薛仁风,1, 丰明1, 黄宇宁1, Matthew BLAIR2, Walter MESSIER,3, 葛维德,11辽宁省农业科学院作物研究所,中国沈阳 110161 2田纳西州立大学农业与环境科学系,美国田纳西州纳什维尔 37209 3进化基因组学公司,美国路易斯安那州拉斐特 80501
Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean
XUE RenFeng,1, FENG Ming1, HUANG YuNing1, Matthew BLAIR2, Walter MESSIER,3, GE WeiDe,11Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China 2Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville 37209, TN USA 3Evolutionary Genomics, Inc., Lafayette 80501, LA USA
Abstract 【Objective】By analyzing the sequence and expression pattern characteristics of PvEG261 from common beans, and studying its resistance to Fusarium wilt and drought, the foundation was laid for the signal regulation network analysis of Fusarium wilt and drought-resistance and molecular breeding in common beans. 【Method】 Bioinformatics analysis was performed on the open reading frame (ORF) of PvEG261 to predict the physical and chemical properties, secondary structure, signal peptide sequence of the protein encoded by the PvEG261, and search for highly homologous protein sequence in NCBI database through Blastp tool online for sequence alignment and phylogenetic tree construction; the tissue expression specificity of PvEG261 and the expression pattern in response to Fusarium wilt pathogen and drought stress were analyzed by qRT-PCR; PvEG261 overexpression vector was constructed and transformed into Agrobacterium rhizogenes K599 to induce the generation of hairy transgenic roots in common beans. Meanwhile, the PvEG261 silencing vector was constructed, and the transcription product in vitro was inoculated on the seedlings of common bean to interfere with PvEG261 expression. Through inoculation with the pathogen and drought treatment, the phenotypes of control, PvEG261-overexpressed and silenced plants were observed, disease and drought-resistance were both identified, and hydrogen peroxide (H2O2) content, malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) activity as physiological and biochemical indicators were all assayed. 【Result】 The cDNA sequence of PvEG261 was 471 bp, which encodes a protein composed of 156 amino acids. The structure prediction indicated that it contained 10 strand structures, the predicted molecular mass of the encoding product was 38.89 kD, and the theoretical pI was 5.21. PvEG261 belonged to the members of dirigent gene superfamily, it contained a signal peptide sequence of 10 amino acids, and belonged to a secreted protein. The relationship between PvEG261 and cowpea DIR22 protein is the closest, which reached 91.61%. The results of qRT-PCR showed that the expression in the root tissues increased significantly after inoculation with Fusarium wilt pathogen and drought treatment, and the gene has obvious tissue expression specificity, with the highest expression level in the roots. After inoculation with pathogen and drought treatment, the disease and drought-resistance of the overexpressed plants were significantly improved in comparison with the control, the plant disease scores and the wilting degree caused by water shortage were significantly reduced, and the H2O2 content, POD and SOD activity in the roots were all significantly higher than the control plant, while the MDA content was dramatically lower than the control plant. The disease and wilting degree of the gene silenced plants were significantly increased. The H2O2 content, POD and SOD activity in the roots were significantly lower than the control plant, and the MDA content was significantly higher than the control plants. 