Difference in Nitrogen Responses and Nitrogen Efficiency of Different Paddy Soils in Southern and Northern China Under the Same Climatic Condition
HUANG QiuHong,1, LIU ZhiLei,1, LI PengFei1, CHE JunJie1, YU CaiLian,2, PENG XianLong11College of Resources and Environment, Northeast Agricultural University, Harbin 150030 2College of Chemical and Environment Engineering, Harbin University of Science and Technology, Harbin 150040
Received:2020-11-14Accepted:2021-02-3 作者简介 About authors 黄秋红,E-mail: hqh951022@163.com。
摘要 【目的】土壤是影响作物产量和氮肥吸收利用的因素之一,深入研究南北方稻田土壤对水稻生长及氮效率的影响,以期为调控区域水稻高产优质提供参考。【方法】2018—2019年,以黑龙江省黑土型水稻土,江苏省乌栅土型水稻土为试验材料,在黑龙江省哈尔滨市进行水稻盆栽试验。每种土壤设置3个施氮水平,即N0:不施氮肥;N1:0.87 g N/pot(相当于150 kg N·hm-2);N2:1.74 g N/pot(相当于300 kg N·hm-2)。测定水稻分蘖、SPAD值、分蘖成穗率、土壤矿化氮量、水稻产量和氮效率。【结果】黑土型水稻土的早期分蘖对施氮有响应,分蘖数随施氮量增加而增加,而乌栅土型水稻土的分蘖在拔节期后才对施氮有响应。土壤对水稻分蘖的影响存在年际间差异,2018年土壤类型对分蘖数有显著影响,不施氮时乌栅土型水稻土的分蘖数比黑土型水稻土高4.41%—43.04%,而施氮后乌栅土型水稻土比黑土型水稻土的分蘖数低8.25%—12.98%;2019年黑土型水稻土的分蘖数多数高于乌栅土型水稻土4.41%—46.53%。两种水稻土的分蘖成穗率与叶片SPAD值在2018年有显著差异,乌栅土型水稻土的叶片SPAD值比黑土型水稻土高19.28%—21.19%,乌栅土型水稻土的分蘖成穗率比黑土型水稻土高23.89%—40.53%,2019年土壤类型对水稻分蘖成穗率与叶片SPAD值均无显著影响。28 d淹水培养试验表明,两种土壤的无机氮总量基本相同,乌栅土型水稻土的初始矿化速率比黑土型水稻土高,但后期矿化速率比黑土型水稻土低,黑土型水稻土的矿化势更高,有更大的矿化潜力。黑土型水稻土的AEN(氮肥农学效率)比乌栅土型水稻土高,而乌栅土型水稻土的PFPN(氮肥偏生产力)比黑土型水稻土高,乌栅土型水稻土的Y0/Nr(Y0为无肥区产量,Nr为施氮量)更高,供氮与施氮更加协调。2018年黑土型水稻土的REN(氮肥吸收利用率)和PEN(氮肥生理利用率)均显著高于乌栅土型水稻土,2019年土壤类型对REN和PEN无显著影响。【结论】土壤差异不是南北方稻田氮效率差异的决定性因素,氮效率差异是土壤、气候和品种等因素共同作用的结果。相对于黑土型水稻土而言,前期养分供应能力强的乌栅土型水稻土应减施基、蘖肥,适当增施穗肥,以保证后期供氮促进水稻高产。 关键词:土壤类型;水稻;氮响应;氮效率;分蘖;氮矿化
Abstract 【Objective】Soil is one of the factors affecting crop yield and nitrogen fertilizer uptake or utilization. In order to provide suggestions for high yield and high quality of rice producing, we clarify the effect of paddy soil in northern and southern China on rice growth and nitrogen efficiency.【Method】In 2018 and 2019, the pot experiments were conducted in Harbin, Heilongjiang Province. The experimental soils were black paddy soil from Heilongjiang and gleyed paddy soil from Jiangsu. Three nitrogen fertilization levels were set for each soil, including no nitrogen application (N0), 0.87 g N/pot (N1, equivalent to 150 kg N·hm-2), and 1.74 g N/pot (N2, equivalent to 300 kg N·hm-2). Tiller numbers, SPAD value, yields and earing rates of rice, as well as nitrogen mineralization amount and nitrogen utilization efficiency of two soils, were determined. 【Result】Rice tiller numbers on black paddy soil increased with the increase of nitrogen fertilizer application at early growth stage, however, which on gleyed paddy soil was responded to nitrogen application after the elongation stage. Soil type has a significant effect on rice tiller number. In 2018, rice tiller numbers on gleyed paddy soil was 4.41%-43.04% higher than that on black paddy soil without nitrogen application, while tiller