

The Changes of Eggshell Quality in the Laying Cycle of Hy-Line Brown Layers
MA LingLing

通讯作者:
责任编辑: 林鉴非
收稿日期:2020-11-20接受日期:2021-02-3
基金资助: |
Received:2020-11-20Accepted:2021-02-3
作者简介 About authors
马玲玲,E-mail:

摘要
关键词:
Abstract
Keywords:
PDF (2546KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
马玲玲, 冯嘉, 王晶, 齐广海, 马友彪, 武书庚, 张海军, 邱凯. 海兰褐蛋鸡产蛋高峰至后期蛋壳品质的变化特征. 中国农业科学, 2021, 54(17): 3766-3779 doi:10.3864/j.issn.0578-1752.2021.17.017
MA LingLing, FENG Jia, WANG Jing, QI GuangHai, MA YouBiao, WU ShuGeng, ZHANG HaiJun, QIU Kai.
开放科学(资源服务)标识码(OSID):

0 引言
【研究意义】蛋壳是蛋鸡蛋壳腺中形成的一种保障其繁衍子代的坚硬材料,具有抵抗外力使鸡蛋内容物免受污染和侵害的功能,为鸡胚发育提供保护、气体交换和矿物质元素;同时,蛋壳也是运输、销售、购买鸡蛋过程中的天然包装,保障了鸡蛋的完整性。蛋壳品质是蛋鸡生产中重要的经济性状指标,其品质降低导致的蛋壳破损问题给家禽生产业和鸡蛋加工业带来巨大的经济损失。产蛋后期蛋壳品质下降尤为严重,现代机械集蛋系统的使用更是大大增加了鸡蛋的破损率,比人工捡蛋提高了1.5%—2%[1]。因此,提高蛋壳品质,尤其是提高蛋鸡产蛋后期的蛋壳品质对于蛋鸡养殖过程中,高效生产安全、优质鸡蛋更加重要。【前人研究进展】产蛋后期一直是蛋壳品质调控研究的热点和难点。产蛋期蛋壳品质周龄性变化的研究多集中于对比两个或多个周龄阶段,缺乏对同一品系蛋鸡长期、连续的研究。此外,调控研究中在试验鸡只周龄选择或试验鸡周龄区间选取方面存在较大差异,多集中于40—55周龄[2,3,4,5]、60—70周龄[6,7,8]和70—80周龄[9,10],对调控产蛋鸡蛋壳品质,缺乏选择蛋鸡合适周龄的数据参考。了解产蛋期蛋壳品质、蛋壳结构与组成的周龄性变化有助于选择合适的时间点和更精确的靶向调控手段。蛋壳品质的表观指标和力学特性与蛋鸡产业经济效益息息相关,受其物理属性、组成和结构的影响。前期研究表明,蛋重、长径和蛋形指数(长径与短径之比)随蛋鸡周龄增加[11,12],蛋壳强度降低[12]是常见的周龄性变化;关于短径和蛋壳厚度[12,13]的报道不一。普遍认为蛋壳力学特性周龄性降低的直接原因可能是蛋壳重和蛋壳比例与蛋重变化速度不一致 [14]。但对蛋壳组成和结构的周龄性变化的研究较少,仅有少数研究表明,60和78周龄蛋壳钙含量较30周龄显著降低,蛋壳磷含量未发生改变[13]。对蛋壳结构的研究表明,蛋壳超微结构异常可能是蛋壳力学特性周龄性降低的间接原因,如:乳突厚度增加[15]、乳突密度降低[13]和乳突间隙增大,栅栏层致密性降低和异常乳突体[15](B型乳突体和A型乳突体)的出现也可能是原因之一。【本研究切入点】关于蛋壳品质周龄性变化的报道,缺乏长期连续性的研究,且未阐明导致产蛋后期蛋壳品质下降的具体问题。【拟解决的关键问题】本研究通过观察海兰褐蛋鸡产蛋高峰至后期蛋壳品质变化规律,探究产蛋后期蛋壳品质下降的关键时期及蛋壳结构和组成的变化,为产蛋后期蛋壳品质的调控研究提供基础数据和理论参考。1 材料与方法
1.1 试验时间和地点
养殖试验于2018年10月6日至2019年9月22日在本课题组蛋鸡试验基地进行,样品测定在中国农业科学院饲料研究所进行。1.2 试验设计和样品采集
试验采用单因素试验设计,选取30周龄健康、体重相近的海兰褐蛋鸡84只,随机分成7个重复,每重复12只。根据NRC(1994)、中国蛋鸡饲养标准(NY/T 33-2004)和海兰褐壳蛋鸡饲养手册(2018),配置玉米-豆粕型基础日粮(钙:0.36%,总磷:0.54%,均为实测值)。试验鸡自由采食、饮水充足。分别于蛋鸡31、36、41、46、50、55、60、65、70、75和80周龄时,每重复每天采集3枚接近平均蛋重的鸡蛋,连续采集3d。蛋样无明显缺陷,如破壳、软壳、畸形等,尽量保证取样代表性。本试验包括11个采样时间点,每个采样时间点采集63枚,共采集693枚鸡蛋样品。所有鸡蛋样品均测定表观指标、物理属性和力学特性。分别于31、41、50、60、70和80周龄,每重复随机选取6枚蛋壳,用于分析蛋壳超微结构、晶体结构和蛋壳组成。1.3 测定指标与方法
1.3.1 鸡蛋表观指标、蛋壳物理属性和力学特性 鸡蛋样品采集当天,称量蛋重;使用蛋形指数仪(FHK, 日本富士坪公司)测量鸡蛋长径和短径,蛋壳厚度测定仪(Egg Shell Thickness Gauge,ESTG-1,Orka Food Ltd)测定钝端、锐端和赤道3点蛋壳厚度,计算平均值;蛋壳强度测定仪(Force Reader,Orka Food Ltd)自动检测蛋壳强度。鸡蛋去除内容物,室温晾干,称量蛋壳重。计算蛋形指数、蛋壳比例、蛋壳面积[12]、蛋壳韧性[16]和蛋壳指数。蛋形指数=鸡蛋长径/短径
蛋壳比例=(蛋壳重/蛋重)×100%
蛋壳面积=4.68×(蛋重)2/3
蛋壳韧性=Knd×(F/T3/2)
Knd=0.777×[2.388+(29.934×12/W]1/2
F=蛋壳强度(N)
T=蛋壳厚度
W=鸡蛋宽度
蛋壳指数=蛋壳重/蛋壳面积
1.3.2 蛋壳超微结构 取赤道部碎片1 cm2,双蒸水洗净蛋壳内外表面污渍,室温晾干,蛋壳表面垂直固定在样品台上,喷金,抽真空,使用场发射扫描电子显微镜(SU8020,株式会社日立制作所,日本),180倍观察蛋壳横截面超微结构。测量有效层厚度(栅栏层、垂直晶体层和胶护膜)和乳突层厚度,计算乳突宽度。
乳突宽度=乳突总宽度/乳突数目
取赤道部碎片0.5 cm2,双蒸水浸泡,去除内壳膜。使用含6%次氯酸钠、4.12%氯化钠和0.15%氢氧化钠溶液去除外壳膜[17],双蒸水洗净,室温晾干。蛋壳内表面朝上,固定在样品台上,喷金,抽真空,使用扫描电镜(SU8020,株式会社日立制作所,日本),150倍观察蛋壳内表面超微结构,500倍观察B型乳突体。计算乳突密度。乳突密度为单位面积的乳突个数。
1.3.3 蛋壳晶体结构 取赤道部,双蒸水洗净蛋壳内外表面,室温晾干,粉碎,研磨。将蛋壳粉置于样品台上,压平。使用强力转靶全自动X射线衍射仪(D/MAX-2600pc,株式会社日立制作所,日本)检测。衍射角度范围为20°—80°。
