删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

静原鸡肌肉组织肌苷酸特异性沉积相关LNC_003828- gga-miR-107-3p-MINPP1的关联分析

本站小编 Free考研考试/2021-12-26

禹保军,1, 邓占钊2, 辛国省3, 蔡正云1, 顾亚玲1, 张娟,11宁夏大学农学院,银川 750021
2彭阳县畜牧技术推广服务中心,宁夏固原 756000
3宁夏大学生命科学学院/宁夏饲料工程技术研究中心,银川 750021

Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue

YU BaoJun,1, DENG ZhanZhao2, XIN GuoSheng3, CAI ZhengYun1, GU YaLing1, ZHANG Juan,11College of Agriculture, Ningxia University, Yinchuan 750021
2Pengyang County Animal Husbandry Technology Promotion Service Center, Guyuan 756000, Ningxia
3School of Life Science, Ningxia University/Ningxia Feed Engineering Technology Research Center, Yinchuan 750021

通讯作者: 张娟,Tel:17795194299;E-mail: zhangjkathy@126.com

责任编辑: 林鉴非
收稿日期:2020-07-27接受日期:2020-10-30
基金资助:国家自然科学基金(31860621)


Received:2020-07-27Accepted:2020-10-30
作者简介 About authors
禹保军,E-mail: yubaojunb@163.com








摘要
【目的】探究静原鸡肌肉组织肌苷酸沉积过程中关键调控因子的调节作用,利用lncRNA-miRNA-mRNA关联分析鉴定与肌苷酸特异性沉积相关的LNC_003828、gga-miR-107-3p和MINPP1,其作为肉质研究的候选基因,为分子辅助育种提高肌肉品质提供理论基础。【方法】测定15只静原鸡胸肌和腿肌的肌苷酸含量,筛选高肌苷酸含量的胸肌和低肌苷酸含量的腿肌各3个样本提取总RNA,质量检测合格后构建cDNA文库、PCR扩增,利用Agilent 2100对文库质量进行评价,库检合格后送Illumina-Hiseq平台进行转录组测序。利用生物信息学方法筛选出静原鸡肌肉组织不同部位差异表达的MINPP1、gga-miR-107-3p和LNC_003828,进行GO注释和蛋白互作网络分析MINPP1的功能。采用qRT-PCR方法检测LNC_003828、gga-miR-107-3p和MINPP1在静原鸡胸肌和腿肌组织中的表达情况,并分析其与肌苷酸含量的相关性。【结果】测序样品间基因表达水平相关性R2>0.9,即试验样本之间基因表达可用于后续的差异基因分析。参与肌苷酸合成和代谢的糖酵解/糖异生途径中检测出3个差异表达基因MINPP1、PKM和ALDH9A1。互作分析发现lncRNA-miRNA-mRNA网络图中共有17个miRNA(9个上调,8个下调)、44个mRNA(16个上调,28个下调)和155个lncRNA(68个上调、87个下调),核心节点gga-miR-107-3p互作的靶基因有MINPP1、靶lncRNA有LNC_003828。GO富集分析发现MINPP1基因具有磷酸酶活性、双磷酸甘油酸酯磷酸酶活性等功能;蛋白互作网络中MINPP1基因与参与糖酵解/糖异生和氨基酸生物合成通路中的PGAM1、ENO1、BPGM基因均有互作关系。qRT-PCR结果表明,静原鸡胸肌LNC_003828和gga-miR-107-3p的相对表达量低于腿肌,但差异不显著;胸肌MINPP1的相对表达量显著低于腿肌(P<0.05)。静原鸡胸肌和腿肌组织中gga-miR-107-3p的表达量与LNC_003828表达量均呈正相关,与MINPP1的表达量均呈负相关。胸肌和腿肌组织中LNC_003828、gga-miR-107-3p的表达量与肌苷酸含量均呈正相关,且差异均不显著;胸肌MINPP1表达量与肌苷酸含量呈负相关,腿肌MINPP1表达量与肌苷酸含量呈显著负相关(P<0.05)。综上所述,推测静原鸡肌肉组织中gga-miR-107-3p作为核心调节因子吸附LNC_003828,影响MINPP1基因调控肌肉肌苷酸特异性沉积,从而改善肉质。【结论】筛选出LNC_003828、gga-miR-107-3p和MINPP1为影响肌苷酸特异性沉积的候选调控因子。
关键词: 静原鸡;肌苷酸;gga-miR-107-3p;MINPP1基因;lncRNA-miRNA-mRNA互作

Abstract
【Objective】The aim of this study was to explore the regulatory role of key regulatory factors in the process of inosine monophosphate deposition in the muscle tissue of Jingyuan chickens, and to use lncRNA-miRNA-mRNA association analysis to identify LNC_003828, gga-miR-107-3p and MINPP1 related to inosine monophosphate specific deposition, so as to provide a theoretical basis for molecular-assisted breeding to improve chicken muscle quality.【Method】 The inosine monophosphate content of the breast and leg muscles of 15 Jingyuan chickens was determined, and three samples of the breast muscles with high inosine monophosphate content and the leg muscles with low inosine monophosphate content were screened to extract total RNA. The cDNA library was constructed after passing the quality test, and PCR amplification test was carried out. Then, the cDNA library quality was evaluated by using Agilent 2100, which was sent the library to the Illumina-Hiseq platform for transcriptome sequencing. Using bioinformatics methods, the differentially expressed MINPP1, gga-miR-107-3p and LNC_003828 in different parts of the muscle tissue of Jingyuan chicken were screened out, and GO annotation and protein interaction network was used to analyze the function of MINPP1. The qRT-PCR method was used to detect the expression of LNC_003828, gga-miR-107-3p and MINPP1 in the breast and leg muscles of Jingyuan chickens, and the correlation between them and the content of inosine monophosphate was analyzed. 【Result】 R2, the correlation of gene expression levels between sequenced samples, was greater than 0.9, that is, gene expression between experimental samples could be used for subsequent differential gene analysis. Three differentially expressed genes, including MINPP1, PKM, and ALDH9A1, were detected in the glycolysis/gluconeogenesis pathway involving in the synthesis and metabolism of inosine monophosphate. Interaction analysis found that there were 17 miRNAs (9 up-regulated, 8 down-regulated), 44 mRNAs (16 up-regulated, 28 down-regulated), and 155 lncRNAs (68 up-regulated, 87 down-regulated) in the lncRNA-miRNA-mRNA network diagram, of which the target gene of the core node gga-miR-107-3p interaction was MINPP1, and the target lncRNA was LNC_003828. GO enrichment analysis found that the MINPP1 gene had functions such as phosphatase activity and bisphosphoglycerate phosphatase activity; the MINPP1 gene in the protein interaction network were all interact with PGAM1 and ENO1, which were involved in glycolysis/gluconeogenesis and amino acid biosynthesis pathways BPGM genes. The results of qRT-PCR showed that the relative expression of LNC_003828 and gga-miR-107-3p in breast muscle of Jingyuan chicken was lower than that of leg muscle, but the difference was not significant; the relative expression of MINPP1 in breast muscle was significantly lower than that of leg muscle (P<0.05). The expression of gga-miR-107-3p in the breast and leg muscle tissues of Jingyuan chicken was positively correlated with the expression of LNC_003828 and negatively correlated with the expression of MINPP1. The expression of LNC_003828 and gga-miR-107-3p in breast and leg muscle tissues were positively correlated with inosine monophosphate content, and the difference was not significant; the expression of breast muscle MINPP1 was negatively correlated with inosine monophosphate content and the expression of leg muscle MINPP1. The amount was significantly negatively correlated with the content of inosine monophosphate (P<0.05). In summary, it was speculated that gga-miR-107-3p in the muscle tissue of Jingyuan chicken was used as a core regulator to adsorb LNC_003828, which affected the MINPP1 gene to regulate the specific deposition of muscle inosine monophosphate, thereby improving meat quality. 【Conclusion】 LNC_003828, gga-miR-107-3p, and MINPP1 were selected as candidate regulatory factors affecting the specific deposition of inosine monophosphate.
Keywords:jingyuan chicken;inosine monophosphate;gga-miR-107-3p;MINPP1 gene;lncRNA-miRNA-mRNA interaction


