Effects of Intercropped Wheat Straw Retention on Canopy Temperature and Photosynthetic Physiological Characteristics of Intercropped Maize Mulched with Plastic During Grain Filling Stage
YIN Wen,, CHAI Qiang,, YU AiZhong, ZHAO Cai, FAN ZhiLong, HU FaLong, FAN Hong, GUO YaoGansu Provincial Key Laboratory of Arid Land Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070通讯作者:
责任编辑: 杨鑫浩
收稿日期:2020-02-22接受日期:2020-06-5网络出版日期:2020-12-01
基金资助: |
Received:2020-02-22Accepted:2020-06-5Online:2020-12-01
作者简介 About authors
殷文,E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (487KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
殷文, 柴强, 于爱忠, 赵财, 樊志龙, 胡发龙, 范虹, 郭瑶. 间作小麦秸秆还田对地膜覆盖玉米灌浆期冠层温度及光合生理特性的影响[J]. 中国农业科学, 2020, 53(23): 4764-4776 doi:10.3864/j.issn.0578-1752.2020.23.004
YIN Wen, CHAI Qiang, YU AiZhong, ZHAO Cai, FAN ZhiLong, HU FaLong, FAN Hong, GUO Yao.
开放科学(资源服务)标识码(OSID):
0 引言
【研究意义】冠层温度反映作物冠层的能量平衡状况及作物和大气之间的能量交换,与其能量的吸收和释放息息相关[1]。作物冠层温度是作物本身的遗传特性和外界环境条件共同作用的结果,不仅影响作物的光合生理特性及叶片功能期,也对作物籽粒蛋白质和淀粉合成产生影响[2]。因此,冠层温度与作物生长生育的关系值得进一步关注。【前人研究进展】冠层组织是作物群体光合作用的主要作用器官,也是作物生长发育最为活跃的部位,显著影响作物灌浆及籽粒形成,而作物灌浆期的冠层温度对其产量形成影响较大,原因在于冠层温度影响作物灌浆的生理生化过程[2,3]。若作物灌浆期间冠层温度较低,则叶片叶绿素含量高、光合能力强、蒸腾旺盛,从而延长叶片功能期并延缓衰老,有利于协调植株体内碳氮代谢、促进籽粒灌浆而提高产量[4,5]。因此,研究冠层温度对作物灌浆结实状况的影响具有重要意义。前人已对作物冠层温度与光合生理指标及产量形成的关系做了大量研究,并且证实作物籽粒灌浆期的冠层温度与其光合速率及产量呈显著负相关,且相关性随着灌浆的逐步推移而增大[6,7]。也有研究表明,合理的灌溉与施肥制度[8,9]、适宜的种植密度[10]、优化的耕作与覆盖[11]等农艺措施有利于建立作物理想的群体结构,促进通风透光,有效地增大作物蒸腾量,有助于作物群体热量的散失,从而降低冠层温度,延缓衰老促进灌浆结实,提高产量。【本研究切入点】纵观冠层温度与作物光合生理指标及产量间的关系,前人主要集中于不同基因型作物品种及单一农艺措施间的研究,而有关耕作、覆盖方式及种植模式集成于一体的栽培措施对作物冠层温度的调控,从而对光合生理及产量的影响研究鲜见报道。【拟解决的关键问题】本研究在干旱内陆绿洲灌区,探讨间作小麦(Triticum aestivum L.)秸秆还田对配对地膜覆盖玉米(Zea mays L.)灌浆期冠层温度及光合生理特性的影响,解析不同秸秆还田及地膜覆盖利用方式下间作及单作玉米不同灌浆阶段冠层温度与光合生理、产量的关系,从而为研究区域土壤耕作技术的改进和作物高产、高效栽培模式的构建提供理论与技术支撑。1 材料与方法
1.1 试区概况
田间试验于2014—2016年度在甘肃农业大学绿洲农业综合试验站进行。试验区位于河西走廊东端,属寒温带干旱气候区。土壤类型为灌漠土,土层厚约100 cm。多年平均气温约7.3℃,降雨量低于200 mm,年蒸发量高于2 000 mm,灌溉水资源有限,作物生产必须采用秸秆还田与地膜覆盖等节水措施,特别是喜温作物玉米存在“非膜不植”的生产现状。小麦、玉米是该区主栽作物,播种比例占可耕地的一半以上,且大多以传统深翻耕为主。1.2 试验设计
2013年布置预备试验,在小麦收获后形成4种不同秸秆还田方式(25—30 cm高茬收割立茬免耕、25—30 cm 高茬收割秸秆覆盖免耕、25—30 cm 高茬收割秸秆翻耕、传统翻耕无秸秆还田),其余秸秆均移除农田;玉米收获后形成2种地膜覆盖利用措施(免耕地膜2年覆盖利用,即玉米收获后免耕留膜,地膜的完整度保持在70%以上;传统翻耕每年覆新膜,则为玉米收获后进行旧膜回收再深翻耕),布置9个小区的地膜覆盖单作玉米,其中3个小区一直为传统翻耕每年覆新膜,另外6个小区用于地膜2年利用处理年际间的交替轮换,间作与单作玉米地膜覆盖利用方式相似。试验采用随机区组设计,包括3种种植模式、4种小麦秸秆处理方式及2种地膜覆盖利用方式(厚度0.008 mm的普通无色农用地膜)。4种小麦秸秆处理方式形成4个单作小麦处理,2种地膜覆盖利用方式形成2个单作玉米处理,为了便于田间机械化操作,将耕作方式相同的秸秆还田与地膜覆盖集成于小麦间作玉米模式,形成4个小麦间作玉米处理。即本研究共设10个处理(表1),3次重复,因间作与单作玉米地膜覆盖利用方式的交替设计,共组成39个小区。Table 1
表1
表1试验设计及处理代码
Table 1
种植模式 Cropping pattern | 处理代码 Treatment code | 处理设计 Treatment design |
---|---|---|
单作小麦 Sole wheat | NTSW | 25—30 cm高茬收割秸秆覆盖免耕 No-tillage with 25 to 30 cm straw mulching |
NTSSW | 25—30 cm高茬收割立茬免耕 No-tillage with 25 to 30 cm straw standing | |
CTSW | 25—30 cm高茬收割秸秆翻耕 Conventional with 25 to 30 cm straw incorporation | |
CTW | 传统翻耕无秸秆还田 Conventional tillage without straw retention | |