1.3.4 蛋壳无机物和有机物含量 蛋壳用双蒸水浸泡,去除壳膜,晾干,粉碎,过筛,称取约1.0 g蛋壳粉末于坩埚中,110℃烘干5 h,称重,马弗炉灼烧12 h,放至室温后称重。计算有机物的百分含量,以及每枚蛋壳有机物含量和单位蛋壳面积有机物含量。
无机物百分含量=灰分重/烘干重×100%
有机物百分含量=100%-无机物含量
1.3.5 蛋壳总蛋白含量 每重复取250 mg蛋壳粉末分2次加入5 mL 20%醋酸,4℃持续震荡过夜。萃取液加入超纯水(1﹕1)冻干。冻干粉加入4.5 mL pH 5.8混合液包括:4 mol·L-1盐酸胍、蛋白酶抑制剂(5 mmol·L-1苯甲脒盐酸盐、0.1 mol·L-1氨基己酸、0.1 mol·L-1苯甲基磺酰氟化物)、10 mmol·L-1 EDTA、10 mmol·L-1醋酸钠和0.5% Tween 20,4℃搅拌过夜。用0.3 mol·L-1氯化钠、25 mmol·L-1乙酸钠和0.1% Tween 20在透析袋内进行透析,其间换水3—4次。透析后2 500×g离心20 min,取上清液[18]。按照考马斯亮蓝法测定蛋壳中总蛋白含量,并计算单位蛋壳面积总蛋白含量。
1.3.6 蛋壳钙、磷含量 蛋壳用温热蒸馏水擦洗干净,烘干、粉碎,称取1 g蛋壳于4 mL硝酸溶液中,110℃消化2 h,3 mL过氧化氢160℃消煮至溶液透亮。定容至100 mL,用电感耦合等离子体发射光谱仪(7700,安捷伦科技有限公司,美国)测定蛋壳中钙、磷含量,计算单位蛋壳面积钙、磷含量。
1.4 数据处理
数据经统计软件SAS 9.4检验方差齐性后,采用ANOVA程序进行方差分析,采用Duncan氏法进行多重比较。结果用“平均值±标准差”表示,以P<0.05为差异显著性标准,P<0.01为差异极显著性标准。主成分分析和聚类分析采用R 软件包(3.6.2)进行,结合载荷分析表,采用Ward法进行聚类分析。2 结果
2.1 鸡蛋表观指标的周龄性变化
周龄显著影响海兰褐蛋鸡产蛋高峰至后期(31—80周龄)鸡蛋表观指标(表1,P<0.05)。随蛋鸡周龄增加,蛋重(线性效应,P<0.01)、长径(线性效应,P<0.01)和蛋壳面积(线性效应,P<0.01)逐渐增加,蛋形指数并非随周龄连续性变化而是呈台阶式增加,鸡蛋短径随周龄无明显变化规律。与31周龄鸡蛋相比,36周龄蛋重、长径和蛋壳面积等无显著性变化,但从41周龄开始显著增加(P<0.05),除75周龄外,36—80周龄各周龄鸡蛋短径均无显著变化(P>0.05)。Table 1
表1
表1海兰褐蛋鸡产蛋高峰至后期鸡蛋表观指标的变化
Table 1
项目 Items | 蛋鸡周龄 Hen age (wk) | P | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
31 | 36 | 41 | 46 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | ||
蛋重 Egg weight (g) | 61.01f±0.62 | 61.18ef±0.41 | 61.80de±0.89 | 62.19d±0.84 | 62.91c±0.72 | 63.13c±0.62 | 63.23bc±0.38 | 63.46abc±0.73 | 63.53abc±0.77 | 63.92ab±0.93 | 64.18a±0.35 | < 0.001 |
短径 Width (cm) | 4.37ab±0.02 | 4.34abc±0.02 | 4.36ab±0.05 | 4.34bc±0.02 | 4.37ab±0.04 | 4.37a±0.02 | 4.35abc±0.03 | 4.36abc±0.02 | 4.35abc±0.03 | 4.33c±0.02 | 4.37ab±0.02 | 0.004 |
长径 Length (cm) | 5.65f±0.04 | 5.63f±0.06 | 5.71e±0.04 | 5.74de±0.06 | 5.77cd±0.05 | 5.79bcd±0.04 | 5.78cd±0.04 | 5.81bcd±0.05 | 5.80bc±0.05 | 5.84b±0.04 | 5.91a±0.05 | < 0.001 |
蛋形指数 Egg shape index | 1.29e±0.01 | 1.30de±0.01 | 1.31cd±0.02 | 1.32b±0.02 | 1.32bc±0.01 | 1.32bc±0.01 | 1.33b±0.01 | 1.33b±0.01 | 1.33b±0.02 | 1.35a±0.01 | 1.37a±0.01 | < 0.001 |
蛋壳面积 Eggshell surface area (cm2) | 72.53f±0.54 | 72.66ef±0.32 | 73.12de±0.71 | 73.46d±0.54 | 74.02c±0.53 | 74.20c±0.53 | 74.28bc±0.30 | 74.46abc±0.57 | 74.51abc±0.61 | 74.82ab±0.79 | 75.02a±0.28 | < 0.001 |
新窗口打开|下载CSV
2.2 蛋壳物理属性和力学特性的周龄性变化
由表2可知,海兰褐蛋鸡31—80周龄,随蛋鸡周龄增加,蛋壳重、蛋壳比例、蛋壳指数和蛋壳厚度呈现先增加后降低的变化;除46和65周龄外,蛋壳强度和蛋壳韧性总体上随周龄呈递减变化。与31周龄蛋壳相比,41周龄蛋壳重、蛋壳比例和蛋壳指数显著提高(P<0.05),46周龄蛋壳重、蛋壳指数和蛋壳厚度显著增加(P<0.05),蛋壳厚度和蛋壳重分别在50和60周龄显著增加(P<0.05);而65周龄蛋壳比例与70周龄蛋壳比例和蛋壳厚度显著低于31周龄(P<0.05);其他各周龄蛋壳重、蛋壳指数较31周龄蛋壳未见显著性下降(P>0.05)。蛋壳强度和韧性方面,31、36、41和46周龄蛋壳无显著性变化,50周龄之后蛋壳较31周龄显著降低(P<0.05),所有采样点中80周龄最低。其中,65、70、75、80周龄蛋壳强度显著低于50、55和60周龄(P<0.05)。Table 2
表2
表2海兰褐蛋鸡产蛋高峰至后期蛋壳物理属性和力学特性的变化
Table 2
项目 Items | 蛋鸡周龄 Hen age (wk) | P | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
31 | 36 | 41 | 46 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | ||