【Conclusion】 PvEG261 responded to Fusarium wilt pathogen infection and drought stress, and positively regulated the Fusarium wilt and drought-resistance in common beans. Keywords:common bean;PvEG261;Fusarium wilt;drought stress;response mechanism
PDF (2209KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 薛仁风, 丰明, 黄宇宁, Matthew BLAIR, Walter MESSIER, 葛维德. PvEG261对普通菜豆镰孢菌枯萎病抗性和抗旱性的影响. 中国农业科学, 2021, 54(20): 4274-4285 doi:10.3864/j.issn.0578-1752.2021.20.003 XUE RenFeng, FENG Ming, HUANG YuNing, Matthew BLAIR, Walter MESSIER, GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean. Scientia Acricultura Sinica, 2021, 54(20): 4274-4285 doi:10.3864/j.issn.0578-1752.2021.20.003
PvEG261的cDNA序列由美国进化基因组学公司Walter Messier教授提供[24]。供试普通菜豆(Phaseolus vulgaris L.)品种BRB130、普通菜豆镰孢菌枯萎病原菌FOP-DM01菌株(Fusarium oxysporum f. sp. phaseoli isolate FOP-DM01)由辽宁省农业科学院保存,病原菌的接种参考XUE等[25]方法;植物过表达载体p35SGFPGUS+、基因沉默表达载体pG7R2V和pGHopR1均由美国田纳西州立大学农业与环境科学系Matthew Blair教授惠赠;发根农杆菌(Agrobacterium rhizogenes)K599菌株感受态细胞购自上海唯地生物技术有限公司,限制性内切酶、T4-DNA连接酶均购自NEB公司;体外转录试剂盒(RiboMAXTM Large Scale RNA Production Systems Kit)购自Promega公司;RNA提取试剂盒、DNA聚合酶、反转录试剂盒、荧光定量PCR试剂盒购自天根生化科技(北京)有限公司;T载体克隆试剂盒购自宝生物工程(大连)有限公司;PCR引物均由生工生物工程(上海)股份有限公司合成(表1)。
Table 1 表1 表1本试验所用引物 Table 1Primers used in this research
引物名称 Primer name
引物序列 Primer sequence (5′-3′)
EG261-F
GTTGTGGGAAGTGCTGAA
EG261-R
CCCTGGCAAATCTGAATA
ACT-F
GAAGTTCTCTTCCAACCATCC
ACT-R
TTTCCTTGCTCATTCTGTCCG
OE-F
GCTCTAGAATGTCCTTAAGCTACAAGAA
OE-R
GCGAGCTCTTAGTGGTAAACGTAGACGT
GS-F
GCGGATCCCTTAGCCACTTCAGGTTCT
GS-R
GCATCGATTCGTGTTGTTCCTCGTTT
下划线序列代表限制性内切酶位点 The underlined sequence represents the restriction endonuclease site
A:PvEG261蛋白序列分析;B:PvEG261蛋白和其他植物中的Dirigent蛋白序列比对。绿色代表相似性达50%以上;粉色代表相似性达75%以上;黑色代表相似性达100%;C:PvEG261蛋白和其他植物中的Dirigent蛋白的同源进化树分析。CaDIR22:咖啡,XP_027102329.1;LaDIR22:羽扇豆,XP_019462472.1;MpDIR3:刺毛黧豆,RDX73385.1;ApDIR22:相思子,XP_027337739.1;GmDIR22:大豆,XP_006576480.1;GsDIR:野生大豆,KHN26491.1;VaDIR22:红豆,XP_017441835.1;VrDIR22:绿豆,XP_014492698.1;VuDIR22:豇豆,XP_027906892.1 Fig. 1Sequence analysis of PvEG261
A: Sequence analysis of PvEG261 protein; B: Multiple sequence alignment of PvEG261 and the dirigent proteins from other plants. Green box indicated no less than 50% in the sequence identity; Pink box indicated no less than 75% in the sequence identity; Black box indicated 100% in the sequence identity; C: Phylogenetic analysis of PvEG261 and the dirigent proteins from other plants. CaDIR22: Coffea arabica, XP_027102329.1; LaDIR22: Lupinus angustifolius, XP_019462472.1; MpDIR3: Mucuna pruriens, RDX73385.1; ApDIR22: Abrus precatorius, XP_027337739.1; GmDIR22: Glycine max, XP_006576480.1; GsDIR: Glycine soja, KHN26491.1; VaDIR22: Vigna angularis, XP_017441835.1; VrDIR22: Vigna radiata, XP_014492698.1; VuDIR22: Vigna unguiculata, XP_027906892.1
