删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

粉垄对甘蔗根系结构发育及呼吸代谢相关酶活性的影响

本站小编 Free考研考试/2021-12-26

李浩,1, 韦本辉,2, 黄金玲1, 李志刚1, 王令强1, 梁晓莹1, 李素丽,11广西大学农学院,南宁530004
2广西农业科学院经济作物研究所,南宁530007

Effects of Fenlong Cultivation on Root Cell Structure and Enzyme of Respiratory Metabolic of Sugarcane

LI Hao,1, WEI BenHui,2, HUANG JinLing1, LI ZhiGang1, WANG LingQiang1, LIANG XiaoYing1, LI SuLi,1 1College of Agriculture, Guangxi University, Nanning 530004
2Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007

通讯作者: 李素丽,E-mail: lisuli88@163.com

李浩和韦本辉为同等贡献作者。
责任编辑: 杨鑫浩
收稿日期:2020-04-27接受日期:2020-09-3网络出版日期:2021-02-01
基金资助:广西创新驱动重大专项.AA17204037-4
国家自然科学基金.31871689
国家自然科学基金.31460373


Received:2020-04-27Accepted:2020-09-3Online:2021-02-01
作者简介 About authors
李浩,Email: dlihao@126.com

韦本辉,E-mail: weibenhui@126.com








摘要
【目的】探讨甘蔗粉垄技术增产增糖的根系细胞生理学机制,为粉垄技术推广提供理论依据。【方法】以桂糖42号为供试材料进行粉垄耕作处理(耕作深度40 cm),以常规耕作为对照(耕作深度 25 cm,CK),分别测定土壤速效养分,甘蔗农艺性状及产量和糖分、根系形态、根毛区组织细胞结构、根系活力、苹果酸脱氢酶、细胞色素氧化酶等呼吸代谢相关酶活性。【结果】(1)与常规耕作相比,新植蔗土壤的碱解氮和速效磷分别增加了8.7%和17.9%;宿根蔗土壤增加了10.4%和25.6%,且不同耕作方式间同一指标差异显著;(2)粉垄新植蔗出苗率和分蘖率比常规耕作分别提高了25.0%和17.4%,宿根蔗分别提高了30.6%和11.7%。砍收时,粉垄新植蔗株高、茎径、单茎重、有效茎、产量分别提高了13.2%、17.6%、29.0%、5.3%、12.9%,粉垄宿根蔗分别增加了7.6%、22.2%、70.3%、18.7%和12.9%,且不同耕作方式间同一指标差异显著;(3)粉垄甘蔗根长、根直径、根体积、根尖数、根表面、根鲜重、根干重比常规耕作分别增加20.9%—42.3%、12.3%—71.0%、33.3%—71.0%、6.4%—61.6%,21.8%—64.1%、26.8%—64.4%和32.6%—95.3%,且不同耕作方式间同一指标差异显著;(4)与常规耕作相比,粉垄甘蔗根毛区和根毛细胞更长,根毛排列更疏松有序,根尖细胞壁增厚,细胞质、粗糙型内质网和高尔基体更丰富,线粒体数目更多且嵴清晰,细胞核结构更紧致;粉垄新植蔗根毛长度、根毛密度、单位面积根毛总长度和细胞中线粒体数目分别增加了53.3%、73.0%、111.1%和37.5%;粉垄宿根蔗以上指标也分别增加了38.9%、95.9%、82.6%和53.8%,且不同耕作方式间同一指标差异显著;(5)与常规耕作相比,粉垄甘蔗根系活力在整个生育期均显著增强,在苗期、伸长期和成熟期分别增加了1.29倍、1.39倍和1.25;(6)与常规耕作相比,粉垄苹果酸脱氢酶(MDH)、细胞色素氧化酶(CytcA510)和多酚氧化酶(PPO)活性在苗期和伸长期均显著增加,在苗期,新植蔗粉垄甘蔗苹果酸脱氢酶、细胞色素氧化酶和多酚氧化酶活性分别提高了22.9%、28.1%和38.9%,宿根蔗以上各指标分别提高23.0%、20.3%、27.7%,差异显著;在伸长期,新植粉垄甘蔗分别显著提高21.2%、41.8%和33.7%,宿根蔗各指标分别提高27.4%、26.8%和53.3%;成熟期,除了细胞色素氧化酶差异不显著外,粉垄新植蔗和宿根蔗的苹果酸脱氢酶、多酚氧化酶活性均显著提高。【结论】粉垄可提高速效氮和速效磷含量,改善甘蔗根系的营养,提高根系活力和呼吸代谢相关酶活性,有利于根系组织细胞结构和根系形态的发育,从而进一步促进根系对水肥的吸收。
关键词: 粉垄;甘蔗;根系;细胞结构;生理