单作玉米 Sole maize | NTM2 | 免耕地膜2年覆盖 No-tillage with two-year plastic mulching |
CTM | 传统翻耕每年覆新膜 Conventional tillage with annual new plastic mulching | |
小麦间作玉米 Wheat-maize intercropping | NTSI2 | 小麦带25—30 cm高茬收割秸秆覆盖免耕 No-tillage with 25 to 30 cm straw mulching in wheat strip |
玉米带免耕地膜2年覆盖 No-tillage with two-year plastic mulching in maize strip | ||
NTSSI2 | 小麦带25—30 cm高茬收割立茬免耕 No-tillage with 25 to 30 cm straw standing in wheat strip | |
玉米带免耕地膜2年覆盖 No-tillage with two-year plastic mulching in maize strip | ||
CTSI | 小麦带25—30 cm高茬收割秸秆翻耕 Conventional with 25 to 30 cm straw incorporation in wheat strip | |
玉米带传统翻耕每年覆新膜 Conventional tillage with annual new plastic mulching in maize strip | ||
CTI | 小麦带传统翻耕无秸秆还田 Conventional tillage without straw retention in wheat strip | |
玉米带传统翻耕每年覆新膜 Conventional tillage with annual new plastic mulching in maize strip |
新窗口打开|下载CSV
供试小麦为宁春2号,玉米为先玉335。2014— 2016年,小麦播种日期分别为3月21日、29日及30日,收获日期分别为7月24日、28日、21日。玉米播种日期分别为4月25日、24日、20日,收获日期分别为9月30日、28日、20日。
本文只涉及到间作与单作玉米的相关指标,因此播种密度、灌溉与施肥制度只描述小麦间作玉米与单作玉米2种模式。各小区面积均为48 m2(10 m×4.8 m)。间作模式中,小麦玉米各3带,带宽均为0.8 m,小麦带种6行,行距12 cm,玉米带种2行,行距40 cm,株距24 cm,小麦玉米间距为30 cm。已有研究证实,间作较单作可增强玉米的耐密性[12],因此,本研究中间作玉米的种植密度高于单作,间作与单作玉米播种密度分别为52 500株/hm2与82 500株/hm2。本试验仅施用氮肥与磷肥,所用肥料为尿素与磷酸二铵。小麦间作玉米下,小麦带施N 225 kg·hm-2,P2O5 150 kg·hm-2,全作基肥;玉米带施N 450 kg·hm-2,按基肥:大喇叭口期追肥:灌浆期追肥=3:6:1分施,P2O5 225 kg·hm-2,全作基肥。在相同的占地面积下,单作与间作玉米的施肥制度一致。传统耕作基肥在播种前均匀施于地面,用旋耕机旋入15 cm 深的耕作层,而免耕地膜2年覆盖玉米基肥用穴播枪施入。追肥时,用穴播枪在距离玉米茎秆10 cm处打孔,将肥料施入10 cm深的孔中,然后埋土。
单作玉米与小麦间作玉米均采用小区漫灌,其灌溉制度如表2。
Table 2
表2
表2不同种植模式的灌溉时期和灌溉量
Table 2
种植模式 Cropping pattern | 冬储灌 Winter irrigation | 玉米生育时期 Maize growth stage | 总量 Total | |||||
---|---|---|---|---|---|---|---|---|
苗期 Seedling | 拔节期 Jointing | 大喇叭口期 Big flare opening | 抽雄吐丝期 Tasseling | 开花期 Flowering | 灌浆期 Filling | |||
小麦间作玉米 Wheat-maize intercropping | 1200 | 750 | 900 | 750 | 900 | 750 | 750 | 6000 |
单作玉米 Sole maize | 1200 | 900 | 750 | 900 | 750 | 750 | 5250 |
新窗口打开|下载CSV
1.3 测定与计算指标及方法
1.3.1 大气温度 借助试验站小型气象测定仪(SL5)自动测定并记录大气温度(AT)。1.3.2 冠层温度 选择晴朗天气,于玉米灌浆前、中和后期,采用手持红外测定仪(FLUKE-59Mini IR THERMOMETER) 测定高于玉米冠层约15 cm,且与冠层呈30°夹角长势均匀部位的冠层温度(CT)。测量时间为8:00—18:00,每隔2 h测定一次。每小区测4次,取其平均值作为该次测定的冠层温度值,并计算冠气温差(CATD),CATD = CT-AT。
1.3.3 光合及蒸腾速率 选择晴朗天气,在9:00—11:00,使用LI-6400 XT 型光合测定仪,测定玉米灌浆前、中和后期穗位叶中部的光合速率(Pn,μmol CO2·m-2·s-1)、蒸腾速率(Tr,mmol·m-2·s-1),并计算叶片水分利用效率(WUEleaf= Pn/Tr,μmol·mmol-1)。每小区测3株,取其平均值作为该小区的光合生理测定值。
1.3.4 产量 每小区单独收获测产,测产面积5 m2,用 PM-8188 型谷物水分测定仪测定籽粒含水率,重复 5 次,取其平均值,在籽粒含水量在13%及相同的净占地面积下,计算间作与单作玉米的籽粒产量。
1.4 数据统计
采用Microsoft Excel 2013整理、分析数据并绘制图表,利用SPSS 20.0软件进行显著性检验(Duncan’s)及相关分析。本研究属于田间定位试验,年份(时间)会对试验结果产生重大影响,即不同秸秆还田方式与年份之间会有交互效应,因此,本研究以年份(时间)作为一个因子,把文中测定数据进行重复测量方差分析,即采用two-way repeated measures ANOVA(二因子重复测量方差分析)进行显著性检验(P<0.05)。2 结果
2.1 间作小麦秸秆还田对地膜覆盖玉米灌浆期冠层温度的影响
