关键词:毛竹;地表稻草覆盖;土壤有机碳;土壤活性有机碳;土壤养分 Abstract Aims Soil total organic carbon and labile organic carbon are important indicators in evaluating soil quality. Mulching is widely applied to promote the emergence of bamboo shoot in winter time through stand management. Yet the consequences of mulching on soil quality in Phyllostachys edulis have not been well studied. We aim at the quantitative effect of mulching duration on soil quality in P. edulis stands. Methods Several P. edulis stands located in Huangyan District of Taizhou, Zhejiang Province of China, had been applied with mulching for 1-2 years and were used in this study to assess the mulching effects. We also selected stands without mulching treatment as the reference sites (or control, CK) for comparisons.||||Important findings Total soil organic carbon (TOC), light fraction organic matter (LFOM), and easily-oxidized carbon (EOC) contents at stands with 1-year and 2-year mulching treatments were significantly increased compared with those at the CK sites. The 1-year mulching increased TOC, LFOM and EOC by 11.2%-74.2%, 31.7%-196.9% and 5.0%-79.6%, respectively, than those of CK sites, while by 22.2%-90.8%, 36.7%-238.5%, and 21.9%-97.5% with 2-year treatment. However, the contents of water-soluble organic carbon (WSOC) changed insignificantly. Among the indicators, we found that WSOC:TOC in CK was higher than that with the mulching treatments, while EOC:TOC with 1-year treatment was higher than that with 2-year treatment, and EOC:TOC with 2-year treatment was higher than that of CK. Additionally, WSOC, EOC, and LFOM at all three treatments showed high correlations with TOC, with a higher correlation coefficient of WSOC with TOC of 0- 30 cm soil layers in CK than those with mulching treatments. The correlation coefficient of EOC and LFOM with TOC was the highest at the 2-year mulching sites. More importantly, TOC, WSOC, EOC, and LFOM were significantly (p < 0.05), or extremely significantly (p < 0.01), correlated with soil nutrient content, including total N, hydrolysis N, available P, available K, exchangeable Ca, and exchangeable Mg in all treatments. In sum, it appeared that mulching in short term can increase the contents of TOC, soil labile organic carbons and soil nutrients in bamboo soils, yielding an improved soil quality and thus can be promoted as a plausible practice for the sustainable management of P. edulis stands.
