农业大学草原与资源环境学院, 呼和浩特 010019

Effects of enclosure on carbon density of plant-soil system in typical steppe and desert steppe in Nei Mongol, China

YAN Bao-Long, WANG Zhong-Wu,*, QU Zhi-Qiang*, WANG Jing*, HAN Guo-Dong,*College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Huhhot 010019, China

通讯作者: Han GD, hanguodong@imau.edu.cn; Wang ZW, zhongwuwang1979@163.com Han GD, hanguodong@imau.edu.cn; Wang ZW, zhongwuwang1979@163.com

编委: 黄建辉
责任编辑: 王葳
基金资助:中国科学院战略性先导科技专项(XDA05050402-6)
国家重点研发计划(2016YFC0500504)
内蒙古自治区重大科技专项和中国科学院西部之光项目()


Online:2018-03-20
Supported by: SupportedbytheStrategicPriorityResearchProgramoftheChineseAcademyofSciences(XDA05050402-6)
the National Key Research and Development Project of China(2016YFC0500504)
the Science and Technology Projects in Inner Mongolia Autonomous Region and West Light Foundation of Chinese Academy of Sciences.()


摘要
草地生态系统是巨大的碳库, 在全球碳循环中起着重要的作用。该研究以内蒙古中温带草地区典型草原和荒漠草原为研究对象, 测定了两种草原类型围封与放牧后地上生物量碳密度、地下生物量碳密度和土壤碳密度, 探讨围封对两种草原类型植被-土壤系统碳密度的影响。结果表明: (1)围封显著地增加了典型草原地上和地下生物量的碳密度, 对荒漠草原地上生物量碳密度增加影响显著, 对地下生物量碳密度增加影响不显著; (2)围封显著地增加了典型草原土壤碳密度, 使荒漠草原土壤碳密度有增加的趋势, 但影响不显著; (3)典型草原围封样地地下生物量和土壤碳密度的垂直分布显著高于放牧样地, 而荒漠草原围封样地地下生物量和土壤碳密度的垂直分布与放牧样地的差异不显著; (4)围封分别提高了典型草原和荒漠草原植被-土壤系统碳密度的2.2倍和1.6倍, 典型草原和荒漠草原分别有超过65%和89%的碳储存在土壤中, 两种草原类型的地下生物量碳库均占总生物量碳库的90%以上。研究结果表明围封能够有效地增加草原生态系统的碳储量。
关键词: 围封;典型草原;荒漠草原;碳密度;垂直分布

Abstract
Aims As an immense carbon (C) stock, grassland ecosystem plays a crucial role in global C cycling. The objective of this research was to reveal the effects of enclosure on C density of the plant-soil system by comparing the aboveground biomass (AGB), belowground biomass (BGB) and soil C density in enclosure plots with those in grazing plots in the typical steppe (TS) and desert steppe (DS) in Nei Mongol, China.Methods At each of the 19 study sites, we set up a 100 m × 100 m plot and 5 quadrats (1 m × 1 m) along the diagonal transect within each plot. At each quadrat, AGB was harvested first and then a soil core (0-100 cm depth, 7 cm inner diameter) was taken for BGB and soil C content measurement. Each soil core was divided into 7 depth increments (0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm, 30-50 cm, 50-70 cm, 70-100 cm).Important findings (1) Enclosure significantly increased C density of AGB and BGB in TS. In DS, enclosure significantly increased C density of AGB, but had no significant effect on the C density of BGB. (2) Enclosure significantly increased soil C density in TS, but had no significant impact in DS although there was an increasing trend. (3) For all increments along the soil profile, enclosure significantly increased BGB and soil C density compared to grazing plots in TS, but this effect was not found in DS. (4) Enclosure increased C density of the plant-soil system by 2.2 and 1.6 times in TS and DS, respectively. 65% and 89% C was stored in soil in TS and DS, respectively, and BGB C stock accounted for more than 90% of total biomass C in both TS and DS. Enclosure is an effective approach to improve C sequestration in grassland ecosystems.
Keywords:enclosure;typical steppe;desert steppe;carbon density;vertical distribution


PDF (1211KB)摘要页面多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
引用本文
闫宝龙, 王忠武, 屈志强, 王静, 韩国栋. 围封对内蒙古典型草原与荒漠草原植被-土壤系统碳密度的影响. 植物生态学报, 2018, 42(3): 327-336 doi:10.17521/cjpe.2017.0067
YAN Bao-Long, WANG Zhong-Wu, QU Zhi-Qiang, WANG Jing, HAN Guo-Dong. Effects of enclosure on carbon density of plant-soil system in typical steppe and desert steppe in Nei Mongol, China. Chinese Journal of Plant Ecology, 2018, 42(3): 327-336 doi:10.17521/cjpe.2017.0067


全球草地面积约占地球陆地表面积的40% (Wang & Fang, 2009)。草地是地球上广泛分布的生态系统, 在全球碳循环中起着重要的作用(Scurlock et al., 2002)。据估计, 草地生态系统碳库包含超过10%的陆地生态系统生物量碳和10%-30%的全球土壤有机碳(Scurlock & Hall, 1998), 并且以每年0.5 Pg C的速度向土壤中固定碳(Derner et al., 2006)。放牧是草地最主要的利用方式, 放牧过程深刻地影响着植被格局(Bond, 2005)。植被格局的变化不仅改变了草地生态系统的物种组成和结构, 而且改变了碳储量(Grace, 2004)。过度放牧被认为是导致草地退化的一个主要原因(Wilcox, 2007; Zhang et al., 2014), 全球约有35%的退化草地是过度放牧造成的, 在我国过度放牧造成的退化草地面积约占全部退化草地面积的20% (穆少杰等, 2014)。目前, 我国对退化的草地普遍采取围栏封育的植被恢复措施(方精云等, 2010)。

草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010)。一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005)。然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002)。有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008)。草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014)。降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007)。不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011)。因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议。另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014)。

内蒙古草原地处欧亚草原区中部, 是我国北方温带草原的主体, 主要草原类型有草甸草原、典型草原和荒漠草原, 其植被-土壤系统碳储量在我国草地碳平衡中占有重要的地位(朴世龙等, 2004)。侯向阳和丁勇(2014)对内蒙古草原固碳潜力的研究表明, 多年围封有利于草甸草原生态系统的碳固持, 而典型草原和荒漠草原应采取适度的放牧利用措施。因此, 本研究选择锡林郭勒西部草原生态系统的典型草原和荒漠草原为研究对象, 分析两种草原类型在围栏封育和自由放牧的利用方式下, 植被生物量碳密度、土壤碳密度的变化以及土壤碳库的空间分布规律, 拟解决两个问题: (1)在不同气候条件和群落组成的环境下, 围封如何影响草地碳库?是否有一致的规律?(2)围栏恢复过程中, 土壤碳库的分布是如何变化的?进而探讨典型草原和荒漠草原不同利用方式对草原碳平衡的影响, 为估计不同类型草原生态系统在全球碳收支中源或汇的作用, 确定适合当地的管理措施, 促进草原增汇减排和实现草原生态系统可持续利用提供依据。

1 材料和方法

1.1 研究区概况

本研究在锡林郭勒西部草原生态系统进行, 包括苏尼特左旗(SZ)、苏尼特右旗(SY)、镶黄旗(XH)和正镶白旗(ZB) 4个行政区域。锡林郭勒西部草原南接阴山北麓, 西临乌兰察布高原, 兼具高原、平原、丘陵和低山等多种地形地貌, 属于大陆性干旱半干旱气候, 具有风大、干旱、寒冷的特点, 年平均气温2.4-5.1 ℃, 7月份气温最高, 1月份气温最低, 年降水量179-353 mm, 降水集中在6-8月份(图1)。

图1

新窗口打开|下载原图ZIP|生成PPT
图12001-2012年各研究区域平均降水量和平均气温。实点代表气温, 空点代表降水量。

Fig. 1Mean precipitation and air temperature of each study site from 2001 to 2012. Solid dots indicate air temperature, and the empty ones indicate precipitation.



本研究分别选择典型草原与荒漠草原围封和放牧草原为研究对象, 放牧利用属于过度放牧, 禁牧样地围封于2008年, 围封后自然恢复。样地概况见表1

Table 1
表1
表1研究地点和生态系统特征
Table 1Study locations and ecosystem characteristics
草原类型
Steppe type
利用方式
Utilization
pattern
经度
Longitude (° E)
纬度
Latitude (° N)
海拔
Altitude (m)
行政区域
Administrative
division
土壤类型
Soil type
植物群落
Plant community
典型草原
Typical steppe
全年放牧
Year-round
grazing
112.4343.101 081SY草原风沙土
Grassland sand soil
冷蒿 Artemisia frigida
113.1642.121 362SY淡栗钙土 Light chestnut soil羊草 Leymus chinensis
113.8443.831 135SZ淡栗钙土 Light chestnut soil西北针茅+冷蒿
Stipa sareptana var. krylovii + Artemisia frigida
114.0042.541 196XH栗钙土 Chestnut soil小叶锦鸡儿+大针茅
Caragana microphylla + Stipa grandis
114.4042.431 258XH栗褐土 Cinnamon soil西北针茅+糙隐子草
Stipa sareptana var. krylovii + Cleistogenes squarrosa
禁牧 Ungrazing114.4342.471 216XH栗钙土 Chestnut soil冷蒿 Artemisia frigida
115.0442.261 397ZB栗钙土 Chestnut soil西北针茅 Stipa sareptana var. krylovii
115.1042.601 266ZB栗褐土 Chestnut soil西北针茅+冰草
Stipa sareptana var. krylovii + Agropyron cristatum
115.1442.311 334ZB栗钙土 Chestnut soil西北针茅+小叶锦鸡儿
Stipa sareptana var. krylovii + Caragana microphylla
115.2742.381 285ZB栗钙土 Chestnut soil西北针茅+冷蒿
Stipa sareptana var. krylovii + Artemisia frigida
荒漠草原
Desert steppe
全年放牧
Year-round
grazing
111.3543.391 050SY淡栗钙土 Light chestnut soil小针茅+画眉草
Stipa klemenzii + Eragrostis pilosa
112.3443.271 016SY棕钙土 Brown soil小针茅+多根葱
Stipa klemenzii + Allium polyrhizum
112.5842.951 094SY淡栗钙土 Light chestnut soil小针茅+无芒隐子草
Stipa klemenzii + Cleistogenes songorica
113.3743.411 060SY淡栗钙土 Light chestnut soil小针茅 Stipa klemenzii
112.6644.571 193SZ棕钙土 Brown soil西北针茅 Stipa sareptana var. krylovii
113.3443.95949SZ棕钙土 Brown soil西北针茅+小叶锦鸡儿
Stipa sareptana var. krylovii + Caragana microphylla
113.6343.621 096SZ淡栗钙土 Light chestnut soil西北针茅 Stipa sareptana var. krylovii
113.8343.501 036SZ淡栗钙土 Light chestnut soil西北针茅+狭叶锦鸡儿
Stipa sareptana var. krylovii + Caragana microphylla
禁牧 Ungrazing112.7442.771 097SY淡栗钙土 Light chestnut soil西北针茅 Stipa sareptana var. krylovii
SY, Sonid You Banner; SZ, Sonid Zuo Banner; XH, Xianghuang Banner; ZB, Zhengxiangbai Banner.
SY, 苏尼特右旗; SZ, 苏尼特左旗; XH, 镶黄旗; ZB, 正镶白旗。

新窗口打开|下载CSV

1.2 实验设计

2012年7-9月以草地型为基本单元, 以各草地型的分布面积为依据, 选择具有广泛代表性、地带性的草原类型, 并根据草原利用方式、利用强度、退化沙化程度等设置样地。在每个样地选择100 m × 100 m的区域进行取样调查, 在其对角线上设置一条100 m样线, 在样线上设置5个1 m × 1 m的草本样方。地上生物量采用收获法全部剪取样方植物, 带回实验室65 ℃烘干并称质量。

在5个取过地上生物量的样方内将样方土壤表层的残留物和杂质清理干净, 在其四角和中心共5点用内径7 cm的土钻分0-5、5-10、10-20、20-30、30-50、50-70和70-100 cm共7层依次取样。取好的样品按层分装在网袋中并记录样方号, 带回实验室, 用水将植物根系冲洗干净后, 65 ℃烘干至恒质量, 称质量并计算单位面积的地下生物量(g·m-2)。土壤样品取样点设置在地下生物量取样点附近, 取样点数和层次与地下生物量相同, 将样品分层装入自封袋, 带回实验室晾干后, 过2 mm土壤筛并剔除植物残体和根系, 取部分土壤样品用球磨仪全部研磨后, 用元素分析仪测定土壤全碳含量(g·kg-2)。采用环刀法按土壤深度分层取样, 在每个样地设置一个大小为1.5 m × 0.5 m × 1 m (长×宽×深)的取样坑, 清理土壤表面的植物残留物和杂质, 用环刀按照0-5、5-10、10-20、20-30、30-50、50-70和70-100 cm的深度自上而下取样, 每层取5个重复, 做好样方标记带回室内, 105 ℃烘干至恒质量, 称质量并计算土壤容重(g·cm-3)。环刀规格为高度5 cm, 体积100 cm3

1.3 碳密度的估算

植被含碳量采用生物量乘以0.45转化为生物量含碳量(Piao et al., 2007)。某土层i的土壤碳密度(SCi) (kg·m-2)的计算公式(萨茹拉等, 2013)如下:

SCi = Ci × Bi × Hi × 0.1

式中, Ci为全碳含量(g·kg-1), Hi为土层厚度(cm), Bi为土壤容重(g·cm-3)。由于5-10 cm土壤深度的土壤碳密度较小, 在计算时将0-5 cm与5-10 cm的土壤碳密度合并为0-10 cm碳密度, 土层厚度大于10 cm时, 取10 cm土层厚度的平均值。

1.4 统计分析

用单因素非平衡实验设计方差分析(GLM)分别对比典型草原和荒漠草原围封和放牧两种草原利用方式植被-土壤系统的碳密度。运用SAS 9.4统计软件进行数据分析, 并用Duncan检验法进行多重比较(p < 0.05)。用SigmaPlot 12.5软件作图。

2 结果

2.1 围封对植被生物量碳密度的影响

受到水热分配和植物群落组成的影响, 典型草原围封样地和放牧样地的地上生物量碳密度分别高于荒漠草原围封样地和放牧样地的31%和61% (图2A); 典型草原围封样地地上生物量碳密度是放牧样地的3.0倍, 而荒漠草原围封样地地上生物量碳密度是放牧样地的3.6倍。围封恢复有利于典型草原地下生物量碳积累(图2B), 典型草原围封样地地下生物量碳密度分别是典型草原自由放牧样地和荒漠草原围封样地地下生物量碳密度的4.0倍和5.8倍; 荒漠草原围封恢复与自由放牧相比, 对地下生物量碳密度的提高较低(约6%)。围封恢复对典型草原和荒漠草原生物量分配的影响不同, 在典型草原围封与放牧样地的根冠比分别为43:1和32:1, 围封恢复同时增加了地上和地下的生物量碳储量; 相反, 在荒漠草原(围封样地根冠比10:1、放牧样地根冠比34:1)放牧增加了地下生物量碳储量。

图2

新窗口打开|下载原图ZIP|生成PPT
图2围封与放牧对生物量碳密度的影响(平均值±标准偏差)。A, 地上。B, 地下。***, p < 0.000 1。

Fig. 2The effects of enclosure and grazing on the carbon density of biomass (mean ± SD). A, Aboveground. B, Belowground. ***, p < 0.000 1.



2.2 围封对土壤碳密度的影响

图3可知, 典型草原围封样地的土壤碳密度(7.9 kg·m-2)高于荒漠草原(6.6 kg·m-2)约20%, 而放牧样地的土壤碳密度(4.4 kg·m-2)却低于荒漠草原(约6 kg·m-2)约27%; 典型草原围封样地的土壤碳密度显著高于放牧样地(80%), 荒漠草原围封样地的土壤碳密度稍高于放牧样地(1%), 并未达到显著水平。

图3

新窗口打开|下载原图ZIP|生成PPT
图3围封与放牧对典型草原和荒漠草原土壤碳密度的影响(平均值±标准偏差)。**, p < 0.01。

Fig. 3The effects of enclosure and grazing on soil carbon density in the typical and desert steppes (mean ± SD). **, p < 0.01.



2.3 围封对地下生物量碳分布的影响

典型草原围封样地1 m内各层地下生物量碳密度(164-1 596 g·m-2)均高于放牧样地(79-272 g·m-2, p < 0.05, 图4A), 并均呈现出逐层递减的趋势, 土壤0-50 cm的地下植被生物量碳储量占总地下生物量碳储量的85%以上。放牧和土层深度及其交互作用均显著地影响典型草原地下植被碳密度(表2)。荒漠草原围封样地1 m内各层地下生物量碳密度为36-183 g·m-2, 放牧样地为33-160 g·m-2 (图4B), 没有显著差异(p > 0.05), 0-50 cm地下生物量碳储量占总地下生物量碳储量的87%, 放牧对荒漠草原地下生物量碳密度有显著影响(表2)。

图4

新窗口打开|下载原图ZIP|生成PPT
图4围封与放牧对地下生物量碳密度垂直分布的影响(平均值±标准偏差)。A, 典型草原。B, 荒漠草原。***, p < 0.000 1; **, p < 0.01。

Fig. 4The effects of enclosure and grazing on the vertical distribution of belowground biomass carbon density (mean ± SD). A, Typical steppe. B, Desert steppe. ***, p < 0.000 1; **, p < 0.01.



Table 2
表2
表2放牧与土壤深度的交互作用对地下碳密度的影响
Table 2The effects of interaction between grazing and soil depth on belowground carbon density
影响因子 Impact factor典型草原 Typical steppe荒漠草原 Desert steppe
地下生物量碳密度
Belowground biomass
carbon density (g·m-2)
土壤碳密度
Soil carbon density
(kg·m-2)
地下生物量碳密度
Belowground biomass
carbon density (g·cm-3)
土壤碳密度
Soil carbon density
(kg·m-2)
FpFpFpFp
放牧利用 Grazing164.48<0.000 1126.39<0.000 133.82<0.000 10.040.832 7
土层深度 Soil depth40.31<0.000 16.88<0.000 10.200.655 69.86<0.000 1
放牧利用×土层深度 Grazing × Soil depth22.41<0.000 11.950.086 11.050.393 40.590.711 2

新窗口打开|下载CSV

2.4 围封对土壤碳分布的影响

典型草原围封样地1 m内各层土壤碳密度均高于放牧样地(p < 0.05, 图5A), 放牧样地土壤碳密度随土壤深度逐层增加, 而围封样地表层0-10 cm土壤碳密度最低(0.44 kg·m-2), 10-100 cm碳密度逐层递减。放牧和土层深度对土壤碳密度影响显著, 但二者的交互作用对碳密度没有显著影响(表2)。荒漠草原围封样地和放牧样地各土层土壤碳密度无显著差异(p > 0.05, 图5B), 放牧样地土壤碳密度逐层增加, 而围封样地土壤碳密度在70-100 cm土壤深层下降。土层深度显著地影响荒漠草原土壤碳密度, 而放牧、放牧与土层深度的交互作用对土壤碳密度没有显著影响(表2)。

图5

新窗口打开|下载原图ZIP|生成PPT
图5围封与放牧对土壤碳密度垂直分布的影响(平均值±标准偏差)。A, 典型草原。B, 荒漠草原。***, p < 0.000 1; **, p < 0.01; *, p < 0.05。

Fig. 5The effects of enclosure and grazing on the vertical distribution of soil carbon density (mean ± SD). A, Typical steppe. B, Desert steppe. ***, p < 0.000 1; **, p < 0.01 *, p < 0.05.



2.5 围封对生态系统碳密度的影响

典型草原生态系统围封样地的碳密度(12 152 g·m-2)是荒漠草原围封样地(7 398 g·m-2)的1.6倍, 是典型草原放牧样地(5 475 g·m-2)的2.2倍(图2, 图3), 荒漠草原围封样地碳密度是放牧样地(6 673 g·m-2)的1.8倍。草原生态系统碳库中土壤碳库所占比例最大, 典型草原围封和放牧样地土壤碳库占其生态系统碳库的65%和80%, 荒漠草原围封和放牧样地土壤碳库占其生态系统碳库的89%和90%。典型草原和荒漠草原地下生物量碳分别占总植被生物量碳的97%-98%和90%-97% (图2, 图3)。

3 讨论

3.1 围封对草原生态系统生物量碳库的影响

在典型草原和荒漠草原, 围封禁止家畜对草本植物的采食, 增加了地上生物量碳储量。同时, 土壤湿度的改善有利于植物生产力的提高(Wu et al., 2010)。围封还增加了植被的盖度并降低了风的侵蚀, 有利于有机物的存留(Zhou et al., 2011)。典型草原围封样地地上生物量碳密度(95 g·m-2)介于围封恢复11-14年之间(敖伊敏等, 2011), 而荒漠草原围封样地地上生物量碳密度(73 g·m-2)高于刘朋涛等(2014)的研究结果(< 35 g·m-2), 这说明地上生物量碳库的变化可能与围封时间有关。本研究典型草原放牧样地地上生物量碳密度为32 g·m-2, 低于萨茹拉等(2013)典型草原重度放牧的43 g·m-2闫玉春和唐海萍(2008)持续放牧的85 g·m-2。这可能是由于两方面原因导致了研究结果的差异: (1)降水是影响草原植被生产力的最主要的气候因子(Bai et al., 2004), 本研究区域地处锡林郭勒草原西部典型草原与荒漠草原的过渡地带, 降水量是典型草原分布的下限, 从而导致地上生物量与其他研究相比较低, 也可能是不同研究年份间降水波动对地上生物量的影响而导致的差异; (2)家畜通过采食地上植物而改变地上生物量(阿穆拉等, 2011), 不同研究区域的载畜率水平可能导致了地上生物量的差异。荒漠草原放牧样地地上生物量碳密度约为20 g·m-2, 与该区域同类型草原的研究结果(胡向敏等, 2014; 刘朋涛等, 2014)相近。

典型草原围封样地地下生物量碳密度显著高于放牧样地, 而荒漠草原围封对地下生物量碳密度的影响较小。这与Derner等(2006)在北美草原的研究结果一致, Derner等(2006)认为植物种类组成、细根比例和生物量以及根冠比等是引起不同草地类型地下生物量碳库对放牧响应差异的原因。本研究典型草原地下生物量碳密度的垂直分布在不同土层深度中围封样地均大于放牧样地, 说明放牧中家畜的过度采食导致植物光合器官比例下降, 影响了植物的正常生长(李怡和韩国栋, 2011), 改变了植物群落资源分配策略(任海彦等, 2009)。荒漠草原地下生物量碳密度垂直分布对围封和放牧的响应比较复杂, 但是围封样地的根冠比小于放牧样地说明在水分是限制因子的环境中放牧促进了根系的生长(Burke et al., 1998)。

3.2 围封对草原生态系统土壤碳库的影响

在两种草原类型中, 围封均增加了土壤碳储量, 这与多数研究结果(Mekuria et al., 2007; 许中旗等, 2009)一致。Hu等(2015)认为有3个机制可以解释此结果: (1)植被的覆盖物增加了有机物的积累; (2)植物高度和盖度的增加与土壤湿度形成正反馈调节; (3)稠密的冠层和凋落物减少了碳的流失。典型草原围封样地各土层深度土壤碳密度均显著高于放牧样地, 这可能是受围封样地较高的凋落物量的影响(图6)。荒漠草原围封样地与放牧样地的土壤碳密度没有表现出明显的差异(p > 0.05), 并且在两种利用方式的样地中均未收集到凋落物, 可能是荒漠草原草层低矮、稀疏、种类组成匮乏的植被特征(韩国栋等, 2007)导致凋落物的积累缓慢。此外, 历史的放牧效应也可能对荒漠草原土壤碳库的影响具有滞后作用(Steffens et al., 2008)。

图6

新窗口打开|下载原图ZIP|生成PPT
图6围封与放牧对典型草原和荒漠草原凋落物的影响(平均值±标准偏差)。**, p < 0.01。

Fig. 6The effects of enclosure and grazing on litter mass in the typical and desert steppes (mean ± SD). **, p < 0.01.



