Effects of inoculation with arbuscular mycorrhizal fungi on photosynthetic physiology in females and males of Populus deltoides exposed to cadmium pollution
CHENLiang-Hua, LAIJuan, HUXiang-Wei, YANGWan-Qin, ZHANGJian*,, WANGXiao-Jun, TANLing-Jie Key Laboratory of Ecological Forestry Engineering, Collaborative Innovation Center of Ecological Safety in the Upper Reaches of Yangtze River, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China 通讯作者:* 通信作者Author for correspondence (E-mail: sicauzhangjian@163.com) 责任编辑:CHENLiang-HuaLAIJuanHUXiang-WeiYANGWan-QinZHANGJianWANGXiao-JunTANLing-Jie 收稿日期:2016-06-27 接受日期:2016-12-25 网络出版日期:2017-04-10 版权声明:2017植物生态学报编辑部本文是遵循CCAL协议的开放存取期刊,引用请务必标明出处。 基金资助:国家自然科学基金(31300513)
关键词:丛枝菌根;美洲黑杨;镉污染;雌雄异株;光合作用 Abstract AimsPopulus deltoides is an important plantation tree species in the middle and lower reaches of the Yangtze River and in Huai River Plain. The extensively cultivated varieties are consisted of both females and males of P. deltoides. The objective of this paper was to characterize the difference in cadmium (Cd) tolerance between the sexes and the effects of symbiosis with Rhizophagus intraradices on their Cd tolerance. Methods The experiment was carried out under semi-controlled conditions in a natural light greenhouse, protected from rain. Rhizophagus intraradices was inoculated on roots of both females and males when transplanting to a sand culture substrate. After one month, half of cuttings were exposed to Cd pollution (10 mg·kg-1). All cuttings were irrigated with sterile water to avoid infection by other microorganism. About three months later, the gas exchange rate, net photosynthesis rate (Pn)-intercellular CO2 concentration (Ci) curve, chlorophyll fluorescence, osmotic adjustment and phytohormone content of both females and males of P. deltoides were measured. Important findings Our main results are as follows: (1) when compared to the controls, decreases in Pn, stomatal conductance, Ci, transpiration rate, maximum photochemical efficiency of photosystem II (PSII), effective quantum yield of PSII, photo-chemical quenching coefficient, maximum rate of carboxylation of Rubisco, photosynthetically active radiation-saturated rate of electron transport and rate of triose phosphate utilization to a different degree in both sexes of P. deltoides under Cd pollution were found, and females exhibited a greater decrease in such parameters than males. Rhizophagus intraradices inoculation mitigated the toxic effect of Cd on such parameters to a different degree in females, not in males. (2) Under Cd pollution, there was an increase in proline content in both sexes when compared to the controls. A further increase in proline content occurred in females, not in males, when inoculated with R. intraradices. (3) When compared to the controls, there was a decrease in indoleacetic acid, but an increase in abscisic acid in leaves of both sexes when exposed to Cd pollution. The amplitude changed in both phytohormones in females was greater than that in males. Rhizophagus intraradices inoculation was helpful for recovery of phytohormone balance in females, which was not observed in males. Therefore, our results indicated that (1) there were a greater negative effect exerted by Cd pollution on gas exchange rate, carbon fixation capacity and phytohormone balance and a more impairment of photosynthetic apparatus in females when compared to males, showing a less tolerance to stress conditions in females; (2) Rhizophagus intraradices inoculation could enhance the osmotic adjustment capacity in females, thus mitigate the negative effect of Cd stress on ability of carbon fixation and phytohormone balance in females. However, such positive effects derived from R. intraradices symbiosis were not observed in males.