A:PvEG261的组织特异性表达分析;B:病原菌诱导PvEG261的表达量变化;C:PEG6000诱导PvEG261的表达量变化。不同小写字母表示在0.05水平差异显著。下同 Fig. 2Expression analysis of PvEG261
A: Tissue specific expression analysis of PvEG261; B: PvEG261 expression analysis induced by FOP-DM01; C: PvEG261 expression analysis induced by PEG6000. Different lowercase letters indicate significant difference at the 0.05 probability level. The same as below
A:PvEG261过表达植株2周后病情特征;B:PvEG261过表达植株病级分析;C:PvEG261沉默植株2周后病情特征;D:PvEG261沉默植株病级分析。NT:非转化植株;EV:空载体转化植株;OE:PvEG261转基因不定根植株;GS:PvEG261沉默植株。下同 Fig. 4Disease assessment of the PvEG261 overexpressed and silenced plants
A: Disease characteristics of the PvEG261 overexpressed plants at 2 weeks post inoculation; B: Disease scores of the PvEG261 overexpressed plants; C: Disease characteristics of the PvEG261 silenced plants at 2 weeks post inoculation; D: Disease scores of the PvEG261 silenced plants. NT: Non-transformed plants; EV: Empty vector plants; OE: PvEG261 hair-root transgenic plants; GS: PvEG261 gene silencing plants. The same as below
A:PvEG261过表达植株干旱胁迫2周后表型特征;B:PvEG261过表达植株根长度分析;C:PvEG261过表达植株根鲜重分析;D:PvEG261沉默植株干旱胁迫2周后表型特征;E:PvEG261沉默植株根长度分析;F:PvEG261沉默植株根鲜重分析 Fig. 5Drought resistance of the PvEG261 overexpressed and silenced plants
A: Phenotypic characteristics of the PvEG261 overexpressed plants at 2 weeks under drought stress; B: Root length of the PvEG261 overexpressed plants under drought stress; C: Root fresh weight of the PvEG261 overexpressed plants under drought stress; D: Phenotypic characteristics of the PvEG261 silenced plants at 2 weeks under drought stress; E: Root length of the PvEG261 silenced plants under drought stress; F: Root fresh weight of the PvEG261 silenced plants under drought stress
A:PvEG261过表达植株H2O2含量分析;B:PvEG261过表达植株SOD活性分析;C:PvEG261过表达植株POD活性分析;D:PvEG261过表达植株MDA含量分析;E:PvEG261沉默植株H2O2含量分析;F:PvEG261沉默植株SOD活性分析;G:PvEG261沉默植株POD活性分析;H:PvEG261沉默植株MDA含量分析 Fig. 6Analysis of H2O2 contents, SOD activity, POD activity and MDA contents in roots of common beans induced by F. oxysporum f. sp. phaseoli and drought stress
A: H2O2 contents of PvEG261 overexpressed plants; B: SOD activity of PvEG261 overexpressed plants; C: POD activity of PvEG261 overexpressed plants; D: MDA contents of PvEG261 overexpressed plants;E: H2O2 contents of PvEG261 silenced plants; F: SOD activity of PvEG261 silenced plants; G: POD activity of PvEG261 silenced plants; H: MDA contents of PvEG261 silenced plants
CUIM M, MAL, ZHANGJ J, WANGX, PANGY Z, WANGX M. Gene expression and salt-tolerance analysis of MsDWF4 gene from Alfalfa Scientia Agricultura Sinica, 2020, 53(18):27-41. (in Chinese) [本文引用: 1]
DAVINL B, LEWISN G. Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis Plant Physiology, 2000, 123:453-462. DOI:10.1104/pp.123.2.453URL [本文引用: 1]
ZHANGC H, CAOY S, ZONGX X, WANGZ G, WANGS M. Morphological diversity and classification of common bean (Phaseolus vulgaris L.) germplasm resource in China Scientia Agricultura Sinica, 2005, 38(1):27-32. (in Chinese) [本文引用: 1]