土壤碳库由土壤有机碳库和土壤无机碳库两部分组成(余健等, 2014)。本研究利用土壤全碳计算土壤碳储量的结果表明: 两种草原类型土壤表层(0-10 cm)的土壤碳密度均最低, 放牧样地均表现出逐层递增的趋势。本研究结果与以有机碳计算碳储量随土层深度递减的研究(刘楠和张英俊, 2010)结论相反, 可能是因为土壤无机碳含量随着土层深度增加而递增, 并且在干旱、半干旱地区土壤无机碳库高出有机碳库的2-10倍(余健等, 2014)。刘淑丽等(2014)的研究表明: 温性草原50-100 cm土层深度的无机碳储量占0-100 cm土层深度的土壤碳总储量的60.2%, 并且与地下生物量呈显著负相关关系。土壤无机碳的垂直分布受到水分迁移的影响, 土壤溶液在向下淋溶迁移无机碳的过程中, CO2溶解度随温度的下降而逐渐降低, 使得溶液中无机碳析出形成发生性碳酸盐, 并不断在深层土壤中富集(张蓓蓓等, 2016)。

4 结论

围封对典型草原生态系统碳库的增加高于荒漠草原。围封后典型草原和荒漠草原的地上生物量碳密度均比放牧提高3倍以上。与放牧样地相比, 典型草原围封样地地下生物量碳密度和土壤碳密度分别提高了208%和80%, 围封对荒漠草原地下生物量碳库影响不明显, 土壤碳密度仅提高1%。从土壤碳库的垂直分布来看, 典型草原围封样地1 m以内各层土壤碳密度均高于放牧样地, 放牧使典型草原和荒漠草原土壤碳库随着土壤深度的加深呈增加的趋势。综上所述, 围封是一种增加草原生态系统碳库的有效方式, 并且湿润的气候比干旱的气候更有利于碳的积累。

致谢 内蒙古农业大学优秀青年科学基金(2014XYQ-7)支持, 特此致谢。



参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Amula, Zhao ML, Han GD, Jia L, Dong T ( 2011). Influences of grazing intensity on carbon and nitrogen contents in desert steppe
Chinese Journal of Grassland, 33, 115-118.

URL [本文引用: 1]
根据植被种类组成、植被盖度以及枯枝落叶的积累量在内蒙古四子王旗的短花针茅草原样地设4个退化梯度,分别为对照、轻度放牧、中度放牧和重度放牧,研究了不同放牧强度对土壤有机碳和全氮含量的影响。结果表明:2007年土壤有机碳和全氮含量分别介于25.32~27.02g/kg、1.40~1.47g/kg之间,2008年分别介于25.22~27.20g/kg、1.55~1.62g/kg之间,2009年分别介于25.44~27.51g/kg、1.64~1.71g/kg之间;土壤表层(0~20cm)的有机碳和全氮含量随着放牧强度的增大而逐渐降低,重度放牧区显著低于不放牧区、轻度放牧区和中度放牧区;土壤C/N比逐年降低,不同放牧区间差异不显著。
阿穆拉, 赵萌莉, 韩国栋, 贾乐, 董亭 ( 2011). 放牧强度对荒漠草原地区土壤有机碳及全氮含量的影响
中国草地学报, 33, 115-118.

URL [本文引用: 1]
根据植被种类组成、植被盖度以及枯枝落叶的积累量在内蒙古四子王旗的短花针茅草原样地设4个退化梯度,分别为对照、轻度放牧、中度放牧和重度放牧,研究了不同放牧强度对土壤有机碳和全氮含量的影响。结果表明:2007年土壤有机碳和全氮含量分别介于25.32~27.02g/kg、1.40~1.47g/kg之间,2008年分别介于25.22~27.20g/kg、1.55~1.62g/kg之间,2009年分别介于25.44~27.51g/kg、1.64~1.71g/kg之间;土壤表层(0~20cm)的有机碳和全氮含量随着放牧强度的增大而逐渐降低,重度放牧区显著低于不放牧区、轻度放牧区和中度放牧区;土壤C/N比逐年降低,不同放牧区间差异不显著。

Ao YM, Jiao Y, Xu Z ( 2011). The changes of carbon and nitrogen storage of plant-soil system of enclosure years in typical steppe
Ecology and Environmental Sciences, 20, 1403-1410.

DOI:10.3969/j.issn.1674-5906.2011.10.004URL [本文引用: 1]
以内蒙古太仆寺旗典型草原为研究对象,研究不同围封年限下的天然草地植物和土壤有机碳、全氮贮量的变化。结果表明:与自由放牧草地相比,重度退化草地采取生长季围封恢复措施后,群落植物和土壤环境在围封8、11、14、21、25年后均得到了明显的改善,地上植物和地下根系生物量及其碳氮贮量、土壤碳氮贮量明显增加,土壤容重降低。自由放牧地和围封8、11、14、21年植物-土壤系统碳贮量分别为7 357.93、7 988.27、8 413.18、12 878.82、8 934.66 g.m-2,氮贮量分别为427.78、494.28、575.49、707.35、615.09 g.m-2。草地围封至14年植物和土壤各项理化性质达到最大值,使得植物-土壤系统的碳氮贮量分别是自由放牧地的1.75和1.65倍,说明植被与土壤间达到了良性循环的状态,退化草地正向演替。随着围封年限的继续增加,其各项指标出现下降趋势。由此可知,季节性围封措施在一定时间内可使退化草地的土壤-植物系统的碳氮贮量增加,草地在一定程度上得到恢复,但适宜的恢复时间和合理利用问题有待进一步讨论。
敖伊敏, 焦燕, 徐柱 ( 2011). 典型草原不同围封年限植被-土壤系统碳氮贮量的变化
生态环境学报, 20, 1403-1410.

DOI:10.3969/j.issn.1674-5906.2011.10.004URL [本文引用: 1]
以内蒙古太仆寺旗典型草原为研究对象,研究不同围封年限下的天然草地植物和土壤有机碳、全氮贮量的变化。结果表明:与自由放牧草地相比,重度退化草地采取生长季围封恢复措施后,群落植物和土壤环境在围封8、11、14、21、25年后均得到了明显的改善,地上植物和地下根系生物量及其碳氮贮量、土壤碳氮贮量明显增加,土壤容重降低。自由放牧地和围封8、11、14、21年植物-土壤系统碳贮量分别为7 357.93、7 988.27、8 413.18、12 878.82、8 934.66 g.m-2,氮贮量分别为427.78、494.28、575.49、707.35、615.09 g.m-2。草地围封至14年植物和土壤各项理化性质达到最大值,使得植物-土壤系统的碳氮贮量分别是自由放牧地的1.75和1.65倍,说明植被与土壤间达到了良性循环的状态,退化草地正向演替。随着围封年限的继续增加,其各项指标出现下降趋势。由此可知,季节性围封措施在一定时间内可使退化草地的土壤-植物系统的碳氮贮量增加,草地在一定程度上得到恢复,但适宜的恢复时间和合理利用问题有待进一步讨论。

Bai Y, Han X, Wu J, Chen Z, Li L ( 2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland
Nature, 431, 181-184.

DOI:10.1038/nature02850URLPMID:202020202020202020202020 [本文引用: 1]
Numerous studies have suggested that biodiversity reduces variability in ecosystem productivity through compensatory effects109“6;that is, a species increases in its abundance in response to the reduction of another in a fluctuating environment1,7. But this view has been challenged on several grounds809“10. Because most studies have been based on artificially constructed grass- lands with short duration, long-term studies of natural ecosystems are needed. On the basis of a 24-year study of the Inner Mongolia grassland, here we present three key findings. First, that January-July precipitation is the primary climatic factor causing fluctuations in community biomass production; second, that ecosystem stability (conversely related to variability in community biomass production) increases progressively along the hierarchy of organizational levels (that is, from species to functional group to whole community); and finally, that the community-level stability seems to arise from compensatory interactions among major components at both species and functional group levels. From a hierarchical perspective, our results corroborate some previous findings of compensatory effects1,4,7,11. Undisturbed mature steppe ecosystems seem to culminate with high biodiversity, productivity and ecosystem stability concurrently. Because these relationships are correlational, further studies are necessary to verify the causation among these factors. Our study provides new insights for better management and restoration of the rapidly degrading Inner Mongolia grassland.

Bakker ES, Olff H, Boekhoff M, Gleichman JM, Berendse F ( 2004). Impact of herbivores on nitrogen cycling: Contrasting effects of small and large species
Oecologia, 138, 91-101.

DOI:10.1007/s00442-003-1402-5URLPMID:14566555 [本文引用: 1]
Abstract Herbivores are reported to slow down as well as enhance nutrient cycling in grasslands. These conflicting results may be explained by differences in herbivore type. In this study we focus on herbivore body size as a factor that causes differences in herbivore effects on N cycling. We used an exclosure set-up in a floodplain grassland grazed by cattle, rabbits and common voles, where we subsequently excluded cattle and rabbits. Exclusion of cattle lead to an increase in vole numbers and a 1.5-fold increase in net annual N mineralization at similar herbivore densities (corrected to metabolic weight). Timing and height of the mineralization peak in spring was the same in all treatments, but mineralization in the vole-grazed treatment showed a peak in autumn, when mineralization had already declined under cattle grazing. This mineralization peak in autumn coincides with a peak in vole density and high levels of N input through vole faeces at a fine-scale distribution, whereas under cattle grazing only a few patches receive all N and most experience net nutrient removal. The other parameters that we measured, which include potential N mineralization rates measured under standardized laboratory conditions and soil parameters, plant biomass and plant nutrient content measured in the field, were the same for all three grazing treatments and could therefore not cause the observed difference. When cows were excluded, more litter accumulated in the vegetation. The formation of this litter layer may have added to the higher mineralization rates under vole grazing, through enhanced nutrient return through litter or through modification of microclimate. We conclude that different-sized herbivores have different effects on N cycling within the same habitat. Exclusion of large herbivores resulted in increased N annual mineralization under small herbivore grazing.

Bond WJ ( 2005). Large parts of the world are brown or black: A different view on the “Green World” hypothesis
Journal of Vegetation Science, 16, 261-266.

DOI:10.1111/j.1654-1103.2005.tb02364.xURL [本文引用: 1]
Abstract Abstract. Climate sets the limits to plant growth but does climate determine the global distribution of major biomes? I suggest methods for evaluating whether vegetation is largely climate or consumer-controlled, focusing on large mammal herbivores and fire as influential consumers. Large parts of the world appear not to be at equilibrium with climate. Consumer-controlled ecosystems are ancient and diverse. Their distinctive ecology warrants special attention.

Burke IC, Lauenroth WK, Vinton MA, Hook PB, Kelly RH, Epstein HE, Aguiar MR, Robles MD, Aguilera MO, Murphy KL ( 1998). Plant-soil interactions in temperate grasslands
Biogeochemistry, 42, 121-143.

DOI:10.1023/A:1005987807596URL [本文引用: 1]
We present a conceptual model in which plant-soil interactions in grasslands are characterized by the extent to which water is limiting. Plant-soil interactions in dry grasslands, those dominated by water limitation ( elowground-dominance ), are fundamentally different from plant-soil interactions in subhumid grasslands, where resource limitations vary in time and space among water, nitrogen, and light ( ndeterminate dominance ). In the belowground-dominance grasslands, the strong limitation of soil water leads to complete (though uneven) occupation of the soil by roots, but insufficient resources to support continuous aboveground plant cover. Discontinuous aboveground plant cover leads to strong biological and physical forces that result in the accumulation of soil materials beneath individual plants in resource islands. The degree of accumulation in these resource islands is strongly influenced by plant functional type (lifespan, growth form, root:shoot ratio, photosynthetic pathway), with the largest resource islands accumulating under perennial bunchgrasses. Resource islands develop over decadal time scales, but may be reduced to the level of bare ground following death of an individual plant in as little as 3 years. These resource islands may have a great deal of significance as an index of recovery from disturbance, an indicator of ecosystem stability or harbinger of desertification, or may be significant because of possible feedbacks to plant establishment. In the grasslands in which the dominant resource limiting plant community dynamics is indeterminate, plant cover is relatively continuous, and thus the major force in plant-soil interactions is related to the feedbacks among plant biomass production, litter quality and nutrient availability. With increasing precipitation, the over-riding importance of water as a limiting factor diminishes, and four other factors become important in determining plant community and ecosystem dynamics: soil nitrogen, herbivory, fire, and light. Thus, several different strategies for competing for resources are present in this portion of the gradient. These strategies are represented by different plant traits, for example root:shoot allocation, height and photosynthetic pathway type (C3 vs. C4) and nitrogen fixation, each of which has a different influence on litter quality and thus nutrient availability. Recent work has indicated that there are strong feedbacks between plant community structure, diversity, and soil attributes including nitrogen availability and carbon storage. Across both types of grasslands, there is strong evidence that human forces that alter plant community structure, such as invasions by nonnative annual plants or changes in grazing or fire regime, alters the pattern, quantity, and quality of soil organic matter in grassland ecosystems. The reverse influence of soils on plant communities is also strong; in turn, alterations of soil nutrient supply in grasslands can have major influences on plant species composition, plant diversity, and primary productivity.

Derner JD, Boutton TW, Briske DD ( 2006). Grazing and ecosystem carbon storage in the North American Great Plains
Plant and Soil, 280, 77-90.

DOI:10.1007/s11104-005-2554-3URL [本文引用: 3]
Isotopic signatures of 13 C were used to quantify the relative contributions of C 3 and C 4 plants to whole-ecosystem C storage (soil+plant) in grazed and ungrazed sites at three distinct locations (short-, mid- and tallgrass communities) along an east–west environmental gradient in the North American Great Plains. Functional group composition of plant communities, the source and magnitude of carbon inputs, and total ecosystem carbon storage displayed inconsistent responses to long-term livestock grazing along this gradient. C 4 plants [primarily Bouteloua gracilis (H.B.K.) Lag ex Steud.] dominated the long-term grazed site in the shortgrass community, whereas the ungrazed site was co-dominated by C 3 and C 4 species; functional group composition did not differ between grazed and ungrazed sites in the mid- and tallgrass communities. Above-ground biomass was lower, but the relative proportion of fine root biomass was greater, in grazed compared to ungrazed sites at all three locations. The grazed site of the shortgrass community had 24% more whole-ecosystem carbon storage compared to the ungrazed site (4022 vs. 323602g02C02m 612 ). In contrast, grazed sites at the mid- and tallgrass communities had slightly lower (8%) whole-ecosystem carbon storage compared to ungrazed sites (midgrass: 7970 vs. 868302g02C02m 612 ; tallgrass: 8273 vs. 899702g02C02m 612 ). Differential responses between the shortgrass and the mid- and tallgrass communities with respect to grazing and whole-ecosystem carbon storage are likely a result of: (1) maintenance of larger soil organic carbon (SOC) pools in the mid- and tallgrass communities (7476–828002g02C02m 612 ) than the shortgrass community (2517–330702g02C02m 612 ) that could potentially buffer ecosystem carbon fluxes, (2) lower root carbon/soil carbon ratios in the mid- and tallgrass communities (0.06–0.10) compared to the shortgrass community (0.20–0.27) suggesting that variation in root organic matter inputs would have relatively smaller effects on the size of the SOC pool, and (3) the absence of grazing-induced variation in the relative proportion of C 3 and C 4 functional groups in the mid- and tallgrass communities. We hypothesize that the magnitude and proportion of fine root mass within the upper soil profile is a principal driver mediating the effect of community composition on the biogeochemistry of these grassland ecosystems.

Derner JD, Schuman GE ( 2007). Carbon sequestration and rangelands: A synthesis of land management and precipitation effects
Journal of Soil & Water Conservation, 62, 77-85.

DOI:10.1016/j.ejsobi.2006.12.001URL [本文引用: 1]
ABSTRACT Management of rangelands can aid in the mitigation of rising atmospheric carbon dioxide concentrations via carbon storage in biomass and soil organic matter, a process termed carbon sequestration. Here we provide a review of current knowledge on the effects of land management practices (grazing, nitrogen inputs, and restoration) and precipitation on carbon sequestration in rangelands. Although there was no statistical relationship between change in soil carbon with longevity of the grazing management practice in native rangelands of the North American Great Plains, the general trend seems to suggest a decrease in carbon sequestration with longevity of the grazing management practice across stocking rates. The relationship of carbon sequestration to mean annual precipitation is negative for both the 0 to 10 cm (0 to 3.9 in) and 0 to 30 cm (0 to 11.8 in) soil depths across stocking rates. The threshold from positive to negative carbon change occurs at approximately 440 mm (17.3 in) of precipitation for the 0 to 10 cm soil depth and at 600 mm (23.6 in) for the 0 to 30 cm soil depth. We acknowledge that largely unexplored is the arena of management-envi- ronment interactions needed to increase our understanding of climate-plant-soil-microbial interactions as factors affecting nutrient cycling. Continued refinement of estimates of terres- trial carbon storage in rangelands will assist in the development of greenhouse gas emissions and carbon credit marketing policies, as well as potentially modifying government natu- ral resource conservation programs to emphasize land management practices that increase carbon sequestration.

Fan J, Zhong H, Harris W, Yu G, Wang S, Hu Z, Yue Y ( 2008). Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass
Climatic Change, 86, 375-396.

DOI:10.1007/s10584-007-9316-6URL [本文引用: 1]
Above- and below-ground biomass values for 17 types of grassland communities in China as classified by the Chinese Grasslands Resources Survey were obtained from systematic replicated sampling at 78 sites and from published records from 146 sites. Most of the systematic samples were along a 5,000-km-long transect from Hailar, Inner Mongolia (49°15′N, 119°15′E), to Pulan, Tibet (30°15′N, 81°10′E). Above-ground biomass was separated into stem, leaf, flower and fruit, standing dead matter, and litter. Below-ground biomass was measured in 10-cm soil layers to a depth of 3002cm for herbs and to 5002cm for woody plants. Grassland type mean total biomass carbon densities ranged from 2.40002kg m 612 for swamp to 0.14902kg m 612 for alpine desert grasslands. Ratios of below- to above-ground carbon density varied widely from 0.99 for tropical tussock grassland to 52.28 for alpine meadow. Most below-ground biomass was in the 0–1002cm soil depth layer and there were large differences between grassland types in the proportions of living and dead matter and stem and leaf. Differences between grassland types in the amount and allocation of biomass showed patterns related to environments, especially aridity gradients. Comparisons of our estimates with other studies indicated that above-ground biomass, particularly forage-yield biomass, is a poor predictor of total vegetation carbon density. Our estimate for total carbon storage in the biomass of the grasslands of China was 3.3202Pg C, with 56.4% contained in the grasslands of the Tibet-Qinghai plateau and 17.9% in the northern temperate grasslands. The need for further standardized and systematic measurements of vegetation biomass to validate global carbon cycles is emphasised.

Fang JY, Yang YH, Ma WH, Mohhamot A, Shen HH ( 2010). Carbon pool and its variation of grassland ecosystem in China
Chinese Science: Life Sciences, 40, 566-576.

[本文引用: 2]

(in Chinese) [ 方精云, 杨元合, 马文红, 安尼瓦尔·买买提, 沈海花 ( 2010). 中国草地生态系统碳库及其变化
中国科学: 生命科学, 40, 566-576.

[本文引用: 2]

Frank DA, Groffman PM ( 1998). Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park
Ecology, 79, 2229-2241.

DOI:10.1890/0012-9658(1998)079[2229:UVLCOS]2.0.CO;2URL [本文引用: 1]
Within large grassland ecosystems, climatic and topographic gradients are considered the primary controls of soil processes. Ungulates also can influence soil dynamics; however the relative contribution of large herbivores to controlling grassland soil processes remains largely unknown. In this study, we compared the effects of native migratory ungulates and variable site ("landscape") conditions, caused by combined climatic and topographic variability, on grassland of the northern winter range of Yellowstone National Park by determining soil C and N dynamics inside and outside 33-37 yr exclosures at seven diverse sites. Sites included hilltop, slope, and slope bottom positions across a climatic gradient and represented among the driest and wettest grasslands on the northern winter range. We performed two experiments: (1) a 12-mo in situ net N mineralization study and (2) a long-term (62-wk) laboratory incubation to measure potential N mineralization and microbial respiration. Results from the in situ experiment indicated that average net N mineralization among grazed plots (3.8 g N· m-2· yr-1) was double that of fenced, ungrazed plots (1.9 g N· m-2· yr-1). Mean grazer enhancement of net N mineralization across sites (1.9 g N· m-2· yr-1) approached the maximum difference in net N mineralization among fenced plots (2.2 g N· m-2· yr-1), i.e., the greatest landscape effect observed. Furthermore, ungulates substantially increased between-site variation in mineralization; grazed grassland, 1 SD = 2.2 g N· m-2· yr-1, fenced grassland, 1 SD = 2.2 g N· m-2· yr-1. In the long-term incubation, potential microbial respiration and net N mineralization were positively related to total soil C and N content, respectively. There was greater variation in potential respiration and net N mineralization early in the incubation, when labile material was processed, compared to late in the incubation, when more recalcitrant substrate was processed, suggesting that between-site variation in labile organic matter was greater than that of recalcitrant material. Herbivores improved the organic matter quality of soil, increasing the labile fractions and reducing the recalcitrant fractions. Grazers reduced C respired/N mineralized ratios, an index of microbial N immobilization, by an average of 21%. However, the largest landscape influence on the immobilization index was 13-fold greater than the grazer effect. Given that the greatest landscape influence on in situ net mineralization (2.2 g N· m-2· yr-1) was similar to the average grazer impact on that rate (1.9 g N· m-2· yr-1), we hypothesize that the landscape effect on field N availability was primarily caused by variation in microbial immobilization, while the grazing effect was primarily due to stimulation of gross mineralization. These results indicate that the relative importance of ungulates in controlling soil N cycling may be more important than previously suspected for grasslands supporting large herds of migratory ungulates, and that the dominant mechanisms underlying the landscape and ungulate influences on soil mineral fluxes may differ.