Abstract
【Objective】By exploring the root cellular physiological mechanism on sugarcane yield and sugar content under the new farming method of Fenlong, this paper provided a theoretical basis for the promotion of Fenlong cultivation technology.【Method】Guitang 42 was used as the tested sugarcane variety, the conventional rotary tillage (CK, the depth of ploughing was 25 cm) and Fenlong cultivation (the depth of ploughing was 40 cm) were carried out to investigate the soil available nutrient, agronomic characters, yield and sugar content, root vitality, cellular ultrastructure and the enzyme of respiratory metabolic of sugarcane root.【Result】(1) The alkaline N and available P of new plant of Fenlong cultivation were 8.7% and 17.9% significantly higher than those under CK, respectively, and the alkaline N and available P of ratoon cane were 10.4% and 25.6% significantly higher than those under CK, respectively. (2) The emergence rate and tillering rate of Fenlong were increased by 25.0% and 17.4%, respectively, and regenerated sugarcane increased by 30.6% and 11.7%, respectively. Compared with conventional cultivation, the plant height, stem diameter, single stem weight, effective stem and yield of new planting sugarcane under Fenlonng cultivation increased by 13.2%, 17.6%, 29.0%, 5.3% and 12.9%, respectively, and regenerated sugarcane with Fenlonng cultivation increased by 7.6%, 22.2%, 70.3%, 18.7% and 12.9%, respectively. (3) The length, diameter, volume, root tip number, surface area, fresh weight and dry weight of root under Fenlong cultivation were 20.9%-42.3%, 12.3%-71.0%, 33.3%-71.0%, 6.4%-61.6%, 21.8%-64.1%, 26.8%-64.4% and 32.6%-95.3% significantly greater under CK, respectively. (4) Under Fenlong cultivation conditions, root hair area and cells were longer, the root hair arrangement was looser and more orderly, the root tip cell wall was thickened, the cytoplasm, rough endoplasmic reticulum and Golgi body were more abundant, the number of mitochondria was more and the crest was clear, and the nuclear structure was more compact than those under CK. The root hair length, root hair density, total root hair length per unit area and the number of mitochondria in cells were 53.3%, 73.0%, 111.1% and 37.5% higher than those under CK, respectively. The Fenlong tillage ratoon sugarcane above indicators also increased by 38.9%, 95.9%, 82.6% and 53.8%, respectively, and the same index was significantly different among different cultivation methods. (5) The root activity of sugarcane with Fenlong cultivation in seedling stage, elongation stage and maturity stage with Fenlong cultivation were 1.29 times, 1.39 times and 1.25 times significantly higher than CK, respectively. (6) The activity of malate dehydrogenase, cytochrome oxidase and polyphenol oxidase of sugarcane with Fenlong cultivation increased significantly at seedling stage and elongation stage. In the seedling stage, the activities of MDH? PPO and CytcA510 in newly planted sugarcane were 22.9%, 28.1% and 38.9% significantly higher than those under CK, and the indexes of ratoon cane were 23.0%, 20.3% and 27.7% significantly higher than those under CK, respectively. At the elongation stage, the activities of malate dehydrogenase, cytochrome oxidase and polyphenol oxidase of sugarcane with Fenlong cultivation were 21.2%, 41.8% and 33.7% significantly higher than those under CK, respectively; THE indexes of regenerated sugarcane were 27.4%, 26.8% and 53.3% higher than those of under CK, respectively; THE activities of MDH and PPO were significantly higher than those under CK.【Conclusion】 Fenlong cultivation of sugarcane could improve the soil available nutrient, improve the morphology and tissue cell structure of sugarcane roots, improve the activity of enzymes related to respiratory metabolism, thereby promoting the absorption of water and fertilizer by roots, facilitating growth and development on the ground, and increasing sugarcane yield and sugar content.
Keywords:Fenlong;sugarcane;root;cell structure;physiology


PDF (2074KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
李浩, 韦本辉, 黄金玲, 李志刚, 王令强, 梁晓莹, 李素丽. 粉垄对甘蔗根系结构发育及呼吸代谢相关酶活性的影响[J]. 中国农业科学, 2021, 54(3): 522-532 doi:10.3864/j.issn.0578-1752.2021.03.006
LI Hao, WEI BenHui, HUANG JinLing, LI ZhiGang, WANG LingQiang, LIANG XiaoYing, LI SuLi. Effects of Fenlong Cultivation on Root Cell Structure and Enzyme of Respiratory Metabolic of Sugarcane[J]. Scientia Acricultura Sinica, 2021, 54(3): 522-532 doi:10.3864/j.issn.0578-1752.2021.03.006


开放科学(资源服务)标识码(OSID):

0 引言

【研究意义】韦本辉发明的“粉垄”技术利用“螺旋型钻头”耕作工具垂直入土30—50 cm,高速旋磨切割粉碎土壤,一次性完成传统耕作的犁、耙、打等作业程序,达到播种或种植作物的整地标准,能够较长时间保持耕层相对深松状态[1,2,3,4]。粉垄打破了坚硬的犁底层,改善了土层结构,增加孔隙度,增强土壤水分入渗能力和蓄水能力,促进作物生长[3,4,5,6,7]。自粉垄栽培技术问世以来,许多****从土壤、作物农艺性状和增产效应等方面研究了粉垄的增产增收机理。前人研究认为,粉垄扩建了土壤养分库和水库、土壤氧气库和土壤微生物库[8,9,10]。甘蔗是重要的糖料作物,是广西重要的经济支柱产业。通过研究土壤养分、甘蔗根系形态结构和细胞生理学对粉垄的响应机制,可为粉垄技术在甘蔗栽培中的应用推广提供理论依据。【前人研究进展】粉垄技术能提高甘蔗根系数量和长度,使根系垂直分布下移,水平分布拓宽,根系鲜重增加20%以上,甘蔗植株长势健壮,分蘖率高,茎秆增粗[11,12,13],产量增加20%以上,茎蔗糖含量增加3.8 %以上[14]。根系是作物吸收水分和养分的主要器官,根系生长的好坏,与作物生产的土壤环境密切相关。耕作方式可以改变土壤理化性质,水和养分的利用效应和作物根系形态结构[15]。通过改良土壤环境,调节甘蔗根系生长状态,形成发育良好的根系形态结构及生理状态,利于甘蔗的生长发育[16]。甘蔗根系形态结构和生理代谢活动与甘蔗对水肥吸收能力密切相关,并直接影响甘蔗分蘖能力、抗旱性和抗病虫害特性,最终影响甘蔗的产量和品质[17]。【本研究切入点】粉垄条件下,土壤理化性状的改善以及通气条件的变化会引起根系生物量显著增加,根系形态发生了显著改变,而良好的通气条件,也会导致根系呼吸代谢行为的改变,使得根系吸收水肥的能力显著提高,从而促进甘蔗茎叶的生长发育,但粉垄条件下甘蔗根系形态以及细胞解剖特征的响应及其与甘蔗生长及养分吸收关系的研究尚不多见,甘蔗生长发育过程中根系形态尤其是细胞形态和根系呼吸代谢的变化及其与甘蔗生长发育以及糖分积累的关系尚不清楚。【拟解决的关键问题】本研究以常规旋耕为对照,研究了粉垄条件下甘蔗根系形态特征以及根系细胞超微结构的变化,以及呼吸代谢相关酶活性的变化规律,以期阐明甘蔗根系形态、超微结构以及呼吸代谢相关酶活性之间的关系及其对甘蔗生长发育和养分吸收的影响。