间作较单作降低了玉米灌浆期的冠层温度,小麦带免耕秸秆还田显著降低了配对玉米灌浆期的冠层温度,且年份及年份与处理间的交互作用对其影响不显著(表3)。玉米灌浆前期,小麦带免耕秸秆还田与玉米带地膜2年覆盖(NTSI2、NTSSI2)较传统每年覆新膜(CTM)玉米冠层温度分别降低9.8%、7.0%,NTSI2处理较免耕地膜2年覆盖(NTM2)降低7.6%;间作模式中,仅有NTSI2处理较小麦带传统翻耕无秸秆还田与玉米带每年覆新膜(CTI)降低7.4%。玉米灌浆中期,NTSI2、NTSSI2、小麦带翻耕秸秆还田与玉米带每年覆新膜(CTSI)较CTM处理玉米冠层温度分别降低9.9%、7.2%、5.6%,NTSI2处理较NTM2处理降低6.2%;间作模式中,仅有NTSI2处理较CTI处理降低6.9%。玉米灌浆后期,NTSI2、NTSSI2、CTSI处理较CTM处理玉米冠层温度分别降低8.7%、11.5%、6.1%,NTSI2处理较NTM2处理降低6.5%;间作模式中,NTSI2与NTSSI2处理较CTI处理分别降低5.6%、8.5%。玉米灌浆后期,地膜2年覆盖利用较传统每年覆新膜降低了单作玉米的冠层温度,NTM2处理较CTM处理降低比例为5.4%。Table 3
表3
表3不同种植模式不同处理玉米灌浆期的冠层温度
Table 3
处理 Treatment | 灌浆前期 Early-filling | 灌浆中期 Mid-filling | 灌浆后期 Late-filling | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2014 | 2015 | 2016 | 2014 | 2015 | 2016 | |||
间作 Intercropping | |||||||||||
NTSI2 | 27.39b | 29.53d | 30.36b | 24.39b | 24.30c | 22.96d | 19.12d | 23.42d | 20.18c | ||
NTSSI2 | 28.34ab | 30.26d | 31.40ab | 24.90b | 24.90bc | 23.99cd | 19.64cd | 24.06cd | 21.03bc | ||
CTSI | 29.73a | 30.69cd | 31.75ab | 25.01ab | 25.58b | 24.47bc | 20.51bc | 24.67c | 21.38b | ||
CTI | 30.42a | 31.59bc | 32.26a | 25.03ab | 26.71a | 25.22ab | 20.86b | 25.97ab | 21.74ab | ||
单作 Sole cropping | |||||||||||
NTM2 | 30.25a | 31.93ab | 32.29a | 25.33ab | 25.93ab | 25.12bc | 20.51bc | 25.13bc | 21.42b | ||
CTM | 32.96a | 32.96a | 32.92a | 26.38a | 26.81a | 26.31a | 21.81a | 26.50a | 22.55a | ||
显著Significance | |||||||||||
年份Year (Y) | NS | NS | NS | ||||||||
处理Treatment (T) | 0.000 | 0.002 | 0.000 | ||||||||
年份×处理 Y×T | NS | NS | NS |
新窗口打开|下载CSV
2.2 秸秆还田及地膜覆盖方式下玉米灌浆期的冠气温差
通过冠层温度与大气温度差可判断覆盖、耕作及种植模式对玉米冠层温度稳定性的影响。间作较单作可降低玉米灌浆期的冠气温差,地膜2年覆盖利用较传统每年覆新膜可降低单作玉米冠气温差,秸秆还田可降低配对地膜覆盖玉米灌浆期的冠气温差,试验年份及年份与处理间的交互作用不显著(表4)。从玉米灌浆期冠气温差平均值分析可知,间作较单作降低玉米灌浆期冠气温差33.4%,NTSI2、NTSSI2、CTSI、CTI处理较CTM处理分别降低64.8%、47.3%、33.9%、18.6%,NTSI2、NTSSI2、CTSI处理较NTM2处理分别降低31.2%、54.0%、13.7%。地膜2年覆盖利用较传统每年覆新膜降低单作玉米灌浆期冠气温差23.4%。间作模式中,与CTI处理相比,NTSI2、NTSSI2、CTSI处理降低玉米灌浆期冠气温差,分别为56.8%、35.3%、18.8%,以NTSI2、NTSSI2处理降低幅度较大,比CTSI处理分别降低46.7%、20.3%,其中NTSI2处理比NTSSI2处理降低20.3%。综上,小麦带免耕秸秆覆盖还田与玉米带地膜2年覆盖(NTSI2)随气温变化其冠层温度变化较小,可减小气温变化对玉米生长发育的不利影响。Table 4
表4
表4不同种植模式不同处理玉米灌浆期冠气温差
Table 4
年份 Year | 处理 Treatment | 灌浆前期 Early-filling stage | 灌浆中期 Middle-filling stage | 灌浆后期 Late-filling stage | 平均 Average |
---|---|---|---|---|---|
2014 | 间作 Intercropping | ||||
NTSI2 | 0.99e | 2.19d | 0.72d | 1.30e | |
NTSSI2 | 1.94d | 2.70c | 1.24c | 1.96d | |
CTSI | 3.33c | 2.81bc | 2.11b | 2.75c | |
CTI | 4.02ab | 2.83bc | 2.46b | 3.10b | |
单作 Sole cropping | |||||
NTM2 | 3.85bc | 3.13b | 2.11b | 3.03bc | |
CTM | 4.45a | 4.18a | 3.41a | 4.02a | |
2015 | 间作 Intercropping | ||||
NTSI2 | 1.73e | 1.90d | 1.52f | 1.72e | |
NTSSI2 | 2.46d | 2.50c | 2.16e | 2.37d | |
CTSI | 2.89c | 3.18b | 2.77d | 2.95c | |
CTI | 3.79b | 4.31a | 4.07b | 4.05b | |
单作 Sole cropping | |||||
NTM2 | 4.13b | 3.53b | 3.23c | 3.63b | |
CTM | 5.16a | 4.41a | 4.60a | 4.72a | |
2016 | 间作 Intercropping | ||||
NTSI2 | 2.01d | 1.67e | 1.08e | 1.59d | |
NTSSI2 | 3.05c | 2.70d | 1.93d | 2.56c | |
CTSI | 3.40bc | 3.18c | 2.28c | 2.95bc | |
CTI | 3.91b | 3.93b | 2.64b | 3.49b | |
单作 Sole cropping | |||||
NTM2 | 3.94b | 3.83b | 2.32bc | 3.36b | |