Grace J ( 2004). Presidential address: Understanding and managing the global carbon cycle
Journal of Ecology, 92, 189-202.

DOI:10.1111/j.0022-0477.2004.00874.xURL [本文引用: 1]
Summary Top of page Summary Introduction Land-based measurements of the terrestrial carbon sink Atmosphere-based measurements of the terrestrial carbon sink Model-based estimates of the terrestrial carbon sink A note on carbon losses from deforestation The Kyoto Protocol Informal carbon projects Concluding remarks Acknowledgements appendix 1 chronology of events relating to the carbon cycle References 1 Biological carbon sinks develop in mature ecosystems that have high carbon storage when these systems are stimulated to increase productivity, so that carbon gains by photosynthesis run ahead of carbon losses by heterotrophic respiration, and the stocks of carbon therefore increase. This stimulation may occur through elevated CO 2 concentration, nitrogen deposition or by changes in climate. 2 Sinks also occur during the ‘building’ phase of high carbon ecosystems, for example following establishment of forests by planting. 3 New methods have been developed to identify biological carbon sinks: ground based measurements using eddy covariance coupled with inventory methods, atmospheric methods which rely on repeated measurement of carbon dioxide concentrations in a global network, and mathematical models which simulate the processes of production, storage and decomposition of organic matter. There is broad agreement among the results from these methods: carbon sinks are currently found in tropical, temperate and boreal forests as well as the ocean. 4 However, on a global scale the effect of the terrestrial sinks (absorbing 2–3 billion tonnes of carbon per year) is largely offset by deforestation in the tropics (losing 1–2 billion tonnes of carbon per year). 5 The Kyoto Protocol provides incentives for the establishment of sinks. Unfortunately, it does not provide an incentive to protect existing mature ecosystems which constitute both stocks of carbon and (currently) carbon sinks. 6 Incentives would be enhanced, if protection and nature conservation were to be part of any international agreement relating to carbon sinks.

Han GD, Jiao SY, Bili getu, Aodeng gaowa ( 2007). Effects of plant species diversity and productivity under different stocking rates in the
Stipa breviflora Griseb. desert steppe. Acta Ecologica Sinica, 27, 182-188.

DOI:10.3321/j.issn:1000-0933.2007.01.021URL [本文引用: 1]
采用不同载畜率的围栏放牧试验,研究了内蒙古高原荒漠草原亚带短花针茅(Stipa breviflora Griseb.)草原群落在不同载畜率水平植物多样性变化规律和对草地生产力的影响.研究结果表明:在2a的放牧过程中,不同载畜率植物多样性指数的均值 随年度的增加有降低的趋势,但年度间差异未达到显著水平;不同年度内, 植物多样性指数均在载畜率1.027 只羊/(hm2·a)附近出现峰值;且载畜率为1.027只羊/(hm2·a)时植物补偿性生长最高,是最理想的载畜率水平.研究结果支持群落物种多样性 与生产力相关格局中的负二次函数关系的单峰格局模型,即中等生产力水平物种多样性最高.
韩国栋, 焦树英, 毕力格图, 敖登高娃 ( 2007). 短花针茅草原不同载畜率对植物多样性和草地生产力的影响
生态学报, 27, 182-188.

DOI:10.3321/j.issn:1000-0933.2007.01.021URL [本文引用: 1]
采用不同载畜率的围栏放牧试验,研究了内蒙古高原荒漠草原亚带短花针茅(Stipa breviflora Griseb.)草原群落在不同载畜率水平植物多样性变化规律和对草地生产力的影响.研究结果表明:在2a的放牧过程中,不同载畜率植物多样性指数的均值 随年度的增加有降低的趋势,但年度间差异未达到显著水平;不同年度内, 植物多样性指数均在载畜率1.027 只羊/(hm2·a)附近出现峰值;且载畜率为1.027只羊/(hm2·a)时植物补偿性生长最高,是最理想的载畜率水平.研究结果支持群落物种多样性 与生产力相关格局中的负二次函数关系的单峰格局模型,即中等生产力水平物种多样性最高.

Hu Z, Li S, Guo Q, Niu S, He N, Li L, Yu G ( 2015). A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China
Global Change Biology, 22, 1385.

DOI:10.1111/gcb.13133URLPMID:26485056
Abstract Grazing exclusion (GE) is considered to be an effective approach to restore degraded grasslands and to improve their carbon (C) sequestration. However, the C dynamics and related controlling factors in grasslands with GE have not been well characterized. This synthesis examines the dynamics of soil C content and vegetation biomass with the recovery age through synthesizing results of 51 sites in grasslands in China. The results illustrate increases in soil C content and vegetation biomass with GE at most sites. Generally, both soil C content and vegetation biomass arrive at steady state after 15 years of GE. In comparison, the rates of increase in above- and belowground biomass declined exponentially with the age of GE, whereas soil C content declined in a milder (linear) way, implying a lagged response of soil C to the inputs from plant biomass. Mean annual precipitation (MAP) and the rate of soil nitrogen (N) change were the main factors affecting the rate of soil C content change. MAP played a major role at the early stage, whereas the rate of soil N change was the major contributor at the middle and late stages. Our results imply that the national grassland restoration projects in China may be more beneficial for C sequestration in humid regions with high MAP. In addition, increased soil N supply to grasslands with GE at the latter recovery stage may enhance ecosystem C sequestration capacity.

Hu XM, Hou XY, Ding Y, Chen HJ, Yun XJ, Wu ZN ( 2014). Dynamics of organic carbon storage in
Stipa breviflora desert steppe ecosystem under different grazing systems. Chinese Journal of Grassland, 36, 13-17.

DOI:10.3969/j.issn.1673-5021.2014.04.003URL [本文引用: 1]
以内蒙古短花针茅荒漠草原自由放牧、划区轮牧和围栏禁牧样地为研究对象,分析生长季5~10月内0~10cm、10~20cm、20~30cm和0~30cm土层根系有机碳储量变化规律。结果表明:根系有机碳储量随着土层加深呈递减,0~10cm土层占到0~30cm土层根系有机碳储量62.38%~71.87%,根系有机碳储量表层聚集现象显著;各层以及0~30cm土层根系有机碳储量动态表现单峰曲线变化,8月达到峰值;0~30cm土层根系有机碳储量表现为围栏禁牧划区轮牧自由放牧,各样地间差异显著(P0.05)。综合分析表明,围栏禁牧有利于短花针茅荒漠草原根系有机碳储量积累,其次为划区轮牧,最差为自由放牧。
胡向敏, 侯向阳, 丁勇, 陈海军, 运向军, 武自念 ( 2014). 不同放牧制度下短花针茅荒漠草原生态系统碳储量动态
中国草地学报, 36, 13-17.

DOI:10.3969/j.issn.1673-5021.2014.04.003URL [本文引用: 1]
以内蒙古短花针茅荒漠草原自由放牧、划区轮牧和围栏禁牧样地为研究对象,分析生长季5~10月内0~10cm、10~20cm、20~30cm和0~30cm土层根系有机碳储量变化规律。结果表明:根系有机碳储量随着土层加深呈递减,0~10cm土层占到0~30cm土层根系有机碳储量62.38%~71.87%,根系有机碳储量表层聚集现象显著;各层以及0~30cm土层根系有机碳储量动态表现单峰曲线变化,8月达到峰值;0~30cm土层根系有机碳储量表现为围栏禁牧划区轮牧自由放牧,各样地间差异显著(P0.05)。综合分析表明,围栏禁牧有利于短花针茅荒漠草原根系有机碳储量积累,其次为划区轮牧,最差为自由放牧。

Hou XY, Ding Y ( 2014). Carbon Sequestration Potential of Different Protection and Construction Technology in the Main Types of Grasslands in Inner Mongolia. Science Press, Beijing.
[本文引用: 1]

(in Chinese) [ 侯向阳, 丁勇 ( 2014). 内蒙古主要草原类型区保护建设技术固碳潜力研究. 科学出版社, 北京.
[本文引用: 1]

Li XB, Fan RX, Liu XD ( 2014). Advance in studies on carbon storage and carbon process in grassland ecosystem of China
Ecology and Environmental Sciences, 11, 1845-1851.

DOI:10.3969/j.issn.1674-5906.2014.11.019URL [本文引用: 1]
草地为陆地生态系统的主体,是陆地上最主要的碳储库和碳吸收汇之一。近年来,随着“草原承包责任制”、“退耕还林还草”和“封育禁牧”等重大生态工程项目的实施及草地生态系统的恢复和草地生产力的提升,草地生态系统碳储量、固持潜力、土壤碳循环机制及稳定性机制越来越受到学术界的关切。文章全面综述了近年来我国草地生态系统碳储量及其碳过程的研究工作,总结了不同研究中,我国不同草地类型碳库的特征及其储量、分析了草地生态系统碳过程等,评述了土壤碳过程相关科学问题的研究进展,指出了当前草地生态系统土壤碳储量及碳过程的研究进展、存在的问题,分析了未来草地生态系统土壤碳研究的重点研究方向和发展趋势。研究表明:草地生态系统在调节碳循环和减缓全球气候变化中起着重要作用。但是,由于草地类型的多样性、结构的复杂性以及草地对干扰和变化环境响应的时空动态变化,至今对草地生态系统碳储量和变率的科学估算,以及草地生态系统土壤关键碳过程及其稳定性维持机制的认识还十分有限,随着高分辨率的MODIS、TM数据、数学模型及不同草地类型实测点的建立,以及通过枯落物碳库将植物碳库与土壤碳库的有机连接,草地生态系统的土壤碳储量及固持潜力取得了重要进展;土壤有机碳来源、组成,有机碳化学结构以及环境因子是影响土壤有机碳稳定性的重要因素,而固体赫兹共振、碳同位素示踪等对破解有机碳稳定性提供了重要手段。未来,还将进一步厘清草地生态系统土壤固碳的驱动机制,构建草地生态系统土壤固碳量化方法体系等。
李学斌, 樊瑞霞, 刘学东 ( 2014). 中国草地生态系统碳储量及碳过程研究进展
生态环境学报, 11, 1845-1851.

DOI:10.3969/j.issn.1674-5906.2014.11.019URL [本文引用: 1]
草地为陆地生态系统的主体,是陆地上最主要的碳储库和碳吸收汇之一。近年来,随着“草原承包责任制”、“退耕还林还草”和“封育禁牧”等重大生态工程项目的实施及草地生态系统的恢复和草地生产力的提升,草地生态系统碳储量、固持潜力、土壤碳循环机制及稳定性机制越来越受到学术界的关切。文章全面综述了近年来我国草地生态系统碳储量及其碳过程的研究工作,总结了不同研究中,我国不同草地类型碳库的特征及其储量、分析了草地生态系统碳过程等,评述了土壤碳过程相关科学问题的研究进展,指出了当前草地生态系统土壤碳储量及碳过程的研究进展、存在的问题,分析了未来草地生态系统土壤碳研究的重点研究方向和发展趋势。研究表明:草地生态系统在调节碳循环和减缓全球气候变化中起着重要作用。但是,由于草地类型的多样性、结构的复杂性以及草地对干扰和变化环境响应的时空动态变化,至今对草地生态系统碳储量和变率的科学估算,以及草地生态系统土壤关键碳过程及其稳定性维持机制的认识还十分有限,随着高分辨率的MODIS、TM数据、数学模型及不同草地类型实测点的建立,以及通过枯落物碳库将植物碳库与土壤碳库的有机连接,草地生态系统的土壤碳储量及固持潜力取得了重要进展;土壤有机碳来源、组成,有机碳化学结构以及环境因子是影响土壤有机碳稳定性的重要因素,而固体赫兹共振、碳同位素示踪等对破解有机碳稳定性提供了重要手段。未来,还将进一步厘清草地生态系统土壤固碳的驱动机制,构建草地生态系统土壤固碳量化方法体系等。

Li Y, Han GD ( 2011). Effects of different grazing intensities on the under ground biomass and its vertical distribution of the typical
Stipa grandis steppe. Journal of Inner Mongolia Agricultural University, 32, 89-92.

URL [本文引用: 1]
本文以内蒙古大针茅典型草原为研究对象,通过测定不同放牧强度下 土壤各个层次中的地下生物量,探讨随放牧强度增加植物地下生物量及其垂直分布的变化情况,目的是研究植物地下生物量对放牧强度的响应,为草地合理管理提供 基础数据.结果表明:随着放牧强度的增大0cm-100cm土层中的地下总生物量减小.对植物地下生物量进行逐层分析发现,轻度放牧可以增加地下表层的生 物量,但是中度和重度放牧均使其减少.各个放牧强度下植物地下生物量都随着深度增加而减少,而减少的幅度逐渐降低.但是放牧会影响植物地下生物量的垂直分 布格局,放牧使地下生物量垂直分布的不均匀性增加,同时使地下生物量垂直分布趋向于表层化的现象更明显.
李怡, 韩国栋 ( 2011). 放牧强度对内蒙古大针茅典型草原地下生物量及其垂直分布的影响
内蒙古农业大学学报(自然科学版), 32, 89-92.

URL [本文引用: 1]
本文以内蒙古大针茅典型草原为研究对象,通过测定不同放牧强度下 土壤各个层次中的地下生物量,探讨随放牧强度增加植物地下生物量及其垂直分布的变化情况,目的是研究植物地下生物量对放牧强度的响应,为草地合理管理提供 基础数据.结果表明:随着放牧强度的增大0cm-100cm土层中的地下总生物量减小.对植物地下生物量进行逐层分析发现,轻度放牧可以增加地下表层的生 物量,但是中度和重度放牧均使其减少.各个放牧强度下植物地下生物量都随着深度增加而减少,而减少的幅度逐渐降低.但是放牧会影响植物地下生物量的垂直分 布格局,放牧使地下生物量垂直分布的不均匀性增加,同时使地下生物量垂直分布趋向于表层化的现象更明显.

Liu N, Zhang YJ ( 2010). Effects of grazing on soil organic carbon and total nitrogen in typical steppe
Pratacultural Science, 27(4), 11-14.

Magsci [本文引用: 1]
<p>以内蒙古锡林河流域羊草Leymus chinensis典型草原作为研究对象,研究不同放牧强度及放牧制度下,土壤有机碳、全氮的含量差异,结果表明:1)土壤有机碳含量大体表现为常年放牧地高于混合放牧地,且差异明显。常年放牧地表现为轻牧>重牧>中牧>围封未放牧地,混合放牧地除&ldquo;轻牧+割草&rdquo;与&ldquo;中牧+割草&rdquo;在20~30 cm土层深度表现出显著差异以外,各个放牧强度间差异均不显著。土壤有机碳含量随着土层深度的增加而降低。2)土壤全氮在不同的放牧梯度间及不同土层深度间的变化趋势与土壤有机碳大体相同,趋势表现为轻牧>重牧>中牧>围封未放牧地,而混合放牧地的变化趋势比较复杂,相比较常年放牧地,混合放牧地的全氮含量要低。全氮含量随着土层深度的增加而降低。研究结果表明重牧下有机碳含量要高于中牧,这可能是由于随着放牧强度的增加,草原植被C4植物增多而引起的。</p>
刘楠, 张英俊 ( 2010). 放牧对典型草原土壤有机碳及全氮的影响
草业科学, 27(4), 11-14.

Magsci [本文引用: 1]
<p>以内蒙古锡林河流域羊草Leymus chinensis典型草原作为研究对象,研究不同放牧强度及放牧制度下,土壤有机碳、全氮的含量差异,结果表明:1)土壤有机碳含量大体表现为常年放牧地高于混合放牧地,且差异明显。常年放牧地表现为轻牧>重牧>中牧>围封未放牧地,混合放牧地除&ldquo;轻牧+割草&rdquo;与&ldquo;中牧+割草&rdquo;在20~30 cm土层深度表现出显著差异以外,各个放牧强度间差异均不显著。土壤有机碳含量随着土层深度的增加而降低。2)土壤全氮在不同的放牧梯度间及不同土层深度间的变化趋势与土壤有机碳大体相同,趋势表现为轻牧>重牧>中牧>围封未放牧地,而混合放牧地的变化趋势比较复杂,相比较常年放牧地,混合放牧地的全氮含量要低。全氮含量随着土层深度的增加而降低。研究结果表明重牧下有机碳含量要高于中牧,这可能是由于随着放牧强度的增加,草原植被C4植物增多而引起的。</p>

Liu PT, Yang TT, Yao GZ, Li P, Wu H, He J ( 2014). Change of carbon density in desert steppe under different grazing intensities
Journal of Northwest A&F University (Natural Science Edition), 42, 157-162.

DOI:10.13207/j.cnki.jnwafu.2014.07.016URL [本文引用: 2]
【目的】研究不同放牧强度下荒漠草原植被地上部、根系碳密度及土壤有机碳含量的动态变化,旨在揭示不同放牧强度对荒漠草原植被、土壤碳截存的影响。【方法】在内蒙古苏尼特右旗荒漠草原试验示范基地,设置轻度、中度、重度、极重度放牧和围栏封育(对照区,CK)5个处理,于2012-05-09测定不同放牧强度下荒漠草原植被地上部碳密度、根系碳密度及土壤有机碳含量。【结果】在5-9月,随着放牧强度的增加,荒漠草原植被地上部、0~30cm土层根系碳密度及土壤有机碳含量均呈下降趋势。除轻度放牧区外,其他强度放牧区地上部碳密度与对照区均有明显差异。在不同放牧强度下,荒漠草原地上部碳密度5-9月的动态变化规律一致,均呈单峰型曲线,峰值均出现在8月份。在同一放牧强度下,对照区0~30cm土层根系碳密度随着时间延长而增加,而轻度、中度、重度和极重度放牧区0~30cm土层根系碳密度均呈单峰型变化,峰值出现在7月或8月。在6-9月,与对照区相比,除轻度放牧区0~30cm土层平均土壤有机碳含量增加外,其他放牧强度下土壤有机碳含量均明显降低。【结论】荒漠草原植被地上部和根系碳密度均随放牧强度的增加而降低,轻度放牧有助于土壤有机碳含量的增加。
刘朋涛, 杨婷婷, 姚国征, 李鹏, 吴昊, 贺晶 ( 2014). 不同放牧强度下荒漠草原碳密度的变化
西北农林科技大学学报(自然科学版), 42, 157-162.

DOI:10.13207/j.cnki.jnwafu.2014.07.016URL [本文引用: 2]
【目的】研究不同放牧强度下荒漠草原植被地上部、根系碳密度及土壤有机碳含量的动态变化,旨在揭示不同放牧强度对荒漠草原植被、土壤碳截存的影响。【方法】在内蒙古苏尼特右旗荒漠草原试验示范基地,设置轻度、中度、重度、极重度放牧和围栏封育(对照区,CK)5个处理,于2012-05-09测定不同放牧强度下荒漠草原植被地上部碳密度、根系碳密度及土壤有机碳含量。【结果】在5-9月,随着放牧强度的增加,荒漠草原植被地上部、0~30cm土层根系碳密度及土壤有机碳含量均呈下降趋势。除轻度放牧区外,其他强度放牧区地上部碳密度与对照区均有明显差异。在不同放牧强度下,荒漠草原地上部碳密度5-9月的动态变化规律一致,均呈单峰型曲线,峰值均出现在8月份。在同一放牧强度下,对照区0~30cm土层根系碳密度随着时间延长而增加,而轻度、中度、重度和极重度放牧区0~30cm土层根系碳密度均呈单峰型变化,峰值出现在7月或8月。在6-9月,与对照区相比,除轻度放牧区0~30cm土层平均土壤有机碳含量增加外,其他放牧强度下土壤有机碳含量均明显降低。【结论】荒漠草原植被地上部和根系碳密度均随放牧强度的增加而降低,轻度放牧有助于土壤有机碳含量的增加。

Liu SL, Lin L, Guo XW, Li J, Ouyang JZ, Du YG, Zhang FW, Li YK, Cao GM ( 2014). The variation feature of soil inorganic carbon storage in alpine grassland in Qinghai Province
Acta Ecologica Sinica, 34, 5953-5961.

[本文引用: 1]

刘淑丽, 林丽, 郭小伟, 李婧, 欧阳经政, 杜岩功, 张法伟, 李以康, 曹广民 ( 2014). 青海省高寒草地土壤无机碳储量空间分异特征
生态学报, 34, 5953-5961.

[本文引用: 1]

Ma WH, Han M, Lin X, Ren YL, Wang ZH, Fang JY ( 2006). Carbon storage in vegetation of grasslands in Inner Mongolia
Journal of Arid Land Resources and Environment, 20, 192-195.

DOI:10.3969/j.issn.1003-7578.2006.03.038URL [本文引用: 1]
草地生态系统在全球碳循中起着极为重要的作用。大部分草地碳储存在地下,但是实测数据十分匮乏,因此准确估算温带草地植被碳储量对评价草地生态系统碳循环具有重要意义。作为一个区域性资料积累工作,作者对内蒙古温带草地的碳储量进行了大范围的实测研究,以估算该地区草地植被的碳储量。主要结果如下:(1)内蒙古温带草地总面积为58.46×10^6hm^2,总植被碳储量为226.0±13.27TgC(1Tg=10^12g),平均碳密度为3.44MgC.hm^-2;(2)地下根系储存的碳是地上碳储量的6倍左右,地上、地下生物量碳储量分别为33.22±1.75和193.88±12.6TgC,平均碳密度分别是0.51和2.96MaC.hm^-2;(3)不同草地类型的碳储量差异较大,典型草原最大(113.25TgC),占草地总碳储量的50%,其次是草甸和草甸草原,荒漠草原碳储量最低(15.37TgC)。
马文红, 韩梅, 林鑫, 任艳林, 王志恒, 方精云 ( 2006). 内蒙古温带草地植被的碳储量
干旱区资源与环境, 20, 192-195.