Keywords:Phyllostachys edulis;soil mulching with straw;soil organic carbon;soil labile organic carbon;soil nutrients -->0 PDF (1083KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 赵睿宇, 李正才, 王斌, 葛晓改, 戴云喜, 赵志霞, 张雨洁. 毛竹林地表覆盖年限对土壤有机碳的影响. 植物生态学报, 2017, 41(4): 418-429 https://doi.org/10.17521/cjpe.2016.0340 ZHAORui-Yu, LIZheng-Cai, WANGBin, GEXiao-Gai, DAIYun-Xi, ZHAOZhi-Xia, ZHANGYu-Jie. Duration of mulching caused variable pools of labile organic carbon in a Phyllostachys edulis plantation. Chinese Journal of Plant Ecology, 2017, 41(4): 418-429 https://doi.org/10.17521/cjpe.2016.0340 毛竹(Phyllostachys edulis)隶属于禾本科竹亚科刚竹属, 是竹类资源中分布最广和经济价值最高的竹种资源(谢孝福, 1994; 江泽慧, 2002)。竹产业是我国南方区域经济发展的重要支柱产业, 也是竹农家庭经济收入的主要来源(陈双林, 2011)。传统的毛竹经营模式中, 虽然人工施肥在一定程度上补充了因竹笋和竹材输出造成的土壤养分损失, 但长期大量的化学肥料输入, 不仅会导致竹林土壤板结、加重水土流失和改变土壤理化性质, 而且会影响毛竹的生长节律, 产生竹林产量降低等经济效益问题(王波等, 2012)。单纯的竹林施有机肥, 虽然可改良土壤, 但是对提升竹林经济效益的效果不明显, 而且费工、费时, 在生产上难以推广。近年来, 由于利用毛竹林冬季地表稻草秸秆覆盖发酵腐烂增加土壤温度的方法能够促使竹林春笋冬出, 快速提升竹林的经济效益, 并且有利于稻草的资源化利用和竹林的固碳减排, 因此推广面积越来越大。研究表明, 秸秆绝大部分是有机成分, 其中水溶性成分纤维素和半纤维素易被微生物分解, 而木质素及蛋白质复合体较难分解, 它们残留于土壤中, 形成了土壤有机质(Sainju et al., 2007; Liu et al., 2014)。秸秆本身含有一定的氮(N)、磷(P)、钾(K), 覆盖的秸秆腐烂后能够快速地增加土壤N、P和速效K的含量, 丰富土壤营养库, 是土壤养分的主要补给源(Kahlon et al., 2013), 秸秆覆盖为提高土壤肥力奠定了物质基础(Zhang et al., 2012; Ouyang et al., 2013)。 人们多关注地表覆盖对毛竹林经济效益的影响, 却忽视了地表覆盖对山地毛竹林土壤理化性质的影响, 土壤活性有机碳如何感知并响应竹林地表覆盖变化的研究更为缺乏。土壤活性碳占土壤全碳含量的比例较小, 但它作为表征土壤全碳质量变化的一种敏感指标, 可以在土壤全碳变化之前反映土壤质量的微小变化, 反映人为管理措施和环境所引起的土壤变化(Blair et al., 1995; Whitbread et al., 1998)。另外, 土壤活性碳能够直接参与土壤生物化学的转化过程, 是土壤养分循环的驱动力, 对土壤养分活化也起着重要的作用(Coleman et al., 1983; Wander et al., 1994)。秸秆覆盖多用于北方干旱、半干旱的农田地区, 南方地区温湿度条件优于北方干旱、半干旱地区, 并且毛竹林下复杂多变的生态环境也影响着覆盖物的分解过程。因此, 南方毛竹林冬季地表秸秆覆盖后, 覆盖物的分解对毛竹林地土壤有机碳和质量影响程度和影响机理等问题, 明显区别于干旱、半干旱地区以水土保持为主要目的农业用地秸秆覆盖(Han et al., 2013; Moradi et al., 2015)。开展我国南方地区毛竹林冬季覆盖试验研究, 探讨毛竹林地表覆盖对土壤有机碳和土壤质量影响的研究具有重要的意义。
新窗口打开 通过对不同年限的翻耕土壤进行比较, 发现覆盖1年翻耕和覆盖2年翻耕的土壤轻组有机质在各层的含量都比对照样地的土壤轻组有机质含量高。从表4可以看出, 覆盖1年翻耕和覆盖2年翻耕的土壤0-50 cm土层土壤轻组有机质含量较对照样地分别增加了31.7%-196.9%和36.7%-238.5%。覆盖1年和覆盖2年的土壤轻组有机质差异不显著。覆盖翻耕处理下的毛竹林地轻组有机质的含量在0-40 cm均高于对照样地, 且除20-30 cm外, 差异显著。 Table 4 表4 表4不同覆盖年限的土壤轻组有机质含量(g·kg-1)差异(平均值±标准偏差) Table 4Changes in soil light fraction organic matter contents under different mulching durations (mean ± SD) (g·kg-1)
处理 Treatment
土层 Soil layer (cm)
0-10
10-20
20-30
30-40
40-50
对照 Control
0.155 ± 0.025b
0.130 ± 0.023b
0.091 ± 0.009a
0.074 ± 0.031b
0.060 ± 0.014a
覆盖1年翻耕 1-year mulching
0.300 ± 0.092a
0.386 ± 0.020a
0.123 ± 0.022a
0.116 ± 0.016a
0.079 ± 0.021a
覆盖2年翻耕 2-year mulching
0.292 ± 0.070a
0.440 ± 0.027a
0.135 ± 0.026a
0.118 ± 0.009a
0.082 ± 0.007a