Keywords:vesicular-arbuscular mycorrhiza;Populus deltoides;cadmium pollution;dioecy;photosynthesis -->0 PDF (1920KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 陈良华, 赖娟, 胡相伟, 杨万勤, 张健, 王小军, 谭灵杰. 接种丛枝菌根真菌对受镉胁迫美洲黑杨雌、雄株光合生理的影响. 植物生态学报, 2017, 41(4): 480-488 https://doi.org/10.17521/cjpe.2016.0210 CHENLiang-Hua, LAIJuan, HUXiang-Wei, YANGWan-Qin, ZHANGJian, WANGXiao-Jun, TANLing-Jie. Effects of inoculation with arbuscular mycorrhizal fungi on photosynthetic physiology in females and males of Populus deltoides exposed to cadmium pollution. Chinese Journal of Plant Ecology, 2017, 41(4): 480-488 https://doi.org/10.17521/cjpe.2016.0210 伴随着我国工农业和城市化的快速发展, 重金属污染物逐渐成为一类主要的环境污染物。我国环境保护部和国土资源部于2014年4月公布的《全国土壤污染状况调查公报》显示, 全国土壤总的重金属超标率达到16.1%, 耕地污染超标率达19.4%, 镉(Cd)的点位超标率最大, 达到7.0%。Cd作为植物的非必需元素, 过量积累会对植物产生毒害作用, 植物体内积累3-10 mg·kg-1 Cd就会扰乱植物的基本代谢过程(DalCorso et al., 2008)。光合作用是植物生长和产量形成的关键生物学过程, 对重金属毒害非常敏感, 重金属离子的积累会影响叶绿素的生物合成, 破坏光合膜的结构和功能, 阻断电子传递, 扰乱光合磷酸化, 钝化暗反应的关键酶(Benavides et al., 2005; Küpper et al., 2007), 还会影响叶肉细胞的水势和膨压, 调节气孔行为(Cocozza et al., 2015), 进而抑制气体交换速率。目前, 重金属对光合作用的毒理研究主要集中在草本植物(尤其是超富集植物, hyperaccumulator)和农作物上, 对木本植物的研究相对较少。 丛枝菌根(AM)是自然界中一种普遍存在的共生现象, 与丛枝菌根真菌(AMF)的互利共生有利于提高宿主植物对重金属胁迫的耐受能力。一方面, AMF通过对重金属的固定和隔离, 减少重金属向地上部分的转移, 例如, 黄晶等(2012)发现, 接种Rhizophagus intraradices降低了紫花苜蓿(Medicago sativa)地上部Cd含量, 却增加了地下部Cd含量, Cd向地上部的迁移率降低。AMF菌丝扩大了植物根系的范围和吸收面积, 通过其复杂的菌丝网络提高植物对矿质元素(尤其是N和P)和水分的吸收, Loth- Pereda (2011)还发现AM对Populus trichocarpa磷转运子基因(PtPT10)的诱导和调节表达起着重要作用。另一方面, AMF的侵染也参与了宿主植物的信号转导和抗逆基因的表达调控, 例如, Pallara等(2013)以银白杨(P. alba)为材料, 发现接种Glomus mosseae有利于诱导叶片中编码植物螯合素合成酶基因的表达以及控制细胞的抗氧化水平, 从而提高宿主植物对重金属的生理耐受性。 美洲黑杨(P. deltoides)属于杨柳科杨属, 20世纪50年代引入我国, 因其生长迅速、材质优良被广泛用于长江中下游地区的工业用材林和生态防护林建设。美洲黑杨是典型的雌雄异株植物, 目前广泛栽培的美洲黑杨既有雄株品系, 也有雌株品系。目前很少有研究关注美洲黑杨雌、雄株对重金属的生理耐受性差异, 不利于重金属污染区美洲黑杨品系的选择和推广。因此, 本研究以美洲黑杨雌、雄株为对象, 研究Cd污染条件下两种性别植株光合作用、叶绿素荧光参数、渗透调节、激素含量的变化, 以及接种R. intraradices对这些生理指标的影响, 认识美洲黑杨雌、雄株对重金属胁迫的响应差异, 为污染区杨树性别品系的选择及利用AM-速生木本植物修复Cd污染土壤提供理论依据。
多元方差分析表明(表1), 性别作为独立因子对各项气体交换参数的影响均不显著, Cd显著影响了所有的气体交换参数, 菌根仅显著影响了Pn和Gs。与雌雄各自对照相比, 单独Cd污染均不同程度地降低了美洲黑杨雌、雄株的气体交换速率, 雄株Pn、Gs、Ci、Tr分别下降19%、34%、14%和20%, 雌株分别下降52%、74%、22%和62%, 可见雌株的下降幅度更大。接种丛枝菌根真菌能显著增加受Cd胁迫雌株的Pn、Gs和Ci, 对雄株的这些参数无明显影响。 Table 1 表1 表1丛枝菌根真菌对Cd胁迫下的雌、雄美洲黑杨植株气体交换速率的影响(平均值±标准误差) Table 1Effects of arbuscular mycorrhizae fungi (AMF) inoculation on gas exchange rate in females and males of Populus deltoides exposed to Cd pollution (mean ± SE)
处理 Treatment
丛枝菌根 AM
性别 Sex
净光合速率 Pn (µmol·m-2·s-1)
气孔导度 Gs (mol·m-2·s-1)
胞间CO2浓度 Ci (µmol·mol-1)
蒸腾速率 Tr (mmol·m-2·s-1)
对照
-
雄株 Male
11.91 ± 0.26b
0.37 ± 0.04bcd
318.40 ± 10.05a
4.37 ± 0.27ab
Control
-
雌株 Female
13.68 ± 0.79ab
0.51 ± 0.02ab