PDF (4456KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
禹保军, 邓占钊, 辛国省, 蔡正云, 顾亚玲, 张娟. 静原鸡肌肉组织肌苷酸特异性沉积相关LNC_003828- gga-miR-107-3p-MINPP1的关联分析. 中国农业科学, 2021, 54(19): 4229-4242 doi:10.3864/j.issn.0578-1752.2021.19.017
YU BaoJun, DENG ZhanZhao, XIN GuoSheng, CAI ZhengYun, GU YaLing, ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue. Scientia Acricultura Sinica, 2021, 54(19): 4229-4242 doi:10.3864/j.issn.0578-1752.2021.19.017


开放科学(资源服务)标识码(OSID):

0 引言

【研究意义】家禽肌肉中肌苷酸(IMP)具有显著鲜味呈味作用,是影响肉质风味的重要物质基础[1]。研究表明,鸡肉中的肌苷酸含量是牛肉的10倍以上,在常见畜禽肉品中IMP含量最高[2]。静原鸡作为优良的地方品种,其个体小、生长速度慢、抗逆性强、氨基酸含量丰富、胆固醇含量低,肌肉内IMP含量较高[3],是研究慢速生长鸡肌肉中IMP特异性沉积调控规律的良好模式动物。ncRNA已经成为目前肉质调控研究的热点领域,是阐明特征性肉质形成的关键分子基础和完整阐释肉质形成机制的重要组成部分。而目前对于鸡肉中 IMP特异性沉积的分子机制的相关研究还十分欠缺,尤其是对不同部位鸡肉IMP特异性沉积的转录后调控机制方面的研究。因此,鉴定IMP特异性沉积的关键mRNA、miRNA和lncRNA并验证其生物学功能,完整阐释鸡肉中IMP特异性沉积调控的分子机制对揭示优质肉质形成机理、分子标记辅助育种等均具有重要意义。【前人研究进展】最初,人们认为编码RNA在生物体的多种代谢过程中发挥重要作用,而非编码RNA(ncRNA)被视为转录噪音,并无实际作用。然而,近年来越来越多的研究表明,基因组中占据转录产物约98%的ncRNA具有广泛的调节作用[4],可参与调节DNA结构、RNA转录和翻译,从转录水平、转录后水平及表观遗传修饰等方面调控基因的表达[5],从而组成复杂的ncRNA调控网络,影响着编码基因的最终翻译结果。非编码RNA根据其分子链长度可分为小非编码RNA(sncRNA)和长链非编码RNA(lncRNA)。miRNA是一种内源性的、长度在22个核苷酸左右的高度保守的sncRNA,通过与靶mRNA的3’UTR中的互补序列结合来抑制靶基因的mRNA翻译或降解,对基因的转录后表达水平起到负调节作用[6]。lncRNA是长度大于200个核苷酸的不编码蛋白质的长链RNA分子[7],其保守性较差,表达水平也较低,在哺乳动物细胞中广泛表达。lncRNA通过控制蛋白质的合成、RNA成熟以及转运的过程参与基因的转录后调控,可以通过调控染色体的结构来控制转录后的基因沉默[8]。lncRNA基因序列具有miRNA的结合位点,可以作为miRNA海绵竞争性结合miRNA,抑制miRNA对靶基因的调节作用,从而间接调节基因表达。EBERT等[9]利用miRNA抑制剂在细胞内进行试验发现,当抑制剂导致相关miRNA的功能丧失时,其内源性靶点的表达水平升高,将这种能引起miRNA功能丧失的竞争性抑制剂称为“miRNA海绵”。

CARETTI等[10]研究发现,ncRNA在调节骨骼肌的生长和发育方面扮演重要角色,通过介导基因表达间接影响肉品质。近年来大量研究表明,lncRNA在通过与内源性RNA竞争性与miRNA结合而在动物生长、肌肉发育[11]以及脂肪的形成和代谢[12]过程中发挥着重要的调控作用。lncRNA可以调控脂肪分化和脂肪酸代谢等通路中的关键基因,进而影响脂肪分布和肉品质[13]。miRNA作为生物发生过程中基因调控的重要调节因子,可以影响肌纤维类型的组成而进一步改善肌肉品质,通过多种代谢通路的调节而影响肌肉发育及分化[14]。目前关于miRNA对肉品质的调控研究主要集中在其对骨骼肌发育调控[15]、肉品质调控[16]、不同肌肉类型形成[17,18,19]、不同体组织形成[20]、不同处理后影响[21]等方面。miRNA已经成为当前肉质调控研究的热点,是阐明特征性肉质形成的关键分子基础和完整阐释肉质形成机制的重要组成部分。多肌醇多聚磷酸磷酸酶1(MINPP1)具有编码组氨酸磷酸酶的保守结构域,其编码的一种约52kDa的酶能够从肌醇磷酸底物P4以及其他肌醇部分中去除3-磷酸[22]。已有研究表明,MINPP1具有广泛的组织分布模式,其亚细胞定位似乎针对内质网(ER),是一种内质网管腔酶,可在体内和体外条件下水解多种肌醇多聚磷酸盐[23]。虽然MINPP1在细胞分化和凋亡中起作用,但其参与的信号传导通路机制尚不清楚。miR-107是microRNA-15/107家族成员,2002年首次在人宫颈癌Hela细胞系中发现并克隆测序[24]。miR-107参与细胞分裂、代谢、应激反应和血管生成的基因表达调控,以及人类肿瘤、心脑血管疾病、神经退行性疾病等的调控[25]。【本研究切入点】目前对于鸡肉IMP沉积方面的研究主要集中在关键基因的表达谱及功能分析上,对于其转录后调控机制和表观遗传修饰方面的研究较少,尤其是对不同部位肌肉IMP含量差异的转录后调控机制尚未见报道。【拟解决的关键问题】lncRNA的“miRNA海绵”功能与肌肉的发生发展机制密不可分。本研究以静原鸡为研究对象,基于转录组测序筛选静原鸡不同部位(胸肌和腿肌)差异表达且处于lncRNA-miRNA-mRNA共调控网络关键节点的miRNA,及其具有靶向调控关系的差异lncRNA和mRNA。鉴定IMP特异性沉积的关键mRNA、miRNA和lncRNA并验证其在不同部位的表达量,分析各调控因子与肌苷酸的相关性,对从转录水平探究静原鸡IMP特异性沉积的调控机制提供理论依据。

1 材料与方法

1.1 试验材料

试验鸡均来自宁夏彭阳县朝那鸡繁育中心,随机屠宰相同饲养管理条件下的180日龄静原鸡母鸡15只,采集胸肌和腿肌组织,置于冻存管迅速投入液氮罐中,带回实验室储存于-80℃备用。于2019年在宁夏昊标检测服务研究院测定肌苷和肌苷酸含量(表1[26],筛选高肌苷酸含量的胸肌和低肌苷酸含量的腿肌各3个样本进行转录组测序。