Values within the same column with different lowercase letters mean significant difference at 0.05 level.同列中不同小写字母表示差异显著(p < 0.05)。 新窗口打开 从表5可以看出, 覆盖2年翻耕处理和覆盖1年翻耕处理比对照样地的易氧化碳含量分别增加了5.0%-79.6%和21.9%-97.5%, 2种不同处理下的覆盖翻耕的土壤在0-20 cm土层易氧化碳含量均高于对照样地, 且差异显著。20 cm以下土层的土壤易氧化碳含量相较于对照样地而言也有一定程度的增加。 Table 5 表5 表5不同覆盖年限的土壤易氧化碳含量(g·kg-1)差异(平均值±标准偏差) Table 5Changes in soil easily-oxidized carbon contents under different mulching durations (mean ± SD) (g·kg-1)
处理 Treatment
土层 Soil layer (cm)
0-10
10-20
20-30
30-40
40-50
对照 Control
6.67 ± 1.01b
5.92 ± 0.49b
5.08 ± 0.76a
3.65 ± 1.17a
3.02 ± 1.04a
覆盖1年翻耕 1-year mulching
8.96 ± 0.93a
10.63 ± 0.27a
5.67 ± 1.39a
3.84 ± 1.04a
3.17 ± 1.13a
覆盖2年翻耕 2-year mulching
9.08 ± 0.48a
11.69 ± 0.58a
6.19 ± 1.32a
4.46 ± 0.34a
3.83 ± 0.34a
Values within the same column with different lowercase letters mean significant difference at 0.05 level.同列中不同小写字母表示差异显著(p < 0.05)。 新窗口打开
2.3 土壤活性有机碳占土壤总有机碳的比率
表6显示, 覆盖1年翻耕处理和覆盖2年翻耕处理毛竹林土壤水溶性有机碳占土壤总有机碳的比率在0.05%-0.10%之间, 且3种处理土壤水溶性有机碳占土壤总有机碳的比率都呈现随土层的加深而升高的趋势, 除10-20 cm土层外, 对照样地的土壤水溶性有机碳占土壤总有机碳的比率均高于翻耕后的土壤。不同处理下土壤易氧化碳占土壤总有机碳的比率为16.6%-23.3%, 表现为随着土层深度增加, 比率呈下降趋势, 且覆盖1年翻耕的0-30 cm土层比率均大于覆盖2年翻土的各土层, 也大于对照样地。 Table 6 表6 表6不同覆盖年限0-50 cm土层土壤活性有机碳占总有机碳的比率 Table 6Ratios of 0-50 cm soil labile organic carbons to total organic carbon under different mulching durations
AgarwalS, AggarwalSG, OkuzawaK, KawamuraK (2010). Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: Implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols . , 10, 5839-5858. [本文引用: 1]
[2]
AndersonTH, DomschKH (1989). Rations of microbial biomass carbon to total organic carbon in arable soils . , 21, 471-479. [本文引用: 1]
[3]
BlairGJ, LefroyRDB, LisleL (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index of agricultural systems . , 46, 1459-1466. [本文引用: 1]
[4]
BooneRD (1994). Light-fraction soil organic matter: Origin and contribution to net nitrogen mineralization . , 26, 1459-1468. [本文引用: 1]
[5]
BoyerJN, GroffmanPM (1996). Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles . , 28, 783-790. [本文引用: 1]
[6]
BurfordJR, BremnerJM (1975). Relationships between the denitrification capacities of soils and total water-soluble and readily decomposable soil organic matter . , 7, 389-394. [本文引用: 1]
[7]
ChenSH, ZhuZL, LiuDH, ShuL, WangCQ (2008). Influence of straw mulching with no-till on soil nutrients and carbon pool management index . , 14, 806-809. (in Chinese with English abstract)[陈尚洪, 朱钟麟, 刘定辉, 舒丽, 王昌全 (2008). 秸秆还田和免耕对土壤养分及碳库管理指数的影响研究 . , 14, 806-809.]