CTM | 4.57a | 5.02a | 3.45a | 4.35a | |
显著性 Significance | |||||
年份Year (Y) | NS | NS | NS | NS | |
处理Treatment (T) | 0.000 | 0.001 | 0.000 | 0.000 | |
年份×处理 Y×T | NS | NS | NS | NS |
新窗口打开|下载CSV
2.3 玉米灌浆期光合生理特征对秸秆还田及地膜覆盖方式的响应
2.3.1 光合速率 玉米灌浆期,间作玉米的光合速率均高于单作(表5)。灌浆前期,与传统每年覆新膜单作玉米(CTM)相比,小麦带免耕秸秆还田与玉米带地膜2年覆盖(NTSI2、NTSSI2)玉米光合速率分别提高12.2%、7.5%,小麦带翻耕秸秆还田与玉米带每年覆新膜(CTSI)玉米光合速率提高8.9%,小麦带翻耕无秸秆还田与玉米带每年覆新膜(CTI)提高玉米光合速率5.6%;与免耕地膜2年覆盖单作玉米(NTM2)相比,NTSI2、NTSSI2、CTSI处理提高玉米光合速率分别为6.2%—10.9%,以NTSI2处理提高幅度较大。随着生育期的推进,间作提高了玉米的光合速率,至灌浆中期,与CTM处理相比,间作玉米光合速率提高10.9%—26.7%;与NTM2处理相比,NTSI2、NTSSI2处理提高玉米光合速率,分别为16.6%、12.9%,以NTSI2处理提高幅度较大。灌浆后期,间作玉米光合速率均显著高于CTM处理,提高比例达到9.7%—35.1%;与NTM2处理相比,仅有NTSI2、NTSSI2处理提高玉米光合速率,依次为18.4%、12.9%,以NTSI2处理提高幅度较大。间作玉米灌浆期较高的光合速率对高产起到重要作用,特别是小麦带免耕秸秆还田与玉米带地膜2年覆盖间作玉米保持较高的光合速率,是玉米获得高产的光合生理基础。Table 5
表5
表5不同种植模式不同处理玉米灌浆期的光合特性差异
Table 5
灌浆时期 Grain filling stage | 处理 Treatment | 光合速率 Pn (μmol·m-2·s-1) | 蒸腾速率 Tr (mmol·m-2·s-1) | 叶片水分利用效率 WUEL (μmol·mmol-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2014 | 2015 | 2016 | 2014 | 2015 | 2016 | ||||
灌浆前期 Early-filling stage | 间作 Intercropping | |||||||||||
NTSI2 | 31.42a | 31.58a | 34.00a | 4.01a | 4.04a | 4.19ab | 7.83a | 7.83a | 8.11a | |||
NTSSI2 | 29.95ab | 30.26ab | 32.68ab | 3.90ab | 3.90a | 4.09a | 7.67a | 7.75a | 7.98a | |||
CTSI | 30.22ab | 30.64ab | 33.27ab | 3.98a | 3.98a | 4.28a | 7.59a | 7.69ab | 7.78a | |||
CTI | 29.01b | 29.76abc | 32.52abc | 3.84ab | 3.96a | 4.17ab | 7.55a | 7.51abc | 7.81a | |||
单作 Sole cropping | ||||||||||||
NTM2 | 27.75bc | 28.92bc | 30.81c | 3.89ab | 3.95a | 4.18ab | 7.14b | 7.31bc | 7.36b | |||
CTM | 26.82c | 28.12c | 31.50bc | 3.78b | 3.91a | 4.35a | 7.09b | 7.20c | 7.25b | |||
显著性 Significance | ||||||||||||
年份Year (Y) | NS | NS | 0.029 | |||||||||
处理Treatment (T) | 0.020 | 0.043 | 0.002 | |||||||||
年份×处理 Y×T | 0.031 | NS | 0.023 | |||||||||
灌浆中期 Middle-filling stage | 间作 Intercropping | |||||||||||
NTSI2 | 28.98a | 29.99a | 29.55a | 3.74a | 3.84a | 3.71a | 7.76a | 7.82a | 7.97a | |||
NTSSI2 | 27.99a | 28.85ab | 28.88a | 3.67a | 3.75a | 3.75a | 7.62ab | 7.69ab | 7.71ab | |||
CTSI | 26.32b | 27.38bc | 27.70ab | 3.58ab | 3.71a | 3.73a | 7.35b | 7.39bc | 7.43b | |||
CTI | 24.84c | 26.89c | 25.75bc | 3.40b | 3.73a | 3.52b | 7.30bc | 7.20c | 7.31b | |||
单作 Sole cropping | ||||||||||||
NTM2 | 25.27bc | 24.08d | 26.59b | 3.59ab | 3.35b | 3.75a | 7.05cd | 7.20c | 7.08bc | |||
CTM | 22.93d | 22.18e | 24.73c | 3.35b | 3.25b | 3.66ab | 6.84d | 6.82d | 6.75c | |||
显著性 Significance | ||||||||||||
年份Year (Y) | 0.000 | NS | NS | |||||||||
处理Treatment (T) | 0.000 | 0.030 | 0.000 | |||||||||
年份×处理 Y×T | 0.000 | NS | 0.037 | |||||||||
灌浆后期 Late-filling stage | 间作 Intercropping | |||||||||||
NTSI2 | 24.27a | 24.43a | 25.43a | 3.33a | 3.25a | 3.37a | 7.30a | 7.53a | 7.54a | |||
NTSSI2 | 23.28a | 23.08a | 24.33a | 3.25a | 3.15a | 3.34a | 7.15ab | 7.32a | 7.29a | |||
CTSI | 20.60b | 21.27b | 21.68bc | 2.95b | 3.16a | 3.25b | 6.99b | 6.72b | 6.68b | |||