Table 1
表1
表1肌苷和肌苷酸含量测定
Table 1Determination of inosine and IMP
性别
Gender
组织
Tissue
肌苷酸含量
IMP content (g·kg-1)
肌苷含量
Inosine content (g·kg-1)
母鸡
Hen
胸肌Chest1.525±0.294A0.327±0.067A
腿肌Leg1.200±0.213B0.181±0.063B
胸肌和腿肌
Chest and leg
1.362±0.1570.254±0.035
表中同列标不同大写字母表示差异极显著(P<0.01)
The letters in the same column in the table indicate that the difference is extremely significant (P<0.01)

新窗口打开|下载CSV

1.2 样品处理及测序

使用Trizol (Invitrogen, USA) 法从胸肌和腿肌组织中分离总RNA,用1%琼脂糖凝胶电泳检测RNA有无降解和污染。Agilent 2100 bioanalyzer检测RNA质量合格后,进行上机前预处理,包括:cDNA文库构建、PCR扩增、Agilent 2100对文库质量进行评价,库检合格后,在Illumina-Hiseq平台上对cDNA文库制剂测序。由北京康普森生物技术有限公司完成。

1.3 差异LNC_003828、gga-miR-107-3p和MINPP1的筛选

测序获得的图像数据文件通过碱基识别分析转化为Raw Reads,随后通过删除包含adapter、ploy-N和低质量的reads(质量值Qs <= 20 的碱基数占整个read的30%以上的 reads)获得高质量的Clean Reads进行后续分析。使用HTSeq v0.6.0计算比对到每个基因上的reads数,根据基因的长度和比对到本基因的reads数计算每个基因的FPKM。使用DESeq2 R包进行两组间的差异表达分析,得到的结果矫正后P<0.05被指定为差异表达基因。

RNA之间可以通过竞争结合共同的microRNA反应元件(microRNA response element,MRE)实现相互调节,这种调控模式构成竞争性内源RNA (Competing endogenous RNA,ceRNA)。基于ceRNA理论,寻找拥有相同miRNA结合位点的lncRNA-gene pairs,构建以lncRNA为decoy、miRNA为核心、mRNA为靶标的lncRNA-miRNA-gene pairs,构建互作网络,利用cytoscape软件进行可视化展示。

1.4 MINPP1基因的蛋白互作网络

利用STRING数据库对MINPP1进行蛋白质相互作用网络分析。

1.5 实时荧光定量PCR分析LNC_003828、gga-miR- 107-3p和MINPP1的表达情况

1.5.1 RNA质量检测及反转录 本试验用超微量核酸蛋白测定仪(scandrop100)检测RNA OD值,使用的是A260/A280比值(表2)。采用Aidlab公司反转录试剂盒(TUREscript 1st Stand cDNA SYNTHESIS Kit)进行反转录,得到的cDNA -20℃保存备用。

Table 2
表2
表2RNA纯度及浓度检测
Table 2Detection of RNA purity and concentration
样本名称
Sample name
纯度
Purity (A260/A280)
浓度
Concentration (ng·μL-1)
胸1 Chest12.051257.4
胸2 Chest21.991337.2
胸3 Chest32.05803.7
腿1 Leg12.05736.7
腿2 Leg21.99623.1
腿3 Leg31.971038.1

新窗口打开|下载CSV

1.5.2 实时荧光定量PCR反应 LNC_003828和MINPP1的引物使用Beacon Designer7.9软件设计,gga-miR- 107-3p的引物采用颈环法进行设计(表3),引物送上海生工合成。采用SYBR法对LNC_003828、gga-miR-107-3p和MINPP1的表达水平进行定量PCR反应(表4),反应总体系为10 μL(表5),选择U6和β-actin作为内参。

Table 3
表3
表3引物信息
Table 3Primer information
引物名称
Primer name
序列
Sequence (5'→3')
退火温度
Tm (℃)
LNC_003828-F
LNC_003828-R
CCACATACAACCAGTCTCT
CCACCATACATCCACTCT
58
MINPP1-FGTGGATGAGAGCAGAAGT58
MINPP1-RAGAAGTGGCTGAAGTGTT
β-actin-F
β-actin-R
ATGGACTCTGGTGATGGTGTTAC
TCGGCTGTGGTGGTGAAG
58
gga-miR-107-3p-F
gga-miR-107-3p-R
U6-F
U6-R
CGCGCGAGCTTCTTTACAG CAGTGCAGGGTCCGAGGTAT
CTCGCTTCGGCAGCACATATACT ACGCTTCACGAATTTGCGTGTC

新窗口打开|下载CSV

Table 4
表4
表4荧光定量PCR程序
Table 4Fluorescence quantitative PCR program
步骤
Step
温度
Temperature (℃)
时间
Time
循环数
Number of cycles
预变性Initial denaturation953min1
变性Denaturation9510s39
退火Annealing5830s
溶解曲线分析
Melt curve analysis
60-954s1

新窗口打开|下载CSV

Table 5
表5
表5荧光定量PCR体系
Table 5Fluorescence quantitative PCR system
成分
Components
终浓度
Final concentration
加样量
Loading volume (μL)
2×SYBR® Green Supermix5
Forward primer200 nmol·L-10.5
Reverse primer200 nmol·L-10.5
cDNAN/A1
ddH2ON/A3

新窗口打开|下载CSV

1.5.3 数据处理 利用2-ΔΔCT计算各个样品的基因相对表达量,使用单因素方差分析对结果进行分析,数据结果以“平均值±标准误”的形式呈现,P<0.05表示差异显著,P<0.01表示差异极显著。应用Bivariate correlation分析IMP与LNC_003828、gga- miR-107-3p、MINPP1的相关性。

2 结果

2.1 RNA-seq 样本相关性分析

通过转录组测序获得静原鸡胸肌和腿肌组织的基因差异表达水平,分析样品间基因表达水平相关性可知:R2>0.9(图1),说明生物学重复所选择试验样本可靠,样品之间表达模式高度相似,即可用于后续的差异基因分析。

图1

新窗口打开|下载原图ZIP|生成PPT
图1转录组测序样本间相关性

图中X代表胸肌,T代表腿肌;R2:Pearson相关系数的平方
Fig. 1Correlation between transcriptome sequencing samples

In the figure, X represents the breast muscle and T represents the leg muscle; R2: The square of Pearson’s correlation coefficient


2.2 MINPP1、gga-miR-107-3p和LNC_003828筛选

根据转录组数据信息,筛选所关注的KEGG通路(表6),其中与肌苷酸的合成和代谢有关的代谢通路为糖酵解/糖异生途径,在此通路中筛选出3个差异表达基因,即MINPP1、PKM和ALDH9A1(图2)。对静原鸡胸肌和腿肌组织进行lncRNA-miRNA-mRNA表达谱综合分析,在互作网络图中共有17个miRNA(9个上调,8个下调)、44个mRNA(16个上调,28个下调)和155个lncRNA(68个上调、87个下调),核心节点gga-miR-107-3p互作的靶基因有MINPP1、靶lncRNA有LNC_003828(图3)。

Table 6
表6
表6糖酵解/糖异生通路
Table 6Glycolysis /Gluconeogenesis pathway
条目
Term
样本数
Sample number
背景数
Background number
P
P value
矫正P
Corrected P value
功能基因
Unigenes
KO编号
KO number
糖酵解/糖异生Glycolysis/Gluconeogenesis3510.41719210.5953754ENSGALG00000001992
ENSGALG00000003695* ENSGALG00000003495
gga:396456 gga:395356 gga:424405
*代表所选基因(MINPP1)
*Represents the selected gene(MINPP1)