[8]
ChenSL (2011). Thoughts on related problems of mulched technique with organic materials . , 28, 799-804. (in Chinese with English abstract)[陈双林 (2011). 毛竹林地覆盖竹笋早出技术应用的问题思考 . , 28, 799-804.] [本文引用: 1]
[9]
ChengCF, LiZC, ZhouJG, WuYC, ZhaoZX, SunJJ (2015). Change of soil labile organic carbon pools after conversion from degraded shrub forest to broadleaved plantations in North subtropical area of China . , 28, 101-108. (in Chinese with English abstract)[程彩芳, 李正才, 周君刚, 吴亚丛, 赵志霞, 孙娇娇 (2015). 北亚热带地区退化灌木林改造为人工阔叶林后土壤活性碳库的变化 . , 28, 101-108.] [本文引用: 2]
[10]
ColemanDC, ReidCPP, ColeCV (1983). Biological strategies of nutrient cycling in soil systems . , 13, 1-55. [本文引用: 1]
[11]
DupontST, CulmanSW, FerrisH, BuckleyDH, GloverJD (2010). No-tillage conversion of harvested perennial grassland to annual cropland reduces root biomass, decreases active carbon stocks, and impacts soil biota . , 137, 25-32. [本文引用: 1]
[12]
GaoF, JiaZK, ZhangP, WangW, LuWT, YangBP, LiYP (2011). Effect of straw mulching on soil active organic carbon and soil C pool management index in the arid areas of Southern Ningxia . , 29, 107-117. (in Chinese with English abstract)[高飞, 贾志宽, 张鹏, 王维, 路文涛, 杨宝平, 李永平 (2011). 秸秆覆盖对宁南早作农田活性有机质及碳库管理指数的影响 . , 29, 107-117.]
[13]
GongJ, HuangGB, ChenLD, FuBJ (2003). Comprehensive ecological effect of straw mulch on spring wheat field in dryland area . , 21, 69-73. (in Chinese with English abstract)[巩杰, 黄高宝, 陈利顶, 傅伯杰 (2003). 旱作麦田秸秆覆盖的生态综合效应研究 . , 21, 69-73.] [本文引用: 1]
[14]
GuoZW, YuWX, ChenSL, LiYC, YangQP (2013). Influence of mulching management on soil microbe and its relationship with soil nutrient in Phyllostachys praecox stand . , 33, 5623-5630. (in Chinese with English abstract)[郭子武, 俞文仙, 陈双林, 李迎春, 杨清平 (2013). 林地覆盖对雷竹林土壤微生物特征及其与土壤养分制约性关系的影响 . , 33, 5623-5630.]
[15]
HalvorsonAD, WienholdBJ, BlackAL (2002). Tillage, nitrogen, and cropping system effects on soil carbon sequestration . , 66, 906-912. [本文引用: 1]
[16]
HanJ, JiaZK, HanQF, ZhangJ (2013). Application of mulching materials of rainfall harvesting system for improving soil water and corn growth in northwest of China . , 12, 1712-1721. [本文引用: 1]
[17]
HuangY, LiuSL, ShenQR, ZongLG (2002). Influence of environmental factors on the decomposition of organic carbon in agricultural soils . , 13, 709-714. (in Chinese with English abstract)[黄耀, 刘世梁, 沈其荣, 宗良纲 (2002). 环境因子对农业土壤有机碳分解的影响 . , 13, 709-714.] [本文引用: 1]
[18]
HuangZQ, XuZH, ChenCR (2008). Effect of mulching on labile soil organic matter pools, microbial community functional diversity and nitrogen transformations in two hardwood plantations subtropical Australia . , 40, 229-239.
JiangPK, ZhouGM, XuQF (2002). Effect of intensive cultivation on the carbon pool of soil in Phyllostachys praecox stands . , 38(6), 6-11. (in Chinese with English abstract)[姜培坤, 周国模, 徐秋芳 (2002). 雷竹高效栽培措施对土壤碳库的影响 . , 38(6), 6-11.]