PEREZ-VEGAE, PAEDAA, RODRIGUEZ-SUAREZC, CAMPAA, GIRALDEZR, FERREIRAJ J. Mapping of QTLs for morpho- agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.) Theoretical and Applied Genetics, 2010, 120:1367-1380. DOI:10.1007/s00122-010-1261-5URL [本文引用: 1]
SCHMUTZJ, MCCLEANP E, MAMIDIS, WUG A, CANNONS B, GRIMWOODJ, JENKINSJ, SHUS Q, SONGQ J, CHAVARROC, TORRES-TORRESM, GEFFROYV, MOGHADDAMS M, GAOD Y, ABERNATHYB, BARRYK, BLAIRM, BRICKM A, CHOVATIAM, GEPTSP, GOODSTEIND M, GONZALESM, HELLSTENU, HYTEND L, JIAG F, KELLYJ D, KUDRNAD, LEERRICHARDM M S, MIKLASP N, OSORNOJ M, RODRIGUESJ, THAREAUV, URREAC A, WANGM, YUY, ZHANGM, WINGR A, CREGANP B, ROKHSARD S, JACKSONS A. A reference genome for common bean and genome-wide analysis of dual domestications Nature Genetics, 2014, 46:707-713. DOI:10.1038/ng.3008URL [本文引用: 1]
HARTERL L. A Fusarium disease of beans. (Abstr.) Phytopathology, 1929, 19:82. [本文引用: 1]
RALPHS, PARKJ Y, BOHLMANNJ, MANSFIELDS D. Dirigent proteins in conifer defense: Gene discovery, phylogeny and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.) Plant Molecular Biology, 2006, 60:21-40. DOI:10.1007/s11103-005-2226-yURL [本文引用: 4]
BURLATV, KWONM, DEVINL B, LEWISN G. Dirigent proteins and dirigent sites in lignifying tissues Phytochemistry, 2001, 57:883-897. DOI:10.1016/S0031-9422(01)00117-0URL [本文引用: 3]
DAVINL B, WANGH B, CROWELLA L, BEDGARD L, MARTIND M, SARKANENS, LEWISN G. Stereoselective biomolecular phenoxy radical coupling by an auxiliary (Dirigent) protein without an active center Science, 1997, 275:362-366. DOI:10.1126/science.275.5298.362URL [本文引用: 1]
LIUJ, STIPANOVICR D, BELLA A, PUCKHABERL S, MAGILLC W. Stereoselective coupling of hemigossypol to form (+)-gossypol in moco cotton is mediated by a dirigent protein Phytochemistry, 2008, 69:3038-3042. DOI:10.1016/j.phytochem.2008.06.007URL [本文引用: 1]
PICKELB, CONSTANTINM A, PFANNSTIELJ, CONRADJ, BEIFUSSU, SCHALLERA. An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols Angewandte Chemie-International Edition, 2010, 49:202-204. DOI:10.1002/anie.200904622URL [本文引用: 1]
DALISAYD S, KIMK W, LEEC, YANGH, RÜBELO, BOWENB P, DAVINL B, LEWISN G. Dirigent protein-mediated lignan and cyanogenic glucoside formation in flax seed: integrated omics and MALDI mass spectrometry imaging Journal of Natural Products, 2015, 78:1231-1242. DOI:10.1021/acs.jnatprod.5b00023URL [本文引用: 1]
EFFENBERGERI, ZHANGB, LIL, WANGQ, LIUY, KLAIBERI, PFANNSTIELJ, WANGQ M, SCHALLERA. Dirigent proteins from cotton(Gossypium sp.) for the atropselective synthesis of gossypol Angewandte Chemie-International Edition, 2015, 54:14660-14663. DOI:10.1002/anie.v54.49URL [本文引用: 1]
LEWISN G, DAVINL B. Evolution of lignin and neolignan biochemical pathways//NES W D, (Ed.). Isopentenoids and Other Natural Products Evolution, Function Washington DC: ACS Symposium Series, 1994, 562:202-246. [本文引用: 1]
LEWISN G, DAVINL B. Lignans: Biosynthesis and function// BARTON D H R, NAKANISHI K, METH-COHN O, (Eds.). Comprehensive Natural Products Chemistry London: Elsevier, 1999: 639-712. [本文引用: 1]
ZHOUJ, LEEC, ZHONGR, YEZ H. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis The Plant Cell, 2009, 21:248-266. DOI:10.1105/tpc.108.063321URL [本文引用: 1]