新窗口打开|下载CSV

图2

新窗口打开|下载原图ZIP|生成PPT
图2糖酵解/糖异生通路中的差异表达基因

Starch and sucrose metabolism:淀粉和蔗糖代谢;α-D-Glucose-1P:α-D-葡萄糖-1P;D-Glucose (extracellular):D-葡萄糖(细胞外);Arbutin (extracellular):熊果苷(细胞外);Salicin (extracellular):水杨苷(细胞外);β-D-Fructose-6P:β-D-果糖-6P;Glycerone-6P:甘油酮-6P;Glyceraldehyde:甘油醛;Pentose phosphate pathway:磷酸戊糖途径;Glycerate:甘油酸酯;Carbon fixation in photosynthetic organisms:光合作用生物中的碳固定;Phosphoenol pyruvate:磷酸烯醇丙酮酸;Citrate cycle:柠檬酸循环;Oxaloacetate:草酰乙酸;Pyruvate metabolism:丙酮酸代谢;Acetyl CoA:乙酰辅酶A;2-Hydroxyethy1-ThPP:2-羟乙基1-ThPP;L-Lactate:乳酸;Dihydrolipoamide:二氢硫辛酰胺;S-Acetyldihydrolipoamide-E:S-乙酰二氢硫辛酰胺-E;Lipoamide-E:硫辛酰胺-E;Propanoate metabolism:丙酸代谢;Acetate:醋酸;Acetaldehyde:乙醛;Ethanol:乙醇
Fig. 2Differentially expressed genes in the Glycolysis /Gluconeogenesis pathway



图3

新窗口打开|下载原图ZIP|生成PPT
图3lncRNA-miRNA-mRNA调控网络

Fig. 3lncRNA-miRNA-mRNA regulatory network



2.3 MINPP1基因本体(GO)富集分析

对筛选到的MINPP1基因进行GO富集分析发现,MINPP1在静原鸡上富集的分子功能为磷酸酶活性和双磷酸甘油酸酯磷酸酶活性,细胞组分富集的功能条目为内质网,没有富集相关生物学过程(表7)。

Table 7
表7
表7MINPP1基因GO注释分析
Table 7Results of the MINPP1 GO annotation analysis
GO号 GO accession描述 Description条目类型 Term type物种 Species
GO:0016791磷酸酶活性 Phosphatase activity分子功能 Molecular_function原鸡 Gallus gallus
GO:0034416双磷酸甘油酸酯磷酸酶活性 Bisphosphoglycerate Phosphatase activity分子功能 Molecular_function原鸡 Gallus gallus
GO:0005783内质网 Endoplasmic reticulum细胞组分 Cell component原鸡 Gallus gallus

新窗口打开|下载CSV

2.4 MINPP1蛋白网络互作

对差异基因MINPP1进行蛋白互作分析发现(图4),MINPP1基因与参与糖酵解/糖异生和氨基酸生物合成通路中的PGAM1、ENO1和BPGM基因均有互作。

图4

新窗口打开|下载原图ZIP|生成PPT
图4差异基因MINPP1蛋白网络互作

图中圆圈(节点)代表差异表达的蛋白质,包含插图的圆圈表示该基因具有相关的蛋白质结构,而空圆圈则表示该基因的蛋白质结构尚未确定
Fig. 4Differential gene MINPP1 protein network interaction

In the figure, the circles (nodes) represent differentially expressed proteins, the circles with illustrations indicate that the gene has a related protein structure, and the empty circles indicate that the protein structure of the gene has not been determined


2.5 qRT-PCR扩增产物特异性分析

LNC_003828、gga-miR-107-3p、MINPP1基因和内参U6、β-actin的扩增结果如图5所示,其溶解曲线均呈尖而窄的单峰,且产物Tm值处峰曲线较聚集,无特异性片段存在,说明扩增特异性较好。

图5

新窗口打开|下载原图ZIP|生成PPT
图5LNC_003828、gga-miR-107-3p、MINPP1和内参U6、β-actin的溶解曲线

Fig. 5The melting curves of LNC_003828, gga-miR-107-3p, MINPP1, 5S and β-actin



2.6 静原鸡胸肌和腿肌组织中LNC_003828、gga- miR-107-3p、MINPP1的相对表达

根据数据分析结果可知,静原鸡胸肌和腿肌组织中gga-miR-107-3p的表达量与LNC_003828表达量均呈正相关,与MINPP1的表达量均呈负相关(表8)。静原鸡胸肌LNC_003828和gga-miR-107-3p的相对表达量低于腿肌,但差异不显著,MINPP1的相对表达量显著低于腿肌(P<0.05)(图6)。

Table 8
表8
表8不同部位gga-miR-107-3p与LNC_003828、MINPP1的相关性
Table 8The correlation between gga-miR-107-3p and LNC_003828 and MINPP1 at different Part
部位Part基因GeneLNC_003828gga-miR-107-3pMINPP1
胸肌Chestgga-miR-107-3p0.87881.0000-0.6495
腿肌Leggga-miR-107-3p0.98571.0000-0.3895

新窗口打开|下载CSV

图6

新窗口打开|下载原图ZIP|生成PPT
图6LNC_003828、gga-miR-107-3p、MINPP1在胸肌和腿肌中的表达量

*表示差异显著(P<0.05)
Fig. 6The expression levels of LNC_003828, gga-miR-107-3p and MINPP1 in chest and leg muscles of chicken

*Indicating significant difference (P<0. 05)


2.7 LNC_003828、gga-miR-107-3p、MINPP1的相对表达量与肌苷酸含量的相关性分析

静原鸡胸肌LNC_003828的表达量与IMP、肌苷含量均呈正相关,腿肌LNC_003828的表达量与IMP含量呈正相关,与肌苷含量呈负相关,但均差异不显著;胸肌和腿肌gga-miR-107-3p的表达量与IMP、肌苷含量均呈正相关,且差异均不显著;胸肌MINPP1表达量与IMP、肌苷含量均呈负相关,腿肌MINPP1表达量与IMP含量呈显著负相关(P<0.05),与肌苷含量呈负相关(表9)。

Table 9
表9
表9LNC_003828、gga-miR-107-3p、MINPP1表达量与肌苷、肌苷酸含量的相关性
Table 9The correlation between LNC_003828, gga-miR-107- 3p, MINPP1 expression and the content of inosine and IMP
部位
Part
项目
Project
LNC_003828gga-miR-107-3pMINPP1
胸肌Chest

腿肌Leg
IMP
Inosine
IMP
Inosine
0.8017
0.5327
0.2093
-0.0976
0.4192
0.8720
0.3723
0.0729
-0.9626
-0.1943
-0.9998*
-0.9470
*表示差异显著(P<0.05)
*Indicating significant difference (P<0.05)

新窗口打开|下载CSV

3 讨论

家禽肌肉中肌苷酸是影响多种致鲜肽类和核苷酸的主要物质,其鲜味强度是谷氨酸钠(味精)的40倍,并且与谷氨酸钠具有很强的协同作用,已经成为评价肉质鲜味和新鲜程度的重要指标[1]。动物体内的IMP合成途径有两条,即从头合成途径和补救合成途径,其中从头合成途径是动物体内IMP合成的主要途径。目前已发现遗传因素、饲养管理因素、营养因素、屠宰方法和屠宰后的贮存方法等均会影响肉品内IMP含量[27]。RUDOLPH[28]研究发现,活体动物进行正常生理活动时,其体内ATP处于不断合成和分解的动态变化中,ATP→IMP反应产生的肌苷酸含量较少。而当动物屠宰后,肌肉中发生糖酵解过程可以短时间产生大量ATP,ATP在相关酶的作用下分解产生IMP,使肉品IMP含量有所升高[29,30]。宰后鸡肉中由ATP→IMP的反应很快,几乎不受保存条件的影响[31]。王述柏[32]和陈继兰[33]等报道,在同种动物不同品种间,IMP含量存在较大差异,而且在同一品种(系)不同性别或不同生长发育阶段,其IMP含量也不相同。刘望夷等[34]和苏淑贞等[35]研究结果表明,胸肌IMP含量显著高于腿肌(1.5倍左右),本课题组前期研究发现,静原鸡胸肌的肌苷酸含量显著高于腿肌,与刘望夷等[34]研究结果相同。