DOI:10.3969/j.issn.1003-7578.2006.03.038URL [本文引用: 1]
草地生态系统在全球碳循中起着极为重要的作用。大部分草地碳储存在地下,但是实测数据十分匮乏,因此准确估算温带草地植被碳储量对评价草地生态系统碳循环具有重要意义。作为一个区域性资料积累工作,作者对内蒙古温带草地的碳储量进行了大范围的实测研究,以估算该地区草地植被的碳储量。主要结果如下:(1)内蒙古温带草地总面积为58.46×10^6hm^2,总植被碳储量为226.0±13.27TgC(1Tg=10^12g),平均碳密度为3.44MgC.hm^-2;(2)地下根系储存的碳是地上碳储量的6倍左右,地上、地下生物量碳储量分别为33.22±1.75和193.88±12.6TgC,平均碳密度分别是0.51和2.96MaC.hm^-2;(3)不同草地类型的碳储量差异较大,典型草原最大(113.25TgC),占草地总碳储量的50%,其次是草甸和草甸草原,荒漠草原碳储量最低(15.37TgC)。

Mekuria W, Veldkamp E, Haile M, Nyssen J, Muys B, Gebrehiwot K ( 2007). Effectiveness of exclosures to restore degraded soils as a result of overgrazing in Tigray, Ethiopia
Journal of Arid Environments, 69, 270-284.

DOI:10.1016/j.jaridenv.2006.10.009URL [本文引用: 1]
As a response to land degradation in Tigray, Northern Ethiopia, regional authorities have promoted rehabilitation of degraded lands through closed areas since 1991. It is generally assumed that exclosures lead to restoration of natural resources such as soil fertility, vegetation biomass and composition, fauna, and water storage; however, this is not supported by studies. In the present study, our objective was to assess the impact of exclosures on soil properties, and relate the age of exclosures to their effectiveness in improving soil chemical and physical properties. Five and ten years closed areas had significantly ( p<0.05 p < 0.05 mathContainer Loading Mathjax ) higher levels for soil organic matter, total nitrogen, and available phosphorus compared to free grazing lands, and the highest levels in were observed in closed areas at footslope position. Our results show that exclosures are not only effective in restoring vegetation, but also in improving soil nutrient status, and reducing erosion. From a technical point of view, it is therefore recommendable to convert grazing areas into exclosures. However, implementing exclosures leads to an even smaller communal area left for grazing and the socio-economic consequences of this should also be considered.

Mu SJ, Zhou KX, Chen YZ, Sun JM, Li JL ( 2014). Research progress on the carbon cycle and impact factors of grassland ecosystem
Acta Agrestia Sinica, 22, 439-447.

[本文引用: 2]

穆少杰, 周可新, 陈奕兆, 孙成明, 李建龙 ( 2014). 草地生态系统碳循环及其影响因素研究进展
草地学报, 22, 439-447.

[本文引用: 2]

Nosetto MD, Jobbagy EG, Paruelo JM ( 2006). Carbon sequestration in semi-arid rangelands: Comparison of
Pinus ponderosa plantations and grazing exclusion in NW Patagonia. Journal of Arid Environments, 67, 142-156.

[本文引用: 1]

Piao SL, Fang JY, He JS, Xiao Y ( 2004). Spatial distribution of grassland biomass in China
Acta Phytoecologica Sinica, 28, 491-498.

[本文引用: 1]

朴世龙, 方精云, 贺金生, 肖玉 ( 2004). 中国草地植被生物量及其空间分布格局
植物生态学报, 28, 491-498.

[本文引用: 1]

Piao S, Fang J, Zhou L, Tan K, Tao S ( 2007). Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999
Global Biogeochemical Cycles, 21, 1-10.

DOI:10.1029/2005GB002634URL [本文引用: 2]
[1] Terrestrial ecosystems in the northern latitudes are significant carbon sinks for atmospheric CO2; however, few studies come from grassland ecosystems. Using national grassland resource inventory data, NDVI (normalized difference vegetation index) time series data set, and a satellite-based statistical model, this study identifies changes in the size and distribution of aboveground biomass carbon (C) stocks for China's grasslands between 1982 and 1999. Biomass C stocks averaged 145.4 Tg C for the study period for a total area of 334.1 0103 104 km2, and have increased by 17.7 Tg C (1 Tg = 1012 g) from 136.3 Tg C in the early 1980s (average of 19820900091984) to 154.0 Tg C in the late 1990s (average of 19970900091999), with an annual increase of 0.7%. This suggests that the aboveground biomass of China's grasslands may have functioned as the C sinks in the past 2 decades. Assuming a constant ratio of aboveground to belowground biomass for each grassland type, we also estimated belowground biomass C and its change over time for each grassland type, generating an average estimate of 1051.1 Tg C for the total (aboveground and belowground) biomass C and an annual increase of 126.67 Tg C for China's grasslands over the 18 years. However, the accuracy of these estimates has limitations due primarily to uncertainties in estimates of belowground C, biomass inventories, and satellite time series data sets.

Raiesi F, Asadi E ( 2006). Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem
Biology and Fertility of Soils, 43, 76-82.

DOI:10.1007/s00374-005-0066-1URL [本文引用: 1]
Long-term overgrazing is known to influence soil microbiological properties and C sequestration in soil organic matter. However, much remains to be known concerning overgrazing impacts on soil microbial activity and litter turnover in heavily grazed rangelands of Central Iran. Aboveground litter decomposition of three dominant species ( Agropyron intermedium , Hordeum bulbosum , and Juncus sp.) were studied using a litter bag experiment under field conditions in three range sites of Central Iran, a site with continuous grazing, a site ungrazed for 17 years with dominant woody species (80% cover), and a site ungrazed for 17 years with dominant pasture species (70% cover). Soil samples were taken from 0 to 30 cm depth and analyzed for their chemical and microbiological properties. Results demonstrate that soil organic C and total N contents and C/N ratios were similar for both ungrazed and grazed sites, while available P and K concentrations significantly decreased under grazed conditions. It was also evident that range grazing decreases soil respiration and microbial biomass C, suggesting a lower recent annual input of decomposable organic C. Nevertheless, grazing conditions had no significant effect on litter decomposition indicating soil microclimate is not affected by grazing animals in this ecosystem. It is concluded that overgrazing may presumably depress microbial activity through either reduced input of fresh plant residue into the surface soil or lack of living roots and exudates for stimulating microbial activity. This study also suggests that 17 years of livestock exclusion might be insufficient time for expected C accumulation in soil.

Reeder JD, Schuman GE ( 2002). Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands
Environmental Pollution, 116, 457-463.

DOI:10.1016/S0269-7491(01)00223-8URLPMID:11822725 [本文引用: 1]
Abstract We evaluated the effects of livestock grazing on C content of the plant-soil system (to 60 cm) of two semi-arid grasslands: a mixed-grass prairie (grazed 12 years), and a short-grass steppe (grazed 56 years). Grazing treatments included season-long grazing at heavy and light stocking rates, and non-grazed exclosures. Significantly higher soil C (0-30cm) was measured in grazed pastures compared to non-grazed exclosures, although for the short-grass steppe higher soil C was observed with the heavy grazing treatment only. Excluding grazing caused an immobilization of C in excessive aboveground plant litter, and an increase in annual forbs and grasses which lack dense fibrous rooting systems conducive to soil organic matter formation and accumulation. Our data indicate that higher soil C with grazing was in part the result of more rapid annual shoot turnover, and redistribution of C within the plant-soil system as a result of changes in plant species composition.

Ren HY, Zheng SX, Bai YF ( 2009). Effects of grazing on foliage biomass allocation of grassland communities in Xilin River Basin, Inner Mongolia
Chinese Journal of Plant Ecology, 33, 1065-1074.

DOI:10.3773/j.issn.1005-264x.2009.06.006URL [本文引用: 1]
以内蒙古锡林河流域沿水分梯度分布的灰脉苔草(Carex appendiculata)、贝加尔针茅(Stipa baicalensis)、羊草(Leymus chinensis)、大针茅(Stipa grandis)、小叶锦鸡儿(Caragana microphylla)和冷蒿(Artemisia frigida)6个草地群落为对象,研究了围封禁牧与放牧样地中144个共有植物种的高度、丛幅面积、茎、叶和株(丛)生物量、茎叶比等性状。结果表明:1)在个体水平上,放牧样地中植物的生殖枝高度、营养枝高度、丛幅面积、单株(丛)生物量、茎、叶生物量和茎叶比均显著低于围封禁牧样地,植物在放牧干扰下表现出明显的小型化现象;2)在群落水平上,放牧亦显著降低了群落总生物量和茎、叶生物量;3)过度放牧显著改变了物种的资源分配策略,使生物量向叶的分配比例增加,向茎的分配比例减少。资源优先向同化器官分配可能是植物对长期放牧干扰的一种重要适应对策;4)轻度放牧对物种的资源分配没有显著影响,单株(丛)生物量和群落茎、叶及总生物量均表现出增加趋势,这与过度放牧的影响正好相反。过度放牧引起的植物个体小型化改变了生态系统中物种的资源分配策略,进而对生态系统功能产生重要的影响。
任海彦, 郑淑霞, 白永飞 ( 2009). 放牧对内蒙古锡林河流域草地群落植物茎叶生物量资源分配的影响
植物生态学报, 33, 1065-1074.

DOI:10.3773/j.issn.1005-264x.2009.06.006URL [本文引用: 1]
以内蒙古锡林河流域沿水分梯度分布的灰脉苔草(Carex appendiculata)、贝加尔针茅(Stipa baicalensis)、羊草(Leymus chinensis)、大针茅(Stipa grandis)、小叶锦鸡儿(Caragana microphylla)和冷蒿(Artemisia frigida)6个草地群落为对象,研究了围封禁牧与放牧样地中144个共有植物种的高度、丛幅面积、茎、叶和株(丛)生物量、茎叶比等性状。结果表明:1)在个体水平上,放牧样地中植物的生殖枝高度、营养枝高度、丛幅面积、单株(丛)生物量、茎、叶生物量和茎叶比均显著低于围封禁牧样地,植物在放牧干扰下表现出明显的小型化现象;2)在群落水平上,放牧亦显著降低了群落总生物量和茎、叶生物量;3)过度放牧显著改变了物种的资源分配策略,使生物量向叶的分配比例增加,向茎的分配比例减少。资源优先向同化器官分配可能是植物对长期放牧干扰的一种重要适应对策;4)轻度放牧对物种的资源分配没有显著影响,单株(丛)生物量和群落茎、叶及总生物量均表现出增加趋势,这与过度放牧的影响正好相反。过度放牧引起的植物个体小型化改变了生态系统中物种的资源分配策略,进而对生态系统功能产生重要的影响。

Sarula, Hou XY, Li JX, Ding Y, Wu XY, Yun XJ ( 2013). Organic carbon storage in vegetation-soil systems of typical grazing degraded steppe
Acta Agrestia Sinica, 22(5), 18-26.

DOI:10.11686/cyxb20130503Magsci [本文引用: 2]
<p>以典型草原大针茅+羊草群落为研究目标,以1979年围封样地为参照(CK),选择轻度(GL)、中度(GM)、重度(GH)放牧退化样地开展植被&mdash;土壤系统有机碳分布与储量的研究,结果表明,1)不同放牧退化典型草原植被地上碳储量为42.63~203.16g/m<sup>2</sup>,植被地下(0~40cm)碳储量为664.14~1199.53g/m<sup>2</sup>,且大小顺序均为CK>GL>GM>GH,植被总碳储量CK 和GL 显著高于GM 和GH;植被地上、地下碳储量存在显著相关关系。2)不同放牧退化典型草原土壤0~100cm 有机碳储量均存在显著性差异,碳储量为9.85~13.33kg/m<sup>2</sup>,且GM>GL>GH>CK;土壤有机碳随土层深度增加而减少,有机碳储量与深度具有显著相关性。3)放牧退化典型草原植被&mdash;土壤系统的碳储量为11.26~14.07kg/m<sup>2</sup>,且GM>GL>GH>CK,各类型间亦均存在显著性差异;有机碳主要储存于土壤当中,占比约88%~95%,土壤有机碳储量与植被无显著相关性。4)适度放牧利用有利于发挥草原生态系统的碳汇功能。</p>
萨茹拉, 侯向阳, 李金祥, 丁勇, 吴新宏, 运向军 ( 2013). 不同放牧退化程度典型草原植被—土壤系统的有机碳储量
草业学报, 22(5), 18-26.

DOI:10.11686/cyxb20130503Magsci [本文引用: 2]
<p>以典型草原大针茅+羊草群落为研究目标,以1979年围封样地为参照(CK),选择轻度(GL)、中度(GM)、重度(GH)放牧退化样地开展植被&mdash;土壤系统有机碳分布与储量的研究,结果表明,1)不同放牧退化典型草原植被地上碳储量为42.63~203.16g/m<sup>2</sup>,植被地下(0~40cm)碳储量为664.14~1199.53g/m<sup>2</sup>,且大小顺序均为CK>GL>GM>GH,植被总碳储量CK 和GL 显著高于GM 和GH;植被地上、地下碳储量存在显著相关关系。2)不同放牧退化典型草原土壤0~100cm 有机碳储量均存在显著性差异,碳储量为9.85~13.33kg/m<sup>2</sup>,且GM>GL>GH>CK;土壤有机碳随土层深度增加而减少,有机碳储量与深度具有显著相关性。3)放牧退化典型草原植被&mdash;土壤系统的碳储量为11.26~14.07kg/m<sup>2</sup>,且GM>GL>GH>CK,各类型间亦均存在显著性差异;有机碳主要储存于土壤当中,占比约88%~95%,土壤有机碳储量与植被无显著相关性。4)适度放牧利用有利于发挥草原生态系统的碳汇功能。</p>

Sang YY, Ni HC, Qu HL ( 2006). Surveying biomass of degraded grassland for forbidden grazing and enclosing after three years
Qinghai Prataculture, 15(3), 7-9.

DOI:10.3969/j.issn.1008-1445.2006.03.003URL [本文引用: 1]
以高寒草甸类草地为测定对象,对轻度、中度和重度退化草地禁牧前后地上和地下生物量的分布情况进行了比较测定。结果表明,禁牧封育后较禁牧前莎草、禾草地上部分分别增加了3.51和4.59个百分点,地下部分分别增加了2.87和4.30个百分点,杂类草地上部分下降了8.10个百分点,地下部分下降7.17个百分点。
桑永燕, 宁洪才, 屈海林 ( 2006). 禁牧封育3年后退化草地生物量测定
青海草业, 15(3), 7-9.

DOI:10.3969/j.issn.1008-1445.2006.03.003URL [本文引用: 1]
以高寒草甸类草地为测定对象,对轻度、中度和重度退化草地禁牧前后地上和地下生物量的分布情况进行了比较测定。结果表明,禁牧封育后较禁牧前莎草、禾草地上部分分别增加了3.51和4.59个百分点,地下部分分别增加了2.87和4.30个百分点,杂类草地上部分下降了8.10个百分点,地下部分下降7.17个百分点。

Scurlock JMO, Hall DO ( 1998). The global carbon sink: A grassland perspective
Global Change Biology, 4, 229-233.

DOI:10.1046/j.1365-2486.1998.00151.xURL [本文引用: 1]
The challenge to identify the biospheric sinks for about half the total carbon emissions from fossil fuels must include a consideration of below-ground ecosystem processes as well as those more easily measured above-ground. Recent studies suggest that tropical grasslands and savannas may contribute more to the 'missing sink' than was previously appreciated, perhaps as much as 0.5 Pg (= 0.5 Gt) carbon per annum. The rapid increase in availability of productivity data facilitated by the Internet will be important for future scaling-up of global change responses, to establish independent lines of evidence about the location and size of carbon sinks.

Scurlock JMO, Johnson K, Olson RJ ( 2002). Estimating net primary productivity from grassland biomass dynamics measurements
Global Change Biology, 8, 736-753.

DOI:10.1007/s11136-006-9005-3URL [本文引用: 1]
To address the need for a high quality data set based upon field observations suitable for parameterization, calibration, and validation of terrestrial biosphere models, we have developed a comprehensive global database on net primary productivity (NPP). We have compiled field measurements of biomass and associated environmental data for multiple study sites in major grassland types worldwide. Where sufficient data were available, we compared aboveground and total NPP estimated by six computational methods (algorithms) for 31 grassland sites. As has been found previously, NPP estimates were 2-5 times higher using methods which accounted for the dynamics of dead matter, compared with what is still the most commonly applied estimate of NPP (maximum peak live biomass). It is suggested that assumptions such as the use of peak biomass as an indicator of NPP in grasslands may apply only within certain subbiomes, e.g. temperate steppe grasslands. Additional data on belowground dynamics, or other reliable estimates of belowground productivity, are required if grasslands are to be fully appreciated for their role in the global carbon cycle.

Shrestha G, Stahl P ( 2008). Carbon accumulation and storage in semi-arid sagebrush steppe: Effects of long-term grazing exclusion
Agriculture Ecosystems & Environment, 125, 173-181.

DOI:10.1016/j.agee.2007.12.007URL [本文引用: 1]
The potential of grazing lands to sequester carbon has been investigated in different terrestrial environments but the results are often inconclusive. Our study examined the soil organic carbon (SOC) and soil microbial biomass carbon (MBC) contents inside and outside four grazing exclosures that had been established more than four decades ago in the semi-arid sagebrush steppe of Wyoming. Non-grazed soil carbon parameters were compared to those of the adjacent grazed soils to examine the effects of long-term grazing exclusion on the soil carbon accumulation and storage of this particular ecological region. Soil organic carbon concentration in these soils ranged from 3.67 to 53.8 mg g 611 dry soil. There was no significant difference in SOC due to treatment (grazing exclusion) in three of the four sites. Carbon to nitrogen ratios ranged from 10 to 11 with only one site exhibiting greater C:N ratio in ungrazed soil than in grazed soil. Microbial biomass carbon concentrations ranged from 99 to 1011 μg g 611 dry soil in the study sites. All pairwise comparisons (with correlation coefficients from 0 to 1 at α = 0.05 level) between MBC and SOC were significantly positive and strong for ungrazed soil in all four sites. Greater MBC was observed in the ungrazed soil than in the grazed soil at two sites, demonstrating that long-term grazing exclusion promoted enrichment of the labile soil carbon pool.

Steffens M, K?lbl A, Kai UT, K?gel-Knabner I ( 2008). Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P. R. China)
Geoderma, 143, 63-72.

DOI:10.1016/j.geoderma.2007.09.004URL [本文引用: 1]
It is not clear from the literature whether heavy grazing leads to a deterioration of physical and chemical parameters of topsoils in steppe ecosystems. We sampled five sites in northern China with different grazing intensities, ranging from ungrazed since 1979 to heavily grazed, at 540 sampling points to a depth of 0鈥4cm. Each sample was analysed for bulk density, organic carbon (OC), total nitrogen (N), total sulphur (S) and pH. The dataset was analysed using general statistics and explorative analysis (ANOVA, Kruskal allis). As a result of the large number of samples, we were able to detect a change in the mean value of all parameters of less than 10%, with a statistical power of 90% and a level of significance of 0.01. Bulk density increased significantly with increasing grazing intensity. Organic carbon, total N and total S concentrations decreased significantly with increasing grazing intensity. No effect on the pH or C/N ratio was detected. Significant differences in C/S and N/S ratios between differently grazed plots were found. These differences point towards a relative accumulation of sulphur in grazed compared to ungrazed areas following an increased organic matter decline or lower inputs of diluting litter. Elemental stocks of the upper 4cm were calculated for OC, total N and total S using the measured bulk densities. The data revealed significantly lower amounts for all three elements on the heavily grazed site, but no significant differences for the other areas. In addition, elemental stocks were calculated using an equivalent mass instead of bulk density to take into account changes in bulk density following grazing. This revealed a highly significant decrease for OC, total N and total S with increasing grazing intensity. OC, total N and total S concentrations respond similarly to different grazing intensities, showing highly significant positive correlations. OC concentrations and bulk densities were significantly negatively correlated. We found effects of grazing cessation only in the long-term, as no ameliorating effects of reduced or excluded grazing could be detected five years after grazing cessation. After 25years of exclusion, significantly different values were found for all parameters. Thus, physical and chemical parameters of steppe topsoils deteriorated significantly following heavy grazing, remained stable if grazing was reduced or excluded for five years, and recovered significantly after 25years of grazing exclusion.

Tanentzap AJ, Coomes DA ( 2011). Carbon storage in terrestrial ecosystems: Do browsing and grazing herbivores matter?
Biological Reviews of the Cambridge Philosophical Society, 87, 72-94.

DOI:10.1111/j.1469-185X.2011.00185.xURLPMID:21635684 [本文引用: 1]
<P>Large mammalian herbivores manifest a strong top-down control on ecosystems that can transform entire landscapes, but their impacts have not been reviewed in the context of terrestrial carbon storage. Here, we evaluate the effects of plant biomass consumption by large mammalian herbivores (>10 kg adult biomass), and the responses of ecosystems to these herbivores, on carbon stocks in temperate and tropical regions, and the Arctic. We calculate the difference in carbon stocks resulting from herbivore exclusion using the results of 108 studies from 52 vegetation types. Our estimates suggest that herbivores can reduce terrestrial above- and below-ground carbon stocks across vegetation types but reductions in carbon stocks may approach zero given sufficient periods of time for systems to respond to herbivory (i.e. decades). We estimate that if all large herbivores were removed from the vegetation types sampled in our review, increases in terrestrial carbon stocks would be up to three orders of magnitude less than many of the natural and human-influenced sources of carbon emissions. However, we lack estimates for the effects of herbivores on below-ground biomass and soil carbon levels in many regions, including those with high herbivore densities, and upwards revisions of our estimates may be necessary. Our results provide a starting point for a discussion on the magnitude of the effects of herbivory on the global carbon cycle, particularly given that large herbivores are common in many ecosystems. We suggest that herbivore removal might represent an important strategy towards increasing terrestrial carbon stocks at local and regional scales within specific vegetation types, since humans influence populations of most large mammals.</P>

Wang JL, Chang TY, Li P, Cheng HH, Fang HL ( 2009). The vegetation carbon reserve and its spatial distribution configuration of grassland ecosystem in Tibet
Acta Ecologica Sinica, 29, 931-938.