CTI | 19.34c | 19.84bc | 20.98c | 2.77c | 2.93b | 3.19bc | 6.97b | 6.76b | 6.57b | |||
单作 Sole cropping | ||||||||||||
NTM2 | 19.12 c | 21.26b | 22.22b | 2.80c | 3.15a | 3.28b | 6.82bc | 6.74b | 6.78b | |||
CTM | 16.92 d | 18.83c | 19.11d | 2.57d | 3.02ab | 3.11c | 6.57c | 6.23c | 6.15c | |||
显著性 Significance | ||||||||||||
年份Year (Y) | 0.012 | NS | 0.032 | |||||||||
处理Treatment (T) | 0.000 | 0.024 | 0.002 | |||||||||
年份×处理 Y×T | 0.031 | NS | 0.020 |
新窗口打开|下载CSV
免耕地膜2年覆盖对单作玉米灌浆前期的光合速率影响不显著,但增加了灌浆中后期的光合速率(表5)。玉米灌浆中、后期,NTM2处理较CTM处理玉米光合速率分别增大8.7%、14.1%。说明免耕地膜2年覆盖可通过优化玉米生长发育动态,维持玉米灌浆中后期较高的光合速率,为其获得高产创造良好的光合生理基础。
与CTI处理相比,小麦带免耕秸秆还田与玉米带地膜2年覆盖间作玉米灌浆期保持较高的光合速率(表5)。灌浆前期,只有NTSI2处理玉米光合速率比CTI处理高6.2%。灌浆中期,NTSI2、NTSSI2、CTSI处理较CTI处理玉米光合速率提高5.1%—14.2%,其中NTSI2、NTSSI2处理较CTSI分别提高8.7%、5.3%。灌浆后期,NTSI2、NTSSI2、CTSI处理较CTI处理提高5.7%—23.2%,其中NTSI2、NTSSI2处理较CTSI处理分别高16.6%、11.2%。免耕秸秆还田与地膜2年覆盖间作玉米灌浆期保持较高的光合速率,对间作玉米高产起到补偿作用。
2.3.2 蒸腾速率 玉米灌浆前期,间作与单作玉米蒸腾速率差异不显著,但随着生育期的推进,至灌浆中后期,间作玉米蒸腾速率高于单作(表5)。2014与2015年,NTSI2、NTSSI2、CTSI处理玉米灌浆中期的蒸腾速率较CTM处理分别增大14.7%、12.5%、10.4%,NTSI2处理比NTM2处理提高9.4%;相似地,NTSI2、NTSSI2、CTSI处理玉米灌浆后期的蒸腾速率较CTM处理分别增大18.3%、15.4%、9.6%,与NTM2处理相比,仅有2014年度NTSI2、NTSSI2处理玉米蒸腾速率分别提高18.6%、16.1%。小麦带免耕秸秆还田与玉米带地膜2年覆盖间作玉米在灌浆中后期保持较高的蒸腾速率而提高水分利用的有效性。
地膜覆盖方式对单作玉米灌浆前、中期蒸腾速率无显著性影响,而NTM2处理较CTM处理玉米灌浆后期蒸腾速率提高6.1%(表5)。秸秆还田与地膜覆盖方式对间作玉米灌浆前期蒸腾速率影响不显著,但随着生育期的推进,NTSI2、NTSSI2处理较CTI处理玉米灌浆中期蒸腾速率分别提高5.8%、4.8%,灌浆后期分别提高11.7%、9.5%,达到显著性水平。说明免耕秸秆还田与地膜2年覆盖维持间作玉米较高的蒸腾速率主要体现在灌浆中后期,加强蒸腾作用而提高水分有效利用。
2.3.3 叶片水分利用效率 玉米灌浆期,间作玉米叶片水分利用效率均显著高于单作玉米(表5)。灌浆前期,与CTM与NTM2处理相比,间作玉米叶片水分利用效率分别提高6.2%—10.3%与4.8%—8.9%。灌浆中期,间作较CTM处理提高玉米叶片水分利用效率6.9%—15.4%,与NTM2处理相比,NTSI2、NTSSI2处理提高比例分别为10.4%、7.9%。相似地,灌浆后期,间作较CTM处理玉米叶片水分利用效率提高7.1%—18.0%,与NTM2处理相比,NTSI2、NTSSI2处理提高比例分别为10.0%、7.0%。3个灌浆阶段,均以NTSI2处理玉米保持较高的叶片水分利用效率,为间作农田水分高效利用奠定基础。
地膜覆盖利用方式对单作玉米灌浆前期叶片水分利用效率无显著影响,但灌浆中期与后期,NTM2处理较CTM处理玉米叶片水分利用效率分别增大4.5%、7.4%。小麦带免耕秸秆还田与玉米带地膜2年覆盖措施显著提高了间作玉米灌浆期的叶片水分利用效率(表5)。灌浆前期,仅NTSI2处理玉米叶片水分利用效率较CTI处理高4.0%。灌浆中期,NTSI2、NTSSI2处理较CTI处理玉米叶片水分利用效率分别提高8.0%、5.5%,NTSI2处理较CTSI处理提高6.2%。灌浆后期,NTSI2处理较CTI与CTSI处理玉米叶片水分利用效率分别提高10.2%、9.7%。免耕秸秆还田与地膜2年覆盖间作玉米灌浆期保持较高的叶片水分利用效率,呈现高效利用水分的潜势。
2.4 秸秆还田与地膜覆盖方式对玉米籽粒产量的影响
在相同的占地面积下,间作较单作玉米具有增产效应,3个试验年度增产52.2%(图1)。与传统每年覆新膜单作玉米(CTM)相比,小麦带免耕秸秆还田与玉米带地膜2年覆盖(NTSI2、NTSSI2)玉米分别增产57.2%、53.4%,小麦带翻耕秸秆还田与玉米带每年覆新膜(CTSI)玉米增产57.4%,小麦带翻耕无秸秆还田与玉米带每年覆新膜(CTI)玉米增产33.7%;与免耕地膜2年覆盖单作玉米(NTM2)相比,NTSI2、NTSSI2、CTSI、CTI处理玉米分别增产61.1%、57.1%、61.3%、37.0%。图1
新窗口打开|下载原图ZIP|生成PPT图1不同地膜覆盖及耕作方式对玉米籽粒产量的影响
Fig. 1Effects of plastic mulching and tillage methods on grain yield of maize
地膜覆盖利用方式对单作玉米籽粒产量无显著影响,但小麦免耕秸秆还田提高了免耕地膜2年覆盖间作玉米的籽粒产量,NTSI2、NTSSI2、CTSI处理中玉米籽粒产量较CTI处理分别提高17.6%、14.7%、17.7%。说明免耕地膜2年覆盖应用于免耕秸秆还田间作可进一步加强玉米增产效应。
2.5 玉米灌浆期冠层温度与籽粒产量及叶片水分利用效率的相关性
不同覆盖及耕作方式下玉米灌浆期冠层温度与其叶片水分利用效率及籽粒产量均呈极显著负相关关系(图2)。说明小麦带免耕还田、玉米带地膜2年利用可通过增加土壤水分供给量,降低玉米冠层温度,叶片保持适宜的水分含量,从而提高叶片水分利用效率及产量,进一步增强水分利用的有效性,呈现水分高效利用的潜势。图2
新窗口打开|下载原图ZIP|生成PPT图2玉米灌浆期的冠层温度与叶片水分利用效率及籽粒产量的相关性
