Screening and Sequence Analysis of BAC Clone Contained PG Gene Controlling Clingstone/Freestone Characteristic of Peach
MENG JunRen,, NIU Liang, DENG Li, PAN Lei, LU ZhenHua, CUI GuoChao, WANG ZhiQiang,, ZENG WenFang,Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences/National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou 450009
Abstract 【Objective】Tandem repeats and large segment deletions of Polygalacturonase (PG) gene was related to the clingstone/freestone characteristic of peach (Prunus persica) fruit. In this study, the sequence character of F-M locus of clingstone peach was analyzed to provide a basis for the development of related molecular markers. 【Method】With a Bacterial Artificial Chromosome library of clingstone peach 87-7-1 constructed, the positive BAC clone contained F-M locus was screened from the BAC library by PCR analysis. The screened BAC clone was sequenced by single-molecule nanopore technology. Gene annotation and sequence alignment were performed by bioinformatics. 【Result】PCR primers were designed based on re-sequencing data of existing peach varieties, and PCR reactions were performed with all the BAC library clones. Amplification products of the sequences in upstream/downstream of F-M loci were corrected, and then the target clone 46-B-10 was obtained. Full-length sequencing showed that the fragment with the length of 111612 bp and GC content of 37.03% was inserted between upstream and downstream primers. The homologous region of 46-B-10 was determined by sequence alignment with the reference genome Prunus_persica_v2.0. Five genes (Prupe.4G261700, Prupe.4G261800, Prupe.4G261900, Prupe.4G262000, and Prupe.4G262500) in F-M locus were found in the BAC clone 46-B-10. In comparison, 87-7-1 with 34 kb sequence including four genes was discarded, and one of them was EndoPGF, which controlled peach freestone and was reported previously. 【Conclusion】Compared with the reference genome freestone variety ‘Lovell’, there was only EndoPGM (Prupe.4G261900) in F-M locus of clingstone peach individual 87-7-1, while EndoPGF (Prupe.4G262200) was discarded. In this study, the structural variation of F-M locus in clingstone peach was determined, which has laid an important foundation for the development of molecular markers for clingstone/freestone trait in peach. Keywords:peach;clingstone/freestone;PG gene;BAC library
PDF (2242KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 孟君仁, 牛良, 邓丽, 潘磊, 鲁振华, 崔国朝, 王志强, 曾文芳. 控制桃粘/离核PG基因的BAC克隆筛选与序列分析. 中国农业科学, 2021, 54(20): 4396-4404 doi:10.3864/j.issn.0578-1752.2021.20.013 MENG JunRen, NIU Liang, DENG Li, PAN Lei, LU ZhenHua, CUI GuoChao, WANG ZhiQiang, ZENG WenFang. Screening and Sequence Analysis of BAC Clone Contained PG Gene Controlling Clingstone/Freestone Characteristic of Peach. Scientia Acricultura Sinica, 2021, 54(20): 4396-4404 doi:10.3864/j.issn.0578-1752.2021.20.013
开放科学(资源服务)标识码(OSID):
0 引言
【研究意义】桃[Prunus persica( L.) Batsch]起源于中国,其果实味美多汁,营养丰富,深受人们喜爱。F-M基因座复杂的结构变异决定了离核溶质、粘核溶质和粘核不溶质3种果实肉质类型的形成。明晰F-M基因座的序列特征,有助于进一步解析不同果实肉质的形成机制,为相关性状的分子标记开发奠定基础。【前人研究进展】桃是典型的呼吸跃变型果实,根据成熟软化的特点可以分为溶质和不溶质等[1]。溶质桃是栽培桃的主要类型,常用于鲜食;不溶质桃成熟时具有韧性,多用于加工,即“罐桃”[2]。桃果实溶质/不溶质(M/m)是单基因控制的质量性状,其中溶质为显性[3]。研究发现,内切多聚半乳糖醛酸酶(Endo-PG)表达和活性的增加是溶质桃果实成熟迅速软化的关键因素,而不溶质桃由于缺乏Endo-PG活性,细胞结构未发生明显改变[4,5]。桃果实粘/离核(f/F)也是单基因控制的质量性状,其中离核为显性[6]。桃溶质/不溶质与粘/离核性状由LG4上的F-M基因座[7,8,9]控制,PEACE等[10]提出F-M基因座存在至少2个拷贝的Endo-PG基因,其一控制溶质/不溶质性状,另一个控制粘/离核,由于Endo-PG基因簇的缺失导致了粘核和不溶质性状。