蛋壳重 Eggshell weight (g) | 5.91cd±0.25 | 5.99bcd±0.25 | 6.36a±0.24 | 6.34a±0.27 | 6.19abc±0.22 | 6.14abcd±0.37 | 6.27ab±0.14 | 5.89d±0.28 | 5.87d±0.14 | 6.07abcd±0.36 | 6.14abcd±0.20 | < 0.001 |
蛋壳比例 Eggshell percentage (%) | 9.79bc±0.34 | 9.91bc±0.36 | 10.31a±0.28 | 10.19ab±0.40 | 9.84bc±0.35 | 9.72c±0.19 | 9.92bc±0.22 | 9.28d±0.37 | 9.27d±0.30 | 9.56cd±0.40 | 9.56cd±0.33 | < 0.001 |
蛋壳指数 Eggshell index (mg·mm-2) | 8.15bc±0.34 | 8.24bc±0.32 | 8.74a±0.25 | 8.63a±0.36 | 8.36ab±0.30 | 8.09bc±0.49 | 8.44ab±0.19 | 7.91c±0.34 | 7.89c±0.23 | 8.15bc±0.43 | 8.18bc±0.28 | < 0.001 |
蛋壳厚度 Eggshell thickness (×10-2mm) | 45.39cde±0.83 | 45.61cde±0.93 | 44.89e±0.47 | 46.81a±0.68 | 46.56ab±0.21 | 45.45cde±0.75 | 45.87bcd±0.61 | 45.13de±0.93 | 43.86f±0.67 | 46.05abc±0.55 | 45.21de±0.85 | < 0.001 |
蛋壳强度 Eggshell strength (N) | 48.60a±2.79 | 46.68ab±2.46 | 46.19abc±1.47 | 47.60ab±2.60 | 45.18bcd±3.21 | 42.71d±2.80 | 43.55cd±2.35 | 36.01ef±3.74 | 38.55e±2.86 | 38.24ef±2.19 | 35.28f±2.26 | < 0.001 |
蛋壳韧性 Eggshell fracture toughness (N/mm3/2) | 390.65a±18.79 | 382.44ab±15.37 | 386.93ab±16.07 | 378.48ab±17.83 | 367.91b±11.93 | 326.70cd±11.87 | 336.69c±25.35 | 290.33f±21.47 | 315.68de±20.61 | 300.06ef±16.70 | 280.97f±10.27 | < 0.001 |
新窗口打开|下载CSV
2.3 蛋壳品质的主成分分析
根据特征值累积贡献率大于85%的原则,选择2个主成分,其特征值分别为4.51和1.64,方差贡献率分别为64%和23%,累计贡献率87%(表3)。在第一主成分(PC1)中,蛋壳强度、蛋壳比例、蛋壳韧性和蛋壳指数的载荷值高,在第二主成分(PC2)中,蛋壳重、蛋壳厚度和蛋壳面积的载荷值高。进一步,选取蛋壳强度、蛋壳比例、蛋壳韧性、蛋壳指数、蛋壳重、蛋壳厚度和蛋壳面积做聚类分析。如图1所示,根据海兰褐蛋鸡蛋壳品质的变化可将31—80周龄划分为31—50周龄和55—80周龄2个阶段,其中55—80周龄还可细分为55—60周龄和65—80周龄。Table 3
表3
表3蛋壳品质主成分载荷分析
Table 3
项目 Items | 主成分 Principal components | |
---|---|---|
PC1 | PC2 | |
X-exp2 | 64% | 23% |
参数 Parameters | ||
蛋壳强度 Eggshell strength | -0.428 | 0.262 |
蛋壳重 Eggshell weight | -0.326 | -0.519 |
蛋壳厚度 Eggshell thickness | -0.187 | -0.440 |
蛋壳面积 Eggshell surface area | 0.343 | -0.512 |
蛋壳比例 Eggshell percentage | -0.454 | -0.134 |
蛋壳韧性 Fracture toughness | -0.419 | 0.335 |
蛋壳指数 Eggshell index | -0.420 | -0.276 |
新窗口打开|下载CSV
图1

图1海兰褐蛋鸡产蛋高峰至后期蛋壳物理属性和力学特性聚类分析wk:周龄 wk: Weeks of age
Fig. 1Clustering analysis of egg physical and mechanical properties of Hy-Line Brown layers from peak to late phase of production
2.4 蛋壳超微结构的周龄性变化
蛋壳横截面超微结构如图2所示。由表4可知,随蛋鸡周龄增加,蛋壳超微结构中乳突层厚度和比例逐渐增加,有效层厚度和比例逐渐降低,而钙化层厚度、乳突宽度无显著变化(P>0.05)。与31周龄相比,41、50和60周龄蛋壳乳突厚度和比例显著增加(P<0.05),有效层厚度和比例显著降低(P<0.05),但乳突密度无显著变化(P>0.05)。70和80周龄蛋壳乳突厚度和比例最大,显著高于之前各时间点(P<0.05),有效层厚度和比例最低,显著低于之前各时间点(P<0.05);乳突密度显著低于31周龄蛋壳(P<0.05)。蛋壳内表面超微结构如图3所示,随周龄增加,乳突排列越来越规则,但相邻乳突之间缝隙增大;B型乳突体(图4)在50周龄开始出现,随周龄逐渐增加,尤其在70和80周龄数量较多。图2

图2海兰褐蛋鸡产蛋高峰至后期蛋壳横截面超微结构
wk:周龄;ML:乳突层;EL:有效层;电镜尺子:300 μm;放大倍数:180×
Fig. 2Eggshell ultrastructure of cross section of Hy-Line Brown layers from peak to late phase of production
wk: Weeks of age; ML: Mammillary layer; EL: Effective layer; Scale bar:300 μm; Magnification: 180×
Table 4
表4
表4海兰褐蛋鸡产蛋高峰至后期蛋壳超微结构的变化
Table 4
