删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

地膜覆盖与施肥对秸秆碳氮在土壤中固存的影响

本站小编 Free考研考试/2021-12-26

王淑颖,, 李小红, 程娜, 付时丰, 李双异, 孙良杰, 安婷婷,, 汪景宽沈阳农业大学土地与环境学院/农业农村部东北耕地保育重点实验室/土肥资源高效利用国家工程实验室,沈阳 110866

Effects of Plastic Film Mulching and Fertilization on the Sequestration of Carbon and Nitrogen from Straw in Soil

WANG ShuYing,, LI XiaoHong, CHENG Na, FU ShiFeng, LI ShuangYi, SUN LiangJie, AN TingTing,, WANG JingKuanCollege of Land and Environment, Shenyang Agricultural University/ Key Laboratory of Northeast Arable Land Conservation, Ministry of Agriculture and Rural Affair/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866

通讯作者: 安婷婷,E-mail: atting@syau.edu.cn

责任编辑: 李云霞
收稿日期:2020-05-7接受日期:2020-08-18网络出版日期:2021-01-16
基金资助:国家自然科学基金面上项目.41771328
国家自然科学基金面上项目.41977086
辽宁省科学研究经费项目.LSNQN202008


Received:2020-05-7Accepted:2020-08-18Online:2021-01-16
作者简介 About authors
王淑颖,E-mail: wsy585313@163.com










摘要
【目的】作物秸秆不仅含有较高的有机碳,而且含有丰富的矿质营养元素。秸秆还田是东北黑土地区培肥土壤和农业可持续发展的重要技术措施。然而不同地膜覆盖(简称“覆膜”)及施肥方式下秸秆碳(C)和氮(N)在土壤中的固持特征还不是很明确。本研究通过定量分析秸秆碳对土壤有机碳(SOC)和秸秆氮对土壤全氮(TN)的贡献,探讨不同覆膜和施肥条件下秸秆碳和氮在土壤中固定的差异,以期为土壤肥力提升和东北黑土地保护提供依据。【方法】基于覆膜与施肥的长期定位试验,选择覆膜和不覆膜(裸地)栽培条件下不施肥(CK)、单施氮肥(N4)和有机肥配施氮肥(M2N2)处理,在表层(0—20 cm)土壤添加13C15N双标记秸秆后在田间原位培养150 d,测定SOC含量及其δ13C值、TN含量及其δ15N值,分析SOC中秸秆来源C(13C-SOC)、TN中秸秆来源N(15N-TN)和土壤碳氮比随时间的动态变化特征。【结果】施肥、覆膜及其它们的交互作用显著影响(P<0.05)13C-SOC和15N-TN含量。整个培养期间,M2N2处理秸秆碳对SOC的贡献率(13C-SOC/SOC)和秸秆氮对TN贡献率(15N-TN/TN)平均分别为10.48%和3.18%;施肥(N4和M2N2)处理13C-SOC/SOC和秸秆碳残留率在覆膜方式下平均分别为12.65%和37.14%,不覆膜方式下分别为12.08%和34.50%。同一栽培方式培养第150天,N4处理13C-SOC/SOC和秸秆碳残留率平均分别为14.33%和39.40%,其他施肥处理平均分别为11.77%和33.21%;CK处理15N-TN/TN平均为4.56%,分别比N4和M2N2处理高26.00%和44.53%。培养第150天,秸秆氮残留率在覆膜和不覆膜条件下CK处理最高,平均为10.03%;不覆膜N4处理最低,为7.87%。无论覆膜与否,N4处理13C-SOC与15N-TN比值为32—39,其他施肥处理均<30。【结论】秸秆碳氮在土壤中的固存对覆膜与施肥的响应敏感。单施氮肥有利于秸秆碳在土壤中的积累和有机碳的更新,不施肥处理秸秆氮对土壤氮库的固定起正反馈效应,而有机肥配施氮肥土壤碳氮的更新相对滞后。
关键词: 13C15N双标记;秸秆碳;秸秆氮;地膜覆盖;施肥

Abstract
【Objective】Crop straws not only contain high content of organic carbon (C), but also are rich in mineral nutrients. Straw returning to field is an important technique for improvement of soil fertility and sustainable development of agriculture in the region of Black Soil in Northeast China. However, the sequestration and characteristics of C and nitrogen (N) from straw in soil under different plastic film mulching and fertilization treatments were not clear. In this study, the contributions of straw C to soil organic C (SOC) and straw N to soil total nitrogen (TN) were quantified to compare the differences of straw C and N in soil among different mulching and fertilization treatments, so as to provide a basis for improvement of soil fertility and protection of Black Soil in Northeast China.【Method】Based on a long-term mulching and fertilization experiment, the 13C15N double-labeled straw was added to the topsoil (0-20 cm) from the different fertilization treatments, including no fertilization (CK), chemical N fertilizer application (N4), and organic manure combined with chemical N fertilizer (M2N2), with/without mulching, and then which were incubated in-situ in the field for 150 days. The contents of SOC and TN and the values of δ13C and δ 15N were measured to analyze the dynamics changes of SOC derived from straw C (13C-SOC), TN derived from straw N (15N-TN) and their ratio with time.【Result】Fertilization, mulching and their interactions significantly influenced the contents of 13C-SOC and 15N-TN (P<0.05). During the whole incubation period, the contribution percentage of13C-SOC to SOC (13C-SOC/SOC) and that of 15N-TN to TN (15N-TN/TN) were 10.48% and 3.18% under M2N2 treatment, respectively; the13C-SOC/SOC and residual percentage of straw C in soil under fertilization (N4 and M2N2) treatments were on average 12.65% and 37.14% under mulching, and averaged 12.08% and 34.50% under no mulching, respectively. On the 150th day of incubation under the same cultivation mode, the 13C-SOC/SOC and residual percentage of straw C in soil were on average 14.33% and 39.40% under N4 treatment and averaged 11.77% and 33.21% in the other fertilization treatments, respectively;15N-TN/TN under CK treatment was with an average of 4.56%, and was 26.00% and 44.53% higher than that in N4 and M2N2 treatments. The residual percentage of straw N was the highest under CK treatment with/without mulching, with an average of 10.03%, which was the lowest under N4 treatment without mulching, with a value of 7.87% on the 150th day of incubation. Regardless of mulching or not, the ratio of 13C-SOC to 15N-TN ranged from 32 to 39 in N4 treatment, but was lower than 30 in the other fertilization treatments. 【Conclusion】The sequestrations of straw C and N in soil were sensitive to mulching and fertilization. The single application of chemical N fertilizer promoted the accumulation of straw C and the renewal of organic C in soil, and the long-term no fertilization played a positive feedback effect on the sequestration of straw N in soil N pool, while the renewal of soil organic C and N in organic manure combined with chemical N fertilizer lagged behind that in the other fertilization treatments.
Keywords:13C15N double-labeling;straw carbon;straw nitrogen;plastic film mulching;fertilization


PDF (618KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
王淑颖, 李小红, 程娜, 付时丰, 李双异, 孙良杰, 安婷婷, 汪景宽. 地膜覆盖与施肥对秸秆碳氮在土壤中固存的影响[J]. 中国农业科学, 2021, 54(2): 345-356 doi:10.3864/j.issn.0578-1752.2021.02.010
WANG ShuYing, LI XiaoHong, CHENG Na, FU ShiFeng, LI ShuangYi, SUN LiangJie, AN TingTing, WANG JingKuan. Effects of Plastic Film Mulching and Fertilization on the Sequestration of Carbon and Nitrogen from Straw in Soil[J]. Scientia Acricultura Sinica, 2021, 54(2): 345-356 doi:10.3864/j.issn.0578-1752.2021.02.010


开放科学(资源服务)标识码(OSID):

