Function of Sucrose Transporter OsSUT5 in Rice Pollen Development and Seed Setting
ZHANG YaWen,1, BAO ShuHui1, TANG ZhenJia1, WANG XiaoWen1,2, YANG Fang3, ZHANG DeChun,4, HU YiBing,11College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 2College of Horticulture, Nanjing Agricultural University, Nanjing 210095 3State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072 4Bio-technology Research Center, China Three Gorges University, Yichang 443002, Hubei
Abstract 【Objective】 Sucrose is the main form of photosynthates transported in the plant, and sucrose transporters (or sucrose carrier, SUT/SUC) play important roles in the transport of sucrose across the plasma membrane between cells and allocation of sucrose among different tissues and organs. The rice SUT family possesses 5 members. Knockout of the genes encoding OsSUT1, OsSUT2, OsSUT3 or OsSUT4 confers significant effects on rice indicating that the functions of these genes are indispensable. However, the physiological role of OsSUT5 has not been systematically characterized. This study aims at elucidating the function of OsSUT5 in rice growth and development and provides new evidence for a comprehensive understanding of SUT’s role in model plant rice. 【Method】In this study, the temporal and spatial expression pattern of OsSUT5 was analyzed via quantitative real-time PCR. The tissue localization of OsSUT5 in rice was tested via GUS represented expressions driven by the putative promoter of OsSUT5 and subcellular localization of transiently expressed OsSUT5-GFP fusion protein was observed in leaf cells of tobacco. In addition, CRISPR-Cas9 mediated gene editing was employed to create mutant lines of the gene for the characterization of OsSUT5. 【Result】Our results show that OsSUT5 was expressed in culm, leaf, inflorescence, and caryopsis of rice but it was predominantly expressed in inflorescence and developing caryopsis at the transcriptional level. At the protein level, it was prominently expressed in the vascular bundles of rice vegetative organs. In reproductive organs, the protein was mainly expressed in the anther and developing caryopsis, particularly in the scutellum and coleorhiza. Transient expression of OsSUT5-GFP fusion protein in epidermis cells of tobacco leaf indicated that it was localized on the plasma membrane. Compared with the wild-type control, three homozygous mutant lines of OsSUT5 created via CRISPR-Cas9 gene-editing system consistently showed reduced pollen viability, a lower percentage of germination rates. Accordingly, the percentage of unpollinated florets and seed-setting rate decreased significantly. Comparison of OsSUT5 mutant lines and the wild-type control showed that more chalk was observed in the mutant caryopses than that of the wild type. In the mutant lines, caryopsis length increased but 1000 grain weight didn’t show a significant difference between the mutants and the wild-type control based on statistics. 【Conclusion】These results indicate that OsSUT5 played an important role in pollen development and probably also in the fertilization process. Knockout of the gene affected the morphology and quality of rice caryopsis. Given the sucrose transport capacity of OsSUT5 and its plasma membrane localization, it can be deduced that function of OsSUT5 including its influence on rice pollen viability and endosperm development is related to its sucrose transport activity at the cellular level. Keywords:rice;OsSUT5;CRISPR-Cas9;pollen germination;seed setting rate;chalk