项目 Items | 蛋鸡周龄 Hen age (wk) | P | |||||
---|---|---|---|---|---|---|---|
31 | 41 | 50 | 60 | 70 | 80 | ||
钙化层厚度 Calcified thickness (μm) | 357.05±15.78 | 345.99±13.83 | 363.50±9.71 | 356.41±24.60 | 345.80±13.31 | 342.91±23.87 | 0.300 |
乳突厚度 Mammillary thickness (μm) | 90.01c±5.80 | 106.56b±6.14 | 114.35b±9.37 | 114.18b±8.03 | 125.98a±6.24 | 130.41a±8.43 | <0.001 |
有效层厚度 Effective thickness (μm) | 268.14a±12.91 | 243.06b±9.77 | 246.91b±10.18 | 243.50b±17.63 | 220.22c±10.25 | 212.04c±26.74 | <0.001 |
乳突宽度 Mammillary knob width (μm) | 70.18±4.27 | 71.24±6.24 | 72.27±6.15 | 72.01±4.10 | 73.66±7.16 | 70.93±5.79 | 0.926 |
乳突比例 Mammillary layer rate (%) | 24.87c±1.67 | 30.80b±1.46 | 31.32b±1.78 | 32.12b±0.85 | 36.31a±1.35 | 37.85a±2.08 | <0.001 |
有效层比例 Effective layer rate (%) | 75.13a±1.67 | 69.20b±1.46 | 68.68b±1.78 | 68.13b±0.88 | 63.69c±1.35 | 62.15c±2.08 | <0.001 |
乳突密度 Mammillary knob density (1 mm2) | 286.66a±11.75 | 268.97ab±17.45 | 270.96ab±27.20 | 271.40ab±11.46 | 256.07b±8.44 | 230.93c±11.90 | 0.001 |
新窗口打开|下载CSV
图3

图3海兰褐蛋鸡产蛋高峰至后期蛋壳内表面超微结构
wk:周龄;电镜尺子:300 μm;放大倍数:150×
Fig. 3Eggshell ultrastructure of the inner surface of of Hy-Line Brown layers from peak to late phase of production
wk: Weeks of age; Scale bar: 300 μm; Magnification: 150×
图4

图4蛋壳内表面B型乳突体超微结构
wk:周龄;电镜尺子:100 μm;放大倍数:500×
Fig. 4B-type mammillary body on the inner surface of eggshell ultrastructure
wk: Weeks of age; Scale bar: 100 μm; Magnification: 500×
2.5 蛋壳晶体结构的周龄性变化
由图5可知,蛋壳粉末中主要为方解石晶体,蛋壳X衍射图在23°、29°、32°、37°、39.5°、43°、48°、49°、57°、58°、61°和65°分别存在13个衍射峰,分别为(012)、(104)、(006)、(110)、(113)、(202)、(024)、(018)、(116)、(211)、(122)、(214)和(300)晶面。其中,(012)、(104)、(110)、(113)、(202)、(018)和(116)衍射峰尖锐,结晶纯度高;产蛋高峰至后期蛋壳均在(104)晶面择优生长。由表5可知,各组晶粒大小无显著差异(P>0.05)。图5

图5X衍射光谱分析图
wk:周龄 wk: Weeks of age
Fig.5X-diffraction analysis chart
Table 5
表5
表5海兰褐蛋鸡产蛋高峰至后期蛋壳晶粒大小及变异系数
Table 5
项目 Item | 蛋鸡周龄 Hen age (wk) | P | |||||
---|---|---|---|---|---|---|---|
31 | 41 | 50 | 60 | 70 | 80 | ||
晶粒大小 Grain size (μm) | 27.35±3.97 | 26.22±3.31 | 29.40±2.53 | 29.08±4.90 | 25.96±1.71 | 27.25±3.85 | 0.229 |
变异系数 Coefficient of variation | 0.14 | 0.13 | 0.09 | 0.17 | 0.07 | 0.14 | - |
新窗口打开|下载CSV
2.6 蛋壳化学组成的周龄性变化
随蛋鸡周龄,每枚鸡蛋蛋壳钙含量无显著变化(P>0.05),但蛋壳钙的百分含量和单位蛋壳面积钙含量逐渐降低(表6)。与31周龄蛋鸡蛋壳相比,41、50、60、70和80周龄蛋壳中钙百分含量显著降低(P<0.05),且41—80周龄各采样点之间无显著差异(P<0.05);70和80周龄单位蛋壳面积钙含量显著降低(P<0.05)。此外,60、70和80周龄蛋壳磷百分含量较31、41和50周龄蛋壳显著降低(P<0.05);与31周龄相比,60、70和80周龄每枚蛋壳磷含量和单位蛋壳面积磷含量显著降低(P<0.05)。本试验中,未观察到31—80周龄海兰褐蛋鸡蛋壳有机物和总蛋白含量、单位蛋壳面积含量及每枚蛋壳含量的显著性变化(P>0.05)。Table 6
表6
表6海兰褐蛋鸡产蛋高峰至后期蛋壳化学组成的变化
Table 6
项目 Items | 蛋鸡周龄 Hen age (wk) | P | |||||
---|---|---|---|---|---|---|---|
31 | 41 | 50 | 60 | 70 | 80 | ||
有机物百分含量Organic matter (%) | 3.54±0.16 | 3.56±0.42 | 3.71±0.08 | 3.48±0.20 | 3.47±0.13 | 3.33±0.34 | 0.482 |
每枚鸡蛋蛋壳有机物含量 Organic matter per eggshell (mg) | 209.33±12.62 | 226.19±30.90 | 235.47±7.65 | 217.06±11.57 | 214.26±24.24 | 204.06±21.34 | 0.266 |