0 引言

【研究意义】土壤碳、氮的迁移转化是生物地球化学循环最基本的过程之一,是反映土壤质量和生产力的重要指标[1,2,3]。土壤碳、氮关系一直以来都是农田土壤研究的核心内容。土壤碳和氮的固持特征影响土壤碳源和汇的功能、氮库的储量和肥力的发挥。东北黑土带是我国重要的粮食生产基地和最大的玉米优势种植区[4],然而不合理的、高强度的开发利用导致土壤出现“浅、硬、瘦”等问题,严重影响了作物产量和农田可持续生产[5]。近年来,农业部大力实施增施有机肥和秸秆还田等培肥措施,以维持或提升黑土有机质质量。地膜覆盖(以下简称“覆膜”)具有增温保墒的作用[6],是我国干旱半干旱和冷凉地区作物增产的重要措施[7]。因此,不同覆膜与施肥下土壤碳和氮固持特征的研究具有重要的意义。【前人研究进展】作物秸秆不仅是土壤有机碳的主要来源,而且也是土壤重要的氮源。秸秆在土壤中分解转化是秸秆养分释放的过程。土壤添加秸秆培养1年后,秸秆碳在土壤中的残留率仅有30%[8]。有机肥的施用显著提高了土壤肥力[9],且不施肥的低肥力土壤与施有机肥的高肥力土壤相比提高了秸秆碳对总有机碳的贡献[10],促进了秸秆碳在土壤中的固定[11]。有机肥及其与氮肥配施处理通过提高微生物活性促进了玉米秸秆的分解[12,13],而氮肥的施用对玉米秸秆的分解影响较小[14]。有机肥与等碳量的秸秆相比有利于土壤碳氮的积累[15],且秸秆还田结合适量氮肥的施用增加了土壤碳氮养分的有效性[16]。土壤添加秸秆培养56 d后,秸秆氮在土壤的残留率为22%[17]。秸秆氮对土壤氮库的贡献受初始土壤肥力水平的影响显著,不施肥(低肥力)条件有利于秸秆氮在土壤中的固存[18]。【本研究切入点】覆膜虽然提高了土壤的温度和水分[19],实现了作物增产[20],但同时也导致土壤有机碳矿化加速[21,22],地力消耗增加,土壤肥力降低[19, 23]。覆膜结合有机肥的施用显著提高了土壤有机碳含量,改善了土壤肥力[24],而化肥处理的覆膜效应则主要是降低了土壤氮的损失[25]。因此,覆膜结合施肥对土壤有机碳和氮的作用不一致。前人研究表明秸秆碳氮在土壤中转化与固定对施肥措施的响应不同,然而覆膜结合施肥如何影响秸秆碳氮在土壤中的固存还不是很明确。【拟解决的关键问题】本研究以沈阳农业大学棕壤长期定位试验站为平台,土壤添加13C15N双标记秸秆后在田间进行原位培养,分析土壤有机碳和全氮随时间的动态变化和秸秆碳氮对其的贡献,探讨不同覆膜和施肥条件下秸秆碳和氮在土壤中固存的差异,以期为土壤培肥和东北黑土地的保护提供依据。

1 材料与方法

1.1 试验区概况

本研究主要在沈阳农业大学棕壤长期定位试验站(北纬41°09′,东经123°34′)进行。该试验站处于温带大陆性季风气候区,年均温7.9℃,年均降水量705 mm,海拔75 m,土壤属中厚层棕壤(简育淋溶土)。该长期定位试验站始建于1987年,当时土壤有机质含量15.6 g·kg-1、全氮1.0 g·kg-1、全磷0.5 g·kg-1、碱解氮67.4 mg·kg-1、有效磷8.4 mg·kg-1。试验地采用完全随机裂区试验设计,主区分为不覆膜与覆膜栽培两组,副区为不同施肥处理,每个施肥处理3次重复,每小区面积为0.0069 hm2。连作作物为玉米(当地常用品种)。每年4月25日左右按常规方法施肥、播种,实行常规田间管理。9月25日前后测产和收割,并对玉米茎秆及残留地膜进行清除,翻地(根系均保留在土壤中)。

1.2 供试土壤

本次试验选用3个施肥处理,即不覆膜栽培方式下不施肥(CK)、单施氮肥(N4,年施氮肥折合N 270 kg·hm-2)和有机肥配施氮肥(M2N2,年施有机肥折合N 135 kg·hm-2,氮肥N 135 kg·hm-2)以及与之相对应的覆膜栽培处理。有机肥和氮肥均作为基肥在春播前撒施入土壤。施用的有机肥为猪厩肥,其有机质含量为150 g·kg-1左右,全氮为10 g·kg-1,施用的氮肥为尿素(含N 46%)。2019年春季施肥前分别采集不同处理的表层(0—20 cm)土壤,挑除土壤样品中的植物根系和石砾等杂质后,用手沿自然破碎面轻轻掰开后于室内自然风干。土样风干后,过2 mm筛,备用。各处理土壤的基本性质(2019年)见表1

Table 1
表1
表1不同处理土壤(0—20 cm)基本性质(2019年)
Table 1Basic soil properties at 0-20 cm depth in various treatments (in 2019)
栽培模式
Cultivation mode
施肥处理
Fertilization treatment
土壤总有机碳
Total soil organic carbon (g·kg-1)
δ13C值
δ13C value (‰)
全氮
Total nitrogen (g· kg-1)
δ15N值
δ15N value (‰)
碳氮比
C/N ratio
不覆膜
No mulching
CK8.78±0.05 e-18.04±0.02 a1.05±0.02 cd5.68±0.03 c8.37±0.11 c
N48.52±0.01 f-18.10±0.03 a1.06±0.02 cd4.04±0.02 e8.00±0.17 d
M2N213.11±0.02 a-19.65±0.02 e1.49±0.04 a6.94±0.04 b8.80±0.20 b
覆膜
Mulching
CK9.16±0.03 d-18.26±0.04 b1.03±0.02 d5.62±0.01 c8.88±0.15 b
N410.57±0.03 c-19.20±0.03 d1.11±0.02 c5.13±0.02 d9.54±0.10 a
M2N212.75±0.04 b-19.12±0.04 c1.42±0.02 b14.26±0.05 a8.96±0.10 b
CK、N4和M2N2分别代表不施肥、单施氮肥和有机肥配施氮肥处理。数据后的不同小写字母表示不同施肥处理间的差异显著(P<0.05)
CK, N4 and M2N2 denote no fertilizer, chemical nitrogen fertilizer, and organic manure combined with nitrogen fertilizer, respectively. Different lowercase letters show the significant differences (P<0.05) among different fertilization treatments

新窗口打开|下载CSV

1.3 试验设计

本研究采用尼龙网袋法进行田间培养试验。将100 g风干土壤与13C15N双标记的玉米秸秆(? 0.425 mm)按照风干土重1%比例充分混匀(混合后C/N为51),调节含水量至田间持水量60%—70%后装入300目尼龙网袋中,同时按照同样方法布置不添加秸秆的对照处理。2019年5月12日将网袋分别埋入对应处理小区0—20 cm土层。13C15N双标记玉米秸秆的基本性质:δ13C值为565‰、δ15N值为36620‰、全碳415 g·kg-1、全氮7.12 g·kg-1、C/N为58。

在培养后的第30天(2019年6月15日)和150天(2019年9月27日)分别从每个处理随机取出3个尼龙网袋,样品自然风干后研磨过筛,供分析土壤样品总有机碳、全氮含量及其δ13C和δ15N值。δ13C值以美国南卡罗来纳州白垩纪皮狄组层位中的拟箭石化石(Pee DeeBelemnite,PDB)为标准物质,δ15N值以纯净大气氮为标准物质,采用元素分析仪-稳定同位素比例质谱联用仪(EA-IRMS,Elementar vario PYRO cube-IsoPrime100 Isotope Ratio Mass Spectrometer,德国)测定。

1.4 分析方法与数据处理

土壤总有机碳中秸秆碳贡献率(Fmc,%)和土壤全氮中秸秆氮贡献率(Fmn,%)的计算公式如下[26]

$\mathrm{F}_{\mathrm{mc}}=\frac{\delta^{13} \mathrm{C}_{\mathrm{sm}}-\delta^{13} \mathrm{C}_{\mathrm{s}}}{\delta^{13} \mathrm{C}_{\mathrm{m}}-\delta^{13} \mathrm{C}_{\mathrm{s}}} \times 100$
$F_{\mathrm{mn}}=\frac{\delta^{15} \mathrm{~N}_{\mathrm{sm}}-\delta^{15} \mathrm{~N}_{\mathrm{s}}}{\delta^{15} \mathrm{~N}_{\mathrm{m}}-\delta^{15} \mathrm{~N}_{\mathrm{s}}} \times 100$
式1中,δ13Csm(‰)为添加秸秆处理土壤有机碳的δ13C值;δ13Cs(‰)为不添加秸秆处理土壤有机碳的δ13C值;δ13Cm(‰)为初始添加秸秆的δ13C值。式2中,δ15Nsm(‰)为添加秸秆处理土壤全氮的δ15N值;δ15Ns(‰)为不添加秸秆处理土壤全氮的δ15N值;δ15Nm(‰)为初始添加秸秆的δ15N值。