PDF (5352KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 张雅文, 包淑慧, 唐振家, 王小文, 杨芳, 张德春, 胡一兵. 蔗糖转运蛋白OsSUT5在水稻花粉发育及结实中的作用[J]. 中国农业科学, 2021, 54(16): 3369-3380 doi:10.3864/j.issn.0578-1752.2021.16.001 ZHANG YaWen, BAO ShuHui, TANG ZhenJia, WANG XiaoWen, YANG Fang, ZHANG DeChun, HU YiBing. Function of Sucrose Transporter OsSUT5 in Rice Pollen Development and Seed Setting[J]. Scientia Acricultura Sinica, 2021, 54(16): 3369-3380 doi:10.3864/j.issn.0578-1752.2021.16.001
开放科学(资源服务)标识码(OSID):
0 引言
【研究意义】籽粒是水稻的可食用部分,其中淀粉约占籽粒重量的90%。淀粉的合成源于植物绿色组织光合作用产生的葡萄糖。葡萄糖在细胞质中转化为蔗糖作为光合产物的主要形式运输到“库”器官[1,2]。植物体内合成碳水化合物等有机物的器官如叶片,称为“源”器官,而接受有机物的器官称为“库”器官,包括根、茎、花、果实和种子等[3,4]。在水稻生殖生长期间,籽粒是最重要的库器官。蔗糖在从源到库的运输以及分配中存在2种途径,即依赖胞间连丝的共质体途径和依赖跨膜载体运输的质外体途径[5]。蔗糖-质子同向运输蛋白(SUT(C))是质外体运输途径的重要成员。【前人研究进展】蔗糖-质子同向运输蛋白(sucrose transporters or sucrose carrier,SUTs/SUCs)属于主要易化子超家族(major facilitator superfamily,MFS)的成员[6]。它们存在于植物中,并且与细菌、真菌和动物的己糖转运蛋白亲缘关系较远[7]。自1992年从菠菜中鉴定出第一个SUT成员[8],此后很多植物的SUT基因陆续被发现和报道[9,10,11,12,13,14]。系统发育分析表明,植物SUT蛋白可分为3、4或5个亚族[5,10,15]。在5个亚族的分类体系中,SUT1亚族为双子叶植物特有;SUT2和SUT4亚族为单、双子叶植物所共有;SUT3和SUT5亚族则为单子叶植物所特有[15]。对SUT家族部分基因功能研究发现,它们不仅参与植物体内蔗糖的运输和分配,也与植物的生长发育密切相关,比如影响花粉、果实的发育,参与植株的生长和乙烯的生物合成等过程[16,17,18,19]。水稻SUT家族共有5个成员[10]。其中OsSUT1在水稻生长发育中所承担的功能已经引起了研究人员的广泛兴趣,而且针对这个基因生理功能的研究报道还在不断地扩展和深入[20,21,22,23,24,25,26,27]。敲除OsSUT2引起水稻的株高、分蘖数和千粒重显著降低[28]。最近,李孟珠等[29]通过CRISPR-Cas9敲除OsSUT4导致水稻株高降低,分蘖增加和产量降低等表型。岳萌萌[30]的研究也得到了类似的结果。对拟南芥和水稻SUT基因的结构和组成分析显示,它们都由多个外显子组成,部分SUT基因存在可变剪切。水稻OsSUT5由13个外显子构成。目前只发现它的一个转录本。2012年一项在非洲爪蟾卵母细胞中的研究显示,OsSUT5和OsSUT1一样具有蔗糖运输能力,并且显示OsSUT5较OsSUT1具有更高的底物亲和性(K0.5=2.32 mmol·L-1,pH=5.6)、更低的底物特异性和低pH依赖的特点[31]。拟南芥中,AtSUC5编码一个胚乳特异表达的蔗糖运输蛋白,突变AtSUC5导致拟南芥胚发育轻微延迟[32],而且有研究显示AtSUC5除了运输蔗糖,还能运输生物素[33]。水稻中一些关于OsSUT5的研究表明,反义抑制OsSUT5表达导致籼稻品种明恢盾片膨大以及愈伤组织诱导率和增值率显著下降[34];同时还引起颖果直链淀粉含量变高,垩白度升高[35]。【本研究切入点】尽管上述工作为阐明OsSUT5的生理功能提供了重要线索,但有关该基因的系统研究还未见报道。【拟解决的关键问题】本研究旨在通过基因编辑技术获得OsSUT5突变体株系,比较它们与野生型水稻的表型,明确其生理功能,结合基因在转录水平的表达模式及其在蛋白水平的组织定位鉴定OsSUT5的功能,为阐明水稻体内蔗糖运输蛋白OsSUT5的生理功能及其作用机制提供新的依据。
A:萌发3 d的幼根;B:苗期幼茎横切面;C:孕穗期叶片;D:即将抽穗的小花;E:开花后9 d的颖果。F:开花后9 d颖果的胚。白色箭头指示维管组织;红色箭头指示盾片;黄色箭头指示胚根鞘。图中标尺为1 mm Fig. 2Histochemical staining results of GUS expression in rice tissues driven by OsSUT5 prompter
A: Root of 3 d seedling after germination; B: Cross-section of seedling stem; C: Leaf blade of mature plant; D: Floret about to blossom; E: Longitudinal section of 9 d caryopsis after pollination; F: The embryo of 9 d caryopsis after pollination. White arrow heads indicate vascular bundles; red arrow heads indicate the scutellum; yellow arrow heads indicate the coleorhiza. Bars=1 mm