310.85 ± 7.71ab
5.50 ± 0.27a
+
雄株 Male
12.34 ± 0.34b
0.41 ± 0.03abc
313.96 ± 7.72ab
5.11 ± 0.20a
+
雌株 Female
14.43 ± 0.42a
0.52 ± 0.05a
313.68 ± 10.97ab
5.37 ± 0.44a
Cd污染
-
雄株 Male
9.70 ± 0.46c
0.25 ± 0.02de
270.87 ± 6.51bc
3.48 ± 0.26bc
Cd pollution
-
雌株 Female
6.58 ± 0.27d
0.13 ± 0.02e
243.14 ± 9.73c
2.10 ± 0.33d
+
雄株 Male
8.86 ± 0.35c
0.27 ± 0.02d
273.86 ± 9.00bc
2.95 ± 0.26cd
+
雌株 Female
9.59 ± 0.28c
0.30 ± 0.01cd
288.10 ± 4.52ab
3.26 ± 0.11bcd
Fs
ns
ns
ns
ns
Fcd
***
***
***
***
FAMF
*
**
ns
ns
Fs×cd
***
***
ns
**
Fs×AMF
**
ns
*
ns
Fcd×AMF
ns
ns
ns
ns
Fs×cd×AMF
**
*
ns
**
Different letters in each column indicate significant difference (p < 0.05) according to Tukey test. Pn, Gs, Ci and Tr represent net photosynthesis rate, stomatal conductance, intercellular CO2 concentration, and transpiration rate, respectively. ns, *, **, *** represent for p > 0.05, 0.01< p < 0.05, 0.001 < p < 0.01, p ≤ 0.001, respectively. Fs, sex effect; Fcd, Cd effect; FAMF, AMF effect; Fs×cd, the interactive effect of sex and Cd; Fs×AMF, the interactive effect of sex and AMF; Fcd×AMF, the interactive effect of Cd and AMF; Fs×cd×AMF, the interactive effect of sex, Cd and AMF.根据Tukey检验, 同一列中不同字母表示处理间差异显著(p < 0.05)。ns、*、**、***分别表示p > 0.05, 0.01< p < 0.05, 0.001 < p < 0.01, p ≤ 0.001。Fs, 性别效应; Fcd, Cd效应; FAMF, 菌根效应; Fs×cd, 性别与Cd的交互效应; Fs×AMF, 性别与菌根的交互效应; Fcd×AMF, Cd与菌根的交互效应; Fs×cd×AMF, 性别、Cd和菌根三者的交互效应。 新窗口打开
2.2 各种处理下美洲黑杨雌、雄株Pn-Ci曲线及拟合参数的变化
如图1所示, 对照条件下, 雄株Pn-Ci曲线的初始斜率小于雌株, Cd污染条件下却恰好相反。多元方差分析(表2)表明, Cd作为独立因子显著影响了Vcmax、Jmax、TPU和Г, 菌根显著影响了Vcmax、Jmax和TPU。单独Cd污染及交互条件下美洲黑杨雌、雄株的Vcmax、Jmax和TPU的变化规律与气体交换速率参数变化相似, Cd污染引起雌株以上参数下降幅度更大。Cd胁迫条件下, 与丛枝菌根真菌的共生增加了雌株的Vcmax、Jmax和TPU, 但菌根的这种促进效应并没有表现在雄株中。 显示原图|下载原图ZIP|生成PPT 图1接种丛枝菌根真菌(AMF)对对照(A)和受Cd胁迫(B)美洲黑杨雌、雄株光合CO2响应曲线的影响 -->Fig. 1Effects of arbuscular mycorrhizae fungi (AMF) inoculation on Pn-Ci curves of females and males of Populus deltoides under control (A) and Cd-stressed (B) conditions. -->
Table 2 表2 表2接种丛枝菌根真菌(AMF)对受Cd胁迫美洲黑杨雌、雄株Pn-Ci曲线拟合参数的影响(平均值±标准误差) Table 2Effects of arbuscular mycorrhizae fungi (AMF) inoculation on parameters derived from the fitted Pn-Ci curves in females and males of Populus deltoides exposed to Cd pollution (mean ± SE)
处理 Treatment
丛枝菌根 AM
性别 Sex
最大羧化速率 Vcmax (µmol·m-2·s-1)
最大电子传递速率 Jmax (µmol·m-2·s-1)
磷酸丙糖利用率 TPU (µmol·m-2·s-1)
CO2补偿点 Г (µmol·mol-1)
对照
-
雄株 Male
34.17 ± 1.14bc
88.20 ± 1.80bc
6.26 ± 0.14abcd
6.20 ± 0.36b
Control
-
雌株 Female
37.80 ± 0.17b
93.60 ± 3.38b
7.91 ± 0.64abc
6.10 ± 0.21b
+
雄株 Male
42.57 ± 1.34b
117.33 ± 6.77a
8.88 ± 0.95a
5.57 ± 0.08b
+
雌株 Female
52.30 ± 3.13a
137.33 ± 5.78a
8.24 ± 0.63ab
5.34 ± 0.12b
Cd 污染
-
雄株 Male
25.87 ± 2.39cd
71.20 ± 2.72cd