numbers was 8.25%-12.98% lower than that on the black paddy soil after nitrogen application. In 2019, the most of tiller numbers on black paddy soil was 4.41%-46.53% higher than that on gleyed paddy soil. In 2018, the leaf SPAD value and the earbearing tiller percentage of rice showed significant differences between two soil types. The leaf SPAD value on gleyed paddy soil was 19.28%-21.19% higher than that on black paddy soil, and also, earbearing tiller percentage of rice on gleyed paddy soil was 23.89%-40.53% higher than that on black paddy soil, but no significant difference between two soil types was observed in leaf SPAD value and earbearing tiller rate in 2019. Water-logged incubation over 28 days showed that two types of soils had the same inorganic nitrogen content. Initial nitrogen mineralization rates in gleyed paddy soil was higher than that in black paddy soil, while nitrogen mineralization rate in gleyed paddy soil at later stage was lower than that in black paddy soil. A higher nitrogen mineralization potential was observed in black paddy soil, indicating the greater mineralization capacity. The nitrogen agronomic efficiency (AEN) of black paddy soil was higher in comparison with gleyed paddy soil, while the partial factor Productivity of applied N (PFPN ) showed the opposite trend. A higher Y0/Nr (Y0 is the yield of rice field without nitrogen fertilizer application, and Nr is the amount of nitrogen fertilizer application) was found in gleyed paddy soil, suggesting a better coordination between soil nitrogen supply and application. The nitrogen recovery efficiency (REN) and nitrogen physiological efficiency (PEN) of black paddy soil was remarkably higher in comparison with gleyed paddy soil in 2018, but the two soil types had no significant difference in the REN and PEN in 2019.【Conclusion】Soil difference was not the decisive factor of nitrogen efficiency difference which was observed between southern and northern paddy fields in China, but rather the results of the combined effects of factors such as climate, crop variety, soil type, etc. Compared with black paddy soil, the gleyed paddy soil should decrease base and tiller nitrogen fertilizer, and increase the panicle nitrogen fertilizer to maintain sufficient nitrogen supply in the later stages and obtain high rice yield. Keywords:soil types;rice;nitrogen response;nitrogen efficiency;tillering;nitrogen mineralization
PDF (504KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 黄秋红, 刘智蕾, 李鹏飞, 车俊杰, 于彩莲, 彭显龙. 相同气候背景下南北方稻田土壤上水稻生长及氮响应差异研究. 中国农业科学, 2021, 54(19): 4143-4154 doi:10.3864/j.issn.0578-1752.2021.19.010 HUANG QiuHong, LIU ZhiLei, LI PengFei, CHE JunJie, YU CaiLian, PENG XianLong. Difference in Nitrogen Responses and Nitrogen Efficiency of Different Paddy Soils in Southern and Northern China Under the Same Climatic Condition. Scientia Acricultura Sinica, 2021, 54(19): 4143-4154 doi:10.3864/j.issn.0578-1752.2021.19.010