1 材料与方法

1.1 研究区概况

本研究于2018年(新植蔗)和2019年(宿根蔗)在广西壮族自治区南宁市隆安县那桐镇新安村粉垄综合示范基地(22°99′28″N,107°88′52″E)进行,该地属湿润的亚热带季风气候,年平均气温在21.6℃左右,年均降雨量达1 304.2 mm,平均相对湿度为79%。

试验地土壤为红壤,前茬作物为木薯。土壤容重为2.36 g·cm-3,pH 5.73,有机质 34.60 g·kg-1,土壤全氮 1.49 g·kg-1,碱解氮149 mg·kg-1,全磷0.30 g·kg-1,有效磷 8.49 mg·kg-1,速效钾394.30 mg·kg-1

1.2 试验设计

试验设2个处理,分别为常规耕作(旋耕机耕作,25 cm深,CK)和粉垄机耕作(自走式粉垄机,40 cm深),随机区组设计,每个处理重复3次。每个小区长10 m,宽6 m,种植5行,种植密度为14芽/m,行距1.2 m。

供试甘蔗品种为桂糖42,新植蔗于2018年3月16日下种,采用双芽段种植,蔗种双行摆放,种植密度为5 135 900芽/hm2;宿根蔗在新植蔗砍收后31 d,即2019年3月1进行松蔸管理。新植蔗于2018年6月10日进行大培土,宿根蔗于2019年6月6日,大培土时追施尿素 675 kg·hm-2(总氮≥46.4%),氯化钾675 kg·hm-2(K2O≥60%),复合肥(NPK=15:15:15)1 500 kg·hm-2,田间管理按常规进行。

1.3 农艺性状测定及产量品质测定

于2018年4月17日、2019年4月11日调查新植和宿根蔗出苗率,2018年5月11日、2019年6月5日分别调查新植和宿根蔗分蘖率。

于 2019年1月19日、2020年1月13日砍收新植和宿根蔗,砍收时每个重复随机选取20株,测产、测量茎长(甘蔗基部至甘蔗生长点处)、茎径(测量甘蔗基部往上第三节、中部和自尾部往下第七节节间,统计平均值)、有效茎数(以长1 m以上的甘蔗茎作为有效茎)。每小区选具代表性的6株于当天送广西农业科学院甘蔗研究所进行品质测定。

1.4 土壤养分测定

在甘蔗快速伸长期,新植蔗于2018年7月2日,宿根蔗于2019年8月31日,每个小区使用环刀按5点采样法采集表层土(20 cm土层),均匀混合,同时清除石块和动植物残体,带回实验室风干筛后待测。

测定方法参照鲍士旦主编的《土壤农化分析》[18]。土壤碱解氮含量的测定采用氢氧化钠-硼酸碱解扩散法;土壤速效磷含量的测定采用0.5 mol·L-1 NaHCO3浸提比色法;土壤速效钾含量的测定采用0.5 mol·L-1 NH4OAc,原子吸收火焰光度法。

1.5 取样与生理指标测定

新植蔗分别在苗期(2018年4月17日)、伸长期(2018年7月2日)及成熟期(2018年10月28日),宿根蔗分别在苗期(2019年4月10日)、伸长期(2019年8月31日)及成熟期(2019年11月3日)取样,用于测定根系活力及呼吸系统关键酶活性等指标。取样时,每个重复各选取有代表性、长势一致的健壮蔗株10株,小心冲洗根部,洗净根泥并剪去根系。其中5株甘蔗根系用于根系形态指标测定,5株样品装入冰盒带回实验室,取一部分混合根样用于测定根系活力,另一部分用液氮冷冻,用于测定酶活性。另外,伸长期样品放入冰盒前,随机切取30条1 cm长白根根尖,固定于2.5%(v/v)的戊二醛溶液(0.1 mol·L-1 磷酸缓冲液,pH 7.0),并于4℃冷藏保存,用于根系根毛区及超微结构的观察。

采用TTC法测定根系活力[19],苹果酸脱氢酶(NADP-MDH)、细胞色素氧化酶(CytcA510)、多酚氧化酶(PPO)活性的测定参考《植物生理生化实验教程》[20]。使用Multiskan GO 1.00.40酶标仪测定OD值,每个样本重复4次。

1.6 组织细胞结构观测

1.6.1 扫描电镜观察

从2.5%(v/v)的戊二醛溶液固定液中,每个重复随机取出5条甘蔗白根根尖样品,用磷酸缓冲液冲洗6次,用1.0%(v/v)锇酸固定3 h,再用相同磷酸缓冲液冲洗干净。将组织进行不同酒精浓度梯度的脱水和临界点干燥后固定于观察台,利用高压涂膜装置喷金处理。对单个气孔在Quanta 200 扫描电子显微镜(FEI Corp,USA)下观察和拍照,每个重复观测15个视野。

1.6.2 透射电镜观察

从2.5%(v/v)的戊二醛溶液固定液中,每个重复随机取出5条甘蔗根毛区样品,用磷酸缓冲液冲洗6次,1.0%(v/v)锇酸固定3 h,再用相同磷酸缓冲液冲洗干净,丙酮逐级脱水,Epon812 包埋,半薄切片光学定位根毛区细胞,超薄切片,醋酸铀及枸橼酸铅双重染色,日立 H-600IV 型透射电镜观察拍照。每个重复观测15个视野,统计15个细胞中的线粒体数目。