土壤总有机碳中秸秆来源碳含量(Cmc,g·kg-1)和土壤全氮中秸秆来源氮含量(Cmn,g·kg-1)的计算如下[27]

Cmc=Csmc×Fmc/100
Cmn=Csmn×Fmn/100
式3中,Csmc(g·kg-1)为添加秸秆处理土壤有机碳含量。式4中,Csmn(g·kg-1)为添加秸秆处理土壤全氮含量。

秸秆碳残留率(Rmc,%)和秸秆氮残留率(Rmn,%)的计算如下:

$R_{mc}=C_{mc}/C_{mc0}\times 100$
$R_{mn}=C_{mn}/C_{mn0}\times 100$
式5中,Cmc0(g)为初始秸秆碳含量。式6中,Cmn0(g)为初始秸秆氮含量。

采用Excel 2016、Origin 9.1和SPSS19.0进行数据处理、统计分析和绘图。图表数据为平均值±标准误差。处理间差异采用单因素邓肯(Duncan)法、配对样本t检验进行方差分析,显著性水平为0.05。

2 结果

2.1 覆膜与施肥下土壤有机碳δ13C值和全氮δ15N值

栽培模式、施肥、时间及它们之间的交互作用显著影响(P<0.05)土壤有机碳(SOC)的δ13C值(栽培模式、栽培模式与时间的交互作用除外)和土壤全氮(TN)的δ15N值(表2)。无论覆膜与否,SOC的δ13C值在第30天表现为CK>N4>M2N2,且施肥处理间差异显著(P<0.05);在第150 天表现为N4>CK>M2N2,其中不覆膜条件下CK与N4处理差异不显著(图1-a)。在整个培养期间,TN的δ15N值均表现为CK>N4>M2N2图1-b),且覆膜处理TN的δ15N值较不覆膜处理平均高9.81%(第150天 CK处理除外)。

Table 2
表2
表2栽培模式、施肥和时间对土壤中秸秆碳氮固定影响的方差分析
Table 2Analysis of variance for the effects of cultivation mode, fertilization and time on the straw carbon and nitrogen sequestration in soil
因子
Factor
自由度
Degree of freedom
δ13C
F(P)
SOC
F(P)
13C-SOC
F(P)
Fmc
F(P)
Rmc
F(P)
δ15N
F(P)
TN
F(P)
15N-TN
F(P)
Fmn
F(P)
Rmn
F(P)
SOC/TN
F(P)
13C-SOC/15N-TN
F(P)
施肥
Fertilization (F)
2720
(<0.001)
655
(<0.001)
158
(<0.001)
690
(<0.001)
158
(<0.001)
1111
(<0.001)
481.0
(<0.001)
250.0
(<0.001)
1120
(<0.001)
247.9
(<0.001)
31.7
(<0.001)
125
(<0.001)
时间
Time (T)
1124
(<0.001)
2.96
(0.098)
96.7
(<0.001)
122
(<0.001)
96.7
(<0.001)
112.0
(<0.001)
0.310
(0.583)
83.20
(<0.001)
111.7
(<0.001)
83.01
(<0.001)
0.45
(0.509)
0.01
(0.926)
栽培模式
Cultivation mode (C)
10.22
(0.644)
13.6
(0.001)
6.65
(0.016)
0.06
(0.812)
6.65
(0.016)
58.46
(<0.001)
1.005
(0.326)
33.77
(<0.001)
57.72
(<0.001)
33.55
(<0.001)
10.8
(0.003)
10.5
(0.003)
施肥×时间
F×T
2126
(<0.001)
23.1
(<0.001)
129
(<0.001)
135
(<0.001)
129
(<0.001)
60.02
(<0.001)
15.34
(<0.001)
54.64
(<0.001)
60.93
(<0.001)
54.19
(<0.001)
9.95
(0.001)
23.9
(<0.001)
施肥×栽培模式
F×C
224.5
(<0.001)
30.8
(<0.001)
25.4
(<0.001)
29.7
(<0.001)
25.4
(<0.001)
22.81
(<0.001)
4.051
(0.030)
20.02
(<0.001)
22.62
(<0.001)
20.16
(<0.001)
19.1
(<0.001)
1.10
(0.348)
栽培模式×时间
C×T
13.51
(0.073)
1.18
(0.289)
1.52
(0.230)
5.34
(0.0300)
1.52
(0.230)
7.162
(0.013)
60.19
(<0.001)
10.07
(0.004)
7.792
(0.010)
10.05
(0.004)
39.1
(<0.001)
16.6
(<0.001)
施肥×栽培模式×时间 F×C×T25.10
(0.014)
4.50
(0.022)
3.99
(0.032)
3.89
(0.034)
3.98
(0.032)
8.208
(0.002)
12.71
(<0.001)
3.823
(0.036)
8.052
(0.002)
3.878
(0.035)
7.68
(0.003)
3.97
(0.032)
施肥:不施肥、单施氮肥和有机肥配施氮肥;栽培模式:覆膜与不覆膜;时间:第30天和第150天;δ13C:土壤总有机碳δ13C值;SOC:土壤总有机碳;13C-SOC:土壤总有机碳中秸秆碳含量;Fmc:秸秆碳对总有机碳的贡献率;Rmc:土壤中秸秆碳的残留率。δ15N:土壤全氮δ15N值;TN:土壤全氮;15N-TN:土壤全氮中秸秆氮含量;Fmn:秸秆氮对土壤全氮的贡献率;Rmn:土壤中秸秆氮的残留率。SOC/TN:土壤有机碳与土壤全氮的比值;13C-SOC/15N-TN:土壤总有机碳中秸秆碳含量与土壤全氮中秸秆氮含量的比值
Fertilization: No fertilizer, chemical nitrogen fertilizer, and organic manure combined with chemical nitrogen fertilizer; Cultivation mode: Mulching and no-mulching; Time: 30 d and 150 d; δ13C: The δ13C value of soil organic carbon; SOC: Total soil organic carbon; 13C-SOC: Soil organic carbon derived from straw carbon; Fmc: Contribution percentage of straw carbon to total soil organic carbon; Rmc: Residue percentage of straw carbon in soil. δ15N: The δ15N value of total nitrogen; TN: Soil total nitrogen; 15N-TN: total nitrogen derived from straw nitrogen; Fmn: Contribution percentage of straw nitrogen to total nitrogen; Rmn: Residue percentage of straw nitrogen in soil. SOC/TN: Ratio of total soil organic carbon to total nitrogen; 13C-SOC/15N-TN: Ratio of soil organic carbon derived from straw carbon to total nitrogen derived from straw nitrogen

新窗口打开|下载CSV

图1

新窗口打开|下载原图ZIP|生成PPT
图1不同覆膜和施肥处理土壤添加13C15N双标记秸秆土壤有机碳δ13C值(a)和全氮δ15N值(b)

CK、N4和M2N2分别代表不施肥、单施氮肥和有机肥配施氮肥;不同大写字母表示培养第30天不同处理之间的差异显著(P<0.05);不同小写字母表示培养第150天不同处理之间的差异显著(P<0.05);*表示相同处理不同培养时间之间的差异显著(P<0.05)。下同
Fig. 1δ13C value of total organic carbon (a) and δ15N value of total nitrogen (b) in soil added with 13C15N-labeled straw under different mulching and fertilization treatments

CK, N4 and M2N2 denote no fertilizer, chemical nitrogen fertilizer, and organic manure combined with chemical nitrogen fertilizer, respectively. Different capital letters show significant differences (P<0.05) among different treatments on the 30th day of incubation; Different lowercase letters show significant differences (P<0.05) among different treatments on the 150th day of incubation; *Show the significant differences (P<0.05) between different incubation time in the same treatment. The same as below


