Ecological processes in alpine ecosystems under changing environment
YANG Yuan-He,1,2,*1State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 2University of Chinese Academy of Sciences, Beijing 100049, China
PDF (1687KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 杨元合. 全球变化背景下的高寒生态过程. 植物生态学报[J], 2018, 42(1): 1-5 doi:10.17521/cjpe.2018.0048 YANG Yuan-He. Ecological processes in alpine ecosystems under changing environment. Chinese Journal of Plant Ecology[J], 2018, 42(1): 1-5 doi:10.17521/cjpe.2018.0048
Fig. 2Location of long-term observations (A), transect studies (B), manipulative experiments (C) on the Qinghai-Xizang Plateau, and research sites in this special issue (D), shown on the background of China’s vegetation atlas at a scale of 1:1 000 000 (Editorial Committee for Vegetation Map of China, 2001). Notably, geographic information for each site in this figure was derived from literatures synthesized in Appendix I.
ChaiX, LiYN, DuanC, ZhangT, ZongN, ShiPL, HeYT, ZhangXZ ( 2018). CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau Chinese Journal of Plant Ecology, 42, 6-19. [本文引用: 1]
ChenN, ZhangYJ, ZhuJT, LiJX, LiuYJ, ZuJX, CongN, HuangK, WangL ( 2018). Nonlinear responses of productivity and diversity of alpine meadow communities to degradation Chinese Journal of Plant Ecology, 42, 50-65. URL [本文引用: 1] 为了阐释青藏高原高寒草甸退化的关键生态过程,该研究依托藏北高原草地生态系统研究站(那曲站),设置不同退化梯度实验,即对照、轻度退化、中度退化、重度退化和极度退化5个梯度,探究群落生产力和物种多样性对不同退化强度的响应机制。结果表明:1)随着退化程度不断加剧,地上生物量呈现线性或非线性增加趋势,在重度退化处理下,地上生物量显著高于对照32.3%,其中高山嵩草(Kobresia pygmaea)地上生物量呈非线性下降趋势,而矮火绒草(Leontopodium nanum)地上生物量呈非线性增加趋势;2)与地上生物量的响应模式相反,随着退化程度加剧,地下生物量与总生物量均呈现非线性降低趋势;3)高寒草甸退化过程中,物种辛普森指数、丰富度指数、香农多样性指数和均匀度指数均呈现非线性上升趋势。结构等式方程结果表明,土壤碳含量和体积含水量与地下生物量均呈现显著的正相关关系。土壤碳含量、体积含水量和砾石质量比对地上生物量无显著影响,土壤碳、氮含量与物种多样性指数呈现显著的负相关关系。研究认为地上生产力的变化不能很好地指示草地的退化程度,建议今后研究应以可食性牧草和毒杂草等植物功能群的变化来衡量草地退化。 [ 陈宁, 张扬建, 朱军涛, 李军祥, 刘瑶杰, 俎佳星, 丛楠, 黄珂, 王荔 ( 2018). 高寒草甸退化过程中群落生产力和物种多样性的非线性响应机制研究 , 42, 50-65.] URL [本文引用: 1] 为了阐释青藏高原高寒草甸退化的关键生态过程,该研究依托藏北高原草地生态系统研究站(那曲站),设置不同退化梯度实验,即对照、轻度退化、中度退化、重度退化和极度退化5个梯度,探究群落生产力和物种多样性对不同退化强度的响应机制。结果表明:1)随着退化程度不断加剧,地上生物量呈现线性或非线性增加趋势,在重度退化处理下,地上生物量显著高于对照32.3%,其中高山嵩草(Kobresia pygmaea)地上生物量呈非线性下降趋势,而矮火绒草(Leontopodium nanum)地上生物量呈非线性增加趋势;2)与地上生物量的响应模式相反,随着退化程度加剧,地下生物量与总生物量均呈现非线性降低趋势;3)高寒草甸退化过程中,物种辛普森指数、丰富度指数、香农多样性指数和均匀度指数均呈现非线性上升趋势。结构等式方程结果表明,土壤碳含量和体积含水量与地下生物量均呈现显著的正相关关系。土壤碳含量、体积含水量和砾石质量比对地上生物量无显著影响,土壤碳、氮含量与物种多样性指数呈现显著的负相关关系。研究认为地上生产力的变化不能很好地指示草地的退化程度,建议今后研究应以可食性牧草和毒杂草等植物功能群的变化来衡量草地退化。
ChenYL, DengY, DingJZ, HuHW, XuTL, LiF, YangGB, YangYH ( 2017). Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau 26, 6608-6620. DOI:10.1111/mec.14396URLPMID:29087010 [本文引用: 1] Abstract Permafrost represents an important understudied genetic resource. Soil microorganisms play important roles in regulating biogeochemical cycles and maintaining ecosystem function. However, our knowledge of patterns and drivers of permafrost microbial communities is limited over broad geographic scales. Using high-throughput Illumina sequencing, this study compared soil bacterial, archaeal and fungal communities between the active and permafrost layers on the Tibetan Plateau. Our results indicated that microbial alpha diversity was significantly higher in the active layer than in the permafrost layer with the exception of fungal Shannon-Wiener index and Simpson's diversity index, and microbial community structures were significantly different between the two layers. Our results also revealed that environmental factors such as soil fertility (soil organic carbon and nitrogen contents) were the primary drivers of the beta diversity of bacterial, archaeal and fungal communities in the active layer. In contrast, environmental variables such as the mean annual precipitation and total phosphorus played dominant roles in driving the microbial beta diversity in the permafrost layer. Spatial distance was important for predicting the bacterial and archaeal beta diversity in both the active and permafrost layers, but not for fungal communities. Collectively, these results demonstrated different driving factors of microbial beta diversity between the active layer and permafrost layer, implying that the drivers of the microbial beta diversity observed in the active layer cannot be used to predict the biogeographic patterns of the microbial beta diversity in the permafrost layer.