DOI:10.3321/j.issn:1000-0933.2009.02.047URL [本文引用: 1]
在广泛收集资料的基础上,利用平均碳密度方法,估算了西藏高原草地生态系统17类草地植被的碳贮量,并分 析了其空间分布格局.结果表明:(1)17类草地植被总面积为8205.194×104hm2,总碳贮量为189.367 Tg (1TgC=1012g),平均碳密度为2307.895 kgC/hm2,不同植被类型差异较大,在395.977~20471.161kgC/hm2之间波动;(2)从草地类型分布看,高寒草原和高寒草甸是西 藏分布面积最大的2类草地,分布面积占西藏草地总面积的70.210%,又是西藏草地碳贮量的主要贮库,碳贮量占西藏草地总碳贮量的79.393%; (3)在空间分布格局上,随着自藏东南向西北的延伸,草地植被总碳密度逐次降低,这一水平分布格局与西藏独特的水热分布相一致;碳密度的垂直分布规律因地 区而异,但各地区均以高寒草甸或高寒荒漠的低碳密度为终点,表现出"殊途同归"的特征.
王建林, 常天军, 李鹏, 成海宏, 方华丽 ( 2009). 西藏草地生态系统植被碳贮量及其空间分布格局
生态学报, 29, 931-938.

DOI:10.3321/j.issn:1000-0933.2009.02.047URL [本文引用: 1]
在广泛收集资料的基础上,利用平均碳密度方法,估算了西藏高原草地生态系统17类草地植被的碳贮量,并分 析了其空间分布格局.结果表明:(1)17类草地植被总面积为8205.194×104hm2,总碳贮量为189.367 Tg (1TgC=1012g),平均碳密度为2307.895 kgC/hm2,不同植被类型差异较大,在395.977~20471.161kgC/hm2之间波动;(2)从草地类型分布看,高寒草原和高寒草甸是西 藏分布面积最大的2类草地,分布面积占西藏草地总面积的70.210%,又是西藏草地碳贮量的主要贮库,碳贮量占西藏草地总碳贮量的79.393%; (3)在空间分布格局上,随着自藏东南向西北的延伸,草地植被总碳密度逐次降低,这一水平分布格局与西藏独特的水热分布相一致;碳密度的垂直分布规律因地 区而异,但各地区均以高寒草甸或高寒荒漠的低碳密度为终点,表现出"殊途同归"的特征.

Wang W, Fang JY ( 2009). Soil respiration and human effects on global grasslands
Global & Planetary Change, 67, 20-28.

DOI:10.1016/j.gloplacha.2008.12.011URL [本文引用: 1]
Grasslands comprise approximately 40% of the earth's land area (excluding areas of permanent ice cover) and play a critical role in the global carbon cycle. In this paper, by reviewing literature, we quantify annual soil CO 2 efflux, contribution of root respiration to total soil respiration, apparent temperature sensitivity of soil respiration (indicated by Q 10 ), and turnover rates of soil organic carbon (SOC). We discuss effects of human activities (grazing, land-use changes, and fertilization) on soil respiration rates of global natural grasslands. The soil CO 2 efflux from temperate and tropical natural grasslands is 389.8±45.5g C m 612 yr 611 and 601.3±45.6g C m 612 yr 611 (mean±S.E.), respectively. The contribution of root respiration to total soil respiration averages 36%, ranging from 8% to 64%. Annual soil CO 2 efflux increases with temperature and precipitation, but increased precipitation can cause a decrease in soil respiration rate in rainy regions. Mean turnover rates of SOC are 71years in temperate grasslands and 15years in tropical grasslands. The average Q 10 value is 2.13, with 2.23 for temperate grasslands and 1.94 for tropical grasslands. Human activities significantly affect soil respiration but the extent varies among sites.

Welker JM, Fahnestock JT, Povirk KL, Bilbrough CJ, Piper RE ( 2004). Alpine Grassland CO2 exchange and nitrogen cycling: Grazing history effects, medicine bow range, Wyoming, U.S.A
Arctic Antarctic & Alpine Research, 36, 11-20.

[本文引用: 1]

Wilcox BP ( 2007). Does rangeland degradation have implications for global streamflow?
Hydrological Processes, 21, 2961-2964.

DOI:10.1002/hyp.6856URL [本文引用: 1]
Not Available

Wu GL, Du GZ, Liu ZH, Thirgood S ( 2009). Effect of fencing and grazing on a
Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant and Soil, 319, 115-126.

[本文引用: 1]

Wu GL, Liu ZH, Zhang L, Chen JM, Hu TM ( 2010). Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China
Plant and Soil, 332, 331-337.

DOI:10.1007/s11104-010-0299-0URL [本文引用: 1]
Overgrazing significantly affects alpine meadows in ways similar to grasslands in other areas. Fencing to exclude grazers is one of the main management practices used to protect alpine meadows. However, it is not known if fencing can improve soil properties and soil organic carbon storage by restraining grazing in alpine meadows. We studied the long-term (nine-year) effects of fencing on soil properties, soil organic carbon and nitrogen storage compared with continued grazing in an alpine swamp meadow of the Qinghai09“Tibetan Plateau, NW China. Our results showed that fencing significantly improved vegetation cover and aboveground biomass. There were significant effects of fencing on pH value, soil bulk density, and soil moisture. Long-term fencing favored the increase of soil total nitrogen, soil organic matter, soil organic carbon, soil microbial biomass carbon and soil carbon storage compared with grazed meadows. Our study suggests that long-term fencing to prevent disturbance could greatly affect soil organic carbon and nitrogen storage with regard to grazed meadows. Therefore, it is apparent from this study that fencing is an effective restoration approach of with regard to the soil0964s storage ability for carbon and nitrogen in alpine meadow of the Qinghai09“Tibetan Plateau.

Xu ZQ, Li WH, Xu Q, Min QW, Wang YS, Wu XB ( 2009). The impacts of human disturbances on soil carbon density and ecosystem storage of carbon of typical steppe
Journal of Natural Resources, 2, 621-629.

[本文引用: 1]

许中旗, 李文华, 许晴, 闵庆文, 王英舜, 吴雪宾 ( 2009). 人为干扰对典型草原土壤碳密度及生态系统碳贮量的影响
自然资源学报, 2, 621-629.

[本文引用: 1]

Yan YC, Tang HP ( 2008). Restoration of degraded grassland communities and its contribution to carbon sequestration under enclosure in typical steppe of Inner Mongolia
Progress in Natural Science, 18, 546-551.

DOI:10.3321/j.issn:1002-008X.2008.05.009URL [本文引用: 1]
通过实地样方调查及实验室分析对围封(ER)与持续放牧(GD)下内蒙古典型草原区退化草原 群落的植被、土壤特征进行了测定,分析了围封后植被、土壤特征的恢复状况,揭示了退化草地生态系统恢复过程中的固碳潜力及其生物化学过程.结果表明:羊草 (Leymus chinensis)草原退化变型——冷蒿(Artemisia frigida)草原经过18a围封,其植被和土壤特征得到明显恢复,地上组分总生物量是持续放牧草地的2.69倍,0—40cm土层中根系总生物量是持 续放牧草地的1.55倍,表层(0—10cm)土壤粘、粉粒含量比持续放牧草地分别增加617.1%和394.7%,土壤有机碳、全氮、全磷含量分别增加 为持续放牧草地的2.84,2.44和2.27倍,土壤容重比持续放牧草地降低了10.60%.在内蒙古典型草原区,长期过牧下的冷蒿草原恢复为以羊草为 优势种的原生群落类型将具有较大的固碳潜力,在恢复过程中其地上植物组分、根系和土壤(0—40cm)的固碳潜力可分别达到65.58,241.77和 2176.19g·m^-2,其植物——土壤系统总固碳潜力可达到2483.55g·m^-2.
(in Chinese) [ 闫玉春, 唐海萍 ( 2008). 围封下内蒙古典型草原区退化草原群落的恢复及其对碳截存的贡献
自然科学进展, 18, 546-551.

DOI:10.3321/j.issn:1002-008X.2008.05.009URL [本文引用: 1]
通过实地样方调查及实验室分析对围封(ER)与持续放牧(GD)下内蒙古典型草原区退化草原 群落的植被、土壤特征进行了测定,分析了围封后植被、土壤特征的恢复状况,揭示了退化草地生态系统恢复过程中的固碳潜力及其生物化学过程.结果表明:羊草 (Leymus chinensis)草原退化变型——冷蒿(Artemisia frigida)草原经过18a围封,其植被和土壤特征得到明显恢复,地上组分总生物量是持续放牧草地的2.69倍,0—40cm土层中根系总生物量是持 续放牧草地的1.55倍,表层(0—10cm)土壤粘、粉粒含量比持续放牧草地分别增加617.1%和394.7%,土壤有机碳、全氮、全磷含量分别增加 为持续放牧草地的2.84,2.44和2.27倍,土壤容重比持续放牧草地降低了10.60%.在内蒙古典型草原区,长期过牧下的冷蒿草原恢复为以羊草为 优势种的原生群落类型将具有较大的固碳潜力,在恢复过程中其地上植物组分、根系和土壤(0—40cm)的固碳潜力可分别达到65.58,241.77和 2176.19g·m^-2,其植物——土壤系统总固碳潜力可达到2483.55g·m^-2.

Yu J, Fang L, Bian ZF, Wang Q, Yu YC ( 2014). A review of the composition of soil carbon pool
Acta Ecologica Sinica, 34, 4829-4838.

DOI:10.5846/stxb201301050036URL [本文引用: 2]
土壤碳库是陆地生态系统中最大的碳库。土壤碳库的构成影响其累积和分解,并直接影响全球陆地生态系统碳平衡,同时也影响土壤质量变化。弄清土壤碳库的组分及构成,是进一步研究土壤碳库变化机制的关键。综述了土壤碳库的组分和构成,对有机碳库进行不稳定性有机碳库和稳定有机碳库归类,描述各类碳库的性质,并对各类碳库的分析测定方法进行了评述。提出在土壤碳构成中增加黑碳和煤炭(碳)以完善土壤有机碳构成框架。在未来研究中,应加强土壤无机碳及湿地土壤和新开发新复垦的重构土壤碳库构成及变化,各类碳库化学构成,交叉重叠的定量关系,碳库之间的转化及在土壤中的迁移,黑碳对土壤碳库稳定性及土壤质量的影响,煤开采扰动区煤炭(碳)对土壤质量的影响及环境效应等科学问题的研究。
余健, 房莉, 卞正富, 汪青, 俞元春 ( 2014). 土壤碳库构成研究进展
生态学报, 34, 4829-4838.

DOI:10.5846/stxb201301050036URL [本文引用: 2]
土壤碳库是陆地生态系统中最大的碳库。土壤碳库的构成影响其累积和分解,并直接影响全球陆地生态系统碳平衡,同时也影响土壤质量变化。弄清土壤碳库的组分及构成,是进一步研究土壤碳库变化机制的关键。综述了土壤碳库的组分和构成,对有机碳库进行不稳定性有机碳库和稳定有机碳库归类,描述各类碳库的性质,并对各类碳库的分析测定方法进行了评述。提出在土壤碳构成中增加黑碳和煤炭(碳)以完善土壤有机碳构成框架。在未来研究中,应加强土壤无机碳及湿地土壤和新开发新复垦的重构土壤碳库构成及变化,各类碳库化学构成,交叉重叠的定量关系,碳库之间的转化及在土壤中的迁移,黑碳对土壤碳库稳定性及土壤质量的影响,煤开采扰动区煤炭(碳)对土壤质量的影响及环境效应等科学问题的研究。

Zhang BB, Liu F, Ding JZ, Fang K, Yang GB, Liu L, Chen YL, Li F, Yang YH ( 2016). Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: An updated evaluation using deep cores
Chinese Journal of Plant Ecology, 40, 93-101.

DOI:10.17521/cjpe.2015.0406URL [本文引用: 1]
准确评估土壤无机碳库的大小及其分布特征有助于全面理解陆地生态系统碳循环与气候变暖之间的反馈关系.然 而,由于深层土壤剖面信息匮乏,使得目前学术界对深层土壤无机碳库的了解十分有限.该研究基于342个3m深度和177个50 cm深度的土壤剖面信息,采用克里格插值方法估算了青藏高原高寒草地不同深度的土壤无机碳库大小,并在此基础上分析了该地区土壤无机碳密度的分布特征.结 果显示,青藏高原高寒草地0-50 cm、0-1 m、0-2 m和0-3 m深度的土壤无机碳库大小分别为8.26、17.82、36.33和54.29 PgC,对应的土壤无机碳密度分别为7.22、15.58、31.76和47.46 kg C·m-2.研究区土壤无机碳密度总体呈现由东南向西北增加的趋势;高寒草原土壤的无机碳密度显著大于高寒草甸的无机碳密度.整体上,不同深度的高寒草原 无机碳库约占整个研究区无机碳库的63%-66%.此外,深层土壤中储存了大量无机碳,1m以下土壤无机碳库是1m以内无机碳库的2倍.两种草地类型土壤 无机碳的垂直分布存在差异:对高寒草原而言,0-50 cm土壤无机碳所占的比例最大;但对高寒草甸而言,在100-150 cm深度土壤无机碳出现富集.这些结果表明青藏高原深层土壤是一个重要的无机碳库,需在未来碳循环研究中予以重视.
张蓓蓓, 刘芳, 丁金枝, 房凯, 杨贵彪, 刘莉, 陈永亮, 李飞, 杨元合 ( 2016). 青藏高原高寒草地3米深度土壤无机碳库及分布特征
植物生态学报, 40, 93-101.

DOI:10.17521/cjpe.2015.0406URL [本文引用: 1]
准确评估土壤无机碳库的大小及其分布特征有助于全面理解陆地生态系统碳循环与气候变暖之间的反馈关系.然 而,由于深层土壤剖面信息匮乏,使得目前学术界对深层土壤无机碳库的了解十分有限.该研究基于342个3m深度和177个50 cm深度的土壤剖面信息,采用克里格插值方法估算了青藏高原高寒草地不同深度的土壤无机碳库大小,并在此基础上分析了该地区土壤无机碳密度的分布特征.结 果显示,青藏高原高寒草地0-50 cm、0-1 m、0-2 m和0-3 m深度的土壤无机碳库大小分别为8.26、17.82、36.33和54.29 PgC,对应的土壤无机碳密度分别为7.22、15.58、31.76和47.46 kg C·m-2.研究区土壤无机碳密度总体呈现由东南向西北增加的趋势;高寒草原土壤的无机碳密度显著大于高寒草甸的无机碳密度.整体上,不同深度的高寒草原 无机碳库约占整个研究区无机碳库的63%-66%.此外,深层土壤中储存了大量无机碳,1m以下土壤无机碳库是1m以内无机碳库的2倍.两种草地类型土壤 无机碳的垂直分布存在差异:对高寒草原而言,0-50 cm土壤无机碳所占的比例最大;但对高寒草甸而言,在100-150 cm深度土壤无机碳出现富集.这些结果表明青藏高原深层土壤是一个重要的无机碳库,需在未来碳循环研究中予以重视.

Zhang J, Zhang L, Liu W, Yue QI, Xiao WO ( 2014). Livestock-carrying capacity and overgrazing status of alpine grassland in the Three-River Headwaters region, China
Journal of Geographical Sciences, 24, 303-312.

DOI:10.1007/s11442-014-1089-zURL [本文引用: 1]
The Three-River Headwaters region in China is an ecological barrier providing environmental protection and regional sustainable development for the mid-stream and downstream areas, which also plays an important role in animal husbandry in China. This study estimated the grassland yield in the Three-River Headwaters region based on MODIS NPP data, and calculated the proper livestock-carrying capacity of the grassland. We analyzed the overgrazing number and its spatial distribution characteristics through data comparison between actual and proper livestock-carrying capacity. The results showed the following: (1) total grassland yield (hay) in the Three-River Headwaters region was 10.96 million tons in 2010 with an average grassland yield of 465.70 kg/hm 2 (the spatial distribution presents a decreasing trend from the east and southeast to the west and northwest in turn); (2) the proper livestock-carrying capacity in the Three-River Headwaters region is 12.19 million sheep units (hereafter described as U ), and the average stocking capacity is 51.27 SU [the proper carrying capacity is above 100 SU/km 2 in the eastern counties, 60 SU/km 2 in the central counties (except Madoi County), and 30 SU/km 2 in the western counties]; and (3) total overgrazing number was 6.52 million SU in the Three-River Headwaters region in 2010, with an average overgrazing ratio of 67.88% and an average overgrazing number of 27.43 SU/km2. A higher overgrazing ratio occurred in Tongde, Xinghai, Yushu, Henan and Z kog. There was no overgrazing in Zhiduo, Tanggula Township and Darlag, Qumerleb and Madoi. The remainder of the counties had varying degrees of overgrazing.

Zhao HL, Zhao XY, Zhou RL, Zhang TH, Drake S ( 2005). Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia
Journal of Arid Environments, 62, 309-319.

DOI:10.1016/j.jaridenv.2004.11.009URL [本文引用: 1]
We conducted a grazing experiment from 1992 to 1996 in Inner Mongolia to explore desertification processes of sandy rangeland. The results show that continuous heavy grazing results in a considerable decrease in vegetation cover, height, standing biomass and root biomass, and a significant increase in animal hoof impacts. As a result, small bare spots appeared on the ground and later merged into larger bare areas in the rangeland. Total bare area reached up to 52% and the average depth of wind erosion was 25 cm in the fifth year of the study. We conclude that sandy rangeland with wind-erodible soil is susceptible to desertification. Heavy grazing of such rangeland should be avoided.

Zhou ZY, Li FR, Chen SK, Zhang HR, Li G ( 2011). Dynamics of vegetation and soil carbon and nitrogen accumulation over 26 years under controlled grazing in a desert shrubland
Plant and Soil, 341, 257-268.

DOI:10.1007/s11104-010-0641-6URL [本文引用: 1]
For decades, arid desert ecosystems in northwest China, covering one-fourth the country’s land surface, have experienced a rapid decline in plant species diversity, productivity and soil carbon stock owing to degradation by overgrazing. In this study, plant community composition, diversity and productivity, as well as soil carbon (C) and nitrogen (N) stocks, were monitored over 2602years from 1981 to 2006 in a severely degraded Haloxylon ammodendron- dominated shrubland where livestock densities were reduced from 4–5 to 1–2 dry sheep equivalent ha -1 . The objective was to assess long-term grazing effects on vegetation and soil C and N accumulation dynamics. Results showed that the reduction of grazing pressure significantly increased vegetation cover, plant diversity and productivity, resulting primarily from an increase in livestock-preferred species. Controlled grazing also led to marked increases in soil C and N stocks in the top 3002cm of soil. This increase was strongly associated with increased plant species richness, vegetation cover and biomass production. Averaged over 2602years, soil C and N accumulated at rates of 89.902g65C and 8.402g65N m -2 65year -1 , respectively, but rates of C and N accumulation varied greatly at different time periods. The greatest species regeneration occurred in the first 802years, but the largest C and N accumulation took place during years 9–18, with a time-lag in response to changes in vegetation. Our results provide insights into the long-term recovery patterns of different ecosystem components from the influence of prolonged overgrazing disturbance that cannot be inferred from a short-term study. The findings are important for assessing the resilience of these livestock-disturbed desert ecosystems and developing a more effective strategy for the management of this important biome from a long-term perspective.
放牧强度对荒漠草原地区土壤有机碳及全氮含量的影响
1
2011

... id="C28">在典型草原和荒漠草原, 围封禁止家畜对草本植物的采食, 增加了地上生物量碳储量.同时, 土壤湿度的改善有利于植物生产力的提高(Wu et al., 2010).围封还增加了植被的盖度并降低了风的侵蚀, 有利于有机物的存留(Zhou et al., 2011).典型草原围封样地地上生物量碳密度(95 g·m-2)介于围封恢复11-14年之间(敖伊敏等, 2011), 而荒漠草原围封样地地上生物量碳密度(73 g·m-2)高于刘朋涛等(2014)的研究结果(< 35 g·m-2), 这说明地上生物量碳库的变化可能与围封时间有关.本研究典型草原放牧样地地上生物量碳密度为32 g·m-2, 低于萨茹拉等(2013)典型草原重度放牧的43 g·m-2闫玉春和唐海萍(2008)持续放牧的85 g·m-2.这可能是由于两方面原因导致了研究结果的差异: (1)降水是影响草原植被生产力的最主要的气候因子(Bai et al., 2004), 本研究区域地处锡林郭勒草原西部典型草原与荒漠草原的过渡地带, 降水量是典型草原分布的下限, 从而导致地上生物量与其他研究相比较低, 也可能是不同研究年份间降水波动对地上生物量的影响而导致的差异; (2)家畜通过采食地上植物而改变地上生物量(阿穆拉等, 2011), 不同研究区域的载畜率水平可能导致了地上生物量的差异.荒漠草原放牧样地地上生物量碳密度约为20 g·m-2, 与该区域同类型草原的研究结果(胡向敏等, 2014; 刘朋涛等, 2014)相近. ...

放牧强度对荒漠草原地区土壤有机碳及全氮含量的影响
1
2011

... id="C28">在典型草原和荒漠草原, 围封禁止家畜对草本植物的采食, 增加了地上生物量碳储量.同时, 土壤湿度的改善有利于植物生产力的提高(Wu et al., 2010).围封还增加了植被的盖度并降低了风的侵蚀, 有利于有机物的存留(Zhou et al., 2011).典型草原围封样地地上生物量碳密度(95 g·m-2)介于围封恢复11-14年之间(敖伊敏等, 2011), 而荒漠草原围封样地地上生物量碳密度(73 g·m-2)高于刘朋涛等(2014)的研究结果(< 35 g·m-2), 这说明地上生物量碳库的变化可能与围封时间有关.本研究典型草原放牧样地地上生物量碳密度为32 g·m-2, 低于萨茹拉等(2013)典型草原重度放牧的43 g·m-2闫玉春和唐海萍(2008)持续放牧的85 g·m-2.这可能是由于两方面原因导致了研究结果的差异: (1)降水是影响草原植被生产力的最主要的气候因子(Bai et al., 2004), 本研究区域地处锡林郭勒草原西部典型草原与荒漠草原的过渡地带, 降水量是典型草原分布的下限, 从而导致地上生物量与其他研究相比较低, 也可能是不同研究年份间降水波动对地上生物量的影响而导致的差异; (2)家畜通过采食地上植物而改变地上生物量(阿穆拉等, 2011), 不同研究区域的载畜率水平可能导致了地上生物量的差异.荒漠草原放牧样地地上生物量碳密度约为20 g·m-2, 与该区域同类型草原的研究结果(胡向敏等, 2014; 刘朋涛等, 2014)相近. ...