糖酵解/糖异生途径的中间产物联系其他代谢,如6-磷酸葡萄糖,它本身或者通过转化成磷酸戊糖途径和糖原代谢的中间产物,其代谢过程产生的能量为细胞生存和生长提供了重要保障。有大量研究表明,糖酵解/糖异生途径中的相关酶及辅助因子参与磷酸化反应,或作为膜结合蛋白参与相关代谢过程。同时,肌肉细胞的增殖、分化、凋亡及肌肉的生长发育都受到糖酵解/糖异生途径的调控。在本研究中筛选到的差异表达基因PKM是糖酵解/糖异生途径的关键调控因子,在肿瘤细胞的代谢重组以及参与细胞周期进展和基因转录中起着核心作用,具有合成代谢、细胞增殖和有氧糖酵解等多种功能[36]。在小鼠脂肪肝中,PPARγ(peroxisome proliferator activated receptor gamma)通过结合PKM的启动子激活转录,增加PKM的表达,从而调控糖酵解[37]。PRESEK等[38]研究发现鸡胚细胞中存在PKM2蛋白酪氨酸磷酸化作用,且这种磷酸化降低了PKM2与其底物磷酸烯醇丙酮酸的亲和力。MINPP1是一种磷酸酶,在细胞外空间和溶酶体中催化肌醇多磷酸盐(InsP6)内吞后的第一步InsP6去磷酸化。在此之前,哺乳动物细胞中MINPP1的生理功能尚不清楚,因为它在内质网中的定位将MINPP1与其细胞质中的InsP底物分开[39]。InsPs的稳态分布是MINPP1和其他调节肌醇多聚磷酸相互转化的酶的高度动态生产和周转程序的表现,这些酶影响细胞的生存和死亡。KILAPARTY等[40]研究MINPP1在细胞应激中的作用时发现,在内质网应激诱导的细胞凋亡过程中,MINPP1与CHOP的表达和凋亡之间的关系表明,在内质网应激诱导的凋亡过程中,MINPP1可能起到一种传感器或调节作用,涉及不饱和蛋白反应信号通路。MINPP1参与糖酵解/糖异生和磷酸肌醇代谢信号通路,糖酵解可以完全绕过磷酸甘油酯,通过MINPP1将2,3二磷酸甘油酯转化为2-磷酸甘油酯,从而激活AMPK级联[41]。此外,BALLESTER等[42]研究发现AMPK可刺激脂肪酸氧化。参与糖酵解/糖异生过程的酶联系其他代谢途径,产生的ATP为IMP的合成或代谢提供能量。MINPP1作为糖酵解/糖异生途径中的差异基因,在静原鸡胸肌和腿肌组织中的表达量不尽相同,且差异较显著。MINPP1基因的相对表达量与IMP的相关性分析表明,静原鸡胸肌和腿肌组织中MINPP1基因的表达量与IMP含量均呈负相关,相关系数分别为-0.9626和-0.9998,即IMP含量随着MINPP1基因的表达增加而降低。因此,不同部位MINPP1基因的相对表达对肌肉IMP的含量产生一定影响,从而影响肉质。

到目前为止,人们已确定家禽个体发育过程中与肌肉生长发育相关miRNA的调控机制。OUYANG等[43]对7周龄生长速度有差异的白羽鸡和新华鸡进行研究证实,miR-146b-3p以生长激素受体(GHR)为靶标调控家禽肌肉生长。WU等[44]通过对高产和低产蛋鸡进行高通量测序研究发现,gga-miR-200a-3p普遍存在于促性腺激素信号通路和卵母细胞成熟分裂等生殖相关调控通路中。HE等[45]对10周龄具有相同遗传背景的樱桃谷鸭进行miRNA测序分析表明,N-miR-16020和gga-miR-144分别介导靶基因FASN和ELOVL6调控脂质代谢。LI等[46]研究发现,固始鸡-安卡鸡F2后代群中miR-1614-3p和miRNA-1606的单核苷酸多态性(SNP)显著影响腹脂沉积、胴体性能及其他生长相关性状。魏雪峰[47]通过对秦川牛骨骼肌研究揭示超表达miR-107能够显著抑制靶基因Wnt3a的mRNA和蛋白质表达水平,从而调控肌细胞增殖分化及凋亡。miR-107对不同细胞的增殖有不同的作用,ZHANG等[48]研究表明miR-107通过抑制Axin2基因促进肝癌细胞的增殖,也可以抑制DAPK-KLF4基因在大肠癌细胞代谢中的表达,进而促进结肠直肠癌细胞新陈代谢[49]。miR-107还可通过靶向周期蛋白依赖激酶6(CDK6)抑制胃癌细胞增殖[50],通过靶向VEGF基因抑制胶质瘤细胞增殖[51]。基于以上研究,miR-107可能通过靶向调节CDK6、Wnt3a和Axin2蛋白质的表达在静原鸡肌肉发育过程中发挥着重要作用。本研究发现,gga-miR-107-3p在静原鸡胸肌和腿肌组织中差异表达,在腿肌中的表达量高于胸肌。由此可推测gga-miR-107-3p可能通过调控靶基因的表达在静原鸡肌肉发育过程中发挥着重要作用,其作用机理还须进一步验证。

内源性表达的RNA可作为ceRNA来抑制动物中miRNA的活性[11, 52],lncRNA正是ceRNA之一。lncRNA可作为内源竞争性RNA(competing en-dogenous RNA,ceRNA)调控网络中的诱导因子,以miRNA为核心,mRNA为靶标,影响miRNA对靶基因的调控,从而影响细胞脂肪的代谢状况[53]。WEI等[54]研究发现,猪脂肪组织中的PU.1 AS(PU.1 antisense RNA)LncRNA通过与PU.1 mRNA形成正义-反义RNA双链来促进脂肪形成。原鸡前脂肪细胞分化过程中,lncRNA PLNC通过与PPARγ竞争性结合,调控其启动子活性和转录水平[55]。ZHANG等[56]对分化的不同阶段鸡腹部前脂肪细胞中的lncRNA和mRNA进行测序分析发现,差异表达的lncRNA和mRNA可作用于邻近的编码基因,进而参与到与脂肪细胞分化有关的多种途径。LIU等[57]研究者探究地塞米松在诱导脂肪变性中的作用时,发现lncRNA ENST00000608794可作为ceRNA吸附miR-15b-5p,使得miR-15b-5p对丙酮酸脱氢酶激酶同工酶4(Pyruvate dehydrogenase kinase isoenzyme 4, PDK-4)的负调控作用减弱,从而加强对脂肪的变性作用。CHEN等[58]研究发现在以miR-146a-5p为核心的调控关系中,lncRNA NEAT1可以靶向RHO相关卷曲螺旋形成蛋白激酶1 mRNA(RHO associated coiled coil containing protein kinase 1,ROCK-1),进而影响AMPK/SREBP通路调控脂肪沉积过程。在lncRNA- miRNA-mRNA网络中lncRNA吸附miRNA,使原本与miRNA结合的mRNA得以释放。通过比较不同部位gga-miR-107-3p与LNC_003828、MINPP1的相关性,可知静原鸡胸肌和腿肌组织中gga-miR- 107-3p的表达量与LNC_003828表达量均呈正相关,相关系数分别为0.8788和0.9857;胸肌和腿肌组织中gga-miR-107-3p的表达量与MINPP1的表达量均呈负相关,相关系数分别为-0.6495和-0.3895。说明gga-miR-107-3p表达增加(降低)时,LNC_003828的表达相应的增加(降低),而MINPP1的表达降低(增加)。进行相关性和共调控互作关系分析,对探究肌肉生长发育过程中某一特性提供新型靶点,进而分析基因间的生物功能作用。