DingJZ, LiF, YangGB, ChenLY, ZhangBB, LiuL, FangK, QinSQ, ChenYL, PengYF ( 2016). The permafrost carbon inventory on the Tibetan Plateau: A new evaluation using deep sediment cores 22, 2688-2701. DOI:10.1111/gcb.13257URLPMID:26913840 [本文引用: 1] Abstract The permafrost organic carbon (OC) stock is of global significance because of its large pool size, and the potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which limits our understanding of the fate of frozen carbon in a warming world. In particular, the lack of comprehensive estimates of OC stocks across alpine permafrost means that current knowledge on this issue remains incomplete. Here we evaluated the pool size and spatial variations of permafrost OC stock to 3 metres depth on the Tibetan Plateau by combining systematic measurements from a substantial number of pedons (i.e., 342 three-metre-deep cores and 177 50-cm-deep pits) with a machine learning technique (i.e., support vector machine, SVM). We also quantified uncertainties in permafrost carbon budget by conducting a Monte Carlo simulation. Our results revealed that the combination of systematic measurements with the SVM model allowed spatially explicit estimates to be made. The OC density (OC amount per unit area, OCD) exhibited a decreasing trend from the southeastern to the northwestern plateau, with the exception that OCD in the swamp meadow was substantially higher than that in surrounding regions. Our results also demonstrated that Tibetan permafrost stored a large amount of OC in the top 3 metres, with the median OC pool size being 15.31 Pg C (interquartile range: 13.03-17.77 Pg C). 44% of OC occurred in deep layers (i.e., 100-300 cm), close to the proportion observed across the northern circumpolar permafrost region. The large carbon pool size, together with significant permafrost thawing suggests a risk of carbon emissions and positive climate feedback across the Tibetan alpine permafrost region. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
GouXL, ZhouQP, ChenYJ, WeiXX, TuWG ( 2018). Characteristics of nutrients in two dominant plant species and rhizospheric soils in alpine desert of the Qinghai-Xizang Plateau under contrasting climates Chinese Journal of Plant Ecology, 42, 133-142. [本文引用: 1]
GuoCH, YangWQ, WuFZ, XuZF, YueK, NiXY, YuanJ, YangF, TanB ( 2018). Effects of forest gap size on initial decomposition of twig litter in the subalpine forest of western Sichuan, China Chinese Journal of Plant Ecology, 42, 28-37. URL [本文引用: 1]
HeJS, WangXP, FlynnDFB, WangL, SchmidB, FangJY ( 2009). Taxonomic, phylogenetic and environmental tradeoffs between leaf productivity and persistence 90, 2779-2791. DOI:10.1890/08-1126.1URLPMID:19886487 [本文引用: 1] Abstract Assessing the influence of climate, soil fertility, and species identity on leaf trait relationships is crucial for understanding the adaptations of plants to their environment and for interpreting leaf trait relationships across spatial scales. In a comparative field study of 171 plant species in 174 grassland sites across China, we examined the trade-offs, defined as negative covariance between two traits, between leaf persistence (leaf mass per area, LMA) and leaf productivity (mass-based photosynthetic rate, Amass, N and P content, and photosynthetic N use efficiency, PNUE). We asked to which extent these trade-offs were influenced by: (1) variation among sites within species, decomposed into variation due to climatic and soil variables; (2) variation among species within sites, decomposed into variation among taxonomic, functional, or phylogenetic groups; and (3) the joint contribution of variation among species and sites. We used mixed-model analysis of covariance to partition bivariate relationships between leaf traits into trade-off components. We found significant mass-based persistence-productivity trade-offs of LMA-Amass, LMA-N, LMA-P, and LMA-PNUE consistent with previous broadscale findings. Overall, (1) variation among sites within species explained 14-23%, (2) variation among species within sites explained 20-34%, and (3) the two together explained 42-63% of the total covariance between leaf traits. Interspecific trade-offs of LMA-Amass, LMA-N, and LMA-P were stronger than inter-site ones. A relatively low amount of covariance was explained by climatic and soil variables. However, we found the trade-offs were stronger for LMA-N and LMA-P at higher precipitation and for LMA-PNUE at greater soil fertility, if displayed by major axis regression, which combined both intra- and interspecific variation. Residual trade-offs within species and sites were weak, suggesting that intraspecific, intra-site variation in physiology was less important than variation imposed by species identity or environmental differences among sites. Our results from grassland biomes add evidence for the fundamental nature of productivity-persistence trade-offs in plants. No individual factor emerged as the single major cause for these trade-offs. Rather, the total covariance between leaf traits was explained by a combination of factors, each contributing a range of explanatory power.