WT:野生型。ossut5-1、ossut5-17、ossut5-25为基因编辑水稻的3个纯合突变株系。A:野生型水稻植株与OsSUT5突变植株对比;B:稻穗的形态比较;C:突变位点鉴定;D:颖果长度比较;E:结实率统计;F:颖果形态比较;G:颖果长度统计图。H:颖果千粒重统计图。E、G、H中不同小写字母代表显著差异(P<0.05)。下同 Fig. 4Gene editing site certification and phenotype of the OsSUT5 mutant lines
WT: Wild type. ossut5-1, ossut5-17, and ossut5-25 are three homozygous rice lines created via the gene editing system. A: OsSUT5 mutants and the wild-type rice comparison; B: Panicle comparison; C: Editing site identification; D: Caryopsis length comparison; E: A column diagram of grain composition; F: Caryopsis morphology comparison; G: A column diagram of caryopsis length; H: A column diagram of 1000 grain weight. Different lowercase letters in E, G, and H represent significantly different values (P<0.05). The same as below
A、B、C、D:显微镜下观察的野生型和突变体ossut5-1、ossut5-17、ossut5-25花粉KI-I2染色结果。E、F、G、H:显微镜下观察的野生型和突变体ossut5-1、ossut5-17、ossut5-25花粉体外萌发结果。I:花粉碘染活性统计结果。J:花粉萌发的统计结果。标尺=200 μm Fig. 5Pollen viabilities tested by I2-KI staining and germination ratio in vitro of OsSUT5 mutants and wild-type rice
A, B, C, D: Pollens of wild type rice and ossut5-1, ossut5-17, ossut5-25 mutants stained with KI-I2 solution observed under a microscope. E, F, G, H: Germination of wild type rice and ossut5-1, ossut5-17, ossut5-25 mutants in vitro observed under a microscope. I: Pollen viabilities. J: Pollen germination rates. Scale bars =200 μm
红色圆点标记表示水稻SUT蛋白。蓝色圆点表示拟南芥SUC5。图中153个蛋白及其Accession numbers见电子附表2 Fig. 6A phylogenetic tree (Neighbor-Joining) of SUT(C) proteins
Red dots indicate rice SUTs; Blue dot indicates Arabidopsis SUT5. Accession numbers of 153 SUT(C) proteins in the figure are listed in the supplementary table 2
DUL. Molecular regulation of OsSUT on rice filling physiology [D]. Fuzhou: Fujian Agricultural & Forestry University, 2010. (in Chinese) [本文引用: 1]
LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) , 2001, 25:402-408. DOI:10.1006/meth.2001.1262URL [本文引用: 1]
MAL, ZHANG DC, MIAOQ, YANGJ, XUAN YH, HU YB. Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling , 2017, 58(5):863-873. DOI:10.1093/pcp/pcx040URL [本文引用: 1]
MIAOJ, GUOD, ZHANGJ, HUANGQ, QING, ZHANGX, WANJ, GUH, QU LJ. Targeted mutagenesis in rice using CRISPR-Cas system , 2013, 23:1233-1236. DOI:10.1038/cr.2013.123URL [本文引用: 1]
CHENG, MU TY, CAO GQ, LINQ, ZHENGH, CAO SJ. Cloning and functional analysis of Chinese Fir sucrose transporter SUT gene Journal of Northwest Forestry University, 2020, 35(2):8-14. (in Chinese)
KANGS, HE HX, WANGM, GUOJ, XUEJ. The acquisition and bioinformatic analysis of sucrose transporter protein gene PaSUC4 from apricot Current Biotechnology, 2016, 6:105-112. (in Chinese)
LEMOINER, LA CAMERAS, ATANASSOVAR, DÉDALDÉCHAMPF, ALLARIOT, POURTAUN, BONNEMAINJ L, LALOIM, COUTOS-THÉVENOTP, MAUROUSSETL, FAUCHERM, GIROUSSEC, LEMONNIERP, PARRILLAJ, DURANDM. Source-to-sink transport of sugar and regulation by environmental factors , 2013, 4:272. [本文引用: 1]
QI SK, HOU FY, QINZ, LI AX, WANG QM, ZHANG LM. Research progress of sucrose transporters in plant Shandong Agricultural Science, 2016, 48(2):149-153. (in Chinese)
张清, 胡伟长, 张积森. 植物蔗糖转运蛋白研究进展 , 2016, 37(1):193-202.