2.2 覆膜与施肥下土壤有机碳和全氮含量

同一栽培方式下,CK处理SOC含量第30天比第150天显著高4.96%(P<0.05,图2-a)。在整个培养期间,M2N2处理在覆膜和不覆膜栽培条件下SOC的含量平均分别比其他施肥处理高18.23%和13.61%。培养期间同一N4处理,覆膜栽培SOC含量显著比不覆膜栽培高6.21%。不覆膜栽培CK和N4处理第30天时TN含量分别比第150天显著高7.80%和12.53%(P<0.05,图2-b)。TN含量受栽培模式与时间的影响不显著(P>0.05,表2)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2不同覆膜和施肥处理土壤添加13C15N双标记秸秆土壤有机碳(a)和全氮(b)含量

Fig. 2Contents of total organic carbon (a) and total nitrogen (b) in soil added with 13C15N-labeled straw under different mulching and fertilization treatments



2.3 覆膜与施肥下土壤有机碳中秸秆来源碳和全氮中秸秆来源氮含量

施肥、栽培模式、时间及它们的交互作用显著影响(P<0.05)SOC中秸秆来源碳(13C-SOC)含量(栽培模式与时间交互作用对13C-SOC含量影响除外)和TN中秸秆来源氮(15N-TN)含量(表2)。无论覆膜与否,13C-SOC含量在第30天表现为CK>N4>M2N2,在第150天时N4处理比其他施肥处理平均高19.08%,且施肥处理间差异显著(图3-a)。第150天,覆膜CK处理13C-SOC含量显著比不覆膜CK降低了6.79%,而N4和M2N2处理13C-SOC含量覆膜较不覆膜平均高8.37%(P<0.05)。整个培养期间,覆膜后15N-TN含量较不覆膜平均增加了6.59%(图3-b)。第30天,CK处理15N-TN含量平均比其他施肥处理高27.44%;第150天,不覆膜条件下15N-TN含量表现为CK>M2N2>N4,覆膜条件下15N-TN含量平均值为0.048 mg·kg-1

图3

新窗口打开|下载原图ZIP|生成PPT
图3不同覆膜和施肥处理土壤总有机碳中13C含量(a)和全氮中15N含量(b)的变化

Fig. 313C content in total soil organic carbon (a) and 15N content in total nitrogen (b) under different mulching and fertilization treatments



2.4 覆膜与施肥下秸秆碳对土壤总有机碳和秸秆氮对土壤全氮的贡献率

施肥、栽培模式、时间及它们交互作用显著影响(P<0.05)秸秆碳对SOC的贡献率(Fmc,栽培模式除外)和秸秆氮对TN的贡献率(Fmn)(表2)。整个培养期间覆膜处理Fmc较不覆膜处理平均高5.29%(CK处理除外,表3)。第30天时Fmc为10.13%—16.91%,同一栽培方式表现为CK>N4> M2N2,且施肥处理间差异显著(P<0.05)。第150天时Fmc为9.95%— 14.34%,同一栽培方式N4>CK> M2N2(其中不覆膜条件下CK与N4处理无显著差异,P>0.05)。整个培养期间Fmn为3.03%—5.53%,且覆膜处理较不覆膜处理平均高9.87%,同一栽培方式表现为CK>N4>M2N2

Table 3
表3
表3不同覆膜及施肥处理秸秆碳对土壤总有机碳和秸秆氮对土壤全氮的贡献率
Table 3Contribution percentage of straw carbon to total soil organic carbon and straw nitrogen to soil total nitrogen under different mulching and fertilization treatments
栽培模式
Cultivation mode
施肥处理
Fertilization treatment
秸秆碳的贡献率
Contribution percentage of straw carbon to total
soil organic carbon (%)
秸秆氮的贡献率
Contribution percentage of straw nitrogen to
total nitrogen (%)
30 d150 d30 d150 d
不覆膜
No mulching
CK16.91±0.28 A*13.91±0.07 a5.27±0.06 B*4.70±0.08 a
N413.90±0.13 B14.34±0.16 a3.47±0.12 D3.38±0.09 d
M2N210.13±0.19 D9.95±0.04 d3.12±0.01 E3.03±0.04 e
覆膜
Mulching
CK16.44±0.33 A*12.27±0.34 b5.53±0.09 A*4.43±0.01 b
N414.43±0.29 B14.32±0.18 a4.03±0.07 C3.86±0.00 c
M2N210.88±0.26 C10.96±0.14 c3.30±0.03 DE3.28±0.09 d

新窗口打开|下载CSV

2.5 覆膜与施肥下秸秆碳和氮在土壤中的残留率

覆膜和不覆膜CK处理土壤中秸秆碳残留率平均从第30天的44.96%明显降低到第150天的33.62%(P<0.05,表4)。施肥、栽培模式、时间及它们交互作用(栽培模式与时间交互作用除外)显著影响(P<0.05)秸秆碳的残留率(表2)。同一栽培方式下第30天,不同施肥处理秸秆碳残留率总体表现为CK>N4>M2N2,且施肥处理间差异显著(P<0.05);第150天,N4处理秸秆碳残留率平均为39.40%,而其他施肥处理秸秆碳残留率低于35%。除CK处理外,同一施肥处理覆膜栽培秸秆碳的残留率高于不覆膜栽培。

Table 4
表4
表4不同覆膜和施肥处理土壤秸秆碳和氮残留率
Table 4Residue percentage of straw carbon and nitrogen in soil under different mulching and fertilization treatments
栽培模式
Cultivation mode
施肥处理
Fertilization treatment
秸秆碳的残留率
Residual percentage of straw carbon (%)
秸秆氮的残留率
Residual percentage of straw nitrogen (%)
30 d150 d30 d150 d
不覆膜
No mulching
CK45.35±1.32 A*35.82±0.52 c12.24±0.20 A*10.13±0.23 a
N437.21±0.30 C37.84±0.65 b9.09±0.27 B*7.87±0.24 e
M2N231.52±0.39 D31.45±0.60 e8.48±0.05 C8.50±0.16 d
覆膜
Mulching
CK44.58±0.79 A*31.43±0.58 e11.93±0.26 A*9.92±0.18 ab
N440.15±1.11 B40.96±0.14 a9.53±0.07 B9.58±0.15 bc
M2N233.34±0.96 D34.12±0.58 d9.06±0.25 B9.41±0.02 c

新窗口打开|下载CSV

土壤中秸秆氮的残留率在第30天为8.48%— 12.24%,且同一栽培方式下CK>N4>M2N2(其中覆膜N4与覆膜M2N2处理差异不显著,P>0.05,表4)。第150天,CK处理秸秆氮残留率平均为10.03%,分别比N4和M2N2处理高28.62%和12.25%。整个培养期间覆膜处理秸秆氮残留率显著(P<0.05)较不覆膜处理高4.90%—21.70%(CK处理除外)。

2.6 覆膜与施肥下土壤碳氮比

整个培养期间覆膜M2N2、不覆膜M2N2和覆膜N4处理土壤有机碳与全氮的比值(SOC/TN)平均分别为8.81、9.08和9.31(图4-a)。覆膜CK处理SOC/TN从第30天的10.06显著降低到第150天的9.15,然而不覆膜条件下CK和N4处理的SOC/TN在第150天较第30天显著增加了3.57%和10.91%(P<0.05)。无论覆膜与否,CK处理SOC/TN比其他施肥处理平均高6.13%。

图4

新窗口打开|下载原图ZIP|生成PPT
图4秸秆添加后土壤有机碳与全氮含量的比值(a)及土壤中秸秆碳与氮含量的比值(b)

Fig. 4The percentage of soil organic carbon (SOC) to total nitrogen (TN) (a) and the percentage of straw derived-SOC (13C-SOC) to straw derived-TN (15N-TN) (b) in soil added with 13C15N-labeled straw under different mulching and fertilization treatments



CK和M2N2处理(包括覆膜和不覆膜)土壤中秸秆碳与秸秆氮含量的比值(13C-SOC/15N-TN)均低于30,尤其覆膜CK处理在第150天仅为25.37,而不覆膜N4处理从第30天的32.79显著升高到第150天的38.52(P<0.05,图4-b)。无论覆膜与否,N4处理13C- SOC/15N-TN比其他施肥处理高16.17%— 23.05%。第150天,CK和N4处理13C-SOC/15N-TN覆膜较不覆膜平均低10.82%。