[21]
JiangZH (2002). . Liaoning Science and Technology Publishing House, Shenyang. (in Chinese)[江泽慧 (2002). . 辽宁科学技术出版社, 沈阳.] [本文引用: 1]
[22]
KahlonMS, LaiR, Ann-VarugheseM (2013). Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio . , 126, 151-158. [本文引用: 1]
[23]
KalbitzK, SchwesigD, RethemeyerJ, MatznerE (2005). Stabilization of dissolved organic matter by sorption to the mineral soil . , 37, 1319-1331. [本文引用: 1]
LiJT, ZhongXL, ZhaoQG (2011). Enhancement of soil quality in a rice-wheat rotation after long-term application of poultry litter and livestock manure . , 31, 2837-2845. (in Chinese with English abstract)[李江涛, 钟晓兰, 赵其国 (2011). 畜禽粪便施用对稻麦轮作土壤质量的影响 . , 31, 2837-2845.] [本文引用: 1]
[26]
LiL, ZhuHH, SuYR, XiaoHA, HuangDY, WuJS (2009). Effects of rice straw incorporation in situ and ex situ on soil organic C and active organic C in agricultural soils in red soil hilly region . , 42, 926-933. (in Chinese with English abstract)[李玲, 朱捍华, 苏以荣, 肖和艾, 黄道友, 吴金水 (2009). 稻草还田和易地还土对红壤丘陵农田土壤有机碳及其活性组分的影响 . , 42, 926-933.]
[27]
LiL, LiSJ, ZhangHL, ChenF (2006). Study on soil C pool management index of conversation tillage . , 20, 106-109. (in Chinese with English abstract)[李琳, 李素娟, 张海林, 陈阜 (2006). 保护性耕作下土壤碳库管理指数的研究 . , 20, 106-109.]
[28]
LiS, ZhangSR, LuoHH, ZhouL, WangGY, ShenYC (2013). Concentration characteristics and dynamic changes of water soluble organic carbon in soil under different fertilization treatments . , 32, 314-319. (in Chinese with English abstract)[李森, 张世熔, 罗红华, 周玲, 王贵胤, 沈乂畅 (2013). 不同施肥处理土壤水溶性有机碳含量特征及动态变化 . , 32, 314-319.] [本文引用: 1]
[29]
LiY, FangX, XiangWH, SunWJ, ZhangSJ, LiSL (2014). Contents of soil dissolved organic carbon and its relation . , 45, 1483-1490. (in Chinese with English abstract)[李岩, 方晰, 项文化, 孙伟军, 张仕吉, 李胜蓝 (2014). 湘中丘陵区4种森林土壤水溶性有机碳含量及其与土壤养分的关系 . , 45, 1483-1490.] [本文引用: 1]
[30]
LiZP, ZhangTL, ChenBY (2004). Dynamics of soluble organic carbon and its relation to mineralization of soil organic carbon . , 41, 544-552. (in Chinese with English abstract)[李忠佩, 张桃林, 陈碧云 (2004). 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系 . , 41, 544-552.] [本文引用: 1]
[31]
LiangBC, MackenzieAF, SchnitzerM, MonrealM, VoroneyPR, BeyaertRP (1997). Management induced change in labile soil organic matter under continuous corn in eastern Canadian soils . , 26, 88-94.
[32]
LiuMY, ChangQR, QiYB, LiuJ, ChenT (2014). Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China . , 115, 19-28. [本文引用: 1]
[33]
LiuRJ, WuYC, ZhangY, LiZC, MaSJ, WangB, GeriLT (2012). Comparison of soil labile organic carbon in Chinese fir plantations and natural secondary forests in north subtropical areas of China . , 36, 431-437. (in Chinese with English abstract)[刘荣杰, 吴亚丛, 张英, 李正才, 马少杰, 王斌, 格日乐图 (2012). 中国北亚热带天然次生林与杉木人工林土壤活性有机碳库的比较 . , 36, 431-437.] [本文引用: 2]
[34]
LiuWN, WuWL, WangXB, WangMX, MaoWF (2006). Effects of soil type and land use pattern on microbial biomass carbon . , 12, 406-411. (in Chinese with English abstract)[刘文娜, 吴文良, 王秀斌, 王明新, 毛文峰 (2006). 不同土壤类型和农业用地方式对土壤微生物量碳的影响 . , 12, 406-411.]