Fig. 2Relationship between canopy temperature of grain filling stage, leaf water use efficiency and grain yield of maize
3 讨论
3.1 作物冠层温度及光合生理特性对秸秆还田与地膜覆盖的响应
冠层温度与作物生育状况的关系,不仅受到作物品种本身基因型差异特性的影响[13],还受环境如土壤水分、蒸腾与光照强度、气温、CO2浓度、空气饱和差等因素的制约[2],当然除了基因型之外,其他制约因素均受覆盖与耕作[14,15]、施肥与灌溉制度[15,16]等措施的调控。作物冠层温度的调控主要呈现两个方面,第一,作物冠层将吸收的太阳辐射能转换成热能而提高冠层温度;第二,作物叶片通过蒸腾作用散热冷却而降低冠层温度[2]。在土壤墒情较好条件下作物冠层温度相对较低,当作物生长中土壤水分供应不足时,蒸腾作用减弱,蒸腾耗热较少、感热通量增加,从而增大作物冠层温度[17]。因此,通过优化耕作与栽培措施,改善土壤水分环境与作物生长动态,可调控作物冠层温度。本研究得出,间作较单作降低了玉米灌浆期的冠层温度,这是因为不同品种、不同高矮搭配的作物间作改变了作物生长的微生境,间作群体高低镶嵌的冠层结构比单一群体高度一致的冠层利于空气的流动及光照的分布,尤其是矮位作物收获后,高位作物的开放冠层有利于降低边界层的扩散阻力,改变叶气、水汽梯度[18]。小麦间作玉米模式中,间作小麦与玉米的吸水空间不同、根系分布不同,均可产生间作小麦与玉米分享有限水资源的互补效应[19],特别是间作小麦收获后,玉米根系可进入小麦带吸收小麦带的土壤水分,增加玉米叶片水分含量而增强玉米的蒸腾速率,从而降低冠层温度。本研究进一步得出,小麦带免耕秸秆还田与玉米带地膜2年覆盖利用显著降低了玉米灌浆期的冠层温度,这是因为间作小麦收获时免耕秸秆还田增加土壤与大气间水热交换的物理阻隔层,阻止大气与土壤间的能量和水分交换而降低土壤蒸发[20],使得更多的土壤水分补给生殖生长期玉米的水分需求,增加玉米叶片水分含量而增强蒸腾作用[19],从而降低冠层温度。另外,免耕地膜2年利用较传统每年覆新膜降低土壤温度[21,22],玉米生育前期生长发育缓慢,对土壤水养分消耗较少,使得土壤贮存较多水养分用于适宜土壤温度的生殖生长期[19],旺盛的生长使得玉米有效蒸腾耗水增加,从而降低冠层温度;相反,传统每年覆新膜较高的土壤温度加快玉米前期生长发育,过度消耗养分与水分,使得生育后期资源供给不足,另外传统每年覆新膜易造成玉米开花灌浆期根区极端高的土壤温度,导致后期根系及叶片发生早衰[22,23,24],光合源相对较小,作物光合与蒸腾速率减小,造成相对较高的冠层温度。在免耕秸秆还田处理中,覆盖还田较立茬还田降低玉米灌浆期冠层温度效应更大,这是因为免耕秸秆立茬较覆盖还田减小了地表直接形成的秸秆物理隔层,对土壤温度的降低效应及对土壤蒸发的抑制效应不及免耕秸秆覆盖还田[22,23],造成供应作物生长发育的有效土壤水分较少,因而免耕小麦秸秆立茬较覆盖还田方式下地膜覆盖玉米灌浆期具有相对较高的冠层温度。作物冠层温度的差异是环境生态条件和本身生物学特性有机结合的产物,受到耕作措施及栽培方式的有效调控,还需进一步深入研究。
3.2 作物光合生理特性对秸秆还田与地膜覆盖的响应
目前,有关作物光合生理特征研究主要集中于单作作物光合特性与籽粒产量及群体结构的关系方面[25,26],对复合群体中作物光合生理特性的研究主要集中于不同间作模式[27]。然而,对于集成不同管理措施的间作作物光合生理特性研究相对较少。间作因平面采光变为立体采光而利于作物群体分层受光,较单作可优化群体结构、改善群体冠层内的光分布、增大受光面积而提高光能利用率[28,29]。适宜的群体结构可优化群体内光分布、延长叶片功能期、保持较大的作物冠层、减少光能损失而提高净光合速率[30]。间作群体可增大光截获量,改善田间小气候,加强高位作物对生长要素的利用,但会减弱低位作物接受的光照强度,在一定程度上影响其生长发育,当早熟作物收获后,会增加晚熟作物光截获量[28,29]。本研究发现,间作较单作增加了玉米灌浆期的光合与蒸腾速率,源于间作立体、分层的受光结构导致共生期内间作小麦获得较强的光合特性促进其生长,使得玉米生长速率较低而处于生长劣势,而短生育期小麦收获后,间作玉米因竞争造成的抑制作用得到显著恢复,增加生长速率[31],主要表现在一方面早熟作物收获后地表裸露,良好的通风透光结构扩大了晚熟作物的受光面积,增强光合特性[29],另一方面,小麦带的土壤水分通过水分补偿途径用于配对玉米生长[19],满足间作玉米旺盛生长的水分需求而提高光合与蒸腾速率。本研究将秸秆还田及地膜覆盖利用方式同步集成于间作模式中,小麦高茬收割后的秸秆免耕覆盖有较强的蓄水保墒能力,使更多的土壤水分补给间作玉米灌浆期旺盛生长的水分需求,进一步加快玉米生长[19];另外传统每年覆新膜在玉米吐丝至灌浆期,根区土壤温度在正午达到45℃[22],远远超过了玉米根系发育的35℃适温阈值[32],而地膜2年覆盖可弱化这一弊端,保持适宜的土壤温度有利于玉米正常的生长发育,避免了玉米根系及叶片发生早衰现象。因而,免耕秸秆还田及地膜2年覆盖间作玉米光合特性均高于传统单作及间作玉米,对间作玉米高产起到重要作用。3.3 秸秆还田与地膜覆盖对作物产量的影响
通过采用适宜的种植模式,优化农艺管理措施,调控作物生长发育动态,改善作物资源需求环境,可实现高产[19,31]。已有研究表明,将少耕秸秆还田与传统每年覆盖地膜集成于间作模式可提高作物生产力[19, 33]。然而,大量使用地膜导致农田生态环境脆弱及耕地质量下降[34],而且每年覆新膜作物生育期内极端高温[22,23,24],对作物的持续高产造成严重影响。因此,寻求弱化地膜覆盖弊端的技术亟待进行。在西北绿洲灌区非膜不植的生产背景下,免耕地膜2年用作为地膜减投的一种方式,在单作模式已有研究表明地膜2年覆盖可改善土壤水热特性,为作物生长发育创造良好的生态环境[21,22]。本研究表明,间作较单作玉米增产52.2%,一方面源于间作自身地上地下的互作优势,另一方面源于间作的增密效应[12]。将免耕秸秆还田与地膜2年覆盖同步集成于小麦间作玉米模式,进一步增强了间作玉米的增产效应,NTSI2、NTSSI2处理较CTI处理玉米分别增产17.6%、14.7%,较CTM处理分别增产57.2%、53.4%。间作较单作玉米增产源于间作小麦收获后,玉米独立生长期干物质积累的补偿效应与干物质转化与分配的超补偿效应[31]。免耕秸秆还田与地膜2年覆盖利进一步加强间作玉米增产的原因主要有:第一,玉米带地膜2年覆盖利用改善土壤水热环境,优化玉米生长动态,玉米生育前期较低土壤温度延缓玉米生长,消耗水分养分少,剩余更多的水分养分资源满足土壤温度较为适宜的生育后期生长,延缓地上部的衰老[21,22],改善功能叶片的光合特性,促使籽粒灌浆而实现高产;第二,小麦间作玉米模式中,小麦收获时采用高茬收获后免耕秸秆还田,抑制土壤蒸发,提高土壤水分保持,使更多的土壤水分运移到玉米带,满足玉米旺盛生长的水分需求[19],提高光合与蒸腾速率,促进营养器官的光合同化物向生殖器官的运转,通过进一步提高光合同化物转移的超补偿效应而增产;第三,从土壤理化性状的角度分析,免耕结合秸秆还田为作物生长创造良好的耕层土壤结构,较传统耕作可降低土壤容重,提高土壤速效养分含量,促进作物对养分的吸收和利用[35,36],而小麦收获后,小麦带较高的速效养分含量用于补给与之相间作的玉米生长所需,为高产奠定了物质基础。因此,在干旱绿洲灌区,可通过集成应用免耕秸秆覆盖还田及地膜2年覆盖利用技术,进一步发展资源高效利用的间作模式。4 结论