3 讨论

3.1 施肥对秸秆碳氮在土壤中固存的影响

在农田生态系统中,土壤有机碳、全氮积累水平主要依赖于输入(如田间作物残体和外源有机物料添加等)与输出(土壤原有有机质分解)之间的平衡[28]。无论覆膜与否,M2N2处理SOC、TN含量高于N4处理和CK处理。长期有机肥与氮肥配施提高了作物地下和地上生物量,从而增加了土壤中有机物质的输入,有利于土壤有机碳和氮的固存[29,30]。随着秸秆的分解,秸秆碳与秸秆氮在土壤中残留率减少[31,32]。一般而言,秸秆在土壤中的分解经历迅速分解和缓慢分解两个阶段[33]。施肥(N4和M2N2)处理土壤秸秆碳残留率在30—150 d无明显变化,说明田间原位培养加速了秸秆的分解[8],0—30 d秸秆中可溶性物质很快被微生物优先利用转化,30 d后微生物开始对秸秆中难分解物质分解,分解速率相对缓慢。然而长期不施肥处理土壤肥力水平较低,土壤本身养分和碳源相对匮乏,微生物活性弱,土壤微生物对秸秆碳添加的响应滞后[34],秸秆碳和氮的残留率随时间显著降低。

秸秆碳氮在土壤中的固存与转化受土壤肥力水平[8,9,10]和施肥措施的影响[35,36]。长期有机无机配施处理明显提高了土壤的肥力水平[25],土壤初始有机碳、全氮和微生物量相对较高,对秸秆碳氮的添加起到稀释作用,秸秆碳对土壤有机碳和秸秆氮对土壤全氮的贡献较低。ZHENG等[37]研究表明不施肥处理与施肥处理相比增加了秸秆氮在土壤中的残留。本研究发现不施肥处理明显增加了秸秆氮对土壤氮的贡献及其在土壤中的残留,说明不施肥土壤添加秸秆主要对土壤氮固定起到积极的作用。土壤中秸秆来源碳氮比值对不同施肥的响应也可以解释这一点。这与陈兴丽等[38]的研究结果相似。秸秆添加第150天所有施肥处理中N4处理13C-SOC含量、秸秆碳贡献率和秸秆碳残留率最高,说明单施氮肥有利于秸秆碳在土壤中的固存和土壤有机碳的更新[39]。土壤C/N比也是影响土壤碳氮固存的重要因子[25,40]。本研究不覆膜N4处理土壤初始C/N较低,C源相对缺乏,秸秆碳的添加可以为土壤微生物提供碳源,有利于土壤碳的积累和更新[8,41];初始土壤N源相对充足,秸秆氮在土壤中的固持在土壤中被稀释,秸秆氮对土壤全氮的贡献相对较低。覆膜N4处理虽然土壤本身C/N较高,C源相对充足,N源相对缺乏,但秸秆碳在土壤的残留率最高,秸秆氮在土壤中的残留率相对较低,这可能与土壤本身氮源(δ15N值)和氮的有效性有关。总之,不同施肥处理秸秆碳氮在土壤中固存的差异主要与土壤本身的性质有关(例如初始土壤养分状况和碳氮比),而微生物在这一过程起重要作用,关于秸秆碳氮在土壤固存的微生物机制需要进一步研究。

3.2 覆膜对秸秆碳氮在土壤中固存的影响

地膜覆盖已被证明可以增加土壤温度和湿度,使土壤与外部空气隔绝,进而抑制土壤水分的蒸发速度[6,42],提高土壤养分的有效性[43,44]。N4处理覆膜后SOC和TN含量增加。裸地条件下长期单施氮肥降低了土壤pH,导致土壤酸化和作物产量降低[25,45],从而使土壤有机质输入减少。而覆膜使土壤水分和盐基离子的运动方向发生改变,进而延缓甚至避免土壤酸化[46],有利于作物地下生物量的积累和土壤有机质输入。温度和湿度是影响秸秆在土壤中分解转化的主要因子。虽然覆膜可以增加土壤温度和湿度,但本研究却发现栽培模式与时间的交互作用对SOC、13C-SOC和秸秆碳的残留率的影响不显著(P>0.05),这说明秸秆碳在土壤中的转化与固定对短期覆膜的响应不敏感。然而施肥、覆膜与施肥的交互作用显著影响SOC与TN、13C-SOC与15N-TN和秸秆碳氮的贡献率及其残留率,说明微生物对秸秆碳氮的作用主要与土壤本身的养分状态有关。AN等[8]研究也表明秸秆碳在土壤中的转化与初始土壤有机碳有关。CK处理本身有机碳与全氮含量很低,秸秆的添加使处于饥饿状态的微生物激活,覆膜后使秸秆分解加快[47]。这可能导致CK处理覆膜后秸秆碳氮的贡献率和残留率降低。覆膜施肥(M2N2和N4处理)处理秸秆碳氮的贡献率和残留率高于不覆膜处理,这说明秸秆碳氮在土壤中的固存不仅与初始土壤SOC和TN含量有关,而且受初始土壤碳氮比的影响。培养期间CK处理与其他施肥处理13C-SOC/15N-TN较低,而SOC/TN较高,说明秸秆的添加可能引起土壤氮的正激发效应,导致原土壤氮的矿化[48];不覆膜N4处理13C-SOC/15N-TN较高,而SOC/TN较低,这说明在养分和碳源相对缺乏的土壤,秸秆的添加可能引起土壤有机碳矿化的激发效应[8]。土壤养分的供应、碳氮比和微环境的变化影响土壤微生物的活性,进而影响秸秆碳和氮在土壤中的固持动态,关于土壤微生物对秸秆碳和氮的耦合作用还需要进一步研究。

4 结论

表层土壤添加13C15N双标记秸秆后,施肥(N4和M2N2)处理土壤覆膜显著增加了土壤有机碳中秸秆来源碳和全氮中秸秆来源氮含量、秸秆碳对土壤有机碳和秸秆氮对土壤全氮的贡献率、秸秆碳和氮在土壤中的残留率,而不施肥条件下覆膜的影响与之相反。培养结束后,同一栽培方式单施氮肥有利于秸秆碳在土壤中的积累,促进了土壤有机碳的更新;不施肥处理土壤中秸秆来源碳氮比值低于其他施肥处理,说明不施肥处理添加秸秆的主效应是对土壤氮库的固定起正反馈作用;而有机肥配施氮肥土壤碳氮的更新相对滞后。秸秆碳氮在土壤中的固存不仅与土壤微环境和初始养分状况有关,而且受碳氮比的影响。土壤碳氮比对施肥、覆膜和时间的响应不同,这可能与土壤微生物的活性有关,关于秸秆碳和氮在土壤的转化和固定机制需要进一步研究。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

HUANG Y, SUN W J, ZHANG W, YU Y Q. Changes in soil organic carbon of terrestrial ecosystems in China: A mini-review
Science China (Life Sciences), 2010,53(7):766-775. DOI: 10.1007/s11427-010-4022-4.

URL [本文引用: 1]

李海波, 韩晓增, 王风. 长期施肥条件下土壤碳氮循环过程研究进展
土壤通报, 2007,38(2):384-388. DOI: 10.19336/j.cnki.trtb.2007.02.037.

URL [本文引用: 1]

LI H B, HAN X Z, WANG F. Review of soil carbon and nitrogen cycling under long-term fertilization
Chinese Journal of Soil Science, 2007,38(2):384-388. DOI: 10.19336/j.cnki.trtb.2007.02.037. (in Chinese)

URL [本文引用: 1]

张春华, 王宗明, 居为民, 任春颖. 松嫩平原玉米带土壤碳氮比的时空变异特征
环境科学, 2011,32(5):1407-1414. DOI: 10.13227/j.hjkx.2011.05.014.

URL [本文引用: 1]

ZHANG C H, WANG Z M, JU W M, REN C Y. Spatial and temporal variability of soil C/N ratio in Songnen Plain maize belt
Environmental Science, 2011,32(5):1407-1414. DOI: 10.13227/j.hjkx.2011.05.014. (in Chinese)

URL [本文引用: 1]

韩秉进, 张旭东, 隋跃宇, 解宏图, 赵军, 刘焕军. 东北黑土农田养分时空演变分析
土壤通报, 2007,38(2):238-241. DOI: 10.19336/j.cnki.trtb.2007.02.007.