从静原鸡胸肌和腿肌组织转录组测序结果确定研究性状相关的糖酵解/糖异生通路,通过靶基因MINPP1筛选出lncRNA-miRNA-mRNA共调控网络中的gga-miR-107-3p及其靶LNC_003828。对MINPP1进行GO富集分析,发现其富集的功能条目为磷酸酶活性和双磷酸甘油酸酯磷酸酶活性,string数据库中显示其生物学过程有烟酰胺核苷酸生物合成和代谢过程。蛋白互作网络结果发现与MINPP1互作的基因PGAM1、ENO1和BPGM都参与糖酵解/糖异生和氨基酸的生物合成通路,表明以上4个基因可能行使相同或相似的生物功能。本研究中,荧光定量结果显示,在静原鸡胸肌组织中LNC_003828、gga-miR-107-3p和MINPP1的表达量极显著低于腿肌,这与转录组测序结果一致,说明转录组测序结果可靠,可进行下一步试验分析。gga-miR-107-3p、LNC_003828的相对表达量与肌苷酸的相关性分析表明,静原鸡胸肌和腿肌gga-miR-107-3p的相对表达量与IMP含量均呈正相关,相关系数分别为0.4192和0.3723,即IMP含量随着gga-miR-107-3p的表达增加而增加;胸肌和腿肌组织中LNC_003828的相对表达量与IMP含量均呈正相关,相关系数分别为0.8017和0.2093,即IMP含量随着LNC_003828的表达增加而增加。综上,将MINPP1、gga-miR-107-3p和LNC_003828作为静原鸡不同部位肌肉IMP含量差异的转录后调控机制的研究,具有重要的作用和意义。

4 结论

静原鸡肌肉组织中LNC_003828、gga-miR-107-3p和MINPP1的相对表达存在差异,均表现为胸肌低于腿肌。LNC_003828和gga-miR-107-3p的表达量与肌苷酸含量呈正相关,而MINPP1的表达量与肌苷酸呈负相关。基于联合分析结果,推测gga-miR-107-3p作为核心调节因子吸附LNC_003828,影响MINPP1基因在静原鸡肌肉组织的相对表达,进而对IMP的含量产生一定的影响,即LNC_003828、gga-miR-107-3p和MINPP1可能为影响肌肉肌苷酸特异性沉积的关键候选基因。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

BLONDE G D, SPECTOR A C. An examination of the role of L-glutamate and inosine 5'-monophosphate in hedonic taste-guided behavior by mice lacking the T1R1 + T1R3 receptor
Chemical Senses, 2017, 42(5):393-404.

DOI:10.1093/chemse/bjx015URL [本文引用: 2]

徐英, 李石友, 李琦华, 段刚, 杨国荣, 梁应海. 蛋白质水平对牛肉肌苷酸含量的影响
西南农业学报, 2011, 24(1):294-296.

[本文引用: 1]

XU Y, LI S Y, LI Q H, DUAN G, YANG G R, LIANG Y H. Effect of protein levels on beef inosine acid content
Southwest China Journal of Agricultural Sciences, 2011, 24(1):294-296. (in Chinese)

[本文引用: 1]

母童, 张娟, 赵平, 顾亚玲, 刘丽元, 杨彦军, 安克龙, 王有. 静原鸡ELOVL2和ELOVL5基因表达的组织特异性研究
浙江农业学报, 2017, 29(8):1290-1296.

[本文引用: 1]

MU T, ZHANG J A, ZHAO P, GU Y L, LIU L Y, YANG Y J, AN K L, WANG Y. Tissue-specific expression analysis of ELOVL2 and ELOVL5 genes in Jingyuan chicken
Acta Agriculturae Zhejiangensis, 2017, 29(8):1290-1296.(in Chinese)

[本文引用: 1]

MERCER T R, DINGER M E, MATTICK J S. Long non-coding RNAs: Insights into functions
Nature Reviews Genetics, 2009, 10(3):155-159.

DOI:10.1038/nrg2521URL [本文引用: 1]

郑伟. LncRNA-miRNA-mRNA相互作用初步研究
[D]. 北京: 中国人民解放军军事医学科学院, 2017.

[本文引用: 1]

ZHENG W. Preliminary study of LncRNA-miRNA-mRNA interaction
[D]. Beijing: Chinese Academy of Military Medical Sciences, 2017. (in Chinese)

[本文引用: 1]

BARTEL D P. MicroRNAs: genomics, biogenesis, mechanism, and function
Cell, 2004, 116(2):281-297.

DOI:10.1016/S0092-8674(04)00045-5URL [本文引用: 1]

SPIZZO R, ALMEIDA M I, COLOMBATTI A, CALIN G A. Long non-coding RNAs and cancer: a new frontier of translational research?
Oncogene, 2012, 31(43):4577-4587.

DOI:10.1038/onc.2011.621URL [本文引用: 1]

BERNSTEIN E, ALLIS C D. RNA meets chromatin
Genes & Development, 2005, 19(14):1635.

DOI:10.1101/gad.1324305URL [本文引用: 1]

EBERT M S, NEILSON J R, SHARP P A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells
Nature Methods, 2007, 4(9):721-726.

DOI:10.1038/nmeth1079URL [本文引用: 1]

CARETTI G, SCHILTZ R L, DILWORTH F J, DI PADOVA M, ZHAO P, OGRYZKO V, FULLER-PACE F V, HOFFMAN E P, TAPSCOTT S J, SARTORELLI V. The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation
Developmental Cell, 2006, 11(4):547-560.

DOI:10.1016/j.devcel.2006.08.003URL [本文引用: 1]

CESANA M, CACCHIARELLI D, LEGNINI I, SANTINI T, STHANDIER O, CHINAPPI M, TRAMONTANO A, BOZZONI I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA
Cell, 2011, 147(2):358-369.

DOI:10.1016/j.cell.2011.09.028URL [本文引用: 2]

HUANG W L, ZHANG X X, LI A, XIE L L, MIAO X Y. Differential regulation of mRNAs and lncRNAs related to lipid metabolism in two pig breeds
Oncotarget, 2017, 8(50):87539-87553.

DOI:10.18632/oncotarget.v8i50URL [本文引用: 1]

ZOU C, LI S, DENG L L, GUAN Y, CHEN D, YUAN X K, XIA T R, HE X L, SHAN Y W, LI C C. Transcriptome analysis reveals long intergenic noncoding RNAs contributed to growth and meat quality differences between Yorkshire and Wannanhua pig
Genes, 2017, 8(8):203.

DOI:10.3390/genes8080203URL [本文引用: 1]

SHEN L Y, CHEN L, ZHANG S H, ZHANG Y, WANG J Y, ZHU L. MicroRNA-23a reduces slow myosin heavy chain isoforms composition through myocyte enhancer factor 2C (MEF2C) and potentially influences meat quality
Meat Science, 2016, 116:201-206.

DOI:10.1016/j.meatsci.2016.02.023URL [本文引用: 1]

CASIRO A, VELEZ-IRIZARRY D, BATES R O, ERNST C W, STEIBEL J P. 030 Genomewide association study for meat quality traits in an F2 Duroc × Piétrain population
Journal of Animal Science, 2016, 94(2):14-15.

[本文引用: 1]

LIU G, UPDIKE M S. miRNA-dysregulation associated with tenderness variation induced by acute stress in Angus cattle
Journal of Animal Science and Biotechnology, 2012(2):60-67.