间作较单作可降低玉米灌浆期的冠层温度,小麦带免耕秸秆还田与玉米带地膜2年覆盖较传统无秸秆还田与每年覆新膜间作,显著降低了玉米灌浆期的冠层温度,且随气温变化其冠层温度变化较小,可减少气温变化对玉米生长发育造成的不利影响。间作玉米灌浆期保持较高的光合速率、蒸腾速率及叶片水分利用效率,对高产、水分高效利用起到重要作用,特别是小麦带免耕秸秆还田与玉米带地膜2年覆盖的间作玉米在灌浆后期仍保持较高的光合速率、蒸腾速率及叶片水分利用效率,是间作玉米获得高产的光合生理基础,呈现高效利用水分的潜势。间作较单作玉米具有明显的增产优势,免耕地膜2年覆盖应用于免耕秸秆还田间作可进一步加强玉米增产效应。因此,在干旱内陆绿洲灌区,小麦带应用免耕秸秆还田及玉米带应用地膜2年覆盖技术是实现间作玉米高产、水资源高效利用的理想耕作措施。(责任编辑 杨鑫浩)
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 4]
Crop canopy temperature is the outcome of the interactions of crop’s g
enetic characteristics and environmental conditions, which not only affects leaf
functional period, transpiration rate, and photosynthetic capacity, but also af
fects grain protein content and starch synthesis. Crop yield is strongly affecte
d by the canopy temperature after flowering, especially at mid-late grain-fill
in
g stage. This paper reviewed the research advances on the effects of canopy temp
erature on crop yield, related mechanisms, and the factors affecting canopy temp
erature, and pointed out that to breed superior genotypes and to implement reasonable agronomic practices should be the effective ways for improving crop yields and reducing canopy temperature.
URL [本文引用: 4]
Crop canopy temperature is the outcome of the interactions of crop’s g
enetic characteristics and environmental conditions, which not only affects leaf
functional period, transpiration rate, and photosynthetic capacity, but also af
fects grain protein content and starch synthesis. Crop yield is strongly affecte
d by the canopy temperature after flowering, especially at mid-late grain-fill
in
g stage. This paper reviewed the research advances on the effects of canopy temp
erature on crop yield, related mechanisms, and the factors affecting canopy temp
erature, and pointed out that to breed superior genotypes and to implement reasonable agronomic practices should be the effective ways for improving crop yields and reducing canopy temperature.
,
URL [本文引用: 1]
为揭示冬小麦冠层温度对产量作用的实质,探索影响二者关系的相关因素,以10个冬小麦品种(系)为材料,在喷灌和地面灌溉两种灌溉条件下,对子粒灌浆各阶段的冠层温度进行了方差分析,并对冠层温度与小麦产量进行了相关性分析.结果表明,在两种灌溉条件下,基因型和子粒灌浆时期对冠层温度的影响均达极显著水平(P<0.01);不同子粒灌浆时期的冬小麦冠层温度和产量之间均显示不同程度的负相关,其相关系数都是中后期>中期>前期.在喷灌条件下,只有灌浆中后期冠层温度和产量的相关系数达到极显著水平,灌浆前期和中期的相关系数均不显著;而在地面灌溉条件下,灌浆前、中、中后期的冠层温度和产量之间均达到极显著负相关.说明冬小麦冠层温度不仅受基因型影响,还受灌浆时期和环境条件影响.
URL [本文引用: 1]
为揭示冬小麦冠层温度对产量作用的实质,探索影响二者关系的相关因素,以10个冬小麦品种(系)为材料,在喷灌和地面灌溉两种灌溉条件下,对子粒灌浆各阶段的冠层温度进行了方差分析,并对冠层温度与小麦产量进行了相关性分析.结果表明,在两种灌溉条件下,基因型和子粒灌浆时期对冠层温度的影响均达极显著水平(P<0.01);不同子粒灌浆时期的冬小麦冠层温度和产量之间均显示不同程度的负相关,其相关系数都是中后期>中期>前期.在喷灌条件下,只有灌浆中后期冠层温度和产量的相关系数达到极显著水平,灌浆前期和中期的相关系数均不显著;而在地面灌溉条件下,灌浆前、中、中后期的冠层温度和产量之间均达到极显著负相关.说明冬小麦冠层温度不仅受基因型影响,还受灌浆时期和环境条件影响.