URL [本文引用: 1]

HAN B J, ZHANG X D, SUI Y Y, JIE H T, ZHAO J, LIU H J. Spatial-temporal evolution analysis of Black Soil farmland nutrients in Northeast China
Chinese Journal of Soil Science, 2007,38(2):238-241. DOI: 10.19336/j.cnki.trtb.2007.02.007. (in Chinese)

URL [本文引用: 1]

韩晓增, 李娜. 中国东北黑土地研究进展与展望
地理科学, 2018,38(7):1032-1041. DOI: 10.13249/j.cnki.sgs.2018.07.004.

URL [本文引用: 1]

HAN X Z, LI N. Research progress and prospects of Black Soil in Northeast China
Scientia Geographica Sinica, 2018,38(7):1032-1041. DOI: 10.13249/j.cnki.sgs.2018.07.004. (in Chinese)

URL [本文引用: 1]

刘顺国, 付时丰, 汪景宽, 王洪禄, 于树. 长期地膜覆盖对棕壤水分含量和储量动态变化影响
沈阳农业大学学报, 2006,37(5):725-728.

[本文引用: 2]

LIU S G, FU S F, WANG J K, WANG H L, YU S. Effect of long-term covering with plastic film on dynamic changes of soil water in Brown Earth
Journal of Shenyang Agricultural University, 2006,37(5):725-728. (in Chinese)

[本文引用: 2]

李尚中, 王勇, 樊廷录, 王立明, 赵刚, 唐小明, 党翼, 王磊, 张建军. 旱作地膜不同覆膜方式的水温及增产效应
中国农业科学, 2010,43(5):922-931. DOI: 10.3864/j.issn.0578-1752.2010.05.005.

URL [本文引用: 1]

LI S Z, WANG Y, FAN T L, WANG L M, ZHAO G, TANG X M, DANG Y, WANG L, ZHANG J J. Effects of different plastic film mulching modes on soil moisture, temperature and yield of dryland maize
Scientia Agricultura Sinica, 2010,43(5):922-931. DOI: 10.3864/j.issn.0578-1752.2010.05.005. (in Chinese)

URL [本文引用: 1]

AN T T, SCHAEFFER S, ZHUANG J, RADOSEVICH M, LI S Y, LI H, PEI J B, WANG J K. Dynamics and distribution of 13C-labeled straw carbon by microorganisms as affected by soil fertility levels in the Black Soil region of Northeast China
Biology and Fertility of Soils, 2015,51:605-613. DOI: 10.1007/s00374-015-1006-3.

URL [本文引用: 6]

张黛静, 王艳杰, 陈倩青, 杨雪倩, 宗洁静, 李春喜. 不同耕作方式与增施有机肥对麦田土壤有机碳库及小麦产量的影响
江苏农业科学, 2019,47(11):128-133. DOI: 10.15889/j.issn.1002-1302.2019.11.028.

URL [本文引用: 2]

ZHANG D J, WANG Y J, CHENG Q Q, YANG X Q, ZONG J J, LI C X. Effects of different tillage methods and application of organic fertilizer on soil organic carbon pool and wheat yield in wheat field
Jiangsu Agricultural Sciences, 2019,47(11):128-133. DOI: 10.15889/j.issn.1002–1302.2019.11.028. (in Chinese)

URL [本文引用: 2]

裴久渤. 玉米秸秆碳在东北旱田土壤中的转化与固定
[D]. 沈阳: 沈阳农业大学, 2015.

[本文引用: 2]

PEI J B. Transformation and fixation of maize straw carbon in the dryland soils of Northeast China
[D]. Shenyang: Shenyang Agricultural University, 2015. (in Chinese)

[本文引用: 2]

POIRIER V, ANGERS D A, ROCHETTE P, WHALEN J K. Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil
Biology and Fertility of Soils, 2013,49(5):527-535. DOI: 10.1007/s00374-013-0794-6.

URL [本文引用: 1]

JIN X X, AN T T, GALL A R, LI S Y, FILLEY T, WANG J K. Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management
Geoderma, 2018,313:154-162. DOI: 10.1016/j.geoderma.2017.10.036.

URL [本文引用: 1]

解丽娟. 长期施肥下我国典型农田土壤有机碳与全氮分布特征
[D]. 北京: 中国农业科学院, 2011.

[本文引用: 1]

XIE L J. Distribution characteristics of soil organic carbon and total nitrogen under long-term fertilization in typical arable land soil of China
[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)

[本文引用: 1]

张学林, 周亚男, 李晓立, 侯小畔, 安婷婷, 王群. 氮肥对室内和大田条件下作物秸秆分解和养分释放的影响
中国农业科学, 2019,52(10):1746-1760. DOI: 10.3864/j.issn.0578-1752.2019.10.008.

URL [本文引用: 1]

ZHANG X L, ZHOU Y N, LI X L, HOU X P, AN T T, WANG Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubation and field conditions
Scientia Agricultura Sinica, 2019,52(10):1746-1760. DOI: 10.3864/j.issn. 0578-1752.2019.10.008. (in Chinese)

URL [本文引用: 1]

徐虎, 张敬业, 蔡岸冬, 王小利, 张文菊. 外源有机物料碳氮在红壤团聚体中的残留特征
中国农业科学, 2015,48(23):4660-4668. DOI: 10.3864/j.issn.0578-1752.2015.23.007.

URL [本文引用: 1]

XU H, ZHANG J Y, CAI A D, WANG X L, ZHANG W J. Residual characteristics of carbon and nitrogen from amendments in different size aggregates of Red Soil
Scientia Agricultura Sinica, 2015,48(23):4660-4668. DOI: 10.3864/j.issn.0578-1752.2015.23.007. (in Chinese)

URL [本文引用: 1]

王士超, 闫志浩, 王瑾瑜, 槐圣昌, 武红亮, 邢婷婷, 叶洪龄, 卢昌艾. 秸秆还田配施氮肥对稻田土壤活性碳氮动态变化的影响
中国农业科学, 2020,53(4):782-794. DOI: 10.3864/j.issn.0578-1752.2020.04.010.

URL [本文引用: 1]

WANG S C, YAN Z H, WANG J Y, HUAI S C, WU H L, XING T T, YE H L, LU C A. Nitrogen fertilizer and Its combination with straw affect soil labile carbon and nitrogen fractions in paddy fields
Scientia Agricultura Sinica, 2020,53(4):782-794. DOI: 10.3864/j.issn.0578-1752.2020.04.010. (in Chinese)

URL [本文引用: 1]

闫德智, 王德建, 张刚, 查书平. 15N 标记秸秆在太湖地区水稻土上的氮素矿化特征研究
土壤学报, 2012,49(1):77-85.

[本文引用: 1]

YAN D Z, WANG D J, ZHANG G, CHA S P. Nitrogen mineralization of applied 15N labeled straw in paddy soils in the Taihu lake region
Acta Pedologica Sinica, 2012,49(1):77-85. (in Chinese)

[本文引用: 1]

徐英德, 丁雪丽, 李双异, 孙良杰, 高晓丹, 谢柠桧, 金鑫鑫, 白树彬, 孙海岩, 汪景宽. 不同肥力棕壤全氮和微生物量氮对外源玉米残体氮的响应
生态学报, 2017,37(20):6818-6826. DOI: 10.5846/stxb201608031602.

URL [本文引用: 1]

XU Y D, DING X L, LI S Y, SUN L J, GAO X D, XIE N H, JIN X X, BAI S B, SUN H Y, WANG J K. Effect of maize-derived nitrogen supplementation on the total and microbial biomass nitrogen of brown earths with different fertility levels
Acta Ecologica Sinica, 2017,37(20):6818-6826. DOI: 10.5846/stxb201608031602. (in Chinese)

URL [本文引用: 1]

汪景宽, 张继宏, 须湘成, 张旭东, 祝凤春. 地膜覆盖对土壤肥力影响的研究
沈阳农业大学学报, 1992,23:32-37.

[本文引用: 2]

WANG J K, ZHANG J H, XU X C, ZHANG X D, ZHU F C. Effect of mulching on soil fertility
Journal of Shenyang Agricultural University, 1992,23:32-37. (in Chinese)

[本文引用: 2]

王秀芬, 陈百明, 毕继业. 基于县域的地膜覆盖粮食增产潜力分析
农业工程学报, 2005,21(11):146-149.