开放科学(资源服务)标识码(OSID):
0 引言
【研究意义】我国水稻种植区域南北跨度大,北起黑龙江,南至海南均有种植。由于各个稻区的气候特性和种植模式不同,我国南北方稻田施肥量差异大,产量和氮效率呈现明显的空间差异。黑龙江和江苏省是我国氮肥用量最低和最高的稻区,氮肥偏生产力(PFPN)存在着较大的差异,这两个区域氮效率和氮肥用量差异如此大的原因是学术界关注的焦点。【前人研究进展】气候条件[1]、水稻品种[2]、土壤性质[2]的不同都会造成稻田氮效率和施肥量的差异。氨挥发是氮素损失的途径之一,由于高温条件,施用氮肥后南方稻田氨挥发损失严重,双季稻田的平均氨挥发损失率高达43.7%[3],江苏省的氨挥发量为45.0— 53.3 kg N·hm-2,而黑龙江省是氨挥发损失最低的省份,变动在11.2—21.9 kg N·hm-2[4]。南北方稻区水稻品种不同,需氮量也不同,江苏省粳稻和寒地粳稻 100 kg籽粒吸氮量平均约为2.0 kg[5]和1.4 kg[6],相同产量下寒地水稻总吸氮量更低,而江苏需氮量高,这是两个稻区施肥量差异的主要原因。对江苏和黑龙江典型稻田的供氮特征进行比较发现[7,8],南方稻田土壤前期氮素矿化快,氮素释放量较高,北方稻田土壤供氮比较平稳,中后期矿化速度较高,寒地稻田土壤供氮与水稻吸氮更加匹配,这可能是北方稻田土壤氮效率较高的原因之一。然而,气候、品种和土壤等哪个因素对区域氮效率的影响更大目前还不清楚。【本研究切入点】以往关于稻田氮效率差异的研究多数基于不同的空间尺度,未能扣除气候和品种等因素的影响,难以区分土壤这一因素的作用。南北方稻田土壤性质迥异,土壤本身的差异以及不同土壤上氮肥响应的差异与氮效率的关系还不清楚,为此本研究将选取南北方典型稻田土壤,在同样的气候和水稻品种等条件下,研究不同土壤上水稻对施氮的响应和氮效率的差异。【拟解决的关键问题】以期揭示土壤本身差异对南北方稻田氮效率差异的贡献,为深入认识区域氮效率差异提供理论依据。
两种土壤上均设3个氮量,分别为N0:不施氮肥;N1:0.87 g N/pot(相当于150 kg N·hm-2);N2:1.74 g N/pot(相当于300 kg N·hm-2)。氮肥40%用于基肥,30%用于蘖肥,30%用于穗肥;每盆P2O5总用量为0.51 g(相当于90 kg·hm-2),100%用于基肥;每盆K2O总用量为0.84 g(相当于150 kg·hm-2),50%用于基肥,50%用作穗肥。氮肥为尿素,KH2PO4用作磷钾肥,穗肥施用的KCl。每个处理4次重复,随机排列。
3W代表水稻移栽后第3周,5W代表水稻移栽后第5周,ES代表拔节期,MS代表成熟期;N代表施氮量,S代表土壤类型,N×S代表氮量与土壤的交互作用;*,**在5%与1%水平下的显著性,ns代表差异不显著。在同一时期,不同小写字母代表黑土型水稻土不同氮量间差异显著(P<0.05),不同大写字母代表乌栅土型水稻土不同氮量间差异显著(P<0.05)。下同 Fig. 2Response of rice tiller number to nitrogen in different soils
3W: 3 weeks after translating; 5W: 5 weeks after translating; TS: Tilling stage; ES: Elongation stage; MS: Maturity stage. N: Nitrogen rate; S: Soil type; N×S: Interaction of nitrogen and soil; *, **: Significance at 5% and 1% levels, respectively; ns: Non-significance. During the same period, different lowercase letters indicate the significant difference between different nitrogen level in the black paddy soil (P<0.05), different capital letters indicate the significant difference between different nitrogen level in the gleyed paddy soil (P<0.05). The same as below
Table 3 表3 表32018年与2019年水稻地上部干重、产量与氮效率 Table 3Rice dry weight, yield and nitrogen efficiency in 2018 and 2019
年份 Year
土壤类型 Soil type
处理Treatment
地上部干重 Dry weight (g/pot)
产量 Yield (g/pot)
AEN (kg·kg-1)
PFPN (kg·kg-1)
Y0/Nr (kg·kg-1)
REN (%)
PEN (kg·kg-1)
2018
黑土型水稻土 Black paddy soil
N0
84.69c
29.73c
N1
135.79b
44.61b
17.39a
52.13a
34.75a
41.08a
41.74a
N2
178.80a
67.04a
21.69a
38.97b
17.28b
49.09a
44.22a
乌栅土型水稻土 Gleyed paddy soil
N0
108.39c
38.84c
N1
139.44b
50.09b
13.08a
58.23a
45.15a
34.89a
37.56a
N2
160.99a
61.43a
13.13a
35.71b
22.57b
39.42a
33.29a
N
**
**
ns
**
**
ns
ns
S
*
*
**
ns
**
*
*
N×S
**
*
ns
**
ns
**
ns
2019
黑土型水稻土 Black paddy soil
N0
78.51c
41.18b
N1
144.33b
80.41a
45.85a
93.98a
48.13a
59.30a
79.10a
N2
168.83a
83.52a
24.61b
48.55b
23.94b
54.10a
45.81b
乌栅土型水稻土 Gleyed paddy soil
N0
85.62c