JinZ, ZhuangQ, HeJS, ZhuX, SongW ( 2015). Net exchanges of methane and carbon dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100 10, 085007. DOI: 10.1088/1748-9326/10/8/085007. DOI:10.1088/1748-9326/10/8/085007URL [本文引用: 1] Methane (CH) is a potent greenhouse gas (GHG) that affects the global climate system. Knowledge about land–atmospheric CHexchanges on the Qinghai-Tibetan Plateau (QTP) is insufficient. Using a coupled biogeochemistry model, this study analyzes the net exchanges of CHand COover the QTP for the period of 1979–2100. Our simulations show that the region currently acts as a net CHsource with 0.95 Tg CHyemissions and 0.19 Tg CHysoil uptake, and a photosynthesis C sink of 14.1 Tg C y. By accounting for the net CHemission and the net COsequestration since 1979, the region was found to be initially a warming source until the 2010s with a positive instantaneous radiative forcing peak in the 1990s. In response to future climate change projected by multiple global climate models (GCMs) under four representative concentration pathway (RCP) scenarios, the regional source of CHto the atmosphere will increase by 15–77% at the end of this century. Net ecosystem production (NEP) will continually increase from the near neutral state to around 40 Tg C yunder all RCPs except RCP8.5. Spatially, CHemission or uptake will be noticeably enhanced under all RCPs over most of the QTP, while statistically significant NEP changes over a large-scale will only appear under RCP4.5 and RCP4.6 scenarios. The cumulative GHG fluxes since 1979 will exert a slight warming effect on the climate system until the 2030s, and will switch to a cooling effect thereafter. Overall, the total radiative forcing at the end of the 21st century is 0.25–0.35 W m, depending on the RCP scenario. Our study highlights the importance of accounting for both CHand COin quantifying the regional GHG budget. (paper)
LiuXJ, ZhangY, HanWX, TangA, ShenJL, CuiZL, VitousekP, ErismanJW, GouldingK, ChristieP ( 2013). Enhanced nitrogen deposition over China 494, 459-462. DOI:10.1038/nature11917URLPMID:23426264 [本文引用: 1] Abstract China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen. These emissions result in the deposition of atmospheric nitrogen (N) in terrestrial and aquatic ecosystems, with implications for human and ecosystem health, greenhouse gas balances and biological diversity. However, information on the magnitude and environmental impact of N deposition in China is limited. Here we use nationwide data sets on bulk N deposition, plant foliar N and crop N uptake (from long-term unfertilized soils) to evaluate N deposition dynamics and their effect on ecosystems across China between 1980 and 2010. We find that the average annual bulk deposition of N increased by approximately 8090009kilograms of nitrogen per hectare (P090009<0900090.001) between the 1980s (13.2090009kilograms of nitrogen per hectare) and the 2000s (21.1090009kilograms of nitrogen per hectare). Nitrogen deposition rates in the industrialized and agriculturally intensified regions of China are as high as the peak levels of deposition in northwestern Europe in the 1980s, before the introduction of mitigation measures. Nitrogen from ammonium (NH4(+)) is the dominant form of N in bulk deposition, but the rate of increase is largest for deposition of N from nitrate (NO3(-)), in agreement with decreased ratios of NH3 to NOx emissions since 1980. We also find that the impact of N deposition on Chinese ecosystems includes significantly increased plant foliar N concentrations in natural and semi-natural (that is, non-agricultural) ecosystems and increased crop N uptake from long-term-unfertilized croplands. China and other economies are facing a continuing challenge to reduce emissions of reactive nitrogen, N deposition and their negative effects on human health and the environment.