URL [本文引用: 1]

WANG X F, CHEN B M, BI J Y. Analysis of potential of grain yield increase under film-mulching condition on a county scale
Transactions of the CSAE, 2005,21(11):146-149. (in Chinese)

URL [本文引用: 1]

LI F M, SONG Q H, JJEMBA P K, SHI Y C. Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem
Soil Biology and Biochemistry, 2004,36(11):1893-1902. DOI: 10.1016/j.soilbio.2004.04.040.

URL [本文引用: 1]

ZHOU L M, JIN S L, LIU C A, XIONG Y C, SI J T, LI X G, GAN Y T, LI F M. Ridge-furrow and plastic-mulching tillage enhances maize-soil interactions: opportunities and challenges in a semiarid agroecosystem
Field Crops Research, 2012,126, 181-188. DOI: 10.1016/j.fcr.2011.10.010.

URL [本文引用: 1]

汪景宽, 王铁宇, 张旭东, 关连珠, 王秋兵, 胡洪祥, 赵永存. 黑土土壤质量演变初探Ⅰ: 不同开垦年限黑土主要质量指标演变规律
沈阳农业大学学报, 2002,33(1):43-47.

[本文引用: 1]

WANG J K, WANG T Y, ZHANG X D, GUAN L Z, WANG Q B, HU H X, ZHAO Y C. An approach to the changes of Black Soil quality (I) Changes of the indices of Black Soil with the year(s) of reclamation
Journal of Shenyang Agricultural University, 2002,33(1):43-47. (in Chinese)

[本文引用: 1]

薛菁芳. 棕壤有机质组分及转化的研究13C和15N双标记法
[D]. 沈阳: 沈阳农业大学, 2007.

[本文引用: 1]

XUE J F. Studies on organic matter composition and transformation in Brown Soil by 13C and 15N double labeling
[D]. Shenyang: Shenyang Agricultural University, 2007. (in Chinese)

[本文引用: 1]

李世朋, 蔡祖聪, 杨浩, 汪景宽. 长期定位施肥与地膜覆盖对土壤肥力和生物学性质的影响
生态学报, 2009,29(5):2490-2498.

URL [本文引用: 4]

LI S P, CAI Z C, YANG H, WANG J K. Effects of long-term fertilization and plastic film covering on some soil fertility and microbial properties
Acta Ecologica Sinica, 2009,29(5):2489-2498. (in Chinese)

URL [本文引用: 4]

CONRAD R, KLOSE M, YUAN Q, LU Y H, CHIDTHAISONG A. Sable carbon isotope fractionation, carbon flux partitioning and priming effects in anoxic soils during methanogenic degradation of straw and soil organic matter
Soil Biology and Biochemistry, 2012,49:193-199. DOI: 10.1016/j.soilbio.2012.02.030.

DOI:10.1016/j.soilbio.2012.02.030URL [本文引用: 1]

BLAUD A, LERCH T Z, CHEVALLIER T, NUNAN N, CHENU C, BRAUMAN A. Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw
Applied Soil Ecology, 2012,53:1-9. DOI: 10.1016/j.apsoil.2011.11.005.

DOI:10.1016/j.apsoil.2011.11.005URL [本文引用: 1]
The addition of fresh organic matter is known to modify both microbial community structure and soil aggregation. The objective of this study was to understand the relationship between the dynamics of the soil microbial community structure in relation to that of their habitats during the decomposition of straw. Soil samples, ground (<200 mu m) to remove macroaggregates, were amended with uniformly C-13-labelled powdered rice straw (<500 mu m) and incubated for 21 days. Unamended control samples were also incubated under the same conditions. Total C and rice straw C (C-Straw) mineralised or remaining in different soil fractions (0-50, 50-200, 200-2000 and >2000 mu m) were measured. Fatty acid methyl ester (FAME) profiling was used to determine total bacterial community structure and FAME based stable isotope probing (FAME-SIP) was used to characterise the straw degrader communities. The mineralisation rate of the native C and the C-Straw was high. The formation of macroaggregates (>2000 mu m) occurred within 2 days in amended and unamended samples but did so to a greater extent in the amended samples. The C-Straw was mainly located in fractions >200 mu m, where degraders were the most abundant. The C-13-FAME profiles followed the same trends as total FAME profiles through time and within soil fractions, suggesting common dynamics between straw degraders and total bacterial communities: Gram-negative were more important in fraction >200 mu m and during the early stages of the incubation while Gram-positive and actinobacteria dominated in fine fractions and at the end of the incubation. Bacterial community structure changed rapidly (within 2 days) in conjunction with the formation of new microbial habitats, suggesting that the relationship between the two is very close. (c) 2011 Elsevier B.V.

潘根兴, 周萍, 李恋卿, 张旭辉. 固碳土壤学的核心科学问题与研究进展
土壤学报, 2007,44(2):327-337.

[本文引用: 1]

PAN G X, ZHOU P, LI L Q, ZHANG X H. Core issues and research progresses of soil science of C sequestration
Acta Pedologica Sinica, 2007,44(2):327-337. (in Chinese)

[本文引用: 1]

史康婕, 周怀平, 解文艳, 杨振兴, 程曼. 长期施肥下褐土易氧化有机碳及有机碳库的变化特征
中国生态农业学报, 2017,25(4):542-552. DOI: 10.13930/j.cnki.cjea.160688.

URL [本文引用: 1]

SHI K J, ZHOU H P, XIE W Y, YANG Z X, CHENG M. Characteristics of readily oxidizable organic carbon and soil organic carbon pool under long-term fertilization in cinnamon soils
Chinese Journal of Eco-Agriculture, 2017,25(4):542-552. DOI: 10.13930/j. cnki.cjea.160688. (in Chinese)

URL [本文引用: 1]

梁斌, 赵伟, 杨学云, 周建斌. 氮肥及其与秸秆配施在不同肥力土壤的固持及供应
中国农业科学, 2012,45(9):1750-1757. DOI: 10.3864/j.issn.0578-1752.2012.09.010.

URL [本文引用: 1]

LIANG B, ZHAO W, YANG X Y, ZHOU J B. Nitrogen retention and supply after addition of N fertilizer and its combination with straw in the soils with different fertilities
Scientia Agricultura Sinica, 2012,45(9):1750-1757. DOI: 10.3864/j.issn.0578-1752.2012.09.010. (in Chinese)

URL [本文引用: 1]

马想, 徐明岗, 赵慧丽, 段英华. 我国典型农田土壤中有机物料腐解特征及驱动因子
中国农业科学, 2019,52(9):1564-1573. DOI: 10.3864/j.issn.0578-1752.2019.09.008.

URL [本文引用: 1]

MA X, XU M G, ZHAO H L, DUAN Y H. Decomposition characteristics and driving factors of organic materials in typical farmland soils in China
Scientia Agricultura Sinica, 2019,52(9):1564-1573. DOI: 10.3864/j.issn.0578-1752.2019.09.008. (in Chinese)

URL [本文引用: 1]

王金达, 刘淑霞, 刘景双, 于君宝. 用δ13C方法研究黑土添加有机物料后有机碳的变化规律
土壤通报, 2005,36(3):333-336. DOI: 10.19336/j.cnki.trtb.2005.03.011.

URL [本文引用: 1]

WANG J D, LIU S X, LIU J S, YU J B. Dynamic change of soil organic carbon in Black soils by δ13C method
Chinese Journal of Soil Science, 2005,36(3):333-336. DOI: 10.19336/j.cnki.trtb.2005.03.011. (in Chinese)

URL [本文引用: 1]

MARSCHNER P, UMAR S, BAUMANN K. The microbial community composition changes rapidly in the early stages of decomposition of wheat residue
Soil Biology and Biochemistry, 2011,43(2):445-451. DOI: 10.1016/j.soilbio.2010.11.015.

DOI:10.1016/j.soilbio.2010.11.015URL [本文引用: 1]

程娜, 李双异, 安婷婷, 朱平, 葛壮, 刘旭, 张维俊, 郭昆, 汪景宽. 不同施肥处理土壤覆膜后秸秆碳对土壤有机碳的贡献
水土保持学报, 2020,34(2):195-200. DOI: 10.13870/j.cnki.stbcxb.2020.02.028.