单位蛋壳面积有机物含量 Organic matter per unit area (mg·cm-2) | 2.88±0.17 | 3.09±0.42 | 3.19±0.08 | 2.92±0.16 | 2.88±0.32 | 2.72±0.28 | 0.163 |
总蛋白百分含量Total protein (%) | 1.33±0.26 | 1.27±0.13 | 1.32±0.11 | 1.32±0.22 | 1.30±0.12 | 1.50±0.17 | 0.292 |
每枚鸡蛋蛋壳总蛋白含量 Total protein per eggshell (mg) | 77.59±14.88 | 79.90±8.38 | 81.90±7.37 | 82.20±14.43 | 76.01±7.62 | 92.22±10.08 | 0.196 |
单位蛋壳面积总蛋白含量 Total protein per unit area (mg·cm-2) | 1.07±0.20 | 1.09±0.11 | 1.11±0.10 | 1.11±0.19 | 1.02±0.11 | 1.23±0.14 | 0.301 |
Ca (%) | 37.29a±0.73 | 34.11b±0.54 | 33.57b±1.52 | 35.02b±0.35 | 34.87b±1.11 | 34.85b±1.09 | 0.001 |
每枚鸡蛋蛋壳钙含量 Calcium content per eggshell (mg) | 2176.08±78.59 | 2158.57±74.75 | 2108.28±88.13 | 2148.98±50.53 | 2069.85±52.24 | 2100.90±64.76 | 0.305 |
单位蛋壳面积钙含量 Calcium content per unit area (mg·cm-2) | 29.93a±1.11 | 29.53ab±1.17 | 28.54ab±1.10 | 28.99ab±0.77 | 27.79b±0.69 | 27.76b±0.69 | 0.033 |
P (%) | 0.13a±0.01 | 0.14a±0.01 | 0.13a±0.01 | 0.11b±0.01 | 0.10b±0.00 | 0.11b±0.01 | < 0.001 |
每枚鸡蛋蛋壳磷含量 Phosphorus content per eggshell (mg) | 7.66b±0.38 | 8.89a±0.55 | 8.18ab±0.73 | 6.75c±0.78 | 6.01c±0.22 | 6.46c±0.58 | < 0.001 |
单位蛋壳面积磷含量 Phosphorus content per unit area (mg·cm-2) | 0.11b±0.01 | 0.12a±0.00 | 0.11b±0.01 | 0.09c±0.01 | 0.08c±0.00 | 0.09c±0.01 | < 0.001 |
新窗口打开|下载CSV
2.7 蛋壳力学特性与超微结构和化学组成的相关性分析
由表7可知,蛋壳强度与有效层厚度、钙化层厚度、乳突密度、磷百分含量、每枚蛋壳磷含量和单位蛋壳面积磷含量极显著正相关(P<0.01),与有效层比例和单位蛋壳面积钙含量显著正相关(P<0.05),与乳突比例极显著负相关(P<0.01);蛋壳韧性与有效层厚度、乳突密度、单位蛋壳面积钙含量、磷百分含量、每枚蛋壳磷含量和单位蛋壳面积磷含量极显著正相关(P<0.01),与钙化层厚度、有效层比例和每枚蛋壳钙含量显著正相关(P<0.05),与乳突比例显著负相关(P<0.05);蛋壳钙百分含量与有效层比例极显著正相关(P<0.01),有效层厚度显著正相关(P<0.05),与乳突厚度和乳突比例极显著负相关(P<0.01);每枚蛋壳钙含量与钙化层厚度显著正相关(P<0.05);单位蛋壳面积钙含量与有效层厚度和钙化层厚度显著正相关(P<0.05);蛋壳磷百分含量与钙化层厚度和乳突密度极显著正相关(P<0.01),与有效层厚度显著正相关(P<0.05);每枚蛋壳磷含量与钙化层厚度极显著正相关(P<0.01),与有效层厚度和乳突密度显著正相关(P<0.05);单位蛋壳面积磷含量与钙化层厚度极显著正相关(P<0.01),与有效层厚度和乳突密度显著正相关(P<0.05);蛋壳有机物含量与乳突密度极显著正相关(P<0.01),每枚蛋壳有机物含量和单位蛋壳面积有机物含量与乳突宽度和乳突密度显著正相关(P<0.05);晶粒大小与每枚蛋壳有机物含量和单位蛋壳面积有机物含量显著负相关(P<0.05)。Table 7
表7
表7蛋壳力学特性、结构和化学组成的相关性分析
Table 7
ES | FT | MW | ET | MT | CT | ER | MR | MD | Ca | CaP | CaD | P | PP | PD | OM | OMP | OMD | TP | TPP | TPD | GS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ES | 1.00 | |||||||||||||||||||||
FT | 0.91** | 1.00 | ||||||||||||||||||||
MW | 0.24 | 0.07 | 1.00 | |||||||||||||||||||
ET | 0.70** | 0.65** | 0.34 | 1.00 | ||||||||||||||||||
MT | -0.44 | -0.43 | -0.02 | -0.71** | 1.00 | |||||||||||||||||
CT | 0.66** | 0.60* | 0.50* | 0.89** | -0.32 | 1.00 | ||||||||||||||||
ER | 0.61* | 0.59* | 0.12 | 0.91** | -0.93** | 0.62* | 1.00 | |||||||||||||||
MR | -0.63* | -0.60* | -0.14 | -0.92** | 0.92** | -0.65** | -1.00** | 1.00 | ||||||||||||||
MD | 0.64** | 0.65** | 0.19 | 0.48 | -0.45 | 0.35 | 0.53* | -0.52* | 1.00 | |||||||||||||
Ca | 0.05 | 0.09 | -0.09 | 0.56* | -0.77** | 0.26 | 0.72** | -0.71** | 0.04 | 1.00 | ||||||||||||