MaZL, ZhaoWQ, ZhaoCZ, LiuM, ZhuP, LiuQ ( 2018). Responses of soil inorganic nitrogen to increased temperature and plant removal during the growing season in a Sibiraea angustata scrub ecosystem of eastern Qinghai-Xizang Plateau Chinese Journal of Plant Ecology, 42, 86-94. URL [本文引用: 1] 为了揭示气候变暖背景下高寒灌丛土壤氮转化过程,开展青藏高原东缘窄叶鲜卑花高寒灌丛生长季节土壤硝态氮和铵态氮含量对增温和去除植物的响应研究。结果表明:窄叶鲜卑花高寒灌丛土壤硝态氮和铵态氮含量具有明显的季节动态。整个生长季节,土壤硝态氮含量呈先增加后降低的趋势,而铵态氮含量均表现为一直增加的趋势。在生长季初期和中期,各处理土壤硝态氮含量均显著高于铵态氮含量,而在生长季末期土壤硝态氮含量均显著低于铵态氮含量,说明该区域土壤氮转化过程在生长季初期和中期以硝化作用为主,而在生长季末期以氨化作用为主。不同时期土壤硝态氮和铵态氮含量对增温和植物处理的响应不同:增温对硝态氮的影响主要发生在生长季中期和末期,且因植物处理的不同而有显著差异,增温仅在生长季中期使有植物样方铵态氮含量显著升高。植物处理对土壤硝态氮的影响仅表现在对照样方(不增温),去除植物显著升高了生长季初期和中期土壤硝态氮含量,显著降低了生长季末期土壤硝态氮含量;同时无植物处理显著降低了增温样方生长季中期土壤铵态氮含量。灌丛植被在生长季初期和中期可能主要吸收土壤硝态氮,其吸收过程不受土壤增温的影响。以上结果有利于全面认识高寒灌丛生态系统土壤氮循环过程。 [ 马志良, 赵文强, 赵春章, 刘美, 朱攀, 刘庆 ( 2018). 青藏高原东缘窄叶鲜卑花灌丛生长季土壤无机氮对增温和植物去除的响应 , 42, 86-94.] URL [本文引用: 1] 为了揭示气候变暖背景下高寒灌丛土壤氮转化过程,开展青藏高原东缘窄叶鲜卑花高寒灌丛生长季节土壤硝态氮和铵态氮含量对增温和去除植物的响应研究。结果表明:窄叶鲜卑花高寒灌丛土壤硝态氮和铵态氮含量具有明显的季节动态。整个生长季节,土壤硝态氮含量呈先增加后降低的趋势,而铵态氮含量均表现为一直增加的趋势。在生长季初期和中期,各处理土壤硝态氮含量均显著高于铵态氮含量,而在生长季末期土壤硝态氮含量均显著低于铵态氮含量,说明该区域土壤氮转化过程在生长季初期和中期以硝化作用为主,而在生长季末期以氨化作用为主。不同时期土壤硝态氮和铵态氮含量对增温和植物处理的响应不同:增温对硝态氮的影响主要发生在生长季中期和末期,且因植物处理的不同而有显著差异,增温仅在生长季中期使有植物样方铵态氮含量显著升高。植物处理对土壤硝态氮的影响仅表现在对照样方(不增温),去除植物显著升高了生长季初期和中期土壤硝态氮含量,显著降低了生长季末期土壤硝态氮含量;同时无植物处理显著降低了增温样方生长季中期土壤铵态氮含量。灌丛植被在生长季初期和中期可能主要吸收土壤硝态氮,其吸收过程不受土壤增温的影响。以上结果有利于全面认识高寒灌丛生态系统土壤氮循环过程。
QinSQ, FangK, WangGQ, PengYF, ZhangDY, LiF, ZhouGY, YangYH ( 2018). Responses of exchangeable base cations to continuously increasing nitrogen addition in a typical alpine steppe Chinese Journal of Plant Ecology, 42, 95-104. [本文引用: 1]
ShiGX, WangWY, JiangSJ, ChengG, YaoBQ, FengHY, ZhouHK ( 2018). Effects of the spreading of Ligularia virgaurea on soil physicochemical property and microbial functional diversity Chinese Journal of Plant Ecology, 42, 126-132. URL [本文引用: 1]
SongWQ, ZhuLJ, ZhangX, WangXC, ZhangYD ( 2018). Comparison of growth-climate relationship of Sabina przewalskii at different timberlines along a precipitation gradient in the northeast Qinghai-Xizang Plateau, China Chinese Journal of Plant Ecology, 42, 66-77. [本文引用: 1]
SunHL, ZhengD, YaoTD, ZhangYL ( 2012). Protection and construction of the national ecological security shelter zone on Tibetan Plateau Acta Geographica Sinica, 67, 3-12. DOI:10.11821/xb201201001URL [本文引用: 1] 青藏高原对我国乃至亚洲生态安全具有重要的屏障作用。在全球变化和人类活动的综合影响下,青藏高原呈现出生态系统稳定性降低、资源环境压力增大等问题,突出表现为:冰川退缩显著、土地退化形势严峻、水土流失加剧、生物多样性威胁加大与珍稀生物资源减少、自然灾害增多等。这些问题严重影响了青藏高原区域生态安全屏障功能的发挥。针对当前高原生态安全状况,在总结相关研究成果和生态建设实践经验的基础上,提出了加强青藏高原国家生态安全屏障保护与建设的对策建议:加强气候变化对青藏高原生态屏障作用影响及区域生态安全调控作用的基础研究;系统开展高原生态安全屏障保护和建设关键技术研究与示范推广;部署建设生态屏障功能动态监测体系,加强生态安全屏障保护与建设成效评估,构建评估体系和标准,并凝练经验,以系统提升国家生态安全屏障的总体功能,在应对全球变化中占据主动地位。 [ 孙鸿烈, 郑度, 姚檀栋, 张镱锂 ( 2012). 青藏高原国家生态安全屏障保护与建设 , 67, 3-12.] DOI:10.11821/xb201201001URL [本文引用: 1] 青藏高原对我国乃至亚洲生态安全具有重要的屏障作用。在全球变化和人类活动的综合影响下,青藏高原呈现出生态系统稳定性降低、资源环境压力增大等问题,突出表现为:冰川退缩显著、土地退化形势严峻、水土流失加剧、生物多样性威胁加大与珍稀生物资源减少、自然灾害增多等。这些问题严重影响了青藏高原区域生态安全屏障功能的发挥。针对当前高原生态安全状况,在总结相关研究成果和生态建设实践经验的基础上,提出了加强青藏高原国家生态安全屏障保护与建设的对策建议:加强气候变化对青藏高原生态屏障作用影响及区域生态安全调控作用的基础研究;系统开展高原生态安全屏障保护和建设关键技术研究与示范推广;部署建设生态屏障功能动态监测体系,加强生态安全屏障保护与建设成效评估,构建评估体系和标准,并凝练经验,以系统提升国家生态安全屏障的总体功能,在应对全球变化中占据主动地位。
SunXM, ChenJJ, LiJX, LiL, HanGJ, ChenNL ( 2018). Hierarchical responses of plant stoichiometry to phosphorus addition in an alpine meadow community Chinese Journal of Plant Ecology, 42, 78-85. URL [本文引用: 1]
WuQB, ZhangTJ ( 2010). Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007 115, D09107. DOI: 10.1029/2009JD012974. DOI:10.1029/2009JD012974URL [本文引用: 1] [1] The active layer over permafrost plays a significant role in surface energy balance, hydrologic cycle, carbon fluxes, ecosystem, and landscape processes and on the human infrastructure in cold regions. Over a period from 1995 to 2007, a systematic soil temperature measurement network of 10 sites was established along the Qinghai-Tibetan Highway. Soil temperatures up to 12 m depth were continuously measured semimonthly. In this study, we investigate spatial variations of active layer thickness (ALT) and its change over the period of record. We found that ALT can be estimated with confidence using semimonthly soil temperature profiles compared to those determined from available daily soil temperature profiles over the Qinghai-Tibetan Plateau. The primary results demonstrate that long-term and spatially averaged ALT is 0908042.41 m with a range of 1.320900094.57 m along the Qinghai-Tibetan Highway. All monitoring sites show an increase in ALT over the period of their records. The mean increasing rate of ALT is 0908047.5 cm/yr. ALT shows a closely positive correlation with the thawing index of air temperature on the plateau. We estimated ALT using the thawing index over a period from 1956 to 2005 near the Wudaoliang Meteorological Station in the northern plateau. ALT had no or very limited change from 1956 to 1983 and a sharp increase of 09080439 cm from 1983 to 2005. The magnitude of ALT increase is greater in the warm permafrost region than in the cold permafrost region. The primary control of increase in ALT is caused by an increase in summer air temperature, whereas changes in the winter air temperature and snow cover condition play no or a very limited role.