4.17 ± 0.27d
6.87 ± 0.28b
Cd pollution
-
雌株 Female
22.67 ± 1.36d
59.50 ± 3.50d
5.19 ± 0.41bcd
9.91 ± 0.46a
+
雄株 Male
24.17 ± 2.81d
68.97 ± 4.34cd
4.68 ± 0.45cd
6.08 ± 0.20b
+
雌株 Female
25.30 ± 1.03cd
73.23 ± 4.52bcd
6.54 ± 1.22abcd
7.02 ± 0.38b
Fs
ns
ns
ns
ns
Fcd
***
***
***
***
FAMF
***
***
*
ns
Fs×cd
**
*
*
ns
Fs×AMF
ns
*
ns
**
Fcd×AMF
***
***
ns
**
Fs×cd×AMF
ns
ns
ns
**
Notes see Table 1. Vcmax, Jmax, TPU and Г represent the maximum rate of Rubisco carboxylase activity, maximum rate of photosynthetic electron transport, triose phosphate use, and CO2 compensation point, respectively.表注同表1。 新窗口打开
2.3 各种处理条件下美洲黑杨雌、雄株叶绿素荧光的影响
如表3所示, 多元方差分析表明, 性别、Cd和菌根作为独立因子显著影响了Fv/Fm和ΦPSII, Cd还显著影响了qP和qN。与对照相比, 单独Cd污染没有显著影响雄株的Fv/Fm、ΦPSII、qP和qN, 却显著降低了雌株的Fv/Fm、ΦPSII和qP, 增加了qN。交互条件下, 接种菌根真菌促进了雌株Fv/Fm、ΦPSII和qP的显著回升, 降低了其qN值, 除qN外雄株的这些参数没有显著 变化。 Table 3 表3 表3接种丛枝菌根真菌(AMF)对Cd胁迫下美洲黑杨雌、雄株叶绿素荧光参数的影响(平均值±标准误差) Table 3Effects of arbuscular mycorrhizae fungi (AMF) inoculation on chlorophyll a fluorescence parameters in females and males of Populus deltoides exposed to Cd pollution (mean ± SE)
处理 Treatment
丛枝菌根 AM
性别 Sex
Fv/Fm
ΦPSII
qP
qN
对照
-
雄株 Male
0.80 ± 0.01ab
0.72 ± 0.01a
0.94 ± 0.01a
0.19 ± 0.01cd
Control
-
雌株 Female
0.81 ± 0.01ab
0.73 ± 0.00a
0.96 ± 0.00a
0.19 ± 0.01cd
+
雄株 Male
0.81 ± 0.00ab
0.73 ± 0.00a
0.94 ± 0.01a
0.24 ± 0.01bc
+
雌株 Female
0.81 ± 0.00ab
0.73 ± 0.00a
0.93 ± 0.01a
0.17 ± 0.01d
Cd 污染
-
雄株 Male
0.78 ± 0.00bc
0.70 ± 0.01a
0.93 ± 0.01a
0.21 ± 0.01cd
Cd pollution
-
雌株 Female
0.69 ± 0.01e
0.60 ± 0.02b
0.83 ± 0.01b
0.33 ± 0.01a
+
雄株 Male
0.76 ± 0.00cd
0.70 ± 0.01a
0.92 ± 0.01a
0.26 ± 0.01b
+
雌株 Female
0.76 ± 0.01d
0.70 ± 0.02a
0.93 ± 0.02a
0.26 ± 0.01b
Fs
***
**
**
ns
Fcd
***
***
***
***
FAMF
***
**
ns
ns
Fs×cd
***
***
**
***
Fs×AMF
***
*
**
***
Fcd×AMF
ns
*
***
ns
Fs×cd×AMF
***
**
***
ns
Notes see Table 1. Fv/Fm, ΦPSII, qP and qN represent the maximum efficiency of photosystem II, effective quantum yield of photosystem II, photo-chemical quenching coefficient, and non-photochemical quenching coefficient, respectively.表注同表1。Fv/Fm、ΦPSII、qP、qN分别表示光系统II最大光化学量子产量、光系统II有效光化学量子产额、光化学淬灭系数和非光化学淬灭系数。 新窗口打开
2.4 各种处理条件下美洲黑杨雌、雄株渗透调节物质和激素含量的变化
多元方差分析(表4)表明, Cd和菌根作为独立因子均显著影响了脯氨酸和可溶性蛋白含量, 性别、Cd和菌根均显著影响了美洲黑杨的IAA和ABA含量。与对照相比, Cd污染条件下, 雌雄株的脯氨酸含量分别增加了140%和92.7% (图2A); 交互处理进一步增加了雌株的脯氨酸含量, 而雄株没有明显变化。单独Cd污染和交互处理均未显著影响美洲黑杨雌、雄株的可溶性蛋白含量(图2B)。Cd污染均显著降低了两种性别的IAA含量(图2C), 增加了ABA含量(图2D), 雌株的变化幅度更大。与单独Cd污染处理相比, 交互条件下, 接种菌根真菌的雌株具有更高的脯氨酸和IAA含量, 更低的ABA含量, 但与菌根真菌的共生并未显著影响雄株的这些指标。 显示原图|下载原图ZIP|生成PPT 图2接种丛枝菌根真菌(AMF)对受Cd胁迫美洲黑杨雌、雄株渗透调节物质和激素的影响(平均值±标准误)。根据Tukey检验, 不同字母表示处理间差异显著(p < 0.05)。 -->Fig. 2Effects of arbuscular mycorrhizae fungi (AMF) inoculation on osmotic solutes and phytohormones in females and males of Populus deltoides exposed to Cd pollution (mean ± SE). Different letters indicate significant differences between treatments (p < 0.05) according to Tukey test. -->