CaP | 0.42 | 0.51* | 0.04 | 0.38 | -0.01 | 0.52* | 0.18 | -0.20 | -0.24 | 0.01 | 1.00 | |||||||||||
CaD | 0.57* | 0.67** | 0.09 | 0.55* | -0.23 | 0.61* | 0.39 | -0.41 | -0.02 | 0.14 | 0.96** | 1.00 | ||||||||||
P | 0.71** | 0.81** | 0.43 | 0.55* | -0.12 | 0.67** | 0.35 | -0.37 | 0.69** | -0.11 | 0.36 | 0.49* | 1.00 | |||||||||
PP | 0.64** | 0.72** | 0.47 | 0.48* | 0.01 | 0.65** | 0.25 | -0.27 | 0.62* | -0.25 | 0.34 | 0.45 | 0.96** | 1.00 | ||||||||
PD | 0.75** | 0.85** | 0.35 | 0.57* | -0.06 | 0.73** | 0.33 | -0.34 | 0.52* | -0.15 | 0.55* | 0.62* | 0.93** | 0.91** | 1.00 | |||||||
OM | 0.28 | 0.24 | 0.40 | 0.32 | -0.07 | 0.36 | 0.23 | -0.24 | 0.65** | -0.03 | -0.36 | -0.23 | 0.57* | 0.66** | 0.40 | 1.00 | ||||||
OMP | 0.22 | 0.18 | 0.51* | 0.18 | 0.18 | 0.35 | 0.00 | -0.02 | 0.49* | -0.30 | -0.20 | -0.12 | 0.58* | 0.74** | 0.45* | 0.93** | 1.00 | |||||
OMD | 0.27 | 0.24 | 0.52* | 0.23 | 0.12 | 0.38 | 0.07 | -0.08 | 0.53* | -0.26 | -0.17 | -0.07 | 0.61* | 0.77** | 0.49 | 0.93** | 1.00** | 1.00 | ||||
TP | 0.01 | 0.08 | -0.36 | -0.04 | -0.42 | -0.37 | 0.27 | -0.25 | 0.37 | 0.05 | -0.38 | -0.26 | -0.11 | -0.06 | -0.20 | 0.23 | 0.10 | 0.11 | 1.00 | |||
TPP | 0.02 | 0.08 | -0.14 | -0.10 | -0.18 | -0.28 | 0.09 | -0.08 | 0.37 | -0.24 | -0.29 | -0.20 | 0.04 | 0.19 | -0.04 | 0.39 | 0.40 | 0.41 | 0.91** | 1.00 | ||
TPD | 0.09 | 0.15 | -0.11 | -0.03 | -0.25 | -0.22 | 0.17 | -0.15 | 0.43 | -0.20 | -0.26 | -0.14 | 0.11 | 0.24 | 0.01 | 0.41 | 0.41 | 0.43 | 0.91** | 1.00** | 1.00 | |
GS | 0.36 | 0.37 | -0.37 | 0.03 | -0.20 | -0.07 | 0.13 | -0.12 | 0.29 | 0.01 | 0.09 | 0.15 | 0.06 | -0.15 | 0.04 | -0.44 | -0.55* | -0.52* | -0.09 | -0.29 | -0.26 | 1.00 |
*表示差异显著(P<0.05);**表示差异极显著(P<0.01)
*mean significant difference (P<0.05); ** mean extremely significant difference (P<0.01)
新窗口打开|下载CSV
3 讨论
蛋壳品质是鸡蛋重要的经济性状和外观性状,蛋壳品质的评价包括力学特性、表观指标、物理属性等。本研究中,海兰褐蛋鸡产蛋高峰(31周龄)至后期(80周龄),蛋重均值在61—64.5 g范围内逐渐增加,蛋壳强度从48.6 N降至35.2 N,与海兰褐蛋鸡的前期研究报道一致[12,16,19],符合海兰褐壳蛋鸡饲养标准(2018)[20]31—80周龄,产蛋率从94%降至74%,蛋重在59.9—66.1 g之间。蛋重随周龄的增加,主要是由于蛋黄重量[11,21]和蛋黄比例增加[22]引起的。鸡蛋长径从41周龄开始显著增加,表明蛋形指数和蛋壳面积的增加主要是由于鸡蛋长径的增加所致。本研究中,海兰褐蛋鸡高峰至后期(31—80周龄)蛋重每周增加0.065 g(y = 0.065x+59.181,R2 = 0.714,P<0.01,x = 周龄,y = 蛋重);蛋壳面积每周增加0.047 cm2(y = 0.047x+71.259,R2 = 0.637,P<0.01,x = 周龄,y = 蛋壳面积),与前人研究结果相似[12]。产卵间隔随蛋鸡周龄增加而增加,产蛋率降低[23],蛋重快速增加,蛋重增加速度与蛋壳重增加速度不一致,可能是后期蛋壳品质降低的重要原因[14]。此外,鸡蛋越重,运输过程中的动能越高,越容易破裂[24]。在产蛋后期,蛋壳破损问题尤为突出,鸡蛋破损率可达高峰期的3倍(60周龄与20—29周龄相比)[25],另有研究发现,在运输过程中32—50周龄鸡蛋破损率增加约5.5%,62—80周龄增加约8.3%,可见鸡蛋破损率随蛋鸡周龄增大而增加[26]。蛋壳强度是目前评价蛋壳力学特性广泛采用的指标,体现了蛋壳所能承受的最大外力[27,28],与蛋壳破损率有关[29]。蛋壳韧性是基于蛋壳强度、厚度和鸡蛋短径计算而得,反映了蛋壳抵抗原有裂纹扩展的能力[30]。本研究中,随海兰褐蛋鸡周龄增加,蛋壳强度(y = -0.276x+ 57.814,R2 = 0.671,P<0.01,x=周龄,y=蛋壳强度)和韧性(y= -2.406x+474.691,R2 = 0.642,P<0.01,x =周龄,y=蛋壳韧性)线性下降。由此可知,海兰褐蛋鸡产蛋高峰至后期(31—80周龄)蛋壳强度每周降低0.276 N,韧性每周降低2.406 N/mm3/2。同样21—70周龄海兰褐蛋壳强度约降低0.8 kg·cm-1[31],30—81周龄蛋壳强度每周降低0.195 N(Y = -0.195x+ 52.323,R2 = 0.803,P<0.01)[12]。不足的是,蛋壳强度等力学特性的差异显著性在生产上的实际意义还有待商榷。现有报道表明,蛋壳强度由38 N降低到36 N时,蛋壳毛细裂纹检出率由3%增加至6%,蛋液渗出的发生由0.1%增至0.4%[32,33]。目前,蛋壳强度与破损率的对应关系未有系统研究,关于破损率或蛋壳缺陷陡增的蛋壳强度阈值还需要进一步确定。