1.7 数据统计及分析

采用Microsoft Excel 2010软件进行数据基础整理及作图表,用SPSS 20统计软件进行显著性方差分析,通过ELISA程序软件进行酶活力数据分析。

2 结果

2.1 粉垄对速效养分及甘蔗根系养分的影响

在甘蔗快速伸长期,粉垄甘蔗长势显著大于常规甘蔗(图1-c)。粉垄土壤的碱解氮和速效磷高于常规耕作,新植蔗土壤的碱解氮和速效磷分别比常规耕作增加8.7%和17.9%;宿根蔗分别增加10.4%和25.6%,差异显著。粉垄土壤速效钾含量与常规耕作差异不显著(表1)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1粉垄耕作下甘蔗的生长发育

a:粉垄机作业;b:苗期甘蔗,CK表示常规耕作甘蔗,粉垄表示粉垄甘蔗;c:伸长期甘蔗;d:成熟期甘蔗
Fig. 1Growth and development of Fenlong sugarcane

a: Fenlong operation; b: Seedling stage of sugarcane, CK: Sugarcane grows under tractor tillage, Fenlong: Sugarcane grows under Fenlong tillage; c: Elongation stage of sugarcane; d: Mature stage of sugarcane


Table 1
表1
表1粉垄土壤速效养分
Table 1Soil available nutrient of Fenlong
种植方式
Planting method
处理
Treatment
碱解氮
Available N (mg·kg-1)
速效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
新植蔗
New planting sugarcane
CK291.67±5.83b11.11±0.26b714.03±14.28a
粉垄 Fenlong317.00±61.36a13.10±1.10a715.80±28.21a
宿根蔗
Stubble cane
CK352.00±4.90b10.84±0.24b588.51±11.77a
粉垄 Fenlong388.67±12.21a13.61±0.90a568.65±82.31a
同一种植方式同列不同小写字母表示在 5%水平显著差异。下同
The different small letters in the same planting method and column mean significant at 5% level. The same as below

新窗口打开|下载CSV

2.2 粉垄对甘蔗农艺性状和工艺品质的影响

与常规耕作相比,粉垄苗期甘蔗的根系更发达,叶片数量更多;伸长期与成熟期甘蔗生长更健壮,更高,绿叶数目更多,甘蔗有效茎数更密集(图1-b—d)。粉垄新植蔗出苗率和分蘖率比常规耕作分别提高25.0%和17.4%;宿根蔗分别提高30.6%和11.7%,各指标均达显著差异水平。砍收时,粉垄新植蔗株高、茎径、单茎重、有效茎、产量和糖分比常规耕作分别提高了13.2%、17.6%、29.0%、5.3%、18.9%和11.8%,各指标差异显著;粉垄宿根蔗各指标分别提高了7.6%、22.2%、70.3%、18.7%、12.9%和3.9%,除了分蘖率和糖分未达差异显著水平外,其他指标均达显著差异水平(表2)。

Table 2
表2
表2粉垄甘蔗农艺性状和工艺成熟指标
Table 2Agronomic trait and process maturity indexes
种植方式
Planting method
处理
Treatment
出苗率
Seedling rate
(%)
分蘖率
Tillering rate
(%)
株高
Plant height
(cm)
茎径
Stem diameter
(cm)
单茎重
Single stem weight (kg/plant)
有效茎
Effective stems (plant/hm2)
产量
Yield
(kg·hm-2)
甘蔗糖分
Sugar content
(%)
新植蔗
New planting
sugarcane
CK32.0±1.03b51.20±1.25b295.0±2.57b2.56±0.03b1.83±0.06a61477±91b109814±2252b13.86±0.33b
粉垄Fenlong40.0±0.89a60.10±2.01a334.0±2.31a3.01±0.08a2.36±0.08b64719±102a130555±3539a15.50±0.45a
宿根蔗
Stubble cane
CK17.3±2.20b56.40±9.50a251.9±2.80b2.39±0.90b1.28±0.06b41520±75b82589±1360b15.20±0.60a
粉垄Fenlong22.6±2.30a63.00±7.90a271.2±5.60a2.92±0.50a2.18±0.04a49274±98a93257±1718a15.80±0.10a

新窗口打开|下载CSV

2.3 粉垄对甘蔗根系形态的影响

与常规耕作比较,粉垄甘蔗根长、根直径、根体积和根尖数分别增加20.9%—42.3%、12.3%—71.0%、33.3%—71.0%和6.4%—61.6%,根表面积增加21.8%—64.1%,其中,以上指标均以伸长期提高幅度最大,成熟期提高幅度最低,宿根蔗提高幅度大于新植蔗。根鲜重和干重分别提高26.8%—64.4%和32.6%—95.3%,新植蔗根鲜重和干重提高幅度均大于宿根蔗,粉垄耕作显著大于常规耕作(图2,表3)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2粉垄甘蔗根系形态