Table 4 表4 表4性别、Cd、菌根及其交互效应对渗透调节物质和激素影响的显著性检验 Table 4Statistical significance of the single and interactive effects of sex, Cd and arbuscular mycorrhizae fungi (AMF) on osmotic solutes and phytohormones based on univariate analyses of variance.
本研究通过接种AMF的方法, 研究了Cd污染条件下, AMF对美洲黑杨雌、雄株气体交换速率、Pn-Ci响应曲线、叶绿素荧光、渗透调节、植物激素的影响, 发现美洲黑杨雌、雄株的生理特征对Cd胁迫存在性别差异, 雌株气体交换速率、碳固定能力和激素平衡受到的负面影响更大, PSII受损更严重, 表明雌株对Cd胁迫更敏感。接种AMF一定程度上恢复了受Cd胁迫雌株的光合速率、羧化效率和电子传递效率, 增强了雌株的渗透调节能力, 促进了雌株的ABA和IAA的平衡, 但菌根效应对雄株并不显著。 The authors have declared that no competing interests exist. 作者声明没有竞争性利益冲突.
BjörkmanO, DemmigB (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins ., 170, 489-504.
[4]
BurzyńskiM, KłobusG (2004). Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress ., 42, 505-510. [本文引用: 1]
[5]
CaoL, WangQC, CuiDH (2006). Impact of soil cadmium contamination on chlorophyll fluorescence characters and biomass accumulation of four broad-leaved tree species seedlings ., 17, 769-772. (in Chinese with English abstract)[曹玲, 王庆成, 崔东海 (2006). 土壤镉污染对四种阔叶树苗木叶绿素荧光特性和生长的影响 . , 17, 769-772.] [本文引用: 1]
[6]
ChenLH, HanY, JiangH, KorpelainenH, LiCY (2011). Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis ., 62, 5037-5050. [本文引用: 1]
[7]
ChenLH, HuXW, YangWQ, XuZF, ZhangDJ, GaoS (2015). The effects of arbuscular mycorrhizal fungi on sex-specific responses to Pb pollution in Populus cathayana ., 113, 460-468. [本文引用: 1]
[8]
ChenLH, ZhangDJ, YangWQ, LiuY, ZhangL, GaoS (2016). Sex-specific responses of Populus deltoides to Glomus intraradices colonization and Cd pollution ., 155, 196-206. [本文引用: 2]
[9]
ChenLH, ZhangL, TuLH, XuZF, ZhangJ, GaoS (2014). Sex-related differences in physiological and ultrastructural responses of Populus cathayana to Ni toxicity ., 36, 1937-1946. [本文引用: 1]
[10]
CocozzaC, TrupianoD, LustratoG, AlfanoG, VitulloD, FalascaA, LomaglioT, de FeliceV, LimaG, RanalliG, ScippaS, TognettiR (2015). Challenging synergistic activity of poplar-bacteria association for the Cd phytostabilization ., 22, 19546-19561. [本文引用: 1]
[11]
DalCorsoG, FarinatiS, MaistriS, FuriniA (2008). How plants cope with cadmium: Staking all on metabolism and gene expression ., 50, 1268-1280. [本文引用: 1]
[12]
FarooqMA, AliS, HameedA, IshaqueW, MahmoodK, IqbalZ (2013). Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton ., 96, 242-249. [本文引用: 1]
[13]
FarquharGD, VonSV, BerryJA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species ., 149, 78-90.