URL [本文引用: 1]

CHENG N, LI S Y, AN T T, ZHU P, GE Z, LIU X, ZHANG W J, GUO K, WANG J K. Contribution of straw carbon to soil organic carbon in different fertilization treatments with plastic film mulching
Journal of Soil and Water Conservation, 2020,34(2):195-200. DOI: 10.13870/j.cnki.stbcxb.2020.02.028. (in Chinese)

URL [本文引用: 1]

杨艳华, 苏瑶, 何振超, 喻曼, 陈喜靖, 沈阿林. 还田秸秆碳在土壤中的转化分配及对土壤有机碳库影响的研究进展
应用生态学报, 2019,30(2):668-676. DOI: 10.13287/j.1001–9332.201902.026.

URLPMID:30915820 [本文引用: 1]

YANG Y H, SU Y, HE Z C, YU M, CHEN X J, SHEN A L. Transformation and distribution of straw-carbon in soil and the effects on soil organic carbon pool
Chinese Journal of Applied Ecology, 2019,30(2):668-676. DOI: 10.13287/j.1001–9332.201902.026. (in Chinese)

URLPMID:30915820 [本文引用: 1]

王金洲. 秸秆还田的土壤有机碳周转特征
[D]. 北京: 中国农业大学, 2015.

[本文引用: 1]

WANG J Z. Soil organic carbon turnover under straw return
[D]. Beijing: China Agricultural University, 2015. (in Chinese)

[本文引用: 1]

ZHENG L H, PEI J B, JIN X X, SEAN S, AN T T, WANG J K. Impact of plastic film mulching and fertilizers on the distribution of straw derived nitrogen in a soil-plant system based on 15N-labeling
Geoderma, 2018,317:15-22. DOI: 10.1016/j.geoderma.2017.12.020.

URL [本文引用: 1]

陈兴丽, 周建斌, 刘建亮, 高忠霞, 杨学云. 不同施肥处理对玉米秸秆碳氮比及其矿化特性的影响
应用生态学报, 2009,20(2):1-6.

[本文引用: 1]

CHEN X L, ZHOU J B, LIU J L, GAO Z X, YANG X Y. Effects of fertilization on carbon/nitrogen ratio of maize straw and its mineralization in soil
Chinese Journal of Applied Ecology, 2009,20(2):1-6. (in Chinese)

[本文引用: 1]

LEMKE R L, VANDENBYGAART A J, CAMPBELL C A, LAFOND G P, GRANT B. Crop residue removal and fertilizer N: Effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll
Agriculture, Ecosystems and Environment, 2010,135(1-2):42-51. DOI: 10.1016/j.agee.2009.08.010.

URL [本文引用: 1]

SCHIPPER L A, SPARLING G P. Accumulation of soil organic C and change in C:N ratio after establishment of pastures on reverted scrubland in New Zealand
Biogeochemistry, 2011,104, 49-58. DOI: 10.1007/s10533-009-9367-z.

URL [本文引用: 1]

LAL R. Soil carbon sequestration impacts on global climate change and food security
Science, 2004,304, 1623-1627.

DOI:10.1126/science.1097396URLPMID:15192216 [本文引用: 1]
The carbon sink capacity of the world's agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon. The rate of soil organic carbon sequestration with adoption of recommended technologies depends on soil texture and structure, rainfall, temperature, farming system, and soil management. Strategies to increase the soil carbon pool include soil restoration and woodland regeneration, no-till farming, cover crops, nutrient management, manuring and sludge application, improved grazing, water conservation and harvesting, efficient irrigation, agroforestry practices, and growing energy crops on spare lands. An increase of 1 ton of soil carbon pool of degraded cropland soils may increase crop yield by 20 to 40 kilograms per hectare (kg/ha) for wheat, 10 to 20 kg/ha for maize, and 0.5 to 1 kg/ha for cowpeas. As well as enhancing food security, carbon sequestration has the potential to offset fossil fuel emissions by 0.4 to 1.2 gigatons of carbon per year, or 5 to 15% of the global fossil-fuel emissions.

陈林, 杨新国, 翟德苹, 宋乃平, 杨明秀, 候静. 柠条秸秆和地膜覆盖对土壤水分和玉米产量的影响
农业工程学报, 2015,31(2):108-116. DOI: 10.3969/j.issn.1002-6819.2015.02.016.

URL [本文引用: 1]

CHEN L, YANG X G, ZHAI D P, SONG N P, YANG M X, HOU J. Effects of mulching with Caragana powder and plastic film on soil water and maize yield
Transactions of the Chinese Society of Agricultural Engineering, 2015,31(2):108-116. DOI: 10.3969/j.issn. 1002-6819.2015.02.016. (in Chinese)

URL [本文引用: 1]

HAI L, LI X G, LIU X E, JIANG X J, GUO R Y, JING G B, RENGEL Z, LI F M. Plastic mulch increase soil nitrogen mineralization in a semiarid environment
Agronomy Journal, 2015,107:921-930. DOI: 10.2134/agronj14.0538.

DOI:10.2134/agronj14.0538URL [本文引用: 1]

ZHANG H Y, LIU Q J, YU X X, LU G, WU Y Z. Effects of plastic mulch duration on nitrogen mineralization and leaching in peanut (Arachis hypogaea) cultivated land in the Yimeng Mountainous Area, China. Agriculture,
Ecosystems and Environment, 2012,158:164-171. DOI: 10.1016/j.agee.2012.06.009.

DOI:10.1016/j.agee.2012.06.009URL [本文引用: 1]

GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands
Science, 2010,327(5968):1008-10. DOI: 10.1126/science.1182570.

DOI:10.1126/science.1182570URLPMID:20150447 [本文引用: 1]
Soil acidification is a major problem in soils of intensive Chinese agricultural systems. We used two nationwide surveys, paired comparisons in numerous individual sites, and several long-term monitoring-field data sets to evaluate changes in soil acidity. Soil pH declined significantly (P < 0.001) from the 1980s to the 2000s in the major Chinese crop-production areas. Processes related to nitrogen cycling released 20 to 221 kilomoles of hydrogen ion (H+) per hectare per year, and base cations uptake contributed a further 15 to 20 kilomoles of H+ per hectare per year to soil acidification in four widespread cropping systems. In comparison, acid deposition (0.4 to 2.0 kilomoles of H+ per hectare per year) made a small contribution to the acidification of agricultural soils across China.

沈新磊, 黄思光, 王俊, 凌莉, 李世清, 李凤民. 半干旱农田生态系统地膜覆盖模式和施氮对小麦产量和氮效率的效应
西北农林科技大学学报(自然科学版), 2003,31(1):1-13. DOI: 10.13207/j.cnki.jnwafu.2003.01.002.

URL [本文引用: 1]

SHEN X L, HUANG S G, WANG J, LING L, LI S Q, LI F M. Effects of plastic film mulching models and nitrogen fertilizer on wheat yield and nitrogen efficiency
Journal of Northwest A & F University (Natural Science Edition), 2003,31(1):1-13. DOI: 10.13207/j.cnki.jnwafu.2003.01.002. (in Chinese)

URL [本文引用: 1]

汪景宽, 张旭东, 张继宏, 须湘成, 范冬梅, 祝凤春. 覆膜对有机物料的腐解及土壤有机质特性的影响
植物营养与肥料科学, 1995,1(3-4):22-28.

[本文引用: 1]

WANG J K, ZHANG X D, ZHANG J H, XU X C, FAN D M, ZHU F C. Effects of covering with plastic film on decomposition of organic materials and characteristics of soil organic matter
Plant Nutrition and Fertilizer Science, 1995,1(3-4):22-28. (in Chinese)

[本文引用: 1]

吕殿青, 张树兰, 杨学云. 外加碳、氮对土壤氮矿化、固定与激发效应的影响
植物营养与肥料学报, 2007,13(2):223-229.

URL [本文引用: 1]

Lǘ D Q, ZHANG S L, YANG X Y. Effect of supplying C and N on the mineralization, immobilization and priming effect of soil nitrogen
Plant Nutrition and Fertilizer Science, 2007,13(2):223-229. (in Chinese)

URL [本文引用: 1]

相关话题/土壤 培养 微生物 作物 秸秆