YangYH, FangJY, TangYH, HeJS, JiCJ, ZhengCY, ZhuB ( 2008). Storage, patterns, and controls of soil organic carbon in the Tibetan grasslands 14, 1592-1599. DOI:10.1111/j.1365-2486.2008.01591.xURL [本文引用: 1] The soils of the Qinghai-Tibetan Plateau store a large amount of organic carbon, but the magnitude, spatial patterns and environmental controls of the storage are little investigated. In this study, using data of soil organic carbon (SOC) in 405 profiles collected from 135 sites across the plateau and a satellite-based dataset of enhanced vegetation index (EVI) during 2001 2004, we estimated storage and spatial patterns of SOC in the alpine grasslands. We also explored the relationships between SOC density (soil carbon storage per area) and climatic variables and soil texture. Our results indicated that SOC storage in the top 1 m in the alpine grasslands was estimated at 7.4 Pg C (1 Pg=1015 g), with an average density of 6.5 kg m?2. The density of SOC decreased from the southeastern to the northwestern areas, corresponding to the precipitation gradient. The SOC density increased significantly with soil moisture, clay and silt content, but weakly with mean annual temperature. These variables could together explain about 72% of total variation in SOC density, of which 54% was attributed to soil moisture, suggesting a key role of soil moisture in shaping spatial patterns of SOC density in the alpine grasslands.
YaoTD, ChenFH, CuiP, MaYM, XuBQ, ZhuLP, ZhangF, WangWC, AiLK, YangXY ( 2017). From Tibetan Plateau to third pole and pan-third pole China Academic Journal, 32, 924-931. URL [本文引用: 1]
ZhangL, WangGX, RanF, PengAH, XiaoY, YangY, YangY ( 2018). Experimental warming changed plants’ phe- nological sequences of two dominant species in an alpine meadow, western of Sichuan Chinese Journal of Plant Ecology, 42, 20-27. URL [本文引用: 1]
ZiHB, ChenY, HuL, WangCT ( 2018). Effects of nitrogen addition on root dynamics in an alpine meadow, Northwestern Sichuan Chinese Journal of Plant Ecology, 42, 38-49. [本文引用: 1]
Location of long-term observations (A), transect studies (B), manipulative experiments (C) on the Qinghai-Xizang Plateau, and research sites in this special issue (D), shown on the background of China’s vegetation atlas at a scale of 1:1 000 000 (Editorial Committee for Vegetation Map of China, 2001). Notably, geographic information for each site in this figure was derived from literatures synthesized in Appendix I.Fig. 2 为了进一步促进学术界对高寒生态过程的认识, 我们组织了“高寒生态过程”专辑.本专辑收录了13篇文章, 内容涉及增温、养分添加、草地退化等全球变化要素, 包括森林、灌丛和草地等生态系统, 涵盖高寒植物、土壤和微生物过程.在植物属性方面, 有3篇文章揭示了功能群或者不同物种对环境变化的响应存在差异的现象, 分别发现禾本科和杂类草植物的化学计量特征对养分添加的响应模式不同(孙小妹等, 2018), 不同功能群的多样性和生产力对草地退化的响应存在差异(陈宁等, 2018), 繁殖物候对气候变暖的响应在不同繁殖阶段、不同物种间存在差异(张莉等, 2018).还有两篇文章重点关注树木生长和凋落枝分解.其中, 宋文琦等(2018)针对“干旱、半干旱区高山林线处, 究竟是温度还是水分是限制树木生长的主控因子?”这一问题, 对比了青藏高原东北部不同降水梯度下高山林线祁连圆柏(Sabina przewalskii)径向生长与气候的关系, 发现水分不是青藏高原东北部干旱区高山林线树木径向生长的限制因素, 但会影响树木生长与温度的关系.基于“以往研究多集中在凋落叶分解”的现状, 郭彩虹等(2018)重点关注了川西亚高山森林林窗对凋落枝分解的影响, 发现林窗环境变化显著影响亚高山森林凋落枝分解, 但其影响取决于林窗面积和分解时间.其余的两项研究则注重新方法的引用或者长期的定位研究: 字洪标等(2018)基于微根管法研究了氮添加对川西北高寒草甸群落根系动态的影响, 发现氮添加缩短了高寒草甸植物根系寿命, 加快了根系周转并促使根系向表层集中; 柴曦等(2018)基于连续5年的通量观测发现, 灌丛草甸起着碳汇作用而草原化草甸基本呈碳中性状态, 这种差异主要由两类生态系统中碳利用效率、归一化植被指数(NDVI)以及湿润程度和水热匹配性的差异所致. ...