[14]
Gómez-CadenasA, VivesV, ZandalinasSI, ManziM, Sánchez-PérezAM, Pérez-ClementeRM, ArbonaV (2015). Abscisic acid: A versatile phytohormone in plant signaling and beyond ., 16, 413-434. [本文引用: 1]
[15]
HaywardAR, CoatesKE, GalerAL, HutchinsonTC, EmeryRN (2013). Chelator profiling in Deschampsia cespitosa(L.) Beauv. reveals a Ni reaction, which is distinct from the ABA and cytokinin associated response to Cd ., 64, 84-91.
[16]
HuangJ, LingWT, SunYD, LiuJ (2012). Impacts of arbuscular mycorrhizal fungi inoculation on the uptake of cadmium and zinc by Alfalfa in contaminated soil ., 31, 99-105. (in Chinese with English abstract)[黄晶, 凌婉婷, 孙艳娣, 刘娟 (2012). 丛枝菌根真菌对紫花苜蓿吸收土壤中镉和锌的影响 . , 31, 99-105.] [本文引用: 1]
[17]
KüpperH, ParameswaranA, LeitenmaierB, TrtílekM, ŠetlíkI (2007). Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens ., 175, 655-674. [本文引用: 1]
[18]
LiDJ, MoJM, FangYT, JiangYQ (2004). Ecophysiological responses of woody plants to elevated nitrogen deposition ., 12, 482-488. (in Chinese with English abstract)[李德军, 莫江明, 方运霆, 江远清 (2004). 木本植物对高氮沉降的生理生态响应 . , 12, 482-488.] [本文引用: 1]
[19]
LiYL, JinZX, LiJM, GuoSM, GuanM (2015). Effects of soil microbe inoculation on the growth and photosynthetic physiology of Elsholtzia splendens under copper stress ., 35, 3926-3937. (in Chinese with English abstract)[李月灵, 金则新, 李钧敏, 郭素民, 管铭 (2015). 接种土壤微生物对铜胁迫下海州香薷生长及光合生理的影响 . , 35, 3926-3937.] [本文引用: 1]
[20]
Loth-PeredaV, OrsiniE, CourtyPE, LotaF, KohlerA, DissL, BlaudezD, ChalotM, NehlsU, BucherM, MartinF (2011). Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa ., 156, 2141-2154. [本文引用: 1]
[21]
MaHY (2007). Changes of Endogenous Hormones in Grapevine During Its Development . . (in Chinese with English abstract)[马海燕 (2007). 葡萄生长过程中内源激素含量变化的研究 . .] [本文引用: 1]
[22]
PallaraG, TodeschiniV, LinguaG, CamussiA, RacchiML (2013). Transcript analysis of stress defence genes in a white poplar clone inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and grown on a polluted soil ., 63, 131-139. [本文引用: 1]
[23]
PantinF, MonnetF, JannaudD, CostaJM, RenaudJ, MullerB, SimonneauT, GentyB (2013). The dual effect of abscisic acid on stomata ., 197, 65-72. [本文引用: 1]
[24]
PereiraMP, de Almeida RodriguesLC, CorrêaFF, de CastroEM, RibeiroVE, PereiraFJ (2016). Cadmium tolerance in Schinus molle trees is modulated by enhanced leaf anatomy and photosynthesis ., 30, 807-814. [本文引用: 1]
[25]
PrustyR, GrisafiP, FinkGR (2004). The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae ., 101, 4153-4157. [本文引用: 1]
[26]
RanQ, ZhongZC (2015). Effect of AMF on the photosynthetic characteristics and growth of maize seedlings under the stress of drought, high calcium and their combination in karst area ., 35, 460-467. (in Chinese with English abstract)[冉琼, 钟章成 (2015). 模拟岩溶旱钙土壤基质中AM真菌对玉米幼苗光合生长的影响 . , 35, 460-467.] [本文引用: 1]
[27]
RozpądekP, WężowiczK, NosekM, WażnyR, TokarzK, LembiczM, MiszalskiZ, TurnauK (2015). The fungal endophyteEpichloë typhina improves photosynthesis efficiency of its host orchard grass(Dactylis glomerata) ., 242, 1025-1035. [本文引用: 1]
[28]
Sanità di ToppiL, GabbrielliR (1999). Response to cadmium in higher plants ., 41, 105-130. [本文引用: 1]
StroińskiA, GiżewskaK, ZielezińskaM (2013). Abscisic acid is required in transduction of cadmium signal to potato roots ., 57, 121-127.