48.12c
N1
149.84b
83.17b
40.75a
96.69a
55.94a
58.86a
70.46a
N2
179.37a
94.11a
26.73b
54.70b
27.97b
50.65a
52.82b
N
**
**
**
**
**
ns
**
S
*
ns
ns
*
**
ns
ns
N×S
ns
ns
ns
ns
ns
ns
ns
同一列中,同一年份且同一土壤类型后跟不同字母代表在0.05水平上差异显著;PFPN,氮肥偏生产力;AEN,氮肥农学效率;Y0/Nr,数值大表明土壤供氮和水稻更协调 [11],其中Y0为无肥区产量,Nr为施氮量;REN,氮肥吸收利用率;PEN,氮肥生理利用率 PFPN: Partial factor productivity of applied N; AEN: Nitrogen agronomic efficiency; Y0/Nr is a mathematical term calculated by PFPN - AEN, [11] and Y0 is the yield of N0, and Nr is the amount of nitrogen fertilizer application; REN: Nitrogen recovery efficiency; PEN: Nitrogen physiological efficiency
ZHAO YX, XIAO DP, TANG JZ, BAI HZ. Effects of climate change on the yield of major grain crops and its adaptation measures in China Research of Soil and Water Conservation, 2019, 26(6):317-326. doi: 10.13869/j.cnki.rswc.2019.06.042. (in Chinese) [本文引用: 2]
YIN CY, ZHANG HC, ZHANGQ, WEI HY, DAI QG, HUO ZY, XUK, MAQ, LIM, LI GY. Preliminary study on parameters of precise and quantitative nitrogen application in rice varieties with different growth period durations Acta Agronomica Sinica, 2010, 36(8):1342-1354.(in Chinese) [本文引用: 5]
ZHUJ, SHI LH, TIAN FX, HUO LJ, JI XH. Responses of ammonia volatilization to nitrogen application amount in typical double cropping paddy fields in Hunan Province Journal of Plant Nutrition and Fertilizers, 2013, 19(5):1129-1138. doi: 10.11674/zwyf.2013.0512. (in Chinese) [本文引用: 1]
HE WT. Modelling crop yield and nitrogen balance based on crop-soil models [D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese) [本文引用: 1]
PENG XL, WANGW, ZHOUN, LIU HY, LI PF, LIU ZL, YU CL. Analysis of fertilizer application and its reduction potential in paddy fields of Heilongjiang Province Scientia Agricultura Sinica, 2019, 52(12):2092-2100. (in Chinese) [本文引用: 2]
PENG XL, LIUY, YU CL, WANGD. Study on the nitrogen mineralization characters of paddy soil in cold area Scientia Agricultura Sinica, 2014, 47(4):702-709. doi: 10.3864/j.issn.0578-1752.2014.04.010. (in Chinese) [本文引用: 1]
LI WJ, ZENG XM, PENG BF, YANG JF, ZHAOD. Modeling of organic nitrogen mineralization in paddy soils in Dongting Lake region of China Chinese Journal of Ecology, 2019, 38(5):1392-1401. doi: 10.13292/j.1000-4890.201905.008. (in Chinese) [本文引用: 1]
WARING SA, BREMNER JM. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability , 201(4922):951-952. DOI: 10.1038/201951a0. [本文引用: 1]
FAN LC, PENG XL, LIU YY, SONG TX. Study on the site-specific nitrogen management of rice in cold area of northeastern China Scientia Agricultura Sinica, 2005, 38(9):1761-1766. (in Chinese) [本文引用: 1]
CASSMAN KG, GINES GC, DIZON MA, SAMSON MI, ALCANTARA JM. Nitrogen-use efficiency in tropical lowland rice systems: contributions from indigenous and applied nitrogen , 1996, 47(1):1-12. doi: 10.1016/0378-4290(95)00101-8. URL [本文引用: 3]