GU等[11]也发现该F-M基因座存在着缺失,并提出桃的溶质/不溶质和粘/离核表型主要是由于存在/缺失两种功能不同的endoPG基因—EndoPGM和EndoPGF;同时存在表现为离核溶质,缺失EndoPGF为粘核溶质,两者都缺失为粘核不溶质,而EndoPGF具有溶质性的多效性,导致未出现离核不溶质类型。尽管对F-M基因座在遗传和序列变异上取得了一些进展,然而其序列特征由于多拷贝PG基因以及大片段缺失等因素仍未得到很好的阐释。构建细菌人工染色体(bacterial artificial chromosome,BAC)文库是获取大片段DNA序列,研究基因组功能和克隆功能基因的有效工具[12]。BAC文库具有插入片段大、遗传稳定性好、嵌合率低等优点[13,14]。现有的一代、二代测序,往往涉及到将所测片段打断、拼接再比对参考基因组重新组装的过程,对于有大片段缺失的基因并不能十分准确的获得序列。因此,在如今3代测序飞速发展的情况下,BAC文库对于基因组序列、功能分析仍具有重要意义。【本研究切入点】虽然前人研究已明确F-M基因座存在缺失,但并未真正获得缺失序列信息;此外,与传统的测序手段相比,3代测序能整体上有效地反映序列变异情况,更加准确。【拟解决的关键问题】因此,本研究利用粘核溶质型桃品种‘87-7-1’的BAC文库,采用PCR法筛选含F-M基因座的克隆,通过3代单分子纳米孔测序技术,对桃F-M基因座的序列进行分析,明晰F-M基因座序列变异特征。
A:M:DL 2000 DNA Marker;泳道1—14:以BAC克隆46-B-1-14为模板,阳性对照以粘核溶质桃‘黄金蜜桃3号’为模板,阴性对照以灭菌水为模板。B:M:TSINGKE 1.5 kb Marker,BAC:提取的质粒 Fig. 3Agarose assays for PCR confirmed positive clones and the BAC clone plasmid
A: M: DL 2000 DNA Marker; Lane 1-14: BAC clones 46-B-1-14 as template, and the positive control uses the clingstone with melting flesh peach Huangjinmi 3 as the template, while the negative control uses sterilized water as the template. B: M: TSINGKE 1.5 kb Marker, BAC: Plasmid extracted
GHIANIA, ONELLIE, AINAR, COCUCCIM, CITTERIOS. A comparative study of melting and non-melting flesh peach cultivars reveals that during fruit ripening endo-polygalacturonase (endo-PG) is mainly involved in pericarp textural changes, not in firmness reduction , 2011, 62(11):4043-4054. DOI:10.1093/jxb/err109URL [本文引用: 1]
DIRLEWANGERE, COSSONP, BOUDEHRIK, RENAUDC, CAPDEVILLEG, TAUZINY, LAIGRETF, MOINGA. Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit , 2006, 3(1):1-13. [本文引用: 2]
OGUNDIWINE A, PEACEC P, GRADZIELT M, PARFITTD E, BLISSF A, CRISOSTOC H. A fruit quality gene map of Prunus , 2009, 10:587. DOI:10.1186/1471-2164-10-587URL [本文引用: 1]
PEACEC P, CRISOSTOC H, GRADZIELT M. Endopolygalacturonase: a candidate gene for freestone and melting fleshin peach , 2005, 16(1):21-31. DOI:10.1007/s11032-005-0828-3URL [本文引用: 2]
GUC, WANGL, WANGW, ZHOUH, MAB Q, ZHENGH Y, FANGT, OGUTUC, VIMOLMANGKANGS, HANY P. Copy number variation of a gene cluster encoding endopolygalacturonase mediates flesh texture and stone adhesion in peach , 2016, 67(6):1993-2005. DOI:10.1093/jxb/erw021URL [本文引用: 3]
PETERSOND G, TOMKINSJ P, FRISCHD A, WINGR A, PATERSONA H. Construction of plant bacterial artificial chromosome (BAC) libraries: An illustrated guide , 2000, 5:1-3 [本文引用: 1]
LIH Q, DIAOX M. Construction and application of genomics bacterial artificial chromosome (BAC) library Biotechnology Bulletin, 2005(1):6-11. (in Chinese) [本文引用: 1]
PREDIERIS, RAGAZZINIP, RONDELLIR. Sensory evaluation and peach fruit quality , 2006, 713:429-434. [本文引用: 1]
LIUC Q, WUH M, BAOA D, LUT F, LIUS, ZHANGH H, TANGX X, GUANW J, MAY H. Discuss of several problems in bacterial artificial chromosome library construction Biotechnology Bulletin, 2008(4):66-69. (in Chinese) [本文引用: 1]
ZENGW F, WANGZ Q, NIUL, PANL, DINGY F, LUZ H, CUIG C. Research process on peach fruit flesh texture Journal of Fruit Science, 2017, 34(11):1475-1482. (in Chinese) [本文引用: 1]
LIUJ C, WANGY Y, SONGJ Y. Research progress of dual-use peach breeding in Beijing Beijing Agricultural Sciences, 2000, 18(6):23-25. (in Chinese) [本文引用: 1]
SHIX, ZENGH Y, XUEY D, LUOM Z. A pair of new BAC and BIBAC vectors that facilitate BAC/BIBAC library construction and intact large genomic DNA insert exchange , 2011, 7:33. DOI:10.1186/1746-4811-7-33URL [本文引用: 1]