a:CK根系;b:粉垄根系
Fig. 2Root morphology of Fenlong sugarcane

a: Root of Ck ; b: Root of Fenlong


Table 3
表3
表3粉垄的甘蔗根系形态指标
Table 3Root morphology of Fenlong sugarcane
种植方式
Planting method
生长期
Growth period
处理
Treatment
根长
Root length
(cm)
根表面积
Root surface area
(cm2)
根直径
Root diameter
(mm)
根体积
Root volume
(cm3/plant)
根尖数
Total root
(No./plant)
根鲜重
Root fresh weight
(g/plant)
根干重
Root dry matter
(g/plant)
新植蔗
New planting
sugarcane
苗期
Seeding stage
CK13.64±1.21b139.87±12.21b0.70±0.021b12.17±0.41b3730.78±52.21b10.94±0.22b2.38±0.26b
粉垄Fenlong18.20±1.41a170.29±9.21a0.93±0.041a16.22±0.33a6030.23±32.01a16.69±0.71a3.80±0.31a
伸长期
Elongation stage
CK22.73±2.21b263.90±2.21b1.33±0.02b22.95±0.53b7039.20±56.02b20.65±0.12b4.49±0.02b
粉垄Fenlong32.34±1.31a321.30±12.11a1.75±0.03a30.60±1.21a11377.80±39.02a33.94±0.32a6.28±0.03a
成熟期
Mature stage
CK30.73±2.21b377.02±25.00b1.90±0.02b32.79±3.50b10056.00±102.00b29.50±1.50b6.42±0.31b
粉垄Fenlong40.34±1.23a459.13±21.00a2.50±0.03a43.72±2.41a16254.00±145.00a44.21±1.10a12.54±0.41a
宿根蔗
Stubble
cane
苗期
Seeding stage
CK20.64±1.21b517.43±84.00a0.65±0.10a27.99±5.46b1085.24±5.46b13.94±0.32b3.38±0.36b
粉垄Fenlong28.20±1.41a685.73±63.00a0.73±0.05a41.48±5.45a1285.87±5.45a18.69±0.81a4.80±0.39a
伸长期
Elongation stage
CK36.73±2.21b738.17±105.78b0.93±0.11b38.47±5.47b1527.08±37.57b25.65±0.32b5.49±0.22b
粉垄Fenlong48.34±1.31a1211.47±169.42a1.59±0.18a65.79±9.02a2182.17±30.92a38.94±0.52a7.28±0.23a
成熟期
Mature stage
CK50.73±2.21b1454.72±206.73b1.63±0.21b58.16±14.05b2555.17±68.77b32.50±0.50b8.42±0.41b
粉垄Fenlong61.34±1.23a1788.26±129.18a1.91±0.17a80.35±7.09a2719.78±66.23a41.21±0.56a12.54±0.61a

新窗口打开|下载CSV

2.4 粉垄甘蔗根毛区组织细胞及亚细胞结构

粉垄甘蔗白根远比常规耕作多且长,粉垄甘蔗根毛大小粗细均匀,排列疏松有序,而常规甘蔗根毛细胞相对较短,大小粗细不一,排列较紧实(图3-a—d)。粉垄新植蔗根毛长度、根毛密度、单位面积根毛总长度分别比常规耕作增加了53.3%、73.0%和111.1%;宿根蔗以上指标也分别增加了38.9%、95.9%和82.6%,且各指标均达显著差异水平(表4)。

图3

新窗口打开|下载原图ZIP|生成PPT
图3粉垄甘蔗根毛区组织细胞及亚细胞结构

a:CK甘蔗根毛区组织形态;b:粉垄甘蔗根毛区组织形态;c:CK甘蔗根毛;d:粉垄甘蔗根毛;e:CK甘蔗根毛区细胞超微结构;f:粉垄甘蔗根毛区细胞超微结构;g:CK甘蔗根毛区线粒体结构;h:粉垄甘蔗根毛区线粒体结构。箭头表示根毛,N细胞核,M线粒体,W细胞壁,ER粗面内质网,V液泡,高尔基体
Fig. 3The ultrastructure of Fenlong sugarcane root hair cell

a: The root hair histomorphology of CK sugarcane; b: The root hair histomorphology of Fenlong sugarcane; c: The root hair of CK sugarcane; d: The root hair of Fenlong sugarcane; e: Ultrastructure of root hair cell in CK sugarcane; f: Ultrastructure of root hair cell in Fenlong sugarcane; g: Mitochondria ultrastructure of CK sugarcane; h: Mitochondria ultrastructure of Fenlong sugarcane. The arrow shows the root hair. N: Nuclei, M: Mitochondria, W: Cell wall; ER: Rough endoplasmic reticulum; V: Vacuole, Golgi apparatus


Table 4
表4
表4粉垄甘蔗根毛区细胞超微结构
Table 4The ultrastructure of root hair cells in Fenlong sugarcane
种植方式
Planting method
处理
Treatment
根毛平均长度
Average lenghth of root hair (mm)
根毛密度
Root hair density (ind/mm2)
单位面积根毛总长度
Total length of root per area (mm)
线粒体数目
Mitochondria number (No./cell)
新植蔗
New planting sugarcane
CK0.15±0.01b110.36±2.23b18±0.15b16±0.52b
粉垄Fenlong0.23±0.02a190.94±0.94a38±0.12a22±0.32a
宿根蔗
Stubble cane
CK0.18±0.02b92.36±2.23a23±0.15b13±0.42b
粉垄Fenlong0.25±0.01a180.94±0.94a42±0.12a20±0.42a

新窗口打开|下载CSV

粉垄甘蔗根毛区薄壁细胞的细胞壁增厚明显,细胞质有丰富的细胞内含物、液泡大、细胞核周围粗糙型内质网数量更丰富,并相互连结成网状而贯穿于细胞质之中,高尔基体数量更多、个体也较大。常规耕作甘蔗中很少观察到粗糙内质网,细胞壁较薄,细胞核嗜饿颗粒不密集,分布较松散。粉垄新植蔗和宿根蔗细胞中线粒体数目比常规耕作增加37.5%和53.8%,均达显著差异水平,且粉垄甘蔗线粒体膜更圆润完整,内膜折叠程度更高且嵴更为清晰(图3-e—h,表4)。

2.5 粉垄对甘蔗根系活力的影响

无论在苗期、伸长期还是成熟期,粉垄甘蔗根系活力均显著大于常规栽培甘蔗。在苗期,粉垄甘蔗根系活力是常规耕作甘蔗的1.29倍;伸长期是1.39倍,成熟期是1.25倍,各时期根系活力均差异显著(图4)。