LIUY, GU DD, DINGYF, WANG QS, LI GH, WANG SH. The relationship between nitrogen, auxin and cytokinin in the growth regulation of rice (Oryza sativa L.) tiller buds , 2011, 5(8):1019-1026. [本文引用: 1]
WANG SH, CAO WX, WANG QS, DING YF, HUANG PS, LING QH. Positional distribution of leaf color and diagnosis of nitrogen nutrition in rice plant Scientia Agricultura Sinica, 2002, 35(12):1461-1466. (in Chinese) [本文引用: 1]
TIAN GL, ZHOUY, SUNB, ZHANG RQ, ZHOU XG, GUO SW. Effects of nitrogen and transplanting density on the mechanisms of tillering dynamic of rice Journal of Plant Nutrition and Fertilizers, 2018, 24(4):896-904. (in Chinese) [本文引用: 1]
MO LJ. Effect of nitrogen rate on tillering of Nipponbare and Yangdao 6 and its molecular mechanism [D]. Yangzhou: Yangzhou University, 2019. (in Chinese) [本文引用: 1]
LIU BY, LEI CY, LIU WQ. Nitrogen addition exacerbates the negative effects of low temperature stress on carbon and nitrogen metabolism in moss , 2017, 8:1328. doi: 10.3389/fpls.2017.01328. URL [本文引用: 1]
WANG LD, ZHAO HW, CAI HL, JIAY, LIU HL. Effects of nitrogen application on tillering and yield of Japonica rice under cold water stress at tillering stage Soil and Fertilizer Sciences in China, 2016(6):86-92. doi: 10.11838/sfsc.20160614. (in Chinese) [本文引用: 1]
GUNAWARDENA TA, FUKAIS, BLAMEYF P C. Low temperature induced spikelet sterility in rice. I. Nitrogen fertilisation and sensitive reproductive period , 2003, 54(10):937. doi: 10.1071/ar03075. URL [本文引用: 1]
LIU ZL, TAO LY, LIU TT, ZHANG XH, WANGW, SONG JM, YU CL, PENG XL. Nitrogen application after low-temperature exposure alleviates tiller decrease in rice , 2019, 158:205-214. doi: 10.1016/j.envexpbot.2018.11.001. URL [本文引用: 1]
BIAN JY. Low temperature stress on cold resistance at rice germination stage in Heilongjiang Province Heilongjiang Agricultural Sciences, 2010(9):109-110. doi: 10.3969/j.issn.1002-2767.2010.09.037. (in Chinese) [本文引用: 1]
WANGF, CHENG FM, ZHANG GP. Difference in grain yield and quality among tillers in rice genotypes differing in tillering capacity , 2007, 14(2):135-140. doi: 10.1016/S1672-6308(07)60019-5. URL [本文引用: 1]
NURUZZAMANM, YAMAMOTOY, NITTAY, YOSHIDAT, MIYAZAKIA. Varietal differences in tillering ability of fourteen Japonica and indica rice varieties , 2000, 46(2):381-391. doi: 10.1080/00380768.2000.10408792. [本文引用: 1]
TAO LX, WANGX, TAN HJ, ZHANG FD. Hormone levels in functional leaves of tillers and their correlation to panicle setting in rice Hybrid Rice, 2006, 21(1):68-71. doi: 10.16267/j.cnki.1005-3956.2006.01.029. (in Chinese) [本文引用: 1]
SONGZ. The N-supply characteristics of paddy soil in cold area and the relationships between N supply rates and rice yield [D]. , 2017. (in Chinese) [本文引用: 2]