VERDEI, ABBOTTA G, SCALABRINS, JUNGS, SHUS Q, MARRONIF, ZHEBENTYAYEVAT, DETTORIM T, GRIMWOODJ, CATTONAROF, ZUCCOLOA, ROSSINIL, JENKINSJ, VENDRAMINE, MEISELL A, DECROOCQV, SOSINSKIB, PROCHNIKS, MITROST, et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution , 2013, 45(5):487-494. DOI:10.1038/ng.2586URL [本文引用: 1]
KEILWAGENJ, HARTUNGF, GRAUJ. GeMoMa: Homology-based gene prediction utilizing intron position conservation and RNA-seq data , 2019, 1962:161-177. [本文引用: 1]
CHENC J, CHENH, ZHANGY, THOMASH R, FRANKM H, HEY H, XIAR. TBtools: An integrative toolkit developed for interactive analyses of big biological data , 2020, 13(8):1194-1202. DOI:10.1016/j.molp.2020.06.009URL [本文引用: 2]
GARINETS, LAURENT-PUIGP, BLONSH, OUDARTJ B. Current and future molecular testing in NSCLC, what can we expect from new sequencing technologies? , 2018, 7:144. DOI:10.3390/jcm7060144URL [本文引用: 1]
GOODWINS, MCPHERSONJ D, MCCOMBIEW R. Coming of age: Ten years of next-generation sequencing technologies , 2016, 17(6):333-351. DOI:10.1038/nrg.2016.49URL [本文引用: 1]
LUF, AMMIRAJUJ S S, SANYALA, ZHANGS L, SONGR T, CHENJ F, LIG S, SUIY, SONGX A, CHENGZ K, DEOLIVEIRA A C, BENNETZENJ L, JACKSONS A, WINGR A, CHENM S. Comparative sequence analysis of MONOCULM1-orthologous regions in 14 Oryza genomes , 2009, 106(6):2071-2076. [本文引用: 1]
SUIY, LIB, SHIJ F, CHENM S. Genomic, regulatory and epigenetic mechanisms underlying duplicated gene evolution in the natural allotetraploid Oryza minuta , 2014, 15:11. DOI:10.1186/1471-2164-15-11URL [本文引用: 1]
PUY J, YUANJ, PANGJ L, HANF P, ZHAOJ. BAC clone identification and chromosomal localizationof maize transcription factor ABP9 Progress in Biotechnology, 2016, 6(6):435-442. (in Chinese) [本文引用: 1]
HOANGP N T, MICHAELT P, GILBERTS, CHUP, MOTLEYS T, APPENROTHK J, SCHUBERTI, LAME. Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies , 2018, 96(3):670-684. DOI:10.1111/tpj.2018.96.issue-3URL [本文引用: 1]
CAOH X, VUG T H, WANGW Q, APPENROTHK J, MESSINGJ, SCHUBERTI. The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution , 2016, 209(1):354-363. DOI:10.1111/nph.2016.209.issue-1URL [本文引用: 1]
MAG S, WANGL R, CAOK, ZHUG R, FANGW C, CHENC W, WANGX W. Polymorphism of SNPs in two endo-PG genes and its association analysis for flesh adhesion trait in peach Journal of Fruit Science, 2014, 31(3):345-352. (in Chinese) [本文引用: 1]
YANGY J, ZHANGK C, LINK, JIANGQ. RAPD markers linked to freestone gene of peach fruit Journal of Fruit Science, 2007, 24(5):585-588. (in Chinese) [本文引用: 1]
HANQ, CAOK, ZHUG R, FANGW C, CHENC W, WANGX W, LIUK Z, YOUS H, WANGL R. Formation of flesh texture and adhesion and expression analysis of related genes in peach fruit Acta Agriculturae Boreali-Sinica, 2019, 34(3):52-58. (in Chinese) [本文引用: 1]
BECKMANT G, SHERMANW B. The non-melting semi-freestone peach , 1996, 50(3):189-193. [本文引用: 1]
BASSID, MONETR. The Peach: Botany, Production and Uses , 2008. [本文引用: 1]
MORGUTTIS, NEGRININ, NOCITOF F, GHIANIA, BASSID, COCUCCIM. Changes in endopolygalacturonase levels and characterization of a putative endo-PG gene during fruit softening in peach genotypes with nonmelting and melting flesh fruit phenotypes , 2006, 171(2):315-328. DOI:10.1111/nph.2006.171.issue-2URL [本文引用: 1]
CALLAHANA M, SCORZAR, BASSETTC, NICKERSONM, ABELESF B. Deletions in an endopolygalacturonase gene cluster correlate with non-melting flesh texture in peach , 2004, 31(2):159-168. DOI:10.1071/FP03131URL [本文引用: 1]
BAILEYJ S. The inheritance of certain fruit and foliage characters in the peach , 1949: 452. [本文引用: 1]