RALPHS G, JANCSIKS, BOHLMANNJ. Dirigent proteins in conifer defense II: Extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp) Phytochemistry, 2007, 68:1975-1991. DOI:10.1016/j.phytochem.2007.04.042URL [本文引用: 3]
WUR H, WANGL L, WANGZ, SHANGH H, LIUX, ZHUY, QID D, DENGX. Cloning and expression analysis of a dirigent protein gene from the resurrection plant Boea hygrometrica Progress in Natural Science, 2009, 19:347-352. DOI:10.1016/j.pnsc.2008.07.010URL [本文引用: 3]
MOURAJ C M S, BONINEC, VIANAJ, DORNELASM C, MAZZAFERAP. Abiotic and biotic stresses and changes in the lignin content and composition in plants Journal of Integrative Plant Biology, 2010, 52:360-376. DOI:10.1111/jipb.2010.52.issue-4URL [本文引用: 1]
ZHUL, ZHANGX, TUL, ZENGF, NIEY, GUOX. Isolation and characterization of two novel dirigent-like genes highly induced in cotton (Gossypium barbadense and G. hirsutum) after infection by Verticillium dahliae Journal of Plant Pathology, 2007, 89:41-45. [本文引用: 1]
REBOLEDOG, DELCAMPO R, ALVAREZA, MONTESANOM, MARAH, PONCEDE LEÓN I. Physcomitrella patens activates defense responses against the pathogen Colletotrichum gloeosporioides International Journal of Molecular Sciences, 2015, 16:22280-22298. DOI:10.3390/ijms160922280URL [本文引用: 1]
FRANCESCHIV R, KROKENEP, KREKLINGT, CHRISTIANSENE. Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or barkbeetle attack in Norway spruce (Pinaceae) American Journal of Botany, 2000, 87:314-326. DOI:10.2307/2656627URL [本文引用: 1]
NAGYN E, FRANCESCHIV R, SOLHEIMH, KREKLINGT, CHRISTIANSENE. Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): Anatomy and cytochemical traits American Journal of Botany, 2000, 87:302-313. DOI:10.2307/2656626URL [本文引用: 1]
WANGY, FRISTENSKYB. Transgenic canola lines expressing pea defense gene DRR206 have resistance to aggressive blackleg isolates and to Rhizoctonia solani Molecular Breeding, 2001, 8:263-271. DOI:10.1023/A:1013706400168URL [本文引用: 1]
MESSIERW. Dirigent gene EG261 and its orthologs and paralogs and their uses for pathogen resistance in plants, US, US 9834783B2, 2017. [本文引用: 1]
XUER F, WUX B, WANGY J, ZHUANGY, CHENJ, WUJ, GEW D, WANGL F, WANGS M, BLAIRM W. Hairy root transgene expression analysis of a secretory peroxidase(PvPOX1)from common bean infected by Fusarium wilt Plant Science, 2017, 260:1-7. DOI:10.1016/j.plantsci.2017.03.011URL [本文引用: 2]
CHENJ B, WANGS M, JINGR L, MAOX G. Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses Journal of Plant Physiology, 2009, 166(1):12-19. DOI:10.1016/j.jplph.2008.02.010URL [本文引用: 2]
ESTRADA-NAVARRETEG, ALVARADO-AFFANTRANGERX, OLIVARESJ E, GUILLÉNG, DÍAZ-CAMINOC, CAMPOSF, QUINTOC, GRESSHOFFP M, SANCHEZF. Fast, efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes Nature Protocols, 2007, 2(7):1819-1824. DOI:10.1038/nprot.2007.259URL [本文引用: 1]
DÍAZ-CAMINOC, ANNAMALAIP, SANCHEZF, KACHROOA, GHABRIALS A. An effective virus-based gene silencing method for functional genomics studies in common bean Plant Methods, 2011, 7(1):16. DOI:10.1186/1746-4811-7-16URL [本文引用: 1]