[35]
LouiseMD, GwynSG, JohnH, PhilJH, RichardD (2000). Management influences on soil microbial communities and their function in botanically diverse haymeadows of northern England and Wales . , 32, 253-256. [本文引用: 1]
[36]
LuRK (2000). . China Agricultural Science and Technology Press, Beijing. (in Chinese)[鲁如坤 (2000). . 中国农业科学技术出版社, 北京.] [本文引用: 1]
[37]
MaSJ, LiZC, WangG, LiuRJ, FuMY, ZhouBZ (2011). Effects of intensive and extensive management on soil active organic carbon in bamboo forests of China . , 35, 551-557. (in Chinese with English abstract)[马少杰, 李正才, 王刚, 刘荣杰, 傅懋毅, 周本智 (2011). 集约和粗放经营下毛竹林土壤活性有机碳的变化 . , 35, 551-557.] [本文引用: 1]
[38]
MandalUK, YadavSK, SharmaKL, RameshV, VenkannaK (2011). Estimating permanganate-oxidizable active carbon as quick indicator for assessing soil quality under different land-use system of rainfed Alfisols . , 81, 927-931.
[39]
MoradiA, SungCTB, GohKJ, HanifAHM, IshakCF (2015). Effect of four soil and water conservation practices on soil physical processes in a non-terraced oil palm plantation . , 145, 62-71. [本文引用: 1]
[40]
OlivaP, ViersJ, DupréB, FotunéJP, MartinF, BraunJJ, NahonD, RobainH (1999). The effect of organic matter on chemical weathering: Study of a small tropical watershed: Nsimi-Zoétélé site, Cameroon . , 63, 4013-4035. [本文引用: 1]
[41]
OuyangW, QiSS, HaoFH, WangXL, ShanYS, ChenSY (2013). Impact of crop patterns and cultivation on carbon sequestration and global warming potential in an agricultural freeze zone . , 252, 228-237. [本文引用: 1]
[42]
PostWM, KwonKC (2000). Soil carbon sequestration and land-use change: Processes and potential . , 6, 317-327. [本文引用: 1]
ShenH, CaoZH, XuZH (2000). Effects of fertilization on different carbon fractions and carbon pool management index in soils . , 37, 166-173. (in Chinese with English abstract)[沈宏, 曹志洪, 徐志红 (2000). 施肥对土壤不同碳形态及碳库管理指数的影响 . , 37, 166-173.] [本文引用: 1]
[45]
ShresthaRK, LadhaJK, GamiSK (2006). Total and organic soil carbon in cropping systems of Nepal . , 75, 257-269. [本文引用: 1]
[46]
SixJ, ConantRT, PaulEA, PaustianK (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils . , 241, 155-176.
[47]
SongMW, LiAZ, CaiLQ, ZhangRZ (2008). Effects of different tillage methods on soil organic carbon pool . , 27, 622-626. (in Chinese with English abstract)[宋明伟, 李爱宗, 蔡立群, 张仁陟 (2008). 耕作方式对土壤有及碳库的影响 . , 27, 622-626.] [本文引用: 1]
[48]
State ForestryAdministration (1999). Forestry Industry Standard of the People’s Republic of China LY/T 1210 1275-1999 . . Standards Press of China, Beijing. (in Chinese)[国家林业局 (1999). . 中国标准出版社, 北京.] [本文引用: 1]
[49]
StockfischN, ForstreuterT, EhlersW (1999). Ploughing effects on soil organic matter after twenty years of conservation tillage in Lower Saxony, Germany . , 52, 91-101.
[50]
ThorburnPJ, MeierEA, CollinsK, RobertsonFA (2012). Changes in soil carbon sequestration, fractionation and soil fertility in response to sugarcane residue retention are site-specific . , 120, 99-111. [本文引用: 1]
[51]
TianSZ, NingTY, WangY, LiHJ, ZhongWL, LiZJ (2010). Effect of different tillage methods and straw-returning on soil organic carbon content in a winter wheat field . , 21, 373-378. (in Chinese with English abstract)[田慎重, 宁堂原, 王瑜, 李洪杰, 仲惟磊, 李增嘉 (2010). 不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响 . , 21, 373-378.]