BIHMIDINES, HUNTERC T 3RD, JOHNSC E, KOCHK E, BRAUND M. Regulation of assimilate import into sink organs: update on molecular drivers of sink strength , 2013, 4:177. [本文引用: 1]
YADAV UP, AYRE BG, BUSH DR. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: Assessing the potential to improve crop yields and nutritional quality , 2015, 6:275. [本文引用: 1]
ZHANGQ, HU WC, ZHANG JS. Sucrose transporters in plants Chinese Journal of Tropical Crops, 2016, 37(1):193-202. (in Chinese)
LEMOINER. Sucrose transporters in plants: Update on function and structure , 2000, 1465(1/2):246-262. [本文引用: 1]
ZHANG LJ, LI XY, RUAN YY. Progress on sucrose transporters in dicotyledons and monocotyledons Journal of Shenyang Agricultural University, 2008, 39(3):259-264. (in Chinese) [本文引用: 1]
ABRAMSONJ, SMIRNOVAI, KASHOV, VERNERG, KABACK HR, IWATAS. Structure and mechanism of the lactose permease of Escherichia coli , 2003, 301(5633):610-615. DOI:10.1126/science.1088196URL [本文引用: 1]
RIESMEIER JW, WILLMITZERL, FROMMER WB. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast , 1992, 11(13):4705-4713. DOI:10.1002/embj.1992.11.issue-13URL [本文引用: 1]
WANGZ. The Flowering and Fruiting of Rice. Beijing: Science Press, 2014: 91-109. (in Chinese) [本文引用: 1]
HIROSET, IMAIZUMIN, SCOFIELD GN, FURBANK RT, OHSUGIR. cDNA cloning and tissue-specific expression of a gene for sucrose transporter from rice (Oryza sativa L.) , 1997, 38(12):1389-1396. DOI:10.1093/oxfordjournals.pcp.a029134URL [本文引用: 2]
AOKIN, HIROSET, SCOFIELD GN, WHITFELD PR, FURBANK RT. The sucrose transporter gene family in rice , 2003, 44(3):223-232. DOI:10.1093/pcp/pcg030URL [本文引用: 6]
YANGH Y. Rice Reproductive Biology. Hangzhou: Zhejiang University Press, 2005: 91-98. (in Chinese) [本文引用: 1]
AYRE BG. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning , 2011, 4(3):377-394. DOI:10.1093/mp/ssr014URL [本文引用: 1]
ZHOU LJ, JIANGL, ZHAI HQ, WAN JM. Research status and improvement strategies of rice chalkiness Heredity, 2009, 31(6):563-572. (in Chinese) [本文引用: 1]
LID, XUR, LVD, ZHANGC, YANGH, ZHANGJ, WENJ, LIC, TANX. Identification of the core pollen-specific regulation in the rice OsSUT3 promoter , 2020, 21(6):1909. DOI:10.3390/ijms21061909URL [本文引用: 1]
DUOP, GUX, XUE LJ, LEEBENS-MACK JH, TSAI CJ. Bayesian phylogeny of sucrose transporters: Ancient origins, differential expansion and convergent evolution in monocots and dicots , 2014, 5:615. [本文引用: 1]
ZHANG CK, HANL, SLEWINSKI TL, SUN JL, ZHANGJ, WANG ZY, TURGEONR. Symplastic phloem loading in poplar , 2014, 166(1):306-313. DOI:10.1104/pp.114.245845URL [本文引用: 1]
LI DD, LIJ, LUAN YF, ZHANG CL, XU RC, LÜD, TAN YL, TAN XL. Cloning and expression analysis of OsSUT3 gene promoter from Oryza sativa Molecular Plant Breeding.2018, 16:7225-7233. (in Chinese) [本文引用: 1]
HACKELA, SCHAUERN, CARRARIF, FERNIE AR, GRIMM BC, KÜHNC. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways , 2006, 45(2):180-192. DOI:10.1111/tpj.2006.45.issue-2URL [本文引用: 1]
SIVITZ AB, REINDERSA, WARD JM. Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation , 2008, 147(1):92-100. DOI:10.1104/pp.108.118992URL [本文引用: 1]
PAYYAVULA RS, TAY K HC, TSAI CJ, HARDING SA. The sucrose transporter family in Populus: The importance of a tonoplast PtaSUT4 to biomass and carbon partitioning , 2011, 65(5):757-770. DOI:10.1111/tpj.2011.65.issue-5URL [本文引用: 1]