SAGISAKAS. The occurrence of peroxide in a perennial plant, Populus gelrica Plant Physiology, 1976, 57:308-309. DOI:10.1104/pp.57.2.308URL [本文引用: 1]
ZHANGH, GAOX, ZHIY, LIX, ZHANGQ, NIUJ, WANGJ, ZHAIH, ZHAON, LIJ, LIUQ, HES. A non-tandem CCCH-type zinc finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato New Phytologist, 2019, 223:1918-1936. DOI:10.1111/nph.v223.4URL [本文引用: 1]
DOH M, HONGJ K, JUNGH W, KIMS H, HAMJ H, HWANGB K. Expression of peroxidaselike genes, H2O2 production, and peroxidase activity during the hypersensitive response to Xanthomonas campestris pv. Vesicatoria in Capsicum annuum Molecular Plant Microbe Interaction, 2003, 16:196-205. DOI:10.1094/MPMI.2003.16.3.196URL [本文引用: 1]
DAVINL B, WANGH B, CROWELLA L, BEDGARD L, MARTIND M, SARKANENS, LEWISN G. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center Science, 1997, 275:362-366. DOI:10.1126/science.275.5298.362URL [本文引用: 1]
KIMM K, JEONJ H, FUJITAM, DAVINL B, LEWISN G. The western red cedar (Thuja plicata) 8-8’ DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificity Plant Molecular Biology, 2002, 49:199-214. DOI:10.1023/A:1014940930703URL [本文引用: 1]
LIN, ZHAOM, LIUT, DONGL, CHENGQ, WUJ, WANGL, CHENX, ZHANGC, LUW, XUP, ZHANGS. A novel soybean dirigent gene GmDIR22 contributes to promotion of lignan biosynthesis and enhances resistance to Phytophthora sojae Frontier in Plant Science, 2017, 8:1185. [本文引用: 2]
MAQ H, LIUY C. TaDIR13, a dirigent protein from wheat, promotes lignan biosynthesis and enhances pathogen resistance Plant Molecular Biology Reporter, 2015, 33(1):143-152. DOI:10.1007/s11105-014-0737-xURL [本文引用: 2]
GUANR P. Molecular mechanism of dirigent genes involved in the interaction of Panax notoginseng―Fusarium solani [D]. Kunming: Kunming University of Science and Technology, 2018. (in Chinese) [本文引用: 3]
ZHANGH W, LIJ G, ZHENGJ P, QUZ L. Cloning and expression of a potato dirigent-like gene(StDIR1) responsive to infection by Phytophthora infestans. Acta Agriculturae Boreali-Sinica, 2012(2):23-29. (in Chinese) [本文引用: 2]
GUOB S, SHIG Y, WANGK H, LIUS E, ZHAOC P, WANGZ X, GENGJ Y, HUAJ P. Expression differences of dirigent-Like protein genes in upland cotton responsed to infection by Verticillium dahlia Scientia Agricultura Sinica, 2014, 47(22):4349-4359. (in Chinese) [本文引用: 2]
THAMILARASAN S K, PARKJ I, AHMEDN U, JUNGH J, HURY, KANGK K, LIMY P, NOUI S. Characterization and expression analysis of dirigent family genes related to stresses in Brassica Plant Physiology and Biochemstry, 2013, 67:144-153. [本文引用: 1]
GUOJ L, XUL P, FANGJ P, SUY C, FUH Y, QUEY X, XUJ S. A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses Plant Cell Reports, 2012, 31(10):1801-1812. DOI:10.1007/s00299-012-1293-1URL [本文引用: 1]
LIUG, SHENGX, GREENSHIELDSD L, OGIEGLOA, KAMINSKYJS, SELVARAJG, WEIY. Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns Molecular Plant Microbe Interaction, 2005, 18(7):730-741. DOI:10.1094/MPMI-18-0730URL [本文引用: 1]
MAJIDM, AKBARM, TOMOAKIH, MAKIK. Drought stress alters water relations and expression of pip-type aquaporin genes in Nicotiana tabacum plants Plant & Cell Physiology, 2008(5):801-813. [本文引用: 1]