[52]
Tirol-PadreA, LadhaJK (2004). Assessing the reliability of permanganate-oxidizable carbon as an index of soil labile carbon . , 68, 969-978. [本文引用: 1]
[53]
WanderMM, TrainaSJ, StinnerBR, PeterSE (1994). The effects of organic and conventional management on biologically-active soil organic matter fractions . , 58, 1130-1139. [本文引用: 1]
[54]
WangB, WangKH, LiQ, ZhuZJ, DingXZ, YangJ (2012). A preliminary study of the effect of mulching on growth of Phyllostachys edulis . , 10, 20-22. (in Chinese with English abstract)[王波, 汪奎宏, 李琴, 朱志建, 丁笑章, 杨键 (2012). 地面覆盖对毛竹生长影响的初步研究 . , 10, 20-22.] [本文引用: 1]
[55]
WangGB, ZhaoXL, WangMH, RuanHH, XuCB, XuYM (2013). Effects of land use change on soil readily oxidizable carbon in a coastal area of northern Jiangsu Province, East China . , 24, 921-926. (in Chinese with English abstract)[王国兵, 赵小龙, 王明慧, 阮宏华, 徐长柏, 徐亚明 (2013). 苏北沿海土地利用变化对土壤易氧化碳含量的影响 . , 24, 921-926.] [本文引用: 1]
[56]
WangQK, WangSL, FengZW, HuangY (2005). Active soil organic matter and its relationship with soil quality . , 25, 513-519. (in Chinese with English abstract)[王清奎, 汪思龙, 冯宗炜, 黄宇 (2005). 土壤活性有机质及其与土壤质量的关系 . , 25, 513-519.] [本文引用: 1]
[57]
WangY, RuanHH, HuangLL, FengYQ, QiY, ZhouJZ, ShenYL (2010). Soil labile organic carbon with different land uses in reclaimed land area from Taihu Lake . , 175, 624-630.
[58]
WangYJ, XieZK, MalhiSS, VeraCL, ZhangYB, WangJN (2009). Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid loess plateau China . , 96, 374-382. [本文引用: 1]
[59]
WhitbreadAM, LefroyRDB, BlairGJ (1998). A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales . , 36, 669-681. [本文引用: 1]
[60]
WuJG, XuDY (2005). Dissolved organic carbon concentrations in soil under different land uses in the Liupan mountain forest zone . , 29, 945-953. (in Chinese with English abstract)[吴建国, 徐德应 (2005). 六盘山林区几种土地利用方式对土壤中可溶性有机碳浓度影响的初步研究 . , 29, 945-953.] [本文引用: 1]
[61]
WuYC, LiZC, ChengCF, LiuRJ, WangB, GeriLT (2013). Effects of understory removal on soil labile organic carbon pool in a cinnamomum camphora plantation . , 24, 3341-3346. (in Chinese with English abstract)[吴亚丛, 李正才, 程彩芳, 刘荣杰, 王斌, 格日乐图 (2013). 除去林下植被对樟树人工林土壤活性有机碳库的影响 . , 24, 3341-3346.] [本文引用: 1]
XuQF (2003). Study on Labile Organic Carbon Pool in Forest Soils . [徐秋芳 (2003). 森林土壤活性有机碳库的研究 . .] [本文引用: 1]
[64]
XuQF, XuJM, JiangPK (2003). Study on organic carbon pool of soil under intensive management bamboo forest . , 17, 15-21. (in Chinese with English abstract)[徐秋芳, 徐建明, 姜培坤 (2003). 集约经营毛竹林土壤活性有机碳库研究 . , 17, 15-21.]