CHINCINKAI, GIERK, KRÜGELU, LIESCHEJ, HEH, GRIMMB, HARRENF J M, CRISTESCUS M, KÜHNC. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production , 2013, 4:26. [本文引用: 1]
FURBANK RT, SCOFIELD GN, HIROSET, WANG XD, PATRICKJ, OFFLER CE. Cellular localization and function of a sucrose transporter OsSUT1 in developing rice seeds , 2001, 28(12):1187-1196. [本文引用: 1]
HIROSET, TAKANOM, TERAOT. Cell wall invertase in developing rice caryopsis: Molecular cloning of OsCIN1 and analysis of its expression in relation to its role in grain filling , 2002, 43(4):452-459. DOI:10.1093/pcp/pcf055URL [本文引用: 1]
HIROSET, ZHANGZ, MIYAOA, HIROCHIKAH, OHSUGIR, TERAOT. Disruption of a gene for rice sucrose transporter, OsSUT1 impairs pollen function but pollen maturation is unaffected , 2010, 61(13):3639-3646. DOI:10.1093/jxb/erq175URL [本文引用: 2]
ISHIMARUK, HIROSET, AOKIN, TAKAHASHIS, ONOK, YAMAMOTOS, WUJ, SAJIS, BABAT, UGAKIM, MATSUMOTOT, OHSUGIR. Antisense expression of a rice sucrose transporter OsSUT1 in rice (Oryza sativa L.) , 2001, 42(10):1181-1185. DOI:10.1093/pcp/pce148URL [本文引用: 1]
ISHIBASHIY, OKAMURAK, MIYAZAKIM, PHANT, YUASAT, IWAYA-INOUEM. Expression of rice sucrose transporter gene OsSUT1 in sink and source organs shaded during grain filling may affect grain yield and quality , 2014, 97:49-54. DOI:10.1016/j.envexpbot.2013.08.005URL [本文引用: 1]
SCOFIELD GN, HIROSET, AOKIN, FURBANKR. Involvement of the sucrose transporter, OsSUT1, in the long- distance pathway for assimilate transport in rice , 2007, 58(12):3155-3169. DOI:10.1093/jxb/erm153URL [本文引用: 1]
SCOFIELD GN, HIROSET, GAUDRON JA, FURBANK RT. Antisense suppression of the rice transporter gene, OsSUT1, leads to impaired grain filling and germination but does not affect photosynthesis , 2002, 29(7):815-826. DOI:10.1071/PP01204URL [本文引用: 2]
ZHANGJ, LID, XUX, ZISKA LH, ZHUJ, LIUG, ZHUC. The potential role of sucrose transport gene expression in the photosynthetic and yield response of rice cultivars to future CO2 concentration , 2020, 168:218-226. DOI:10.1111/ppl.v168.1URL [本文引用: 1]
EOM JS, CHO JI, REINDERSA, LEE SW, YOOY, TUAN PQ, CHOI SB, BANGG, PARK YI, CHO MH, BHOO SH, ANG, HAHN TR, WARD JM, JEON JS. Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth , 2011, 157(1):109-119. DOI:10.1104/pp.111.176982URL [本文引用: 1]
LI MZ, WANG GP, WUY, RENY, LI GH, LIU ZH, DING YF, CHENL. Function analysis of sucrose transporter OsSUT4 in sucrose transport in rice Chinese Journal of Rice Science, 2020, 34(6):491-498. (in Chinese) [本文引用: 4]
YUE MM. Functional analysis of a rice sucrose transporter OsSUT4 [D]. Taian: Shandong Agricultural University, 2020. (in Chinese) [本文引用: 4]
SUNY, REINDERSA, LAFLEUR KR, MORIT, WARD JM. Transport activity of rice sucrose transporters OsSUT1 and OsSUT5 , 2010, 51(1):114-122. DOI:10.1093/pcp/pcp172URL [本文引用: 2]
BAUDS, WUILLÈMES, LEMOINER, KRONENBERGERJ, CABOCHEM, LEPINIECL, ROCHATC. The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis , 2005, 43(6):824-836. DOI:10.1111/tpj.2005.43.issue-6URL [本文引用: 1]
LUDWIGA, STOLZJ, SAUERN. Plant sucrose-H + symporters mediate the transport of vitamin H , 2000, 24(4):503-509. [本文引用: 3]
ZHANG WJ, GUAN QL, FU YP, SUJ. Antisense suppression of rice sucrose transporter gene (OsSUT5) expression reduces its callus induction and plant regeneration frequency Journal of Agricultural Biotechnology, 2014, 22:825-831. (in Chinese) [本文引用: 1]