图4

新窗口打开|下载原图ZIP|生成PPT
图4粉垄对甘蔗的根系活力

不同小写字母表示差异显著(P<0.05)。下同
Fig. 4Root vitality of Fenlong sugarcane

Different letters indicated significant difference (P<0.05). The same as below


2.6 粉垄对甘蔗呼吸代谢相关酶活性的影响

在苗期,粉垄新植蔗甘蔗苹果酸脱氢酶(MDH)、细胞色素氧化酶(CytcA510)、多酚氧化酶(PPO)活性比常规耕作高22.9%、28.1%和38.9%,宿根蔗各指标分别提高23.0%、20.3%、27.7%,差异显著;在伸长期,粉垄新植甘蔗MDH、CytcA510、PPO活性显著提高21.2%、41.8%和33.7%,宿根蔗显著提高27.4%、26.8%和53.3%;成熟期,除了CytcA510差异不显著外,粉垄新植蔗和宿根蔗的MDH、PPO活性均显著高于常规耕作(图5)。

图5

新窗口打开|下载原图ZIP|生成PPT
图5粉垄甘蔗根系MDH, CytcA510, PPO活力

Fig. 5The activities of MDH, CytcA510, and PPO in Fenlong sugarcane roots



3 讨论

3.1 粉垄甘蔗根系形态和结构符合高产作物的细胞学特征

根系形态和细胞结构与作物产量和品质形成均有密切的关系[21,22,23]。根毛在吸收土壤水分及养分时发挥着重要作用,养分是影响根毛形成的重要因素,养分充足,植物根毛的长度和密度有所增加[21]。本研究发现粉垄甘蔗根毛区远远长于常规耕作,根毛形态排列疏松、有序,根毛细胞更长,显著增加了甘蔗根的吸收表面积,吸收水分养分能力更强,这可能是粉垄条件下土壤容重降低,改善了较深土层的氧气和水分条件,进而对土壤养分的释放、微生物生态的调节等有积极作用[11, 24],从而促进了根系的生长发育,达到促进粉垄甘蔗生长的效果。

前人研究表明,在养分充足、水分适宜和通气良好条件下,根尖细胞核大而清晰,线粒体数目多、结构完整和内质网丰富,具有代谢活跃细胞的特点,而通气不良的根尖细胞核变形,核仁松散,线粒体数量减少和线粒体结构被破坏[25]。本研究发现,粉垄耕作下,甘蔗根区毛细胞线粒体数目多、线粒体嵴更清晰,核膜核仁清晰且致密度更高,具有代谢活跃细胞的特点,为呼吸作用提供了更加有利的场所,给粉垄甘蔗的生长发育提供更多的物质和能量。另外,粗糙内质网是植物体合成蛋白质的场所,也是细胞内和细胞间物质与信息交换和运输通道[26]。本研究发现,粉垄甘蔗具有丰富的内质网,表明制造蛋白和物质信息交换的能力增强。

3.2 粉垄甘蔗根系细胞生理代谢有利于产量形成

甘蔗产量、糖分与酶的活性等生理功能有密切关系,甘蔗生长过程中生理性状存在不同程度的差异。苹果酸脱氢酶(MDH)是三羧酸循环关键酶,细胞色素氧化酶和多酚氧化酶是呼吸电子传递链末端的酶,三者都与能量代谢有关,其活性强弱可以反映有氧呼吸的强弱[22, 27]。当土壤紧实,在作物根际低氧下,参与有氧呼吸的苹果酸脱氢酶、细胞色素氧化酶、多酚氧化酶下降,根系活力下降,有氧呼吸受抑,无氧呼吸代谢加强,乙醇、乙醛积累,不利于作物生长。土壤紧实度的增加,影响甘蔗根系生长,根系对氮素的吸收能力下降[28,29],导致甘蔗伸长量及生理生化指标等降低[30,31]。粉垄使土壤更加疏松,使土壤氧气含量增加,从而有利于根系呼吸代谢的改善[7, 9]。本研究发现,粉垄甘蔗分蘖期至伸长期的苹果酸脱氢酶、细胞色素氧化酶和多酚氧化酶活性均显著高于常规耕作,说明粉垄改善了土壤通气条件,有氧呼吸代谢加强,根系活力增强,甘蔗根系发达,吸收水肥能力增强,有利于甘蔗生长[24]

4 结论

粉垄能活化土壤氮磷,改善甘蔗根毛组织细胞结构,使根毛结构往代谢活跃特征方向发展,促进根系生长发育,根系发达,同时,促进根系生理代谢及吸收水肥,有利于甘蔗地上部的生长发育,从而提高甘蔗产量。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

韦本辉. 旱地作物粉垄栽培技术研究简报
中国农业科学, 2010,43(20):4330.

[本文引用: 1]

WEI B H. Research on smash-ridging cultivation techniques of dryland crops
Scientia Agricultura Sinica, 2010,43(20):4330. (in Chinese)

[本文引用: 1]

韦本辉. 粉垄活化资源构建绿色农业“3+1”产业体系的探讨
农业科学与技术(英文版), 2017,18(2):380-384.

[本文引用: 1]

WEI B H. Discussion on the construction of green agriculture “3+1” industry system using Fenlong activated resources
Agricultural Science & Technology, 2017,18(2):380-384. (in Chinese)

[本文引用: 1]

韦本辉. 粉垄增产提质保水及倍用“天地资源”绿色发展的可能性
农业科学与技术(英文版), 2017,18(9):1631-1637.

[本文引用: 2]

WEI B H. Discussion on green development of fenlong for yield increase, quality enhancing, water retaining and multiple use of natural resources
Agricultural Science & Technology, 2017,18(9):1631-1637. (in Chinese)

[本文引用: 2]

韦本辉. 中国发明第四套农耕方法“粉垄”
农业科学与技术(英文版), 2017,18(11):2045-2048, 2052.