传统观点认为,产蛋后期蛋重增加,鸡蛋表面积增大,蛋壳比例和单位面积蛋壳重(蛋壳指数)降低,蛋壳重未随蛋重同比例增加,是导致后期蛋壳品质下降的主要原因[14]。因此,前期研究者们选用蛋壳的物理属性和表观指标,如蛋壳重、蛋壳比例、蛋壳厚度和蛋壳指数等,预测和评价蛋壳力学特性[34]。本研究中,海兰褐产蛋高峰至后期(31—80周龄)蛋壳强度与蛋壳重、蛋壳比例、指数、厚度变化趋势不尽相同。此外,蛋壳强度和韧性直至50周龄出现显著下降,65—80周龄蛋壳强度显著低于之前各周龄,而蛋壳重、蛋壳比例、蛋壳指数和蛋壳厚度则是在不同周龄(41—60周龄)显著增加。且除65和70周龄外,蛋壳重、百分比例、指数和厚度与31周龄相比并未出现明显的下降。上述结果提示,蛋壳绝对质量及相对比例的变化并不能充分解释产蛋高峰至后期蛋壳力学特性的下降。与前人的研究相似,除58周龄外,30—76周龄,蛋壳重逐渐增加,30与81周龄并不显著[12],蛋壳重不受周龄影响,蛋壳比例显著降低[23]。因此,除蛋壳物理属性外,蛋壳结构和组成成分可能是产蛋后期力学特性降低的原因。
材料特性和结构特性是决定蛋壳力学特性的重要因素。材料特性取决于蛋壳的无机和有机成分及其相互作用,而结构特性取决于蛋壳的厚度、密度、蛋形和鸡蛋大小[35]。本试验中,主成分载荷分析显示,蛋壳强度、蛋壳比例、蛋壳韧性和蛋壳指数对第一主成分(PC1)(64%)贡献大;在第二主成分(PC2)(23%)中,蛋壳重、蛋壳厚度和蛋壳面积贡献率大。进一步,我们采用聚类分析,根据蛋壳力学特性、物理属性及其在产蛋周期(31—80周龄)中发生的相对变化对不同周龄蛋壳进行分类。结果显示,依据蛋壳品质,产蛋后期大致可细分为55—60和65—80周龄2个阶段。另一项对海兰褐品系鸡蛋的物理特性分析显示,44—81周龄蛋鸡所产的鸡蛋可分为44—53周和58—81周两组[12]。虽然由于采样点设计的局限,不能得出具体、准确的分界点,但根据该报道和本试验结果,能够推断出海兰褐蛋鸡60周龄之后蛋壳整体属性发生明显变化,65周龄后蛋壳强度的下降尤为明显。
蛋壳主要是由大于95%的方解石晶体和3%—6%的有机物组成,形成具有一定厚度和力学特性的多层结构[36]。前期研究者提出,产蛋后期蛋壳品质下降的一个重要原因是蛋壳碳酸钙沉积的减少,系因鸡体激素(甲状旁腺激素、降钙素、雌激素和1,25- (OH)2D3)[37,38]和24-羟化酶活性降低等造成的钙代谢紊乱所致[39]。本试验中,蛋壳力学特性与单位蛋壳面积钙含量正相关(R = 0.57,P = 0.010)与蛋壳钙百分含量无关(R = 0.05,P = 0.850)。壳腺钙转运分泌在整个产蛋周期中可能是相对稳定的,表现为每枚蛋壳钙总含量无显著变化。41周龄时,蛋壳钙的百分含量显著下降,而后未观察到41—80周龄期间的显著变化;直到70和80周龄,随着蛋壳面积的增大,单位蛋壳面积钙含量的显著降低。与前人研究相似,60和78周龄较30周龄蛋壳钙百分含量明显降低[13],且蛋壳面积显著增大。
蛋壳磷主要以磷酸钙的形式存在,含量很少,却在蛋壳形成和代谢中发挥重要的作用[40]。磷与蛋壳弹性和韧性有关[41],其含量降低,蛋壳破损率增加[28]。一般认为,蛋壳腺中的磷和钙均直接来源于血液,磷与钙吸收和分泌存在负调节关系[42],另有研究表明,青年鸡蛋壳腺磷仅在钙化最后阶段急剧增加,而老龄鸡蛋壳腺蛋壳磷在钙化阶段出现较早,钙化末期最多[43],这可能影响了产蛋后期蛋壳力学特性。本研究中,蛋壳磷含量与蛋壳力学特性显著正相关(R = 0.71,P<0.01),41周龄单位蛋壳面积磷含量增加,单位蛋壳面积蛋壳钙含量降低。而60周龄每枚蛋壳磷含量和单位蛋壳面积磷含量均降低,与力学特性变化一致。有研究报道,蛋壳中磷酸盐对碳酸钙沉积具有双向影响[43],关于磷对蛋壳力学特性的影响有待继续研究。
超微结构特征也对蛋壳力学特性存在重要影响。蛋壳的超微结构由六层组成,由内至外分别为未钙化的内、外蛋壳膜、钙化不规则的乳突层、栅栏层、垂直晶体层和胶护层[13]。栅栏层及晶体层是构成蛋壳强度和厚度的主要结构,而乳突层是蛋壳裂纹产生的初始位置。乳突单元的紧密连接和整齐排列可有效抑制裂纹扩展速度[44]。本研究相关性分析结果表明,蛋壳强度与有效层厚度(R = 0.70,P<0.01)、钙化层厚度(R = 0.66,P<0.01)、乳突密度(R = 0.64,P<0.01)和有效层比例(R = 0.61,P = 0.010)显著正相关,与乳突层比例(R = -0.63,P = 0.010)负相关。值得注意的是,乳突密度极显著影响蛋壳强度和韧性,但直至70和80周龄出现明显降低。而乳突层比例和有效层比例随周龄分别逐渐增加和降低,与蛋壳强度的逐周降低变化趋势一致。该结果提示,蛋壳超微结构层的周龄性变化可能参与了高峰至后期蛋壳力学特性的逐渐下降,末期(70和80周龄)乳突密度的骤然降低进一步加剧了力学特性下降。此外,试验中也观察到60周龄开始乳突排列规则,70和80周龄排列较为规则,异常乳突体(B型乳突体)的发生率也在70和80周龄大量增加,B型乳突体是游离于正常乳突体之间小的圆形乳突。当外力压迫蛋壳时,裂缝沿着乳突间隙延展,B型乳突体加速了裂缝的延展[44]。此外,蛋壳方解石晶体的优先取向影响蛋壳力学特性,蛋壳裂纹更易沿着特定的晶体取向延展[36]。方解石晶体的大小和取向与融合位点、基质蛋白的调控作用有关。本试验未观察到蛋鸡周龄对蛋壳方解石晶体大小的影响。方解石晶体结构与蛋壳力学特性关系仍需进一步研究。
4 结论
4.1 依据蛋壳物理属性和力学特性,可将海兰褐蛋鸡产蛋期划分为31—50周龄和55—80周龄2个阶段,其中后者还可细分为55—60周龄和65—80周龄2个阶段,65周龄之后蛋壳强度和蛋壳韧性的下降更加明显。4.2 随蛋鸡周龄增加,蛋壳超微结构乳突层厚度及比例增加,有效层厚度及比例降低。超微结构层厚度和比例的变化可能参与了海兰褐蛋鸡高峰至后期(31—80周龄)蛋壳力学特性的逐渐下降。
4.3 蛋壳磷含量的下降可能参与60—80周龄蛋壳力学特性的下降,乳突层结构变异以及蛋壳面积变大导致的单位蛋壳面积钙含量下降,加剧了70—80周龄蛋壳力学的下降。
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
DOI:10.3382/ps.0612022URL [本文引用: 1]