... Location of long-term observations (A), transect studies (B), manipulative experiments (C) on the Qinghai-Xizang Plateau, and research sites in this special issue (D), shown on the background of China’s vegetation atlas at a scale of 1:1 000 000 (Editorial Committee for Vegetation Map of China, 2001). Notably, geographic information for each site in this figure was derived from literatures synthesized in Appendix I. Fig. 2 为了进一步促进学术界对高寒生态过程的认识, 我们组织了“高寒生态过程”专辑.本专辑收录了13篇文章, 内容涉及增温、养分添加、草地退化等全球变化要素, 包括森林、灌丛和草地等生态系统, 涵盖高寒植物、土壤和微生物过程.在植物属性方面, 有3篇文章揭示了功能群或者不同物种对环境变化的响应存在差异的现象, 分别发现禾本科和杂类草植物的化学计量特征对养分添加的响应模式不同(孙小妹等, 2018), 不同功能群的多样性和生产力对草地退化的响应存在差异(陈宁等, 2018), 繁殖物候对气候变暖的响应在不同繁殖阶段、不同物种间存在差异(张莉等, 2018).还有两篇文章重点关注树木生长和凋落枝分解.其中, 宋文琦等(2018)针对“干旱、半干旱区高山林线处, 究竟是温度还是水分是限制树木生长的主控因子?”这一问题, 对比了青藏高原东北部不同降水梯度下高山林线祁连圆柏(Sabina przewalskii)径向生长与气候的关系, 发现水分不是青藏高原东北部干旱区高山林线树木径向生长的限制因素, 但会影响树木生长与温度的关系.基于“以往研究多集中在凋落叶分解”的现状, 郭彩虹等(2018)重点关注了川西亚高山森林林窗对凋落枝分解的影响, 发现林窗环境变化显著影响亚高山森林凋落枝分解, 但其影响取决于林窗面积和分解时间.其余的两项研究则注重新方法的引用或者长期的定位研究: 字洪标等(2018)基于微根管法研究了氮添加对川西北高寒草甸群落根系动态的影响, 发现氮添加缩短了高寒草甸植物根系寿命, 加快了根系周转并促使根系向表层集中; 柴曦等(2018)基于连续5年的通量观测发现, 灌丛草甸起着碳汇作用而草原化草甸基本呈碳中性状态, 这种差异主要由两类生态系统中碳利用效率、归一化植被指数(NDVI)以及湿润程度和水热匹配性的差异所致. ...
2 2001
... id="C3">近20年来, 国内****基于定位观测、样带调查、控制实验、室内培养、模型模拟等多种手段(图2), 围绕全球变化背景下的高寒生态系统结构与功能等主题开展了大量工作, 取得了重要进展, 相关研究成果引起国内外学术界的广泛关注.通过梳理近20年来的文献资料, 不难发现以往的研究呈现以下两个特点.第一, 以往的研究多以样带调查等大尺度研究为主, 而基于定位观测和室内培养的研究较少.通过样带调查等大尺度研究, 基本阐明了青藏高原高寒植被属性(He et al., 2009)、土壤特征(Yang et al., 2008)、微生物属性(Chen et al., 2017)以及主要生态系统功能(Jin et al., 2015)的空间分布规律及其影响因素.然而, 与样带调查相比, 青藏高原的定位观测和室内培养研究较为薄弱.实际上, 这两种方法正是开展生态过程研究的重要手段.这一研究现状说明青藏高原生态学研究有必要从格局研究向过程研究转变.第二, 青藏高原的控制实验研究近年来不断增加,主要集中在增温和施氮等少数全球变化因子上.同时, 受技术手段(核磁共振分析、14C同位素、微生物功能基因等)的限制, 过去的控制实验研究重点还是在阐述不同生态过程对各种全球变化因子的响应上, 尚未从机制上剖析全球变化要素对高寒生态系统的影响途径.这一研究现状意味着高寒生态学研究在从格局研究向过程研究转变的同时, 亟需应用新技术加强机制研究.