[本文引用: 2]

WEI B H. Fenlong cultivation-the fourth set of farming methods invented in China
Agricultural Science & Technology, 2017,18(11):2045-2048, 2052. (in Chinese)

[本文引用: 2]

韦本辉, 刘斌, 甘秀芹, 申章佑, 胡泊, 李艳英, 吴延勇, 陆柳英. 粉垄栽培对水稻产量和品质的影响
中国农业科学, 2012,45(19):3946-3954.

[本文引用: 1]

WEI B H, LIU B, GAN X Q, SHEN Z Y, HU B, LI Y Y, WU Y Y, LU L Y. Effect of Fenlong cultivation on yield and quality of rice
Scientia Agricultura Sinica, 2012,45(19):3946-3954. (in Chinese)

[本文引用: 1]

韦本辉. 重构耕层可持续增产的“水稻粉垄生态高效栽培法”
农业科学与技术(英文版), 2014,15(9):1526-1529.

[本文引用: 1]

WEI B H. Reconstruction of highly-efficient smash-ridging ecological cultivation method for sustainable yield-increasing of soil plough layers
Agricultural Science & Technology, 2014,15(9):1526-1529. (in Chinese)

[本文引用: 1]

韦本辉, 申章佑, 周佳, 周灵芝, 李艳英, 劳承英, 甘秀芹, 胡泊, 韦元波. 论粉垄“大科学”在人与自然共生中的作用与潜能
农业科学与技术(英文版), 2017,18(12):2303-2308, 2311.

[本文引用: 2]

WEI B H, SHEN Z Y, ZHOU J, ZHOU L Z, LI Y Y, LAO C Y, GAN X Q, HU P, WEI Y B. Discussion on action and potential of Fenlong megascience in the symbiosis between human and nature
Agricultural Science & Technology, 2017,18(12):2303-2308, 2311. (in Chinese)

[本文引用: 2]

聂胜委, 张玉亭, 张巧萍, 郭庆, 汤丰收, 王洪庆, 何宁. 粉垄耕作对小麦玉米产量及耕层土壤养分的影响
土壤通报, 2017,48(4):930-936.

[本文引用: 1]

NIE S W, ZHANG Y T, ZHANG Q P, GUO Q, TANG F S, WANG H Q, HE N. Effect of smashing ridge tillage on grain yields of winter wheat and summer maize and contents of soil nutrients
Chinese Journal of Soil Science, 2017,48(4):930-936. (in Chinese)

[本文引用: 1]

李轶冰, 逄焕成, 李华, 李玉义, 杨雪, 董国豪, 郭良海, 王湘峻. 粉垄耕作对黄淮海北部春玉米籽粒灌浆及产量的影响
中国农业科学, 2013,46(14):3055-3064.

[本文引用: 2]

LI Y B, PANG H C, LI H, LI Y Y, YANG X, DONG G H, GUO L H, WANG X J. Effects of deep vertically rotary tillage on grain filling and yield of spring maize in north Huang-Huai-Hai region
Scientia Agricultura Sinica, 2013,46(14):3055-3064. (in Chinese)

[本文引用: 2]

王世佳, 蒋代华, 朱文国, 张蓉蓉, 李军伟, 韦本辉. 粉垄耕作对农田赤红壤团聚体结构的影响
土壤学报, 2020,57(2):326-335.

[本文引用: 1]

WANG S J, JIANG D H, ZHU W G, ZHANG R R, LI J W, WEI B H. Effect of deep vertical rotary tillage on aggregate structure in farmland of lateritic red soil
Acta Pedologica Sinica, 2020,57(2):326-335. (in Chinese)

[本文引用: 1]

韦增林, 张亮曼, 卢国培, 曹小琼, 韦思庚, 黎忠海, 王小明. 粉垄栽培对甘蔗产量及糖分影响初报
甘蔗糖业, 2018(6):37-40.

[本文引用: 2]

WEI Z L, ZHANG L M, LU G P, CAO X Q, WEI S G, LI Z H, WANG X M. The effect of powder ridge cultivation on sugarcane yield and sugar
Sugarcane and Canesugar, 2018(6):37-40. (in Chinese)

[本文引用: 2]

韦本辉, 甘秀芹, 陈保善, 申章佑, 俞建, 宁秀呈, 陆柳英, 韦广泼, 胡泊, 莫润秀, 李艳英, 吴延勇. 粉垄整地与传统整地方式种植玉米和花生效果比较
安徽农业科学, 2011,39(6):3216-3219.

[本文引用: 1]

WEI B H, GAN X Q, CHEN B S, SHEN Z Y, YU J, NING X C, LU L Y, WEI G P, HU P, MO R X, LI Y Y, WU Y Y. Comparison of the cultivation of maize and peanuts by smash-riding and traditional land preparation methods
Journal of Anhui Agricultural Sciences, 2011,39(6):3216-3219. (in Chinese)

[本文引用: 1]

王奇, 陈培赛, 周佳, 周灵芝, 劳承英, 尹昌喜, 韦本辉. 粉垄耕作对甘蔗农艺性状及产量的影响
江苏农业科学, 2019,47(4):65-68.

[本文引用: 1]

WANG Q, CHEN P S, ZHOU J, ZHOU L Z, LAO C Y, YIN C X, WEI B H. Effects of smash-ridging cultivation on agronomic characters and yield of sugarcane
Jiangsu Agricultural Sciences, 2019,47(4):65-68. (in Chinese)

[本文引用: 1]

韦本辉, 甘秀芹, 申章佑, 宁秀呈, 陆柳英, 韦广泼, 李艳英, 胡泊, 刘斌, 吴延勇. 粉垄栽培甘蔗试验增产效果
中国农业科学, 2011,44(21):4544-4550.