[31]
WangSZ, JinZX, LiYL, GuYF (2015). Effects of arbuscular mycorrhizal fungi inoculation on the photosynthetic pigment contents, anti-oxidation capacity and membrane lipid peroxidation of Elsholtzia splendens leaves under copper stress ., 35, 7699-7708. (in Chinese with English abstract)[王穗子, 金则新, 李月灵, 谷银芳 (2015). 铜胁迫条件下AMF对海州香薷光合色素含量、抗氧化能力和膜脂过氧化的影响 . , 35, 7699-7708.] [本文引用: 1]
[32]
XuX, PengGQ, WuCC, KorpelainenH, LiCY (2008). Drought inhibits photosynthetic capacity more in females than in males of Populus cathayana ., 28, 1751-1759. [本文引用: 1]
[33]
ZhaoHX, LiY, DuanBL, KorpelainenH, LiCY (2009). Sex-related adaptive responses of Populus cathayana to photoperiod transitions ., 32, 1401-1411. [本文引用: 1]
Physiological and ultra-structural changes in Brassica napus seedlings induced by cadmium stress 1 2014
Sex-related differences in physiological and ultrastructural responses of Populus cathayana to Ni toxicity 1 2014
... 光合作用是植物最重要的生理过程,与其生产力和产量密切相关.Cd胁迫会引起植物失绿、卷叶、生长减缓, 影响植物的光合速率和碳同化过程.前人研究表明, Cd胁迫通过影响与光合有关的大量(如N和P)和微量元素(Fe和Mg)的吸收、还原和同化, 降低色素含量, 干扰气孔行为和水分平衡, 破坏光合机构, 影响电子传递(Sanità di Toppi & Gabbrielli, 1999), 进而影响植物的光合作用.本研究发现: Cd胁迫下美洲黑杨雌、雄株的气体交换参数均不同程度下降, 雌株的下降更明显, 与滇杨(P. yunnanensis)和青杨(P. cathayana)雌、雄株在重金属胁迫条件下的响应特征相似(Chen et al., 2011, 2014), 表明美洲黑杨雌株的光合作用对Cd胁迫更为敏感, 光合能力受到更明显的抑制作用.另一方面, Cd胁迫引起美洲黑杨雌株Vcmax、Jmax、TPU下降更显著, Г却显著上升, 说明雌株的Rubisco活性、电子传递速率、RuBP再生、无机磷供给受到更大的抑制(Xu et al., 2008; Pereira et al., 2016), 同化CO2的能力下降.此外, 我们发现接种AMF在一定程度上缓解了雌株光合作用受到的负面影响, AM对胁迫条件下宿主植物光合能力下降的缓解效应也被其他****观察到(李月灵等, 2015; 冉琼和钟章成, 2015), 这与菌根促进宿主植物养分平衡和抗氧化能力(Chen et al., 2015), 以及增加宿主植物光能捕获和光化学效率有关(Rozpądek et al., 2015; 王穗子等, 2015).值得注意的, 接种AMF并未对雄株的光合能力产生显著影响, 这可能与接种AMF引起雄株地上部分(叶片和茎) Cd含量显著升高有关(Chen et al., 2016), 有毒Cd离子的积累可能掩盖了菌根的效应.但是, 我们之前的报道(Chen et al., 2016)指出, Cd胁迫及菌根处理均未显著影响两种性别美洲黑杨的生物量积累, 受Cd胁迫的雌雄幼苗在处理期间大多数时间生长正常, 未表现出毒理症状, 仅在处理结束时雌株老叶表现出失绿和卷叶, 而雄株的症状较轻.这说明Cd胁迫对两种性别美洲黑杨的光合和生长抑制作用在处理的大多数时间并不明显, 伴随着处理时间的延长及有毒Cd离子积累量的增加, 其光合速率受到的抑制作用开始突显. ...