Location of long-term observations (A), transect studies (B), manipulative experiments (C) on the Qinghai-Xizang Plateau, and research sites in this special issue (D), shown on the background of China’s vegetation atlas at a scale of 1:1 000 000 (Editorial Committee for Vegetation Map of China, 2001). Notably, geographic information for each site in this figure was derived from literatures synthesized in Appendix I.Fig. 2 为了进一步促进学术界对高寒生态过程的认识, 我们组织了“高寒生态过程”专辑.本专辑收录了13篇文章, 内容涉及增温、养分添加、草地退化等全球变化要素, 包括森林、灌丛和草地等生态系统, 涵盖高寒植物、土壤和微生物过程.在植物属性方面, 有3篇文章揭示了功能群或者不同物种对环境变化的响应存在差异的现象, 分别发现禾本科和杂类草植物的化学计量特征对养分添加的响应模式不同(孙小妹等, 2018), 不同功能群的多样性和生产力对草地退化的响应存在差异(陈宁等, 2018), 繁殖物候对气候变暖的响应在不同繁殖阶段、不同物种间存在差异(张莉等, 2018).还有两篇文章重点关注树木生长和凋落枝分解.其中, 宋文琦等(2018)针对“干旱、半干旱区高山林线处, 究竟是温度还是水分是限制树木生长的主控因子?”这一问题, 对比了青藏高原东北部不同降水梯度下高山林线祁连圆柏(Sabina przewalskii)径向生长与气候的关系, 发现水分不是青藏高原东北部干旱区高山林线树木径向生长的限制因素, 但会影响树木生长与温度的关系.基于“以往研究多集中在凋落叶分解”的现状, 郭彩虹等(2018)重点关注了川西亚高山森林林窗对凋落枝分解的影响, 发现林窗环境变化显著影响亚高山森林凋落枝分解, 但其影响取决于林窗面积和分解时间.其余的两项研究则注重新方法的引用或者长期的定位研究: 字洪标等(2018)基于微根管法研究了氮添加对川西北高寒草甸群落根系动态的影响, 发现氮添加缩短了高寒草甸植物根系寿命, 加快了根系周转并促使根系向表层集中; 柴曦等(2018)基于连续5年的通量观测发现, 灌丛草甸起着碳汇作用而草原化草甸基本呈碳中性状态, 这种差异主要由两类生态系统中碳利用效率、归一化植被指数(NDVI)以及湿润程度和水热匹配性的差异所致. ...
... Location of long-term observations (A), transect studies (B), manipulative experiments (C) on the Qinghai-Xizang Plateau, and research sites in this special issue (D), shown on the background of China’s vegetation atlas at a scale of 1:1 000 000 (Editorial Committee for Vegetation Map of China, 2001). Notably, geographic information for each site in this figure was derived from literatures synthesized in Appendix I. Fig. 2 为了进一步促进学术界对高寒生态过程的认识, 我们组织了“高寒生态过程”专辑.本专辑收录了13篇文章, 内容涉及增温、养分添加、草地退化等全球变化要素, 包括森林、灌丛和草地等生态系统, 涵盖高寒植物、土壤和微生物过程.在植物属性方面, 有3篇文章揭示了功能群或者不同物种对环境变化的响应存在差异的现象, 分别发现禾本科和杂类草植物的化学计量特征对养分添加的响应模式不同(孙小妹等, 2018), 不同功能群的多样性和生产力对草地退化的响应存在差异(陈宁等, 2018), 繁殖物候对气候变暖的响应在不同繁殖阶段、不同物种间存在差异(张莉等, 2018).还有两篇文章重点关注树木生长和凋落枝分解.其中, 宋文琦等(2018)针对“干旱、半干旱区高山林线处, 究竟是温度还是水分是限制树木生长的主控因子?”这一问题, 对比了青藏高原东北部不同降水梯度下高山林线祁连圆柏(Sabina przewalskii)径向生长与气候的关系, 发现水分不是青藏高原东北部干旱区高山林线树木径向生长的限制因素, 但会影响树木生长与温度的关系.基于“以往研究多集中在凋落叶分解”的现状, 郭彩虹等(2018)重点关注了川西亚高山森林林窗对凋落枝分解的影响, 发现林窗环境变化显著影响亚高山森林凋落枝分解, 但其影响取决于林窗面积和分解时间.其余的两项研究则注重新方法的引用或者长期的定位研究: 字洪标等(2018)基于微根管法研究了氮添加对川西北高寒草甸群落根系动态的影响, 发现氮添加缩短了高寒草甸植物根系寿命, 加快了根系周转并促使根系向表层集中; 柴曦等(2018)基于连续5年的通量观测发现, 灌丛草甸起着碳汇作用而草原化草甸基本呈碳中性状态, 这种差异主要由两类生态系统中碳利用效率、归一化植被指数(NDVI)以及湿润程度和水热匹配性的差异所致. ...