[65]
YangMF, ZhuLQ, HanXZ, GuKJ, HuNJ, BianXM (2013). Short-term effects of different tillage modes combined with straw-returning on the soil labile organic carbon components in a farmland with rice-wheat double cropping . , 24, 1387-1393. (in Chinese with English abstract)[杨敏芳, 朱利群, 韩新忠, 顾克军, 胡乃娟, 卞新民 (2013). 不同土壤耕作措施与秸秆还田对稻麦两熟制农田土壤活性有机碳组分的短期影响 . , 24, 1387-1393.] [本文引用: 1]
[66]
YueLX (2010). Effects of Tillage Practices on Soil Organic Carbon Pool in Paddy Soil . .[乐丽鑫 (2010). 耕作方式对稻田土壤有机碳库的影响 , .] [本文引用: 1]
[67]
ZhangJH, DingWX, MengL (2010). Spatial variability of soil labile organic carbon in the tropical rubber plantations of Hainan Province, China . , 19, 2563-2567. (in Chinese with English abstract)[张俊华, 丁维新, 孟磊 (2010). 海南热带橡胶园土壤易氧化有机碳空间变异特征研究 . , 19, 2563-2567.] [本文引用: 1]
ZhaoMX, ZhouJB, KalbitzK (2008). Carbon mineralization and properties of water-extractable organic carbon in soils of the south Loess Plateau in China . , 44, 158-165. [本文引用: 1]
[70]
ZhouGM, JiangPK (2004). Changes in active organic carbon of erosion red soil by vegetation recovery . , 18, 68-83. (in Chinese with English abstract)[周国模, 姜培坤 (2004). 不同植被恢复对侵蚀红壤活性碳库的影响 . , 18, 68-83.] [本文引用: 1]
[71]
ZhouGM, XuJM, WuJS, JiangPK (2006). Changes in soil active organic carbon with history of intensive management of Phyllostachy pubescens forest . , 42(6), 124-128. (in Chinese with English abstract)[周国模, 徐建明, 吴家森, 姜培坤 (2006). 毛竹林集约经营过程中土壤活性有机碳库的演变 . , 42(6), 124-128.] [本文引用: 1]
[72]
ZhuYL, HanJG, WuJS (2004). Effect of agricultural practices on soil organic carbon dynamics . , 35, 648-651. (in Chinese with English abstract)[朱咏莉, 韩建刚, 吴金水 (2004). 农业管理措施对土壤有机碳动态变化的影响 . , 35, 648-651.] [本文引用: 1]
[73]
ZhuZJ, JiangPK, XuQF (2006). Study on the active organic carbon in soil under different types of vegetation . , 42, 523-526. (in Chinese with English abstract)[朱志建, 姜培坤, 徐秋芳 (2006). 不同森林植被下土壤微生物量碳和易氧化态碳的比较 . , 42, 523-526.] [本文引用: 1]
Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: Implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols 1 2010
Effect of mulching on labile soil organic matter pools, microbial community functional diversity and nitrogen transformations in two hardwood plantations subtropical Australia 2008
Light-fraction organic matter in soils from long-term crop rotations 1 1992
Estimating permanganate-oxidizable active carbon as quick indicator for assessing soil quality under different land-use system of rainfed Alfisols 2011
Effect of four soil and water conservation practices on soil physical processes in a non-terraced oil palm plantation 1 2015
... 人们多关注地表覆盖对毛竹林经济效益的影响, 却忽视了地表覆盖对山地毛竹林土壤理化性质的影响, 土壤活性有机碳如何感知并响应竹林地表覆盖变化的研究更为缺乏.土壤活性碳占土壤全碳含量的比例较小, 但它作为表征土壤全碳质量变化的一种敏感指标, 可以在土壤全碳变化之前反映土壤质量的微小变化, 反映人为管理措施和环境所引起的土壤变化(Blair et al., 1995; Whitbread et al., 1998).另外, 土壤活性碳能够直接参与土壤生物化学的转化过程, 是土壤养分循环的驱动力, 对土壤养分活化也起着重要的作用(Coleman et al., 1983; Wander et al., 1994).秸秆覆盖多用于北方干旱、半干旱的农田地区, 南方地区温湿度条件优于北方干旱、半干旱地区, 并且毛竹林下复杂多变的生态环境也影响着覆盖物的分解过程.因此, 南方毛竹林冬季地表秸秆覆盖后, 覆盖物的分解对毛竹林地土壤有机碳和质量影响程度和影响机理等问题, 明显区别于干旱、半干旱地区以水土保持为主要目的农业用地秸秆覆盖(Han et al., 2013; Moradi et al., 2015).开展我国南方地区毛竹林冬季覆盖试验研究, 探讨毛竹林地表覆盖对土壤有机碳和土壤质量影响的研究具有重要的意义. ...
The effect of organic matter on chemical weathering: Study of a small tropical watershed: Nsimi-Zoétélé site, Cameroon 1 1999