典型草原不同围封年限植被-土壤系统碳氮贮量的变化
1
2011

... id="C28">在典型草原和荒漠草原, 围封禁止家畜对草本植物的采食, 增加了地上生物量碳储量.同时, 土壤湿度的改善有利于植物生产力的提高(Wu et al., 2010).围封还增加了植被的盖度并降低了风的侵蚀, 有利于有机物的存留(Zhou et al., 2011).典型草原围封样地地上生物量碳密度(95 g·m-2)介于围封恢复11-14年之间(敖伊敏等, 2011), 而荒漠草原围封样地地上生物量碳密度(73 g·m-2)高于刘朋涛等(2014)的研究结果(< 35 g·m-2), 这说明地上生物量碳库的变化可能与围封时间有关.本研究典型草原放牧样地地上生物量碳密度为32 g·m-2, 低于萨茹拉等(2013)典型草原重度放牧的43 g·m-2闫玉春和唐海萍(2008)持续放牧的85 g·m-2.这可能是由于两方面原因导致了研究结果的差异: (1)降水是影响草原植被生产力的最主要的气候因子(Bai et al., 2004), 本研究区域地处锡林郭勒草原西部典型草原与荒漠草原的过渡地带, 降水量是典型草原分布的下限, 从而导致地上生物量与其他研究相比较低, 也可能是不同研究年份间降水波动对地上生物量的影响而导致的差异; (2)家畜通过采食地上植物而改变地上生物量(阿穆拉等, 2011), 不同研究区域的载畜率水平可能导致了地上生物量的差异.荒漠草原放牧样地地上生物量碳密度约为20 g·m-2, 与该区域同类型草原的研究结果(胡向敏等, 2014; 刘朋涛等, 2014)相近. ...

典型草原不同围封年限植被-土壤系统碳氮贮量的变化
1
2011

... id="C28">在典型草原和荒漠草原, 围封禁止家畜对草本植物的采食, 增加了地上生物量碳储量.同时, 土壤湿度的改善有利于植物生产力的提高(Wu et al., 2010).围封还增加了植被的盖度并降低了风的侵蚀, 有利于有机物的存留(Zhou et al., 2011).典型草原围封样地地上生物量碳密度(95 g·m-2)介于围封恢复11-14年之间(敖伊敏等, 2011), 而荒漠草原围封样地地上生物量碳密度(73 g·m-2)高于刘朋涛等(2014)的研究结果(< 35 g·m-2), 这说明地上生物量碳库的变化可能与围封时间有关.本研究典型草原放牧样地地上生物量碳密度为32 g·m-2, 低于萨茹拉等(2013)典型草原重度放牧的43 g·m-2闫玉春和唐海萍(2008)持续放牧的85 g·m-2.这可能是由于两方面原因导致了研究结果的差异: (1)降水是影响草原植被生产力的最主要的气候因子(Bai et al., 2004), 本研究区域地处锡林郭勒草原西部典型草原与荒漠草原的过渡地带, 降水量是典型草原分布的下限, 从而导致地上生物量与其他研究相比较低, 也可能是不同研究年份间降水波动对地上生物量的影响而导致的差异; (2)家畜通过采食地上植物而改变地上生物量(阿穆拉等, 2011), 不同研究区域的载畜率水平可能导致了地上生物量的差异.荒漠草原放牧样地地上生物量碳密度约为20 g·m-2, 与该区域同类型草原的研究结果(胡向敏等, 2014; 刘朋涛等, 2014)相近. ...

Ecosystem stability and compensatory effects in the Inner Mongolia grassland
1
2004

... id="C28">在典型草原和荒漠草原, 围封禁止家畜对草本植物的采食, 增加了地上生物量碳储量.同时, 土壤湿度的改善有利于植物生产力的提高(Wu et al., 2010).围封还增加了植被的盖度并降低了风的侵蚀, 有利于有机物的存留(Zhou et al., 2011).典型草原围封样地地上生物量碳密度(95 g·m-2)介于围封恢复11-14年之间(敖伊敏等, 2011), 而荒漠草原围封样地地上生物量碳密度(73 g·m-2)高于刘朋涛等(2014)的研究结果(< 35 g·m-2), 这说明地上生物量碳库的变化可能与围封时间有关.本研究典型草原放牧样地地上生物量碳密度为32 g·m-2, 低于萨茹拉等(2013)典型草原重度放牧的43 g·m-2闫玉春和唐海萍(2008)持续放牧的85 g·m-2.这可能是由于两方面原因导致了研究结果的差异: (1)降水是影响草原植被生产力的最主要的气候因子(Bai et al., 2004), 本研究区域地处锡林郭勒草原西部典型草原与荒漠草原的过渡地带, 降水量是典型草原分布的下限, 从而导致地上生物量与其他研究相比较低, 也可能是不同研究年份间降水波动对地上生物量的影响而导致的差异; (2)家畜通过采食地上植物而改变地上生物量(阿穆拉等, 2011), 不同研究区域的载畜率水平可能导致了地上生物量的差异.荒漠草原放牧样地地上生物量碳密度约为20 g·m-2, 与该区域同类型草原的研究结果(胡向敏等, 2014; 刘朋涛等, 2014)相近. ...

Impact of herbivores on nitrogen cycling: Contrasting effects of small and large species
1
2004

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

Large parts of the world are brown or black: A different view on the “Green World” hypothesis
1
2005

... id="C6">全球草地面积约占地球陆地表面积的40% (Wang & Fang, 2009).草地是地球上广泛分布的生态系统, 在全球碳循环中起着重要的作用(Scurlock et al., 2002).据估计, 草地生态系统碳库包含超过10%的陆地生态系统生物量碳和10%-30%的全球土壤有机碳(Scurlock & Hall, 1998), 并且以每年0.5 Pg C的速度向土壤中固定碳(Derner et al., 2006).放牧是草地最主要的利用方式, 放牧过程深刻地影响着植被格局(Bond, 2005).植被格局的变化不仅改变了草地生态系统的物种组成和结构, 而且改变了碳储量(Grace, 2004).过度放牧被认为是导致草地退化的一个主要原因(Wilcox, 2007; Zhang et al., 2014), 全球约有35%的退化草地是过度放牧造成的, 在我国过度放牧造成的退化草地面积约占全部退化草地面积的20% (穆少杰等, 2014).目前, 我国对退化的草地普遍采取围栏封育的植被恢复措施(方精云等, 2010). ...

Plant-soil interactions in temperate grasslands
1
1998

... id="C29">典型草原围封样地地下生物量碳密度显著高于放牧样地, 而荒漠草原围封对地下生物量碳密度的影响较小.这与Derner等(2006)在北美草原的研究结果一致, Derner等(2006)认为植物种类组成、细根比例和生物量以及根冠比等是引起不同草地类型地下生物量碳库对放牧响应差异的原因.本研究典型草原地下生物量碳密度的垂直分布在不同土层深度中围封样地均大于放牧样地, 说明放牧中家畜的过度采食导致植物光合器官比例下降, 影响了植物的正常生长(李怡和韩国栋, 2011), 改变了植物群落资源分配策略(任海彦等, 2009).荒漠草原地下生物量碳密度垂直分布对围封和放牧的响应比较复杂, 但是围封样地的根冠比小于放牧样地说明在水分是限制因子的环境中放牧促进了根系的生长(Burke et al., 1998). ...

Grazing and ecosystem carbon storage in the North American Great Plains
3
2006

... id="C6">全球草地面积约占地球陆地表面积的40% (Wang & Fang, 2009).草地是地球上广泛分布的生态系统, 在全球碳循环中起着重要的作用(Scurlock et al., 2002).据估计, 草地生态系统碳库包含超过10%的陆地生态系统生物量碳和10%-30%的全球土壤有机碳(Scurlock & Hall, 1998), 并且以每年0.5 Pg C的速度向土壤中固定碳(Derner et al., 2006).放牧是草地最主要的利用方式, 放牧过程深刻地影响着植被格局(Bond, 2005).植被格局的变化不仅改变了草地生态系统的物种组成和结构, 而且改变了碳储量(Grace, 2004).过度放牧被认为是导致草地退化的一个主要原因(Wilcox, 2007; Zhang et al., 2014), 全球约有35%的退化草地是过度放牧造成的, 在我国过度放牧造成的退化草地面积约占全部退化草地面积的20% (穆少杰等, 2014).目前, 我国对退化的草地普遍采取围栏封育的植被恢复措施(方精云等, 2010). ...

... id="C29">典型草原围封样地地下生物量碳密度显著高于放牧样地, 而荒漠草原围封对地下生物量碳密度的影响较小.这与Derner等(2006)在北美草原的研究结果一致, Derner等(2006)认为植物种类组成、细根比例和生物量以及根冠比等是引起不同草地类型地下生物量碳库对放牧响应差异的原因.本研究典型草原地下生物量碳密度的垂直分布在不同土层深度中围封样地均大于放牧样地, 说明放牧中家畜的过度采食导致植物光合器官比例下降, 影响了植物的正常生长(李怡和韩国栋, 2011), 改变了植物群落资源分配策略(任海彦等, 2009).荒漠草原地下生物量碳密度垂直分布对围封和放牧的响应比较复杂, 但是围封样地的根冠比小于放牧样地说明在水分是限制因子的环境中放牧促进了根系的生长(Burke et al., 1998). ...

... 在北美草原的研究结果一致, Derner等(2006)认为植物种类组成、细根比例和生物量以及根冠比等是引起不同草地类型地下生物量碳库对放牧响应差异的原因.本研究典型草原地下生物量碳密度的垂直分布在不同土层深度中围封样地均大于放牧样地, 说明放牧中家畜的过度采食导致植物光合器官比例下降, 影响了植物的正常生长(李怡和韩国栋, 2011), 改变了植物群落资源分配策略(任海彦等, 2009).荒漠草原地下生物量碳密度垂直分布对围封和放牧的响应比较复杂, 但是围封样地的根冠比小于放牧样地说明在水分是限制因子的环境中放牧促进了根系的生长(Burke et al., 1998). ...

Carbon sequestration and rangelands: A synthesis of land management and precipitation effects
1
2007

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass
1
2008

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

中国草地生态系统碳库及其变化
2
2010

... id="C6">全球草地面积约占地球陆地表面积的40% (Wang & Fang, 2009).草地是地球上广泛分布的生态系统, 在全球碳循环中起着重要的作用(Scurlock et al., 2002).据估计, 草地生态系统碳库包含超过10%的陆地生态系统生物量碳和10%-30%的全球土壤有机碳(Scurlock & Hall, 1998), 并且以每年0.5 Pg C的速度向土壤中固定碳(Derner et al., 2006).放牧是草地最主要的利用方式, 放牧过程深刻地影响着植被格局(Bond, 2005).植被格局的变化不仅改变了草地生态系统的物种组成和结构, 而且改变了碳储量(Grace, 2004).过度放牧被认为是导致草地退化的一个主要原因(Wilcox, 2007; Zhang et al., 2014), 全球约有35%的退化草地是过度放牧造成的, 在我国过度放牧造成的退化草地面积约占全部退化草地面积的20% (穆少杰等, 2014).目前, 我国对退化的草地普遍采取围栏封育的植被恢复措施(方精云等, 2010). ...

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

中国草地生态系统碳库及其变化
2
2010

... id="C6">全球草地面积约占地球陆地表面积的40% (Wang & Fang, 2009).草地是地球上广泛分布的生态系统, 在全球碳循环中起着重要的作用(Scurlock et al., 2002).据估计, 草地生态系统碳库包含超过10%的陆地生态系统生物量碳和10%-30%的全球土壤有机碳(Scurlock & Hall, 1998), 并且以每年0.5 Pg C的速度向土壤中固定碳(Derner et al., 2006).放牧是草地最主要的利用方式, 放牧过程深刻地影响着植被格局(Bond, 2005).植被格局的变化不仅改变了草地生态系统的物种组成和结构, 而且改变了碳储量(Grace, 2004).过度放牧被认为是导致草地退化的一个主要原因(Wilcox, 2007; Zhang et al., 2014), 全球约有35%的退化草地是过度放牧造成的, 在我国过度放牧造成的退化草地面积约占全部退化草地面积的20% (穆少杰等, 2014).目前, 我国对退化的草地普遍采取围栏封育的植被恢复措施(方精云等, 2010). ...

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park
1
1998

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

Presidential address: Understanding and managing the global carbon cycle
1
2004

... id="C6">全球草地面积约占地球陆地表面积的40% (Wang & Fang, 2009).草地是地球上广泛分布的生态系统, 在全球碳循环中起着重要的作用(Scurlock et al., 2002).据估计, 草地生态系统碳库包含超过10%的陆地生态系统生物量碳和10%-30%的全球土壤有机碳(Scurlock & Hall, 1998), 并且以每年0.5 Pg C的速度向土壤中固定碳(Derner et al., 2006).放牧是草地最主要的利用方式, 放牧过程深刻地影响着植被格局(Bond, 2005).植被格局的变化不仅改变了草地生态系统的物种组成和结构, 而且改变了碳储量(Grace, 2004).过度放牧被认为是导致草地退化的一个主要原因(Wilcox, 2007; Zhang et al., 2014), 全球约有35%的退化草地是过度放牧造成的, 在我国过度放牧造成的退化草地面积约占全部退化草地面积的20% (穆少杰等, 2014).目前, 我国对退化的草地普遍采取围栏封育的植被恢复措施(方精云等, 2010). ...

短花针茅草原不同载畜率对植物多样性和草地生产力的影响
1
2007

... id="C30">在两种草原类型中, 围封均增加了土壤碳储量, 这与多数研究结果(Mekuria et al., 2007; 许中旗等, 2009)一致.Hu等(2015)认为有3个机制可以解释此结果: (1)植被的覆盖物增加了有机物的积累; (2)植物高度和盖度的增加与土壤湿度形成正反馈调节; (3)稠密的冠层和凋落物减少了碳的流失.典型草原围封样地各土层深度土壤碳密度均显著高于放牧样地, 这可能是受围封样地较高的凋落物量的影响(图6).荒漠草原围封样地与放牧样地的土壤碳密度没有表现出明显的差异(p > 0.05), 并且在两种利用方式的样地中均未收集到凋落物, 可能是荒漠草原草层低矮、稀疏、种类组成匮乏的植被特征(韩国栋等, 2007)导致凋落物的积累缓慢.此外, 历史的放牧效应也可能对荒漠草原土壤碳库的影响具有滞后作用(Steffens et al., 2008). ...

短花针茅草原不同载畜率对植物多样性和草地生产力的影响
1
2007

... id="C30">在两种草原类型中, 围封均增加了土壤碳储量, 这与多数研究结果(Mekuria et al., 2007; 许中旗等, 2009)一致.Hu等(2015)认为有3个机制可以解释此结果: (1)植被的覆盖物增加了有机物的积累; (2)植物高度和盖度的增加与土壤湿度形成正反馈调节; (3)稠密的冠层和凋落物减少了碳的流失.典型草原围封样地各土层深度土壤碳密度均显著高于放牧样地, 这可能是受围封样地较高的凋落物量的影响(图6).荒漠草原围封样地与放牧样地的土壤碳密度没有表现出明显的差异(p > 0.05), 并且在两种利用方式的样地中均未收集到凋落物, 可能是荒漠草原草层低矮、稀疏、种类组成匮乏的植被特征(韩国栋等, 2007)导致凋落物的积累缓慢.此外, 历史的放牧效应也可能对荒漠草原土壤碳库的影响具有滞后作用(Steffens et al., 2008). ...

A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China
2015

不同放牧制度下短花针茅荒漠草原生态系统碳储量动态
1
2014

... id="C28">在典型草原和荒漠草原, 围封禁止家畜对草本植物的采食, 增加了地上生物量碳储量.同时, 土壤湿度的改善有利于植物生产力的提高(Wu et al., 2010).围封还增加了植被的盖度并降低了风的侵蚀, 有利于有机物的存留(Zhou et al., 2011).典型草原围封样地地上生物量碳密度(95 g·m-2)介于围封恢复11-14年之间(敖伊敏等, 2011), 而荒漠草原围封样地地上生物量碳密度(73 g·m-2)高于刘朋涛等(2014)的研究结果(< 35 g·m-2), 这说明地上生物量碳库的变化可能与围封时间有关.本研究典型草原放牧样地地上生物量碳密度为32 g·m-2, 低于萨茹拉等(2013)典型草原重度放牧的43 g·m-2闫玉春和唐海萍(2008)持续放牧的85 g·m-2.这可能是由于两方面原因导致了研究结果的差异: (1)降水是影响草原植被生产力的最主要的气候因子(Bai et al., 2004), 本研究区域地处锡林郭勒草原西部典型草原与荒漠草原的过渡地带, 降水量是典型草原分布的下限, 从而导致地上生物量与其他研究相比较低, 也可能是不同研究年份间降水波动对地上生物量的影响而导致的差异; (2)家畜通过采食地上植物而改变地上生物量(阿穆拉等, 2011), 不同研究区域的载畜率水平可能导致了地上生物量的差异.荒漠草原放牧样地地上生物量碳密度约为20 g·m-2, 与该区域同类型草原的研究结果(胡向敏等, 2014; 刘朋涛等, 2014)相近. ...

不同放牧制度下短花针茅荒漠草原生态系统碳储量动态
1
2014

... id="C28">在典型草原和荒漠草原, 围封禁止家畜对草本植物的采食, 增加了地上生物量碳储量.同时, 土壤湿度的改善有利于植物生产力的提高(Wu et al., 2010).围封还增加了植被的盖度并降低了风的侵蚀, 有利于有机物的存留(Zhou et al., 2011).典型草原围封样地地上生物量碳密度(95 g·m-2)介于围封恢复11-14年之间(敖伊敏等, 2011), 而荒漠草原围封样地地上生物量碳密度(73 g·m-2)高于刘朋涛等(2014)的研究结果(< 35 g·m-2), 这说明地上生物量碳库的变化可能与围封时间有关.本研究典型草原放牧样地地上生物量碳密度为32 g·m-2, 低于萨茹拉等(2013)典型草原重度放牧的43 g·m-2闫玉春和唐海萍(2008)持续放牧的85 g·m-2.这可能是由于两方面原因导致了研究结果的差异: (1)降水是影响草原植被生产力的最主要的气候因子(Bai et al., 2004), 本研究区域地处锡林郭勒草原西部典型草原与荒漠草原的过渡地带, 降水量是典型草原分布的下限, 从而导致地上生物量与其他研究相比较低, 也可能是不同研究年份间降水波动对地上生物量的影响而导致的差异; (2)家畜通过采食地上植物而改变地上生物量(阿穆拉等, 2011), 不同研究区域的载畜率水平可能导致了地上生物量的差异.荒漠草原放牧样地地上生物量碳密度约为20 g·m-2, 与该区域同类型草原的研究结果(胡向敏等, 2014; 刘朋涛等, 2014)相近. ...

1
2014

... id="C8">内蒙古草原地处欧亚草原区中部, 是我国北方温带草原的主体, 主要草原类型有草甸草原、典型草原和荒漠草原, 其植被-土壤系统碳储量在我国草地碳平衡中占有重要的地位(朴世龙等, 2004).侯向阳和丁勇(2014)对内蒙古草原固碳潜力的研究表明, 多年围封有利于草甸草原生态系统的碳固持, 而典型草原和荒漠草原应采取适度的放牧利用措施.因此, 本研究选择锡林郭勒西部草原生态系统的典型草原和荒漠草原为研究对象, 分析两种草原类型在围栏封育和自由放牧的利用方式下, 植被生物量碳密度、土壤碳密度的变化以及土壤碳库的空间分布规律, 拟解决两个问题: (1)在不同气候条件和群落组成的环境下, 围封如何影响草地碳库?是否有一致的规律?(2)围栏恢复过程中, 土壤碳库的分布是如何变化的?进而探讨典型草原和荒漠草原不同利用方式对草原碳平衡的影响, 为估计不同类型草原生态系统在全球碳收支中源或汇的作用, 确定适合当地的管理措施, 促进草原增汇减排和实现草原生态系统可持续利用提供依据. ...

1
2014

... id="C8">内蒙古草原地处欧亚草原区中部, 是我国北方温带草原的主体, 主要草原类型有草甸草原、典型草原和荒漠草原, 其植被-土壤系统碳储量在我国草地碳平衡中占有重要的地位(朴世龙等, 2004).侯向阳和丁勇(2014)对内蒙古草原固碳潜力的研究表明, 多年围封有利于草甸草原生态系统的碳固持, 而典型草原和荒漠草原应采取适度的放牧利用措施.因此, 本研究选择锡林郭勒西部草原生态系统的典型草原和荒漠草原为研究对象, 分析两种草原类型在围栏封育和自由放牧的利用方式下, 植被生物量碳密度、土壤碳密度的变化以及土壤碳库的空间分布规律, 拟解决两个问题: (1)在不同气候条件和群落组成的环境下, 围封如何影响草地碳库?是否有一致的规律?(2)围栏恢复过程中, 土壤碳库的分布是如何变化的?进而探讨典型草原和荒漠草原不同利用方式对草原碳平衡的影响, 为估计不同类型草原生态系统在全球碳收支中源或汇的作用, 确定适合当地的管理措施, 促进草原增汇减排和实现草原生态系统可持续利用提供依据. ...

中国草地生态系统碳储量及碳过程研究进展
1
2014

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

中国草地生态系统碳储量及碳过程研究进展
1
2014

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

放牧强度对内蒙古大针茅典型草原地下生物量及其垂直分布的影响
1
2011

... id="C29">典型草原围封样地地下生物量碳密度显著高于放牧样地, 而荒漠草原围封对地下生物量碳密度的影响较小.这与Derner等(2006)在北美草原的研究结果一致, Derner等(2006)认为植物种类组成、细根比例和生物量以及根冠比等是引起不同草地类型地下生物量碳库对放牧响应差异的原因.本研究典型草原地下生物量碳密度的垂直分布在不同土层深度中围封样地均大于放牧样地, 说明放牧中家畜的过度采食导致植物光合器官比例下降, 影响了植物的正常生长(李怡和韩国栋, 2011), 改变了植物群落资源分配策略(任海彦等, 2009).荒漠草原地下生物量碳密度垂直分布对围封和放牧的响应比较复杂, 但是围封样地的根冠比小于放牧样地说明在水分是限制因子的环境中放牧促进了根系的生长(Burke et al., 1998). ...