[本文引用: 1]

WEI B H, GAN X Q, SHEN Z Y, NING X C, LU L Y, WEI G P, LI Y Y, HU P, LIU B, WU Y Y. Yield increase of smash-ridging cultivation of sugarcane
Scientia Agricultura Sinica, 2011,44(21):4544-4550. (in Chinese)

[本文引用: 1]

BAQUERO J E, Ralisch R, Medina C D C, FILHO J T, GUIMAR?ES M D F. Soil physical properties and sugarcane root growth in a red oxiso
Revista Brasileira de Ciência do Solo, 2012,36(1):63-70.

[本文引用: 1]

ARRUDA E M, ALMEIDA R F D, DOMINGUES L A D S, JUNIOR A C D S, MORAES E R D, BARROS L R, SOUSA J L D O, LANA R M Q . Soil porosity and density in sugarcane cultivation under different tillage systems
African Journal of Agricultural Research, 2016,11(30):2689-2696.

[本文引用: 1]

OTTO R, SILVA A P, FRANCO H C J, OLIVEIRA E C A, TRIVELIN P C O. High soil penetration resistance reduces sugarcane root system development
Soil & Tillage Research, 2011,117:201-210.

[本文引用: 1]

鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000.
[本文引用: 1]

BAO S D. . Soil Agrochemical Analysis. 3rd edition. Beijing: China Agriculture Press, 2000. (in Chinese)
[本文引用: 1]

高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006.
[本文引用: 1]

GAO J F. Plant Physiology Experiment Guide. Beijing: Higher Education Press, 2006.(in Chinese)
[本文引用: 1]

叶尚红. 植物生理生化实验教程. 第2版. 昆明: 云南科技出版社, 2007: 212.
[本文引用: 1]

YE S H. Plant Physiology and Biochemistry Experiment Course. 2th edition. Kunming: Yunnan Science and Technology Press, 2007: 212(in Chinese)
[本文引用: 1]

褚光, 刘洁, 张耗, 杨建昌. 超级稻根系形态生理特征及其与产量形成的关系
作物学报, 2014,40(5):850-858.

[本文引用: 2]

CHU G, LIU J, ZHANG H, YANG J C. Morphology and physiology of roots and their relationships with yield formation in super rice
Acta Agronomica Sinica, 2014,40(5):850-858. (in Chinese)

[本文引用: 2]

杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系
中国农业科学, 2011,44(1):36-46.

[本文引用: 2]

YANG J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization
Scientia Agricultura Sinica, 2011,44(1):36-46. (in Chinese)

[本文引用: 2]

YAO Y Z. Effects of ridge tillage on photosynthesis and root characters of rice
Chilean Journal of Agricultural Research, 2015,75(1):35-41.

[本文引用: 1]

HAWES M C, GUNAWARDENA U, MIYASAKA S, ZHAO X W. The role of root border cells in plant defense
Trends in Plant Science, 2000,5(3):128-133.

DOI:10.1016/s1360-1385(00)01556-9URLPMID:10707079 [本文引用: 2]
The survival of a plant depends upon the capacity of root tips to sense and move towards water and other nutrients in the soil. Perhaps because of the root tip's vital role in plant health, it is ensheathed by large populations of detached somatic cells - root 'border' cells - which have the ability to engineer the chemical and physical properties of the external environment. Of particular significance, is the production by border cells of specific chemicals that can dramatically alter the behavior of populations of soilborne microflora. Molecular approaches are being used to identify and manipulate the expression of plant genes that control the production and the specialized properties of border cells in transgenic plants. Such plants can be used to test the hypothesis that these unusual cells act as a phalanx of biological 'goalies', which neutralize dangers to newly generated root tissue as the root tip makes its way through soil.

ZHAI L C, XU P, ZHANG Z B, WEI B H, JIA X L, ZHANG L H. Improvements in grain yield and nitrogen use efficiency of summer maize by optimizing tillage practice and nitrogen application rate
Agronomy Journal, 2019,111(2):666-676.

[本文引用: 1]

HERMAN E M, LARKINS B A. Protein storage bodies and vacuoles
The Plant Cell, 1999,11(4):601-613.

DOI:10.1105/tpc.11.4.601URLPMID:10213781 [本文引用: 1]

李志霞, 秦嗣军, 吕德国, 聂继云. 植物根系呼吸代谢及影响根系呼吸的环境因子研究进展
植物生理学报, 2011,47(10):957-966.

[本文引用: 1]

LI Z X, QIN S J, Lü D G, NIE J Y. Research progress in root respiratory metabolism of plant and the environmental influencing factors
Plant Physiology Journal, 2011,47(10):957-966. (in Chinese)

[本文引用: 1]

SHUKLA S K, YADAV R L, GUPTA R, SINGH A K, AWASTHI S K, GAUR A. Deep tillage, soil moisture regime, and optimizing N nutrition for sustaining soil health and sugarcane yield in subtropical india
Communications in Soil Science and Plant Analysis, 2018,49(4):444-462.

[本文引用: 1]

WASAYA A, TAHIR M, MANAF A, AHMED M, KALEEM S, AHMAD I. Improving maize productivity through tillage and nitrogen management
African Journal of Biotechnology, 2011,10(82):19025-19034.

[本文引用: 1]

郑俊鶱, 孙艳, 韩寿坤, 张浩. 土壤紧实胁迫对黄瓜根系呼吸代谢的影响
应用生态学报, 2013,24(3):741-746.

[本文引用: 1]

ZHENG J X, SUN Y, HAN S K, ZHANG H. Effects of soil compaction stress on respiratory metabolism of cucumber root
Chinese Journal of Applied Ecology, 2013,24(3):741-746. (in Chinese)

[本文引用: 1]

SURENDRAN U, RAMESH V, JAYAKUMAR M, MARIMUTHU S, SRIDEVI G. Improved sugarcane productivity with tillage and trash management practices in semi arid tropical agro ecosystem in India
Soil & Tillage Research. 2016,158:10-21.

[本文引用: 1]

相关话题/土壤 细胞 结构 指标 作物