DOI:10.3382/ps/pew495URL [本文引用: 1]
DOI:10.1016/j.psj.2019.11.006URL [本文引用: 1]
DOI:10.1017/S000711451900206XURL [本文引用: 1]
DOI:10.1016/j.psj.2019.10.030URL [本文引用: 1]
DOI:10.3382/ps/pey203URL [本文引用: 1]
DOI:10.3382/ps/pez386URL [本文引用: 1]
DOI:10.1016/j.anifeedsci.2012.11.003URL [本文引用: 1]
DOI:10.5713/ajas.15.0655PMID:26954217 [本文引用: 1]

This study was conducted to investigate the effects of diets with varying levels of calcium on egg production, shell quality and overall calcium status in aged laying hens. A total of five hundred 70-wk-old Hy-Line Brown layers were divided five groups and fed one of the five experimental diets with 3.5%, 3.8%, 4.1%, 4.4%, or 4.7% Ca, for 10 weeks. There were no significant differences in feed intake, egg production and egg weight among groups. The cracked eggs were linearly reduced as dietary Ca levels increased to 4.7% (p<0.01). A significant linear improvement for eggshell strength and thickness were determined with increasing dietary Ca levels (p<0.01). The contents of serum Ca and phosphorus were not affected by dietary Ca levels. With increase in dietary Ca levels, the tibial breaking strength slightly increased. There were no significant differences in the tibial contents of ash, Ca and phosphorus among groups. In conclusion, eggshell quality, as measured by appearance, strength and thickness of eggshell, were influenced by dietary Ca content as expected (p<0.05). These results suggested that aged laying hens require relatively higher level of Ca than required levels from current Korean feeding standards for poultry.
DOI:10.1111/asj.2018.89.issue-11URL [本文引用: 1]
DOI:10.2754/avb200978010085URL [本文引用: 2]
DOI:10.3382/ps/pex456URL [本文引用: 9]
DOI:10.5851/kosfa.2018.e41URL [本文引用: 5]
DOI:10.3382/ps.0580774URL [本文引用: 3]
DOI:10.3923/ijps.2010.139.147URL [本文引用: 2]
DOI:10.1080/00071668.2019.1621992URL [本文引用: 2]
DOI:10.3382/ps/pew233URL [本文引用: 1]
DOI:10.1093/ps/79.4.580URL [本文引用: 1]
DOI:10.3382/ps/pew289URL [本文引用: 1]
[本文引用: 1]
[本文引用: 1]
DOI:10.1080/00071660400014283URL [本文引用: 1]
DOI:10.4081/ijas.2005.3s.160URL [本文引用: 1]
DOI:10.1080/00071668608416878URL [本文引用: 2]
[本文引用: 1]
DOI:10.1093/japr/11.2.224URL [本文引用: 1]
[本文引用: 1]
DOI:10.1080/00071660120121454URL [本文引用: 1]
DOI:10.1080/00071668.2016.1209738URL [本文引用: 2]
[D].
[本文引用: 1]
[D].
[本文引用: 1]
DOI:10.1016/j.jmbbm.2017.07.007URL [本文引用: 1]
DOI:10.3923/ijps.2014.510.514URL [本文引用: 1]
DOI:10.1017/S0043933917000654URL [本文引用: 1]
DOI:10.3923/ajar.2011.1.16URL [本文引用: 1]
DOI:10.1111/jts.1974.5.issue-2URL [本文引用: 1]
DOI:10.1079/WPS200459URL [本文引用: 1]
DOI:10.1080/00071660701302262URL [本文引用: 2]
[D].
[本文引用: 1]
[D].
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
DOI:10.3389/fphys.2018.00627URL [本文引用: 1]
[本文引用: 1]
[本文引用: 1]
DOI:10.3382/ps.0710482URL [本文引用: 1]
DOI:10.1016/S1096-4959(02)00185-9URL [本文引用: 2]
DOI:10.1080/00071669208417469URL [本文引用: 2]