放牧强度对内蒙古大针茅典型草原地下生物量及其垂直分布的影响
1
2011

... id="C29">典型草原围封样地地下生物量碳密度显著高于放牧样地, 而荒漠草原围封对地下生物量碳密度的影响较小.这与Derner等(2006)在北美草原的研究结果一致, Derner等(2006)认为植物种类组成、细根比例和生物量以及根冠比等是引起不同草地类型地下生物量碳库对放牧响应差异的原因.本研究典型草原地下生物量碳密度的垂直分布在不同土层深度中围封样地均大于放牧样地, 说明放牧中家畜的过度采食导致植物光合器官比例下降, 影响了植物的正常生长(李怡和韩国栋, 2011), 改变了植物群落资源分配策略(任海彦等, 2009).荒漠草原地下生物量碳密度垂直分布对围封和放牧的响应比较复杂, 但是围封样地的根冠比小于放牧样地说明在水分是限制因子的环境中放牧促进了根系的生长(Burke et al., 1998). ...

放牧对典型草原土壤有机碳及全氮的影响
1
2010

... id="C31">土壤碳库由土壤有机碳库和土壤无机碳库两部分组成(余健等, 2014).本研究利用土壤全碳计算土壤碳储量的结果表明: 两种草原类型土壤表层(0-10 cm)的土壤碳密度均最低, 放牧样地均表现出逐层递增的趋势.本研究结果与以有机碳计算碳储量随土层深度递减的研究(刘楠和张英俊, 2010)结论相反, 可能是因为土壤无机碳含量随着土层深度增加而递增, 并且在干旱、半干旱地区土壤无机碳库高出有机碳库的2-10倍(余健等, 2014).刘淑丽等(2014)的研究表明: 温性草原50-100 cm土层深度的无机碳储量占0-100 cm土层深度的土壤碳总储量的60.2%, 并且与地下生物量呈显著负相关关系.土壤无机碳的垂直分布受到水分迁移的影响, 土壤溶液在向下淋溶迁移无机碳的过程中, CO2溶解度随温度的下降而逐渐降低, 使得溶液中无机碳析出形成发生性碳酸盐, 并不断在深层土壤中富集(张蓓蓓等, 2016). ...

放牧对典型草原土壤有机碳及全氮的影响
1
2010

... id="C31">土壤碳库由土壤有机碳库和土壤无机碳库两部分组成(余健等, 2014).本研究利用土壤全碳计算土壤碳储量的结果表明: 两种草原类型土壤表层(0-10 cm)的土壤碳密度均最低, 放牧样地均表现出逐层递增的趋势.本研究结果与以有机碳计算碳储量随土层深度递减的研究(刘楠和张英俊, 2010)结论相反, 可能是因为土壤无机碳含量随着土层深度增加而递增, 并且在干旱、半干旱地区土壤无机碳库高出有机碳库的2-10倍(余健等, 2014).刘淑丽等(2014)的研究表明: 温性草原50-100 cm土层深度的无机碳储量占0-100 cm土层深度的土壤碳总储量的60.2%, 并且与地下生物量呈显著负相关关系.土壤无机碳的垂直分布受到水分迁移的影响, 土壤溶液在向下淋溶迁移无机碳的过程中, CO2溶解度随温度的下降而逐渐降低, 使得溶液中无机碳析出形成发生性碳酸盐, 并不断在深层土壤中富集(张蓓蓓等, 2016). ...

不同放牧强度下荒漠草原碳密度的变化
2
2014

... id="C28">在典型草原和荒漠草原, 围封禁止家畜对草本植物的采食, 增加了地上生物量碳储量.同时, 土壤湿度的改善有利于植物生产力的提高(Wu et al., 2010).围封还增加了植被的盖度并降低了风的侵蚀, 有利于有机物的存留(Zhou et al., 2011).典型草原围封样地地上生物量碳密度(95 g·m-2)介于围封恢复11-14年之间(敖伊敏等, 2011), 而荒漠草原围封样地地上生物量碳密度(73 g·m-2)高于刘朋涛等(2014)的研究结果(< 35 g·m-2), 这说明地上生物量碳库的变化可能与围封时间有关.本研究典型草原放牧样地地上生物量碳密度为32 g·m-2, 低于萨茹拉等(2013)典型草原重度放牧的43 g·m-2闫玉春和唐海萍(2008)持续放牧的85 g·m-2.这可能是由于两方面原因导致了研究结果的差异: (1)降水是影响草原植被生产力的最主要的气候因子(Bai et al., 2004), 本研究区域地处锡林郭勒草原西部典型草原与荒漠草原的过渡地带, 降水量是典型草原分布的下限, 从而导致地上生物量与其他研究相比较低, 也可能是不同研究年份间降水波动对地上生物量的影响而导致的差异; (2)家畜通过采食地上植物而改变地上生物量(阿穆拉等, 2011), 不同研究区域的载畜率水平可能导致了地上生物量的差异.荒漠草原放牧样地地上生物量碳密度约为20 g·m-2, 与该区域同类型草原的研究结果(胡向敏等, 2014; 刘朋涛等, 2014)相近. ...

... ; 刘朋涛等, 2014)相近. ...

不同放牧强度下荒漠草原碳密度的变化
2
2014

... id="C28">在典型草原和荒漠草原, 围封禁止家畜对草本植物的采食, 增加了地上生物量碳储量.同时, 土壤湿度的改善有利于植物生产力的提高(Wu et al., 2010).围封还增加了植被的盖度并降低了风的侵蚀, 有利于有机物的存留(Zhou et al., 2011).典型草原围封样地地上生物量碳密度(95 g·m-2)介于围封恢复11-14年之间(敖伊敏等, 2011), 而荒漠草原围封样地地上生物量碳密度(73 g·m-2)高于刘朋涛等(2014)的研究结果(< 35 g·m-2), 这说明地上生物量碳库的变化可能与围封时间有关.本研究典型草原放牧样地地上生物量碳密度为32 g·m-2, 低于萨茹拉等(2013)典型草原重度放牧的43 g·m-2闫玉春和唐海萍(2008)持续放牧的85 g·m-2.这可能是由于两方面原因导致了研究结果的差异: (1)降水是影响草原植被生产力的最主要的气候因子(Bai et al., 2004), 本研究区域地处锡林郭勒草原西部典型草原与荒漠草原的过渡地带, 降水量是典型草原分布的下限, 从而导致地上生物量与其他研究相比较低, 也可能是不同研究年份间降水波动对地上生物量的影响而导致的差异; (2)家畜通过采食地上植物而改变地上生物量(阿穆拉等, 2011), 不同研究区域的载畜率水平可能导致了地上生物量的差异.荒漠草原放牧样地地上生物量碳密度约为20 g·m-2, 与该区域同类型草原的研究结果(胡向敏等, 2014; 刘朋涛等, 2014)相近. ...

... ; 刘朋涛等, 2014)相近. ...

青海省高寒草地土壤无机碳储量空间分异特征
1
2014

... id="C31">土壤碳库由土壤有机碳库和土壤无机碳库两部分组成(余健等, 2014).本研究利用土壤全碳计算土壤碳储量的结果表明: 两种草原类型土壤表层(0-10 cm)的土壤碳密度均最低, 放牧样地均表现出逐层递增的趋势.本研究结果与以有机碳计算碳储量随土层深度递减的研究(刘楠和张英俊, 2010)结论相反, 可能是因为土壤无机碳含量随着土层深度增加而递增, 并且在干旱、半干旱地区土壤无机碳库高出有机碳库的2-10倍(余健等, 2014).刘淑丽等(2014)的研究表明: 温性草原50-100 cm土层深度的无机碳储量占0-100 cm土层深度的土壤碳总储量的60.2%, 并且与地下生物量呈显著负相关关系.土壤无机碳的垂直分布受到水分迁移的影响, 土壤溶液在向下淋溶迁移无机碳的过程中, CO2溶解度随温度的下降而逐渐降低, 使得溶液中无机碳析出形成发生性碳酸盐, 并不断在深层土壤中富集(张蓓蓓等, 2016). ...

青海省高寒草地土壤无机碳储量空间分异特征
1
2014

... id="C31">土壤碳库由土壤有机碳库和土壤无机碳库两部分组成(余健等, 2014).本研究利用土壤全碳计算土壤碳储量的结果表明: 两种草原类型土壤表层(0-10 cm)的土壤碳密度均最低, 放牧样地均表现出逐层递增的趋势.本研究结果与以有机碳计算碳储量随土层深度递减的研究(刘楠和张英俊, 2010)结论相反, 可能是因为土壤无机碳含量随着土层深度增加而递增, 并且在干旱、半干旱地区土壤无机碳库高出有机碳库的2-10倍(余健等, 2014).刘淑丽等(2014)的研究表明: 温性草原50-100 cm土层深度的无机碳储量占0-100 cm土层深度的土壤碳总储量的60.2%, 并且与地下生物量呈显著负相关关系.土壤无机碳的垂直分布受到水分迁移的影响, 土壤溶液在向下淋溶迁移无机碳的过程中, CO2溶解度随温度的下降而逐渐降低, 使得溶液中无机碳析出形成发生性碳酸盐, 并不断在深层土壤中富集(张蓓蓓等, 2016). ...

内蒙古温带草地植被的碳储量
1
2006

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

内蒙古温带草地植被的碳储量
1
2006

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

Effectiveness of exclosures to restore degraded soils as a result of overgrazing in Tigray, Ethiopia
1
2007

... id="C30">在两种草原类型中, 围封均增加了土壤碳储量, 这与多数研究结果(Mekuria et al., 2007; 许中旗等, 2009)一致.Hu等(2015)认为有3个机制可以解释此结果: (1)植被的覆盖物增加了有机物的积累; (2)植物高度和盖度的增加与土壤湿度形成正反馈调节; (3)稠密的冠层和凋落物减少了碳的流失.典型草原围封样地各土层深度土壤碳密度均显著高于放牧样地, 这可能是受围封样地较高的凋落物量的影响(图6).荒漠草原围封样地与放牧样地的土壤碳密度没有表现出明显的差异(p > 0.05), 并且在两种利用方式的样地中均未收集到凋落物, 可能是荒漠草原草层低矮、稀疏、种类组成匮乏的植被特征(韩国栋等, 2007)导致凋落物的积累缓慢.此外, 历史的放牧效应也可能对荒漠草原土壤碳库的影响具有滞后作用(Steffens et al., 2008). ...

草地生态系统碳循环及其影响因素研究进展
2
2014

... id="C6">全球草地面积约占地球陆地表面积的40% (Wang & Fang, 2009).草地是地球上广泛分布的生态系统, 在全球碳循环中起着重要的作用(Scurlock et al., 2002).据估计, 草地生态系统碳库包含超过10%的陆地生态系统生物量碳和10%-30%的全球土壤有机碳(Scurlock & Hall, 1998), 并且以每年0.5 Pg C的速度向土壤中固定碳(Derner et al., 2006).放牧是草地最主要的利用方式, 放牧过程深刻地影响着植被格局(Bond, 2005).植被格局的变化不仅改变了草地生态系统的物种组成和结构, 而且改变了碳储量(Grace, 2004).过度放牧被认为是导致草地退化的一个主要原因(Wilcox, 2007; Zhang et al., 2014), 全球约有35%的退化草地是过度放牧造成的, 在我国过度放牧造成的退化草地面积约占全部退化草地面积的20% (穆少杰等, 2014).目前, 我国对退化的草地普遍采取围栏封育的植被恢复措施(方精云等, 2010). ...

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

草地生态系统碳循环及其影响因素研究进展
2
2014

... id="C6">全球草地面积约占地球陆地表面积的40% (Wang & Fang, 2009).草地是地球上广泛分布的生态系统, 在全球碳循环中起着重要的作用(Scurlock et al., 2002).据估计, 草地生态系统碳库包含超过10%的陆地生态系统生物量碳和10%-30%的全球土壤有机碳(Scurlock & Hall, 1998), 并且以每年0.5 Pg C的速度向土壤中固定碳(Derner et al., 2006).放牧是草地最主要的利用方式, 放牧过程深刻地影响着植被格局(Bond, 2005).植被格局的变化不仅改变了草地生态系统的物种组成和结构, 而且改变了碳储量(Grace, 2004).过度放牧被认为是导致草地退化的一个主要原因(Wilcox, 2007; Zhang et al., 2014), 全球约有35%的退化草地是过度放牧造成的, 在我国过度放牧造成的退化草地面积约占全部退化草地面积的20% (穆少杰等, 2014).目前, 我国对退化的草地普遍采取围栏封育的植被恢复措施(方精云等, 2010). ...

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

Carbon sequestration in semi-arid rangelands: Comparison of
1
2006

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

中国草地植被生物量及其空间分布格局
1
2004

... id="C8">内蒙古草原地处欧亚草原区中部, 是我国北方温带草原的主体, 主要草原类型有草甸草原、典型草原和荒漠草原, 其植被-土壤系统碳储量在我国草地碳平衡中占有重要的地位(朴世龙等, 2004).侯向阳和丁勇(2014)对内蒙古草原固碳潜力的研究表明, 多年围封有利于草甸草原生态系统的碳固持, 而典型草原和荒漠草原应采取适度的放牧利用措施.因此, 本研究选择锡林郭勒西部草原生态系统的典型草原和荒漠草原为研究对象, 分析两种草原类型在围栏封育和自由放牧的利用方式下, 植被生物量碳密度、土壤碳密度的变化以及土壤碳库的空间分布规律, 拟解决两个问题: (1)在不同气候条件和群落组成的环境下, 围封如何影响草地碳库?是否有一致的规律?(2)围栏恢复过程中, 土壤碳库的分布是如何变化的?进而探讨典型草原和荒漠草原不同利用方式对草原碳平衡的影响, 为估计不同类型草原生态系统在全球碳收支中源或汇的作用, 确定适合当地的管理措施, 促进草原增汇减排和实现草原生态系统可持续利用提供依据. ...

中国草地植被生物量及其空间分布格局
1
2004

... id="C8">内蒙古草原地处欧亚草原区中部, 是我国北方温带草原的主体, 主要草原类型有草甸草原、典型草原和荒漠草原, 其植被-土壤系统碳储量在我国草地碳平衡中占有重要的地位(朴世龙等, 2004).侯向阳和丁勇(2014)对内蒙古草原固碳潜力的研究表明, 多年围封有利于草甸草原生态系统的碳固持, 而典型草原和荒漠草原应采取适度的放牧利用措施.因此, 本研究选择锡林郭勒西部草原生态系统的典型草原和荒漠草原为研究对象, 分析两种草原类型在围栏封育和自由放牧的利用方式下, 植被生物量碳密度、土壤碳密度的变化以及土壤碳库的空间分布规律, 拟解决两个问题: (1)在不同气候条件和群落组成的环境下, 围封如何影响草地碳库?是否有一致的规律?(2)围栏恢复过程中, 土壤碳库的分布是如何变化的?进而探讨典型草原和荒漠草原不同利用方式对草原碳平衡的影响, 为估计不同类型草原生态系统在全球碳收支中源或汇的作用, 确定适合当地的管理措施, 促进草原增汇减排和实现草原生态系统可持续利用提供依据. ...

Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999
2
2007

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

... id="C17">植被含碳量采用生物量乘以0.45转化为生物量含碳量(Piao et al., 2007).某土层i的土壤碳密度(SCi) (kg·m-2)的计算公式(萨茹拉等, 2013)如下: ...

Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem
1
2006

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands
1
2002

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

放牧对内蒙古锡林河流域草地群落植物茎叶生物量资源分配的影响
1
2009

... id="C29">典型草原围封样地地下生物量碳密度显著高于放牧样地, 而荒漠草原围封对地下生物量碳密度的影响较小.这与Derner等(2006)在北美草原的研究结果一致, Derner等(2006)认为植物种类组成、细根比例和生物量以及根冠比等是引起不同草地类型地下生物量碳库对放牧响应差异的原因.本研究典型草原地下生物量碳密度的垂直分布在不同土层深度中围封样地均大于放牧样地, 说明放牧中家畜的过度采食导致植物光合器官比例下降, 影响了植物的正常生长(李怡和韩国栋, 2011), 改变了植物群落资源分配策略(任海彦等, 2009).荒漠草原地下生物量碳密度垂直分布对围封和放牧的响应比较复杂, 但是围封样地的根冠比小于放牧样地说明在水分是限制因子的环境中放牧促进了根系的生长(Burke et al., 1998). ...

放牧对内蒙古锡林河流域草地群落植物茎叶生物量资源分配的影响
1
2009

... id="C29">典型草原围封样地地下生物量碳密度显著高于放牧样地, 而荒漠草原围封对地下生物量碳密度的影响较小.这与Derner等(2006)在北美草原的研究结果一致, Derner等(2006)认为植物种类组成、细根比例和生物量以及根冠比等是引起不同草地类型地下生物量碳库对放牧响应差异的原因.本研究典型草原地下生物量碳密度的垂直分布在不同土层深度中围封样地均大于放牧样地, 说明放牧中家畜的过度采食导致植物光合器官比例下降, 影响了植物的正常生长(李怡和韩国栋, 2011), 改变了植物群落资源分配策略(任海彦等, 2009).荒漠草原地下生物量碳密度垂直分布对围封和放牧的响应比较复杂, 但是围封样地的根冠比小于放牧样地说明在水分是限制因子的环境中放牧促进了根系的生长(Burke et al., 1998). ...

不同放牧退化程度典型草原植被—土壤系统的有机碳储量
2
2013

... id="C17">植被含碳量采用生物量乘以0.45转化为生物量含碳量(Piao et al., 2007).某土层i的土壤碳密度(SCi) (kg·m-2)的计算公式(萨茹拉等, 2013)如下: ...

... id="C28">在典型草原和荒漠草原, 围封禁止家畜对草本植物的采食, 增加了地上生物量碳储量.同时, 土壤湿度的改善有利于植物生产力的提高(Wu et al., 2010).围封还增加了植被的盖度并降低了风的侵蚀, 有利于有机物的存留(Zhou et al., 2011).典型草原围封样地地上生物量碳密度(95 g·m-2)介于围封恢复11-14年之间(敖伊敏等, 2011), 而荒漠草原围封样地地上生物量碳密度(73 g·m-2)高于刘朋涛等(2014)的研究结果(< 35 g·m-2), 这说明地上生物量碳库的变化可能与围封时间有关.本研究典型草原放牧样地地上生物量碳密度为32 g·m-2, 低于萨茹拉等(2013)典型草原重度放牧的43 g·m-2闫玉春和唐海萍(2008)持续放牧的85 g·m-2.这可能是由于两方面原因导致了研究结果的差异: (1)降水是影响草原植被生产力的最主要的气候因子(Bai et al., 2004), 本研究区域地处锡林郭勒草原西部典型草原与荒漠草原的过渡地带, 降水量是典型草原分布的下限, 从而导致地上生物量与其他研究相比较低, 也可能是不同研究年份间降水波动对地上生物量的影响而导致的差异; (2)家畜通过采食地上植物而改变地上生物量(阿穆拉等, 2011), 不同研究区域的载畜率水平可能导致了地上生物量的差异.荒漠草原放牧样地地上生物量碳密度约为20 g·m-2, 与该区域同类型草原的研究结果(胡向敏等, 2014; 刘朋涛等, 2014)相近. ...

不同放牧退化程度典型草原植被—土壤系统的有机碳储量
2
2013

... id="C17">植被含碳量采用生物量乘以0.45转化为生物量含碳量(Piao et al., 2007).某土层i的土壤碳密度(SCi) (kg·m-2)的计算公式(萨茹拉等, 2013)如下: ...

... id="C28">在典型草原和荒漠草原, 围封禁止家畜对草本植物的采食, 增加了地上生物量碳储量.同时, 土壤湿度的改善有利于植物生产力的提高(Wu et al., 2010).围封还增加了植被的盖度并降低了风的侵蚀, 有利于有机物的存留(Zhou et al., 2011).典型草原围封样地地上生物量碳密度(95 g·m-2)介于围封恢复11-14年之间(敖伊敏等, 2011), 而荒漠草原围封样地地上生物量碳密度(73 g·m-2)高于刘朋涛等(2014)的研究结果(< 35 g·m-2), 这说明地上生物量碳库的变化可能与围封时间有关.本研究典型草原放牧样地地上生物量碳密度为32 g·m-2, 低于萨茹拉等(2013)典型草原重度放牧的43 g·m-2闫玉春和唐海萍(2008)持续放牧的85 g·m-2.这可能是由于两方面原因导致了研究结果的差异: (1)降水是影响草原植被生产力的最主要的气候因子(Bai et al., 2004), 本研究区域地处锡林郭勒草原西部典型草原与荒漠草原的过渡地带, 降水量是典型草原分布的下限, 从而导致地上生物量与其他研究相比较低, 也可能是不同研究年份间降水波动对地上生物量的影响而导致的差异; (2)家畜通过采食地上植物而改变地上生物量(阿穆拉等, 2011), 不同研究区域的载畜率水平可能导致了地上生物量的差异.荒漠草原放牧样地地上生物量碳密度约为20 g·m-2, 与该区域同类型草原的研究结果(胡向敏等, 2014; 刘朋涛等, 2014)相近. ...

禁牧封育3年后退化草地生物量测定
1
2006

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

禁牧封育3年后退化草地生物量测定
1
2006

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

The global carbon sink: A grassland perspective
1
1998

... id="C6">全球草地面积约占地球陆地表面积的40% (Wang & Fang, 2009).草地是地球上广泛分布的生态系统, 在全球碳循环中起着重要的作用(Scurlock et al., 2002).据估计, 草地生态系统碳库包含超过10%的陆地生态系统生物量碳和10%-30%的全球土壤有机碳(Scurlock & Hall, 1998), 并且以每年0.5 Pg C的速度向土壤中固定碳(Derner et al., 2006).放牧是草地最主要的利用方式, 放牧过程深刻地影响着植被格局(Bond, 2005).植被格局的变化不仅改变了草地生态系统的物种组成和结构, 而且改变了碳储量(Grace, 2004).过度放牧被认为是导致草地退化的一个主要原因(Wilcox, 2007; Zhang et al., 2014), 全球约有35%的退化草地是过度放牧造成的, 在我国过度放牧造成的退化草地面积约占全部退化草地面积的20% (穆少杰等, 2014).目前, 我国对退化的草地普遍采取围栏封育的植被恢复措施(方精云等, 2010). ...