[本文引用: 1]

HONG J S, NOH S H, LEE J S, KIM J M, HONG K C, LEE Y S. Effects of polymorphisms in the porcine microRNA miR-1 locus on muscle fiber type composition and miR-1 expression
Gene, 2012, 506(1):211-216.

DOI:10.1016/j.gene.2012.06.050URL [本文引用: 1]

SHEN L Y, DU J J, XIA Y D, TAN Z D, FU Y H, YANG Q, LI X W, TANG G Q, JIANG Y Z, WANG J Y, LI M Z, ZHANG S H, ZHU L. Genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA transcriptomes in oxidative and glycolytic skeletal muscles
Scientific Reports, 2016, 6:32186.

DOI:10.1038/srep32186URL [本文引用: 1]

MA J D, WANG H M, LIU R, JIN L, TANG Q Z, WANG X, JIANG A A, HU Y D, LI Z W, ZHU L, LI R Q, LI M Z, LI X W. The miRNA transcriptome directly reflects the physiological and biochemical differences between red, white, and intermediate muscle fiber types
International Journal of Molecular Sciences, 2015, 16(5):9635-9653.

DOI:10.3390/ijms16059635URL [本文引用: 1]

WANG Q, QI R L, WANG J, HUANG W M, WU Y J, HUANG X F, YANG F Y, HUANG J X. Differential expression profile of miRNAs in porcine muscle and adipose tissue during development
Gene, 2017, 618:49-56.

DOI:10.1016/j.gene.2017.04.013URL [本文引用: 1]

CAI Z W, ZHANG L F, JIANG X L, SHENG Y F, XU N Y. Differential miRNA expression profiles in the longissimus dorsi muscle between intact and castrated male pigs
Research in Veterinary Science, 2015, 99:99-104.

DOI:10.1016/j.rvsc.2014.12.012URL [本文引用: 1]

CHI H, TILLER G E, DASOUKI M J, ROMANO P R, WANG J, O'KEEFE R J, PUZAS J E, ROSIER R N, REYNOLDS P R. Multiple inositol polyphosphate phosphatase: evolution as a distinct group within the histidine phosphatase family and chromosomal localization of the human and mouse genes to chromosomes 10q23 and 19
Genomics, 1999, 56(3):324-336.

DOI:10.1006/geno.1998.5736URL [本文引用: 1]

CAFFREY J J, HIDAKA K, MATSUDA M, HIRATA M, SHEARS S B. The human and rat forms of multiple inositol polyphosphate phosphatase: functional homology with a histidine acid phosphatase up-regulated during endochondral ossification
FEBS Letters, 1999, 442(1):99-104.

DOI:10.1016/S0014-5793(98)01636-6URL [本文引用: 1]

MOURELATOS Z, DOSTIE J, PAUSHKIN S, SHARMA A, CHARROUX B, ABEL L, RAPPSILBER J, MANN M, DREYFUSS G. miRNAs: A novel class of ribonucleoproteins containing numerous microRNAs
Genes & Development, 2002, 16(6):720-728.

DOI:10.1101/gad.974702URL [本文引用: 1]

FINNERTY J R, WANG W X, HEBERT S S, WILFRED B R, MAO G G, NELSON P T. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases
Journal of Molecular Biology, 2010, 402(3):491-509.

DOI:10.1016/j.jmb.2010.07.051URL [本文引用: 1]

虎红红, 母童, 马正旭, 冯小芳, 蔡正云, 黄增文, 顾亚玲, 辛国省, 张娟. 基于RNA-seq技术对静原鸡不同部位肉质相关差异基因的筛选
基因组学与应用生物学, 2019.(网络首发).

[本文引用: 1]

HU H H, MU T, MA Z X, FENG X F, CAI Z Y, HUANG Z W, GU Y L, XIN G S, ZHANG J. Screening of differentially expressed genes related to meat quality in different parts of jingyuan chicken based on RNA-Seq technology
Genomics and Applied Biology, 2019. (in Chinese)(Network starting)

[本文引用: 1]

ZHANG H J, PAN J, LIANG J, XIA X X. High-pressure effects on the mechanism of accumulated inosine 5 '-monophosphate
Innovative Food Science & Emerging Technologies, 2018, 45:330-334.

[本文引用: 1]

RUDOLPH F B. The biochemistry and physiology of nucleotides
Journal of Nutrition, 1994, 124(suppl_1):124S-127S.

DOI:10.1093/jn/124.suppl_1.124SURL [本文引用: 1]

HAMANO Y. Alteration of fatty acid profile and nucleotide-related substances in post-mortem breast meat of α-lipoic acid-fed broiler chickens
British Poultry Science, 2016, 57(4):501-514.

DOI:10.1080/00071668.2016.1184227URL [本文引用: 1]

MATSUISHI M, TSUJI M, YAMAGUCHI M, KITAMURA N, TANAKA S, NAKAMURA Y, OKITANI A. Inosine-5'-monophosphate is a candidate agent to resolve rigor mortis of skeletal muscle
Animal Science Journal, 2016, 87(11):1407-1412.

DOI:10.1111/asj.2016.87.issue-11URL [本文引用: 1]

野崎义孝, 南基哲, 蒋国文. 鸡肉的鲜度与K值(上)
国外畜牧科技, 1994(3):31-32.

[本文引用: 1]

YE Q, NAN J Z, JIANG G W. The freshness and K value of chicken (up)
Animal Science Abroad, 1994(3):31-32.(in Chinese)

[本文引用: 1]

王述柏. 鸡肉肌苷酸沉积规律及营养调控研究
[D]. 北京: 中国农业科学院, 2004.

[本文引用: 1]

WANG S B. Studies on the deposition of 5'-inosinic acid in chicken meat and its modification by nutrition
[D]. Beijing: Chinese Academy of Agricultural Sciences, 2004. (in Chinese)

[本文引用: 1]

陈继兰. 鸡肉肌苷酸和肌内脂肪含量遗传规律及相关候选基因的研究
[D]. 北京: 中国农业大学, 2004.

[本文引用: 1]

CHEN J L. Studies on inheritance and candidate genes of inosine-5'- monophosphate and intramuscular fat contents in chicken meat
[D]. Beijing: China Agricultural University, 2004. (in Chinese)

[本文引用: 1]

刘望夷, 竺来发, 翁志发, 沈洪民. 肉用鸡肌肉中肌苷酸含量的比较
中国农业科学, 1980(4):79-83.

[本文引用: 2]

LIU W Y, ZHU L F, WENG Z F, SHEN H M. A comparative study of inosinic acid contents in chicken muscle
Scientia Agricultura Sinica, 1980(4):79-83. (in Chinese)

[本文引用: 2]

苏淑贞, 朱汉炎, 刘建樑, 李民. 鹌鹑、鸡、鸽子肌肉中肌苷酸含量的比较
中国家禽, 1987(2):32-33+35.

[本文引用: 1]

SU S Z, ZHU H Y, LIU J L, LI M. Comparison of inosinic acid content in muscle of quail, chicken and pigeon
China Poultry, 1987(2):32-33+35. (in Chinese)

[本文引用: 1]

姬舒云. 基于转录组学和代谢组学研究苏氨酸水平对肉鸡肠道的影响
[D]. 杨凌: 西北农林科技大学, 2019.

[本文引用: 1]

JI S Y. Effects of threonine levels on broilers intestinal based on teanscriptology and metabomics
[D]. Yangling: Northwest A & F University, 2019. (in Chinese)

[本文引用: 1]

PANASYUK G, ESPEILLAC C, CHAUVIN C, PRADELLI L A, HORIE Y, SUZUKI A, ANNICOTTE J S, LLUIS-FAJAS, FORETZ M, VERDEGUER F, PONTOGLIO M, FERRE P, SCOAZEC J Y, BIRNBAUM M, RICCI J E, PENDE M. PPARγ contributes to PKM2 and HK2 expression in fatty liver
Nature Communications, 2012, 3(1).