Challenging synergistic activity of poplar-bacteria association for the Cd phytostabilization 1 2015
... 伴随着我国工农业和城市化的快速发展, 重金属污染物逐渐成为一类主要的环境污染物.我国环境保护部和国土资源部于2014年4月公布的《全国土壤污染状况调查公报》显示, 全国土壤总的重金属超标率达到16.1%, 耕地污染超标率达19.4%, 镉(Cd)的点位超标率最大, 达到7.0%.Cd作为植物的非必需元素, 过量积累会对植物产生毒害作用, 植物体内积累3-10 mg·kg-1 Cd就会扰乱植物的基本代谢过程(DalCorso et al., 2008).光合作用是植物生长和产量形成的关键生物学过程, 对重金属毒害非常敏感, 重金属离子的积累会影响叶绿素的生物合成, 破坏光合膜的结构和功能, 阻断电子传递, 扰乱光合磷酸化, 钝化暗反应的关键酶(Benavides et al., 2005; Küpper et al., 2007), 还会影响叶肉细胞的水势和膨压, 调节气孔行为(Cocozza et al., 2015), 进而抑制气体交换速率.目前, 重金属对光合作用的毒理研究主要集中在草本植物(尤其是超富集植物, hyperaccumulator)和农作物上, 对木本植物的研究相对较少. ...
How plants cope with cadmium: Staking all on metabolism and gene expression 1 2008
... 伴随着我国工农业和城市化的快速发展, 重金属污染物逐渐成为一类主要的环境污染物.我国环境保护部和国土资源部于2014年4月公布的《全国土壤污染状况调查公报》显示, 全国土壤总的重金属超标率达到16.1%, 耕地污染超标率达19.4%, 镉(Cd)的点位超标率最大, 达到7.0%.Cd作为植物的非必需元素, 过量积累会对植物产生毒害作用, 植物体内积累3-10 mg·kg-1 Cd就会扰乱植物的基本代谢过程(DalCorso et al., 2008).光合作用是植物生长和产量形成的关键生物学过程, 对重金属毒害非常敏感, 重金属离子的积累会影响叶绿素的生物合成, 破坏光合膜的结构和功能, 阻断电子传递, 扰乱光合磷酸化, 钝化暗反应的关键酶(Benavides et al., 2005; Küpper et al., 2007), 还会影响叶肉细胞的水势和膨压, 调节气孔行为(Cocozza et al., 2015), 进而抑制气体交换速率.目前, 重金属对光合作用的毒理研究主要集中在草本植物(尤其是超富集植物, hyperaccumulator)和农作物上, 对木本植物的研究相对较少. ...
Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton 1 2013
A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species 1980
Abscisic acid: A versatile phytohormone in plant signaling and beyond 1 2015
... ABA和IAA是植物体内重要的内源激素, 在调控植物的生长发育、信号转导、植物休眠、菌根形成、逆境耐受性等方面具有重要的生物学功能(Prusty et al., 2004; Gomez-Cadenas et al., 2015).ABA的增加会降低气孔导度和叶片微管组织的水力导度(Pantin et al., 2013), 影响气孔交换速率.本研究中, Cd胁迫引起了美洲黑杨雌、雄株ABA的显著上升, 与Hayward等(2013)和Stroiński等(2013)的研究结果相似, ABA的增加被认为与植物抗逆基因的调控和表达有关, 有助于抑制有毒Cd离子的运输和积累.值得注意的是, 与雄株相比, 雌株ABA上升更显著, 引起了雌株气孔导度更大程度的下降, 光合速率下降也更明显.另一方面, 适量的IAA则会促进乙烯的产生, 进而促进植物的营养生长(Zhao et al., 2009).Cd胁迫条件下, 雌株IAA的下降更为显著, IAA下降与光合速率下降及生长减缓有关.总体来看, 雌株两种激素受Cd胁迫的影响更显著, 表明其激素平衡更容易受到影响, 接种AMF有利于恢复激素的平衡, 进而减轻Cd胁迫引起的负面影响. ...
Chelator profiling in Deschampsia cespitosa(L.) Beauv. reveals a Ni reaction, which is distinct from the ABA and cytokinin associated response to Cd 2013
Transcript analysis of stress defence genes in a white poplar clone inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and grown on a polluted soil 1 2013