Estimating net primary productivity from grassland biomass dynamics measurements
1
2002

... id="C6">全球草地面积约占地球陆地表面积的40% (Wang & Fang, 2009).草地是地球上广泛分布的生态系统, 在全球碳循环中起着重要的作用(Scurlock et al., 2002).据估计, 草地生态系统碳库包含超过10%的陆地生态系统生物量碳和10%-30%的全球土壤有机碳(Scurlock & Hall, 1998), 并且以每年0.5 Pg C的速度向土壤中固定碳(Derner et al., 2006).放牧是草地最主要的利用方式, 放牧过程深刻地影响着植被格局(Bond, 2005).植被格局的变化不仅改变了草地生态系统的物种组成和结构, 而且改变了碳储量(Grace, 2004).过度放牧被认为是导致草地退化的一个主要原因(Wilcox, 2007; Zhang et al., 2014), 全球约有35%的退化草地是过度放牧造成的, 在我国过度放牧造成的退化草地面积约占全部退化草地面积的20% (穆少杰等, 2014).目前, 我国对退化的草地普遍采取围栏封育的植被恢复措施(方精云等, 2010). ...

Carbon accumulation and storage in semi-arid sagebrush steppe: Effects of long-term grazing exclusion
1
2008

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P. R. China)
1
2008

... id="C30">在两种草原类型中, 围封均增加了土壤碳储量, 这与多数研究结果(Mekuria et al., 2007; 许中旗等, 2009)一致.Hu等(2015)认为有3个机制可以解释此结果: (1)植被的覆盖物增加了有机物的积累; (2)植物高度和盖度的增加与土壤湿度形成正反馈调节; (3)稠密的冠层和凋落物减少了碳的流失.典型草原围封样地各土层深度土壤碳密度均显著高于放牧样地, 这可能是受围封样地较高的凋落物量的影响(图6).荒漠草原围封样地与放牧样地的土壤碳密度没有表现出明显的差异(p > 0.05), 并且在两种利用方式的样地中均未收集到凋落物, 可能是荒漠草原草层低矮、稀疏、种类组成匮乏的植被特征(韩国栋等, 2007)导致凋落物的积累缓慢.此外, 历史的放牧效应也可能对荒漠草原土壤碳库的影响具有滞后作用(Steffens et al., 2008). ...

Carbon storage in terrestrial ecosystems: Do browsing and grazing herbivores matter?
1
2011

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

西藏草地生态系统植被碳贮量及其空间分布格局
1
2009

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

西藏草地生态系统植被碳贮量及其空间分布格局
1
2009

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

Soil respiration and human effects on global grasslands
1
2009

... id="C6">全球草地面积约占地球陆地表面积的40% (Wang & Fang, 2009).草地是地球上广泛分布的生态系统, 在全球碳循环中起着重要的作用(Scurlock et al., 2002).据估计, 草地生态系统碳库包含超过10%的陆地生态系统生物量碳和10%-30%的全球土壤有机碳(Scurlock & Hall, 1998), 并且以每年0.5 Pg C的速度向土壤中固定碳(Derner et al., 2006).放牧是草地最主要的利用方式, 放牧过程深刻地影响着植被格局(Bond, 2005).植被格局的变化不仅改变了草地生态系统的物种组成和结构, 而且改变了碳储量(Grace, 2004).过度放牧被认为是导致草地退化的一个主要原因(Wilcox, 2007; Zhang et al., 2014), 全球约有35%的退化草地是过度放牧造成的, 在我国过度放牧造成的退化草地面积约占全部退化草地面积的20% (穆少杰等, 2014).目前, 我国对退化的草地普遍采取围栏封育的植被恢复措施(方精云等, 2010). ...

Alpine Grassland CO2 exchange and nitrogen cycling: Grazing history effects, medicine bow range, Wyoming, U.S.A
1
2004

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

Does rangeland degradation have implications for global streamflow?
1
2007

... id="C6">全球草地面积约占地球陆地表面积的40% (Wang & Fang, 2009).草地是地球上广泛分布的生态系统, 在全球碳循环中起着重要的作用(Scurlock et al., 2002).据估计, 草地生态系统碳库包含超过10%的陆地生态系统生物量碳和10%-30%的全球土壤有机碳(Scurlock & Hall, 1998), 并且以每年0.5 Pg C的速度向土壤中固定碳(Derner et al., 2006).放牧是草地最主要的利用方式, 放牧过程深刻地影响着植被格局(Bond, 2005).植被格局的变化不仅改变了草地生态系统的物种组成和结构, 而且改变了碳储量(Grace, 2004).过度放牧被认为是导致草地退化的一个主要原因(Wilcox, 2007; Zhang et al., 2014), 全球约有35%的退化草地是过度放牧造成的, 在我国过度放牧造成的退化草地面积约占全部退化草地面积的20% (穆少杰等, 2014).目前, 我国对退化的草地普遍采取围栏封育的植被恢复措施(方精云等, 2010). ...

Effect of fencing and grazing on a
1
2009

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China
1
2010

... id="C28">在典型草原和荒漠草原, 围封禁止家畜对草本植物的采食, 增加了地上生物量碳储量.同时, 土壤湿度的改善有利于植物生产力的提高(Wu et al., 2010).围封还增加了植被的盖度并降低了风的侵蚀, 有利于有机物的存留(Zhou et al., 2011).典型草原围封样地地上生物量碳密度(95 g·m-2)介于围封恢复11-14年之间(敖伊敏等, 2011), 而荒漠草原围封样地地上生物量碳密度(73 g·m-2)高于刘朋涛等(2014)的研究结果(< 35 g·m-2), 这说明地上生物量碳库的变化可能与围封时间有关.本研究典型草原放牧样地地上生物量碳密度为32 g·m-2, 低于萨茹拉等(2013)典型草原重度放牧的43 g·m-2闫玉春和唐海萍(2008)持续放牧的85 g·m-2.这可能是由于两方面原因导致了研究结果的差异: (1)降水是影响草原植被生产力的最主要的气候因子(Bai et al., 2004), 本研究区域地处锡林郭勒草原西部典型草原与荒漠草原的过渡地带, 降水量是典型草原分布的下限, 从而导致地上生物量与其他研究相比较低, 也可能是不同研究年份间降水波动对地上生物量的影响而导致的差异; (2)家畜通过采食地上植物而改变地上生物量(阿穆拉等, 2011), 不同研究区域的载畜率水平可能导致了地上生物量的差异.荒漠草原放牧样地地上生物量碳密度约为20 g·m-2, 与该区域同类型草原的研究结果(胡向敏等, 2014; 刘朋涛等, 2014)相近. ...

人为干扰对典型草原土壤碳密度及生态系统碳贮量的影响
1
2009

... id="C30">在两种草原类型中, 围封均增加了土壤碳储量, 这与多数研究结果(Mekuria et al., 2007; 许中旗等, 2009)一致.Hu等(2015)认为有3个机制可以解释此结果: (1)植被的覆盖物增加了有机物的积累; (2)植物高度和盖度的增加与土壤湿度形成正反馈调节; (3)稠密的冠层和凋落物减少了碳的流失.典型草原围封样地各土层深度土壤碳密度均显著高于放牧样地, 这可能是受围封样地较高的凋落物量的影响(图6).荒漠草原围封样地与放牧样地的土壤碳密度没有表现出明显的差异(p > 0.05), 并且在两种利用方式的样地中均未收集到凋落物, 可能是荒漠草原草层低矮、稀疏、种类组成匮乏的植被特征(韩国栋等, 2007)导致凋落物的积累缓慢.此外, 历史的放牧效应也可能对荒漠草原土壤碳库的影响具有滞后作用(Steffens et al., 2008). ...

人为干扰对典型草原土壤碳密度及生态系统碳贮量的影响
1
2009

... id="C30">在两种草原类型中, 围封均增加了土壤碳储量, 这与多数研究结果(Mekuria et al., 2007; 许中旗等, 2009)一致.Hu等(2015)认为有3个机制可以解释此结果: (1)植被的覆盖物增加了有机物的积累; (2)植物高度和盖度的增加与土壤湿度形成正反馈调节; (3)稠密的冠层和凋落物减少了碳的流失.典型草原围封样地各土层深度土壤碳密度均显著高于放牧样地, 这可能是受围封样地较高的凋落物量的影响(图6).荒漠草原围封样地与放牧样地的土壤碳密度没有表现出明显的差异(p > 0.05), 并且在两种利用方式的样地中均未收集到凋落物, 可能是荒漠草原草层低矮、稀疏、种类组成匮乏的植被特征(韩国栋等, 2007)导致凋落物的积累缓慢.此外, 历史的放牧效应也可能对荒漠草原土壤碳库的影响具有滞后作用(Steffens et al., 2008). ...

围封下内蒙古典型草原区退化草原群落的恢复及其对碳截存的贡献
1
2008

... id="C28">在典型草原和荒漠草原, 围封禁止家畜对草本植物的采食, 增加了地上生物量碳储量.同时, 土壤湿度的改善有利于植物生产力的提高(Wu et al., 2010).围封还增加了植被的盖度并降低了风的侵蚀, 有利于有机物的存留(Zhou et al., 2011).典型草原围封样地地上生物量碳密度(95 g·m-2)介于围封恢复11-14年之间(敖伊敏等, 2011), 而荒漠草原围封样地地上生物量碳密度(73 g·m-2)高于刘朋涛等(2014)的研究结果(< 35 g·m-2), 这说明地上生物量碳库的变化可能与围封时间有关.本研究典型草原放牧样地地上生物量碳密度为32 g·m-2, 低于萨茹拉等(2013)典型草原重度放牧的43 g·m-2闫玉春和唐海萍(2008)持续放牧的85 g·m-2.这可能是由于两方面原因导致了研究结果的差异: (1)降水是影响草原植被生产力的最主要的气候因子(Bai et al., 2004), 本研究区域地处锡林郭勒草原西部典型草原与荒漠草原的过渡地带, 降水量是典型草原分布的下限, 从而导致地上生物量与其他研究相比较低, 也可能是不同研究年份间降水波动对地上生物量的影响而导致的差异; (2)家畜通过采食地上植物而改变地上生物量(阿穆拉等, 2011), 不同研究区域的载畜率水平可能导致了地上生物量的差异.荒漠草原放牧样地地上生物量碳密度约为20 g·m-2, 与该区域同类型草原的研究结果(胡向敏等, 2014; 刘朋涛等, 2014)相近. ...

围封下内蒙古典型草原区退化草原群落的恢复及其对碳截存的贡献
1
2008

... id="C28">在典型草原和荒漠草原, 围封禁止家畜对草本植物的采食, 增加了地上生物量碳储量.同时, 土壤湿度的改善有利于植物生产力的提高(Wu et al., 2010).围封还增加了植被的盖度并降低了风的侵蚀, 有利于有机物的存留(Zhou et al., 2011).典型草原围封样地地上生物量碳密度(95 g·m-2)介于围封恢复11-14年之间(敖伊敏等, 2011), 而荒漠草原围封样地地上生物量碳密度(73 g·m-2)高于刘朋涛等(2014)的研究结果(< 35 g·m-2), 这说明地上生物量碳库的变化可能与围封时间有关.本研究典型草原放牧样地地上生物量碳密度为32 g·m-2, 低于萨茹拉等(2013)典型草原重度放牧的43 g·m-2闫玉春和唐海萍(2008)持续放牧的85 g·m-2.这可能是由于两方面原因导致了研究结果的差异: (1)降水是影响草原植被生产力的最主要的气候因子(Bai et al., 2004), 本研究区域地处锡林郭勒草原西部典型草原与荒漠草原的过渡地带, 降水量是典型草原分布的下限, 从而导致地上生物量与其他研究相比较低, 也可能是不同研究年份间降水波动对地上生物量的影响而导致的差异; (2)家畜通过采食地上植物而改变地上生物量(阿穆拉等, 2011), 不同研究区域的载畜率水平可能导致了地上生物量的差异.荒漠草原放牧样地地上生物量碳密度约为20 g·m-2, 与该区域同类型草原的研究结果(胡向敏等, 2014; 刘朋涛等, 2014)相近. ...

土壤碳库构成研究进展
2
2014

... id="C31">土壤碳库由土壤有机碳库和土壤无机碳库两部分组成(余健等, 2014).本研究利用土壤全碳计算土壤碳储量的结果表明: 两种草原类型土壤表层(0-10 cm)的土壤碳密度均最低, 放牧样地均表现出逐层递增的趋势.本研究结果与以有机碳计算碳储量随土层深度递减的研究(刘楠和张英俊, 2010)结论相反, 可能是因为土壤无机碳含量随着土层深度增加而递增, 并且在干旱、半干旱地区土壤无机碳库高出有机碳库的2-10倍(余健等, 2014).刘淑丽等(2014)的研究表明: 温性草原50-100 cm土层深度的无机碳储量占0-100 cm土层深度的土壤碳总储量的60.2%, 并且与地下生物量呈显著负相关关系.土壤无机碳的垂直分布受到水分迁移的影响, 土壤溶液在向下淋溶迁移无机碳的过程中, CO2溶解度随温度的下降而逐渐降低, 使得溶液中无机碳析出形成发生性碳酸盐, 并不断在深层土壤中富集(张蓓蓓等, 2016). ...

... )结论相反, 可能是因为土壤无机碳含量随着土层深度增加而递增, 并且在干旱、半干旱地区土壤无机碳库高出有机碳库的2-10倍(余健等, 2014).刘淑丽等(2014)的研究表明: 温性草原50-100 cm土层深度的无机碳储量占0-100 cm土层深度的土壤碳总储量的60.2%, 并且与地下生物量呈显著负相关关系.土壤无机碳的垂直分布受到水分迁移的影响, 土壤溶液在向下淋溶迁移无机碳的过程中, CO2溶解度随温度的下降而逐渐降低, 使得溶液中无机碳析出形成发生性碳酸盐, 并不断在深层土壤中富集(张蓓蓓等, 2016). ...

土壤碳库构成研究进展
2
2014

... id="C31">土壤碳库由土壤有机碳库和土壤无机碳库两部分组成(余健等, 2014).本研究利用土壤全碳计算土壤碳储量的结果表明: 两种草原类型土壤表层(0-10 cm)的土壤碳密度均最低, 放牧样地均表现出逐层递增的趋势.本研究结果与以有机碳计算碳储量随土层深度递减的研究(刘楠和张英俊, 2010)结论相反, 可能是因为土壤无机碳含量随着土层深度增加而递增, 并且在干旱、半干旱地区土壤无机碳库高出有机碳库的2-10倍(余健等, 2014).刘淑丽等(2014)的研究表明: 温性草原50-100 cm土层深度的无机碳储量占0-100 cm土层深度的土壤碳总储量的60.2%, 并且与地下生物量呈显著负相关关系.土壤无机碳的垂直分布受到水分迁移的影响, 土壤溶液在向下淋溶迁移无机碳的过程中, CO2溶解度随温度的下降而逐渐降低, 使得溶液中无机碳析出形成发生性碳酸盐, 并不断在深层土壤中富集(张蓓蓓等, 2016). ...

... )结论相反, 可能是因为土壤无机碳含量随着土层深度增加而递增, 并且在干旱、半干旱地区土壤无机碳库高出有机碳库的2-10倍(余健等, 2014).刘淑丽等(2014)的研究表明: 温性草原50-100 cm土层深度的无机碳储量占0-100 cm土层深度的土壤碳总储量的60.2%, 并且与地下生物量呈显著负相关关系.土壤无机碳的垂直分布受到水分迁移的影响, 土壤溶液在向下淋溶迁移无机碳的过程中, CO2溶解度随温度的下降而逐渐降低, 使得溶液中无机碳析出形成发生性碳酸盐, 并不断在深层土壤中富集(张蓓蓓等, 2016). ...

青藏高原高寒草地3米深度土壤无机碳库及分布特征
1
2016

... id="C31">土壤碳库由土壤有机碳库和土壤无机碳库两部分组成(余健等, 2014).本研究利用土壤全碳计算土壤碳储量的结果表明: 两种草原类型土壤表层(0-10 cm)的土壤碳密度均最低, 放牧样地均表现出逐层递增的趋势.本研究结果与以有机碳计算碳储量随土层深度递减的研究(刘楠和张英俊, 2010)结论相反, 可能是因为土壤无机碳含量随着土层深度增加而递增, 并且在干旱、半干旱地区土壤无机碳库高出有机碳库的2-10倍(余健等, 2014).刘淑丽等(2014)的研究表明: 温性草原50-100 cm土层深度的无机碳储量占0-100 cm土层深度的土壤碳总储量的60.2%, 并且与地下生物量呈显著负相关关系.土壤无机碳的垂直分布受到水分迁移的影响, 土壤溶液在向下淋溶迁移无机碳的过程中, CO2溶解度随温度的下降而逐渐降低, 使得溶液中无机碳析出形成发生性碳酸盐, 并不断在深层土壤中富集(张蓓蓓等, 2016). ...

青藏高原高寒草地3米深度土壤无机碳库及分布特征
1
2016

... id="C31">土壤碳库由土壤有机碳库和土壤无机碳库两部分组成(余健等, 2014).本研究利用土壤全碳计算土壤碳储量的结果表明: 两种草原类型土壤表层(0-10 cm)的土壤碳密度均最低, 放牧样地均表现出逐层递增的趋势.本研究结果与以有机碳计算碳储量随土层深度递减的研究(刘楠和张英俊, 2010)结论相反, 可能是因为土壤无机碳含量随着土层深度增加而递增, 并且在干旱、半干旱地区土壤无机碳库高出有机碳库的2-10倍(余健等, 2014).刘淑丽等(2014)的研究表明: 温性草原50-100 cm土层深度的无机碳储量占0-100 cm土层深度的土壤碳总储量的60.2%, 并且与地下生物量呈显著负相关关系.土壤无机碳的垂直分布受到水分迁移的影响, 土壤溶液在向下淋溶迁移无机碳的过程中, CO2溶解度随温度的下降而逐渐降低, 使得溶液中无机碳析出形成发生性碳酸盐, 并不断在深层土壤中富集(张蓓蓓等, 2016). ...

Livestock-carrying capacity and overgrazing status of alpine grassland in the Three-River Headwaters region, China
1
2014

... id="C6">全球草地面积约占地球陆地表面积的40% (Wang & Fang, 2009).草地是地球上广泛分布的生态系统, 在全球碳循环中起着重要的作用(Scurlock et al., 2002).据估计, 草地生态系统碳库包含超过10%的陆地生态系统生物量碳和10%-30%的全球土壤有机碳(Scurlock & Hall, 1998), 并且以每年0.5 Pg C的速度向土壤中固定碳(Derner et al., 2006).放牧是草地最主要的利用方式, 放牧过程深刻地影响着植被格局(Bond, 2005).植被格局的变化不仅改变了草地生态系统的物种组成和结构, 而且改变了碳储量(Grace, 2004).过度放牧被认为是导致草地退化的一个主要原因(Wilcox, 2007; Zhang et al., 2014), 全球约有35%的退化草地是过度放牧造成的, 在我国过度放牧造成的退化草地面积约占全部退化草地面积的20% (穆少杰等, 2014).目前, 我国对退化的草地普遍采取围栏封育的植被恢复措施(方精云等, 2010). ...

Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia
1
2005

... id="C7">草地生态系统碳库主要包括植被生物量碳库和土壤有机碳库, 植被生物量碳库包括地上和地下生物量碳库(方精云等, 2010).一般认为, 围栏封育的植被恢复措施有利于提高草地生态系统的生物量(桑永燕等, 2006; Wu et al., 2009), 并增加土壤碳库储量(Welker et al., 2004; Zhao et al., 2005).然而也有研究表明: 围栏封育降低了草地生态系统碳储量(Frank & Groffman, 1998), 并认为放牧能够促进土壤碳的积累和植物的补偿生长(Reeder & Schuman, 2002).有的围栏封育实验还证实围封对草地生态系统碳库没有影响(Nosetto et al., 2006; Raiesi & Asadi, 2006; Shrestha & Stahl, 2008).草地生态系统碳库受到多种因素的影响, 气候条件、生物过程及利用方式等方面的耦合作用共同决定了草地碳储量的变化(穆少杰等, 2014).降水对围栏封育草地碳库的影响存在阈值, 在600 mm及以下降水量的地区, 围栏封育增加了草地碳储量(Derner & Schuman, 2007).不同植物群落组成的草地生态系统的碳储量对围栏封育的响应有明显差异(Bakker et al., 2004), 围封后草地生态系统碳储量的变化表现出增加、减少或不变, 其范围在增加5.77 t?hm-2·a-1到减少1.65 t?hm-2·a-1之间(Tanentzap & Coomes, 2011).因此, 在不同气候条件和群落组成的环境下, 围栏封育对草地碳库的影响尚有争议.另外, 基于大尺度草原碳储量的估算较多(马文红等, 2006; Piao et al., 2007; Fan et al., 2008; 王建林等, 2009), 而小尺度的固碳机理需进一步阐明(李学斌等, 2014). ...

Dynamics of vegetation and soil carbon and nitrogen accumulation over 26 years under controlled grazing in a desert shrubland
1
2011

... id="C28">在典型草原和荒漠草原, 围封禁止家畜对草本植物的采食, 增加了地上生物量碳储量.同时, 土壤湿度的改善有利于植物生产力的提高(Wu et al., 2010).围封还增加了植被的盖度并降低了风的侵蚀, 有利于有机物的存留(Zhou et al., 2011).典型草原围封样地地上生物量碳密度(95 g·m-2)介于围封恢复11-14年之间(敖伊敏等, 2011), 而荒漠草原围封样地地上生物量碳密度(73 g·m-2)高于刘朋涛等(2014)的研究结果(< 35 g·m-2), 这说明地上生物量碳库的变化可能与围封时间有关.本研究典型草原放牧样地地上生物量碳密度为32 g·m-2, 低于萨茹拉等(2013)典型草原重度放牧的43 g·m-2闫玉春和唐海萍(2008)持续放牧的85 g·m-2.这可能是由于两方面原因导致了研究结果的差异: (1)降水是影响草原植被生产力的最主要的气候因子(Bai et al., 2004), 本研究区域地处锡林郭勒草原西部典型草原与荒漠草原的过渡地带, 降水量是典型草原分布的下限, 从而导致地上生物量与其他研究相比较低, 也可能是不同研究年份间降水波动对地上生物量的影响而导致的差异; (2)家畜通过采食地上植物而改变地上生物量(阿穆拉等, 2011), 不同研究区域的载畜率水平可能导致了地上生物量的差异.荒漠草原放牧样地地上生物量碳密度约为20 g·m-2, 与该区域同类型草原的研究结果(胡向敏等, 2014; 刘朋涛等, 2014)相近. ...




Copyright © 2021 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19

相关话题/土壤 植物 过程 生物量 环境