LIN, YANGY, SHEN YN, ZHANG XS, WANGZ, HAOP. Effects of nitrogen application rate on yield, quality and nitrogen use efficiency of high quality Japonica rice China Rice, 2019, 25(5):66-68. (in Chinese) [本文引用: 1]
YANJ, YINB, ZHANG SL, SHEN QR, ZHU ZL. Studies on the nitrogen fertilizer application of rice-wheat rotation system in Taihu Lake Region Journal of Nanjing Agricultural University, 2009, 32(1):61-66. (in Chinese) [本文引用: 1]
CU RM. Effect of sheath blight on yield in tropical, intensive rice production system , 1996, 80(10):1103. doi: 10.1094/pd-80-1103. URL [本文引用: 1]
XIAO RY, WANG KB, LIU QY, LEI ZS, JIN MH. Effects of N application rate on the yield, nitrogen absorption and the balance of soil nitrogen Journal of Henan Agricultural University, 2019, 53(4):495-502. doi: 10.16445/j.cnki.1000-2340.2019.04.001. (in Chinese) [本文引用: 1]
YANP, ZHOU JS, ZHANG SL, YU YM, MU FC, WU HT, ZHEN BX. Effects of nitrogen rate on yield and nitrogen use efficiency of super rice ‘Songjing 9’ Chinese Agricultural Science Bulletin, 2014, 30(30):127-132. (in Chinese) [本文引用: 1]
LU WL, DUAN RZ, YU XC, YAN DY, GUO GY, QUAN RL, LIU XC. Effects of nitrogen fertilizer on nitrogen absorption and utilization of Japonica hybrid rice Chinese Agricultural Science Bulletin, 2016, 32(30):1-6. (in Chinese) [本文引用: 1]
WEI HY, WANG YJ, MENG TY, GE MJ, ZHANG HC, DAI QG, HUO ZY, XUK. Response of yield, quality and nitrogen use efficiency to nitrogen fertilizer from mechanical transplanting super Japonica rice Chinese Journal of Applied Ecology, 2014, 25(2):488-496. doi: 10.13287/j.1001-9332.2014.0053. (in Chinese) [本文引用: 1]
LI WB, WU LS, LIAO HQ. Application and crop recovery of n-fertilizer in high-yielding paddy fields of Taihu region Acta Pedologica Sinica, 1997, 34(1):67-73. (in Chinese) [本文引用: 1]
XUM, WUH, WANG SH, LI GH, YANG WX, WANG QS, DING YF, SHEN QR. Effects of basic nitrogen supply capacity of different texture soils on rice yield in Jiangsu Province Journal of Nanjing Agricultural University, 2006, 29(4):1-5. (in Chinese) [本文引用: 1]
GUO JJ, CHAI YX, LIL, GAO LM, XIE KL, LINGN, GUO SW. The potential and related mechanisms of increasing rice yield by reducing chemical nitrogen application in Jiangsu Province Scientia Agricultura Sinica, 2019, 52(5):849-859. doi: 10.3864/j.issn.0578-1752.2019.05.007. (in Chinese) [本文引用: 2]
PENG XL, LIU YY, LUO SG, FAN LC, SHENG DH. Nitrogen application situation and effects of nitrogen management on cost and output of paddy field in cold area of northeast China Journal of Northeast Agricultural University, 2007, 38(4):467-472. doi: 10.19720/j.cnki.issn.1005-9369.2007.04.009. (in Chinese) [本文引用: 1]
PENG XL, LIU YY, LUO SG, FAN LC, SONG TX, GUO YW. Effects of the site-specific nitrogen management on yield and dry matter accumulation of rice in cold areas of northeastern China Scientia Agricultura Sinica, 2006, 39(11):2286-2293. (in Chinese) [本文引用: 1]