[本文引用: 1]

PRESEK P, REINACHER M, EIGENBRODT E. Pyruvate kinase type M2 is phosphorylated at tyrosine residues in cells transformed by rous sarcoma virus
FEBS Letters, 1988, 242(1):194-198.

DOI:10.1016/0014-5793(88)81014-7URL [本文引用: 1]

ALI N, CRAXTON A, SHEARS S B. Hepatic Ins(1, 3, 4, 5)P4 3-phosphatase is compartmentalized inside endoplasmic Reticulum
The Journal of Biological Chemistry, 1993, 268(9):6161-6167.

DOI:10.1016/S0021-9258(18)53233-6URL [本文引用: 1]

KILAPARTY S P, AGARWAL R, SINGH P, KANNAN K, ALI N. Endoplasmic Reticulum stress-induced apoptosis accompanies enhanced expression of multiple inositol polyphosphate phosphatase 1 (Minpp1): A possible role for Minpp1 in cellular stress response
Cell Stress and Chaperones, 2016, 21(4):593-608.

DOI:10.1007/s12192-016-0684-6URL [本文引用: 1]

CHO J, KING J S, QIAN X, HARWOOD A J, SHEARS S B. Dephosphorylation of 2,3-bisphosphoglycerate by MIPP expands the regulatory capacity of the rapoport-luebering glycolytic shunt
Proceedings of the National academy of Sciences of the United States of America, 2008, 105(16):5998-6003.

[本文引用: 1]

BALLESTER M, AMILLS M, GONZÁLEZ-RODRÍGUEZ O, CARDOSO T F, PASCUAL M, GONZÁLEZ-PRENDES R, PANELLA-RIERA N, DÍAZ I, TIBAU J, QUINTANILLA R. Role of AMPK signalling pathway during compensatory growth in pigs
BMC Genomics, 2018, 19(1):682.

DOI:10.1186/s12864-018-5071-5URL [本文引用: 1]

OUYANG H J, HE X M, LI G H, XU H P, JIA X Z, NIE Q H, ZHANG X Q. Deep sequencing analysis of miRNA expression in breast muscle of fast-growing and slow-growing broilers
International Journal of Molecular Sciences, 2015, 16(7):16242-16262.

DOI:10.3390/ijms160716242URL [本文引用: 1]

WU N, GAUR U, ZHU Q, CHEN B, XU Z, ZHAO X, YANG M, LI D. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles
Animal Genetics, 2017, 48(2):205-216.

DOI:10.1111/age.2017.48.issue-2URL [本文引用: 1]

HE J, WANG W Q, LU L Z, TIAN Y, NIU D, REN J D, DONG L Y, SUN S W, ZHAO Y, CHEN L, SHEN J L, LI X H. Analysis of miRNAs and their target genes associated with lipid metabolism in duck liver
Scientific Reports, 2016, 6:27418.

DOI:10.1038/srep27418URL [本文引用: 1]

LI H, WANG S H, YAN F B, LIU X J, JIANG R R, HAN R L, LI Z J, LI G X, TIAN Y D, KANG X T, SUN G R. Effect of polymorphism within miRNA-1606 gene on growth and carcass traits in chicken
Gene, 2015, 566(1):8-12.

DOI:10.1016/j.gene.2015.03.037URL [本文引用: 1]

魏雪锋. miR-378a-3p、miR-107和相关circRNA调控牛肌细胞发育的机制研究
[D]. 杨凌: 西北农林科技大学, 2017.

[本文引用: 1]

WEI X F. Mechanism study on miR-378a-3p, miR-107 and related circRNA regulating bovine myoblasts development
[D]. Yangling: Northwest A & F University, 2017. (in Chinese)

[本文引用: 1]

ZHANG J J, WANG C Y, HUA L, YAO K H, CHEN J T, HU J H. miR-107 promotes hepatocellular carcinoma cell proliferation by targeting Axin2
International Journal of Clinical and Experimental Pathology, 2015, 8(5):5168-5174.

[本文引用: 1]

CHEN H Y, LIN Y M, CHUNG H C, LANG Y D, LIN C J, HUANG J, WANG W C, LIN F M, CHEN Z, HUANG H D, SHYY J Y J, LIANG J T, CHEN R H. miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4
Cancer Research, 2012, 72(14):3631-3641.

DOI:10.1158/0008-5472.CAN-12-0667URL [本文引用: 1]

WANG P, WU T Y, ZHOU H, JIN Q Q, HE G Q, YU H Y, XUAN L J, WANG X, TIAN L L, SUN Y N, LIU M, QU L M. Long noncoding RNA NEAT1 promotes laryngeal squamous cell cancer through regulating miR-107/CDK6 pathway
Journal of Experimental & Clinical Cancer Research, 2016, 35:22.

[本文引用: 1]

CHEN L, LI Z Y, XU S Y, ZHANG X J, ZHANG Y A, LUO K, LI W P. Upregulation of miR-107 inhibits glioma angiogenesis and VEGF expression
Cellular and Molecular Neurobiology, 2016, 36(1):113-120.

DOI:10.1007/s10571-015-0225-3URL [本文引用: 1]

HANSEN T B, JENSEN T I, CLAUSEN B H, BRAMSEN J B, FINSEN B, DAMGAARD C K, KJEMS J. Natural RNA circles function as efficient microRNA sponges
Nature, 2013, 495(7441):384-388.

DOI:10.1038/nature11993URL [本文引用: 1]

PARASKEVOPOULOU M D, HATZIGEORGIOU A G. Analyzing MiRNA-LncRNA interactions
Methods in Molecular Biology (Clifton, N J), 2016, 1402(1):271-286.

[本文引用: 1]

WEI N, WANG Y, XU R X, WANG G Q, XIONG Y, YU T Y, YANG G S, PANG W J. PU.1 antisense lncRNA against its mRNA translation promotes adipogenesis in porcine preadipocytes
Animal Genetics, 2015, 46(2):133-140.

DOI:10.1111/age.2015.46.issue-2URL [本文引用: 1]

姜修英, 武春艳, 董翔宇, 高卓然, 李辉, 杜志强. 鸡PPARγ基因相关长链非编码RNA的鉴定及其转录调控
农业生物技术学报, 2018, 26(11):1909-1918.

[本文引用: 1]

JIANG X Y, WU C Y, DONG X Y, GAO Z R, LI H, DU Z Q. Identification of a long non-coding RNA related to PPARγ gene and study on its transcriptional regulation in chicken(Gallus gallus)
Journal of Agricultural Biotechnology, 2018, 26(11):1909-1918. (in Chinese)

[本文引用: 1]

ZHANG T, ZHANG X Q, HAN K P, ZHANG G X, WANG J Y, XIE K Z, XUE Q A. Genome-wide analysis of lncRNA and mRNA expression during differentiation of abdominal preadipocytes in the chicken
G3 (Bethesda, Md), 2017, 7(3):953-966.

[本文引用: 1]

LIU F Q, CHEN Q, CHEN F, WANG J, GONG R J, HE B C. The lncRNA ENST00000608794 acts as a competing endogenous RNA to regulate PDK4 expression by sponging miR-15b-5p in dexamethasone induced steatosis
Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 2019, 1864(10):1449-1457.

[本文引用: 1]

CHEN X, TAN X R, LI S J, ZHANG X X. LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ ROCK1 in nonalcoholic fatty liver disease
Life Sciences, 2019, 235:116829.

DOI:10.1016/j.lfs.2019.116829URL [本文引用: 1]

相关话题/基因 细胞 组织 网络 过程