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
利用红外测温仪,于2005~2006年在甘肃陇东旱原研究了我国北方冬麦区域的23个小麦品种(系)灌浆不同时期冠层温度的差异及其与产量和水分利用效率的关系。结果表明,不同基因型小麦在籽粒灌浆结实期存在着冠层温度高度分异的现象,其分异程度随灌浆过程的进行明显加大,到灌浆中后期达到最大。无论灌浆初期还是中期或中后期,旱地冬小麦产量、水分利用效率与冠层温度均呈极显著的负相关(R2=0.445-0.812),并且随着灌浆期推移,相关性增大,灌浆中后期冠层温度每升高1℃,旱地冬小麦产量减少近280kghm-2,水分利用效率下降约0.6kghm-2mm-1。灌浆中期以后不同基因型小麦冠层温度保持较高的一致性,冠层温度偏低的品种具有较高的产量和水分利用效率。灌浆中后期的冠层温度在评价小麦产量和水分利用效率上具有较高的可靠性,可作为一个田间选择指标应用。
URL [本文引用: 1]
利用红外测温仪,于2005~2006年在甘肃陇东旱原研究了我国北方冬麦区域的23个小麦品种(系)灌浆不同时期冠层温度的差异及其与产量和水分利用效率的关系。结果表明,不同基因型小麦在籽粒灌浆结实期存在着冠层温度高度分异的现象,其分异程度随灌浆过程的进行明显加大,到灌浆中后期达到最大。无论灌浆初期还是中期或中后期,旱地冬小麦产量、水分利用效率与冠层温度均呈极显著的负相关(R2=0.445-0.812),并且随着灌浆期推移,相关性增大,灌浆中后期冠层温度每升高1℃,旱地冬小麦产量减少近280kghm-2,水分利用效率下降约0.6kghm-2mm-1。灌浆中期以后不同基因型小麦冠层温度保持较高的一致性,冠层温度偏低的品种具有较高的产量和水分利用效率。灌浆中后期的冠层温度在评价小麦产量和水分利用效率上具有较高的可靠性,可作为一个田间选择指标应用。
,
DOI:10.1071/FP12184URL [本文引用: 1]
Stomata are the site of CO2 exchange for water in a leaf. Variation in stomatal control offers promise in genetic improvement of transpiration and photosynthetic rates to improve wheat performance. However, techniques for estimating stomatal conductance (SC) are slow, limiting potential for efficient measurement and genetic modification of this trait. Genotypic variation in canopy temperature (CT) and leaf porosity (LP), as surrogates for SC, were assessed in three wheat mapping populations grown under well-watered conditions. The range and resulting genetic variance were large but not always repeatable across days and years for CT and LP alike. Leaf-to-leaf variation was large for LP, reducing heritability to near zero on a single-leaf basis. Replication across dates and years increased line-mean heritability to similar to 75% for both CT and LP. Across sampling dates and populations, CT showed a large, additive genetic correlation with LP (r(g) = -0.67 to -0.83) as expected. Genetic increases in pre-flowering CT were associated with reduced final plant height and both increased harvest index and grain yield but were uncorrelated with aerial biomass. In contrast, post-flowering, cooler canopies were associated with greater aerial biomass and increased grain number and yield. Amulti-environment QTL analysis identified up to 16 and 15 genomic regions for CT and LP, respectively, across all three populations. Several of the LP and CT QTL co-located with known QTL for plant height and phenological development and intervals for many of the CT and LP quantitative trait loci (QTL) overlapped, supporting a common genetic basis for the two traits. Notably, both Rht-B1b and Rht-D1b dwarfing alleles were paradoxically positive for LP and CT (i.e. semi-dwarfs had higher stomatal conductance but warmer canopies) highlighting the issue of translation from leaf to canopy in screening for greater transpiration. The strong requirement for repeated assessment of SC suggests the more rapid CT assessment may be of greater value for indirect screening of high or low SC among large numbers of early-generation breeding lines. However, account must be taken of variation in development and canopy architecture when interpreting performance and selecting breeding lines on the basis of CT.
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1080/01904167.2010.489989URL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
The field experiment was conducted to study the effects of plastic film and straw mulching on field environment and yield of maize.The results show that the temperature in crown layer of maize can be decreased by 1~2℃,and the evaporation of maize field is reduced significantly.In addition,the preservation effect on soil heat is also obvious.Therefore,the yield and water use efficiency(WUE)of maize can be raised significantly.
URL [本文引用: 1]
The field experiment was conducted to study the effects of plastic film and straw mulching on field environment and yield of maize.The results show that the temperature in crown layer of maize can be decreased by 1~2℃,and the evaporation of maize field is reduced significantly.In addition,the preservation effect on soil heat is also obvious.Therefore,the yield and water use efficiency(WUE)of maize can be raised significantly.
,
DOI:10.3724/SP.J.1006.2017.00754URL [本文引用: 2]
DOI:10.3724/SP.J.1006.2017.00754URL [本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 2]
After Feb. 2003, soil temperature at 14:00 p.m. of mulching treatments was much lower than that of un-mulching treatment. The air humidity of 5 cm above the ground under the condition of irrigation was decreased and the air temperature of 5 cm above the ground increased by straw mulching. The turbulent coefficient and turbulent flux was decreased and straw mulching increased the latent heat flux by irrigation and vice versa. Mulching, leading to the higher soil moisture content could enhance the penetrating ability of irrigation water. The yield and WUE of winter wheat were obviously reduced by straw mulching.
URL [本文引用: 2]
After Feb. 2003, soil temperature at 14:00 p.m. of mulching treatments was much lower than that of un-mulching treatment. The air humidity of 5 cm above the ground under the condition of irrigation was decreased and the air temperature of 5 cm above the ground increased by straw mulching. The turbulent coefficient and turbulent flux was decreased and straw mulching increased the latent heat flux by irrigation and vice versa. Mulching, leading to the higher soil moisture content could enhance the penetrating ability of irrigation water. The yield and WUE of winter wheat were obviously reduced by straw mulching.
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
根据1994~1995年在大型人工气候室内取得的试验资料,分析了大气CO2浓度倍增条件下,春小麦冠层温度、蒸发蒸腾和根层土壤剖面水分动态的变化状况。结果表明,大气CO2浓度增加1倍,春小麦冠层温度明显升高,且高水分条件升高的值比低水分条件下大0.7℃左右;蒸发蒸腾减少的幅度在不同土壤水分处理间也不相同,高水分处理的蒸发蒸腾量减少9.88%,低水分处理的减小8.50%,根层土壤含剖面水分消耗减小,高CO2浓度处理的根层土壤含水率高于低CO2浓度处理的,特别是在底部根系密度减小,其水分消耗明显减少。
URL [本文引用: 1]
根据1994~1995年在大型人工气候室内取得的试验资料,分析了大气CO2浓度倍增条件下,春小麦冠层温度、蒸发蒸腾和根层土壤剖面水分动态的变化状况。结果表明,大气CO2浓度增加1倍,春小麦冠层温度明显升高,且高水分条件升高的值比低水分条件下大0.7℃左右;蒸发蒸腾减少的幅度在不同土壤水分处理间也不相同,高水分处理的蒸发蒸腾量减少9.88%,低水分处理的减小8.50%,根层土壤含剖面水分消耗减小,高CO2浓度处理的根层土壤含水率高于低CO2浓度处理的,特别是在底部根系密度减小,其水分消耗明显减少。
,
DOI:10.1016/0378-4290(93)90119-8URL [本文引用: 1]
,
DOI:10.1016/j.fcr.2018.10.003URL [本文引用: 8]
,
URL [本文引用: 1]
Inspired from the comparatively mature technology of soil moisture conservation, developing in the semi-arid and arid region in China, the authors proposed the new concept of "Soil Moisture Conserving Irrigation(SMCI)", which may play a role, just like casting a brick to attract jade, in widening relevant research on water-saving irrigation and the development of water-saving undertaking of China. At the same time, through the plot experiment, the effect of the straw mulch on the field environment was studied. Result indicates soil water content with straw covered is obviously higher than contrast in 0~50 cm depth of soil Variation of temperature in one day inclined to moderation after straw mulching, the lowest range of temperature per day is 12.43℃, compared to 50.03℃. Topsoil soil bacterium, actinomyces, and fungi after straw mulching are 1.63 times, 1.68 times and 1.07 times as much as those of the contrast. The indexes of height, diameter and leaf area are obviously greater than those of the contrast, in the same treatment, the photosynthesis rate, transpiration rate of maize are all greater than those of the contrast, but the water use efficiency of single leaf is nearly the same between treatment and contrast. The yield of the treatment increased at the percent of 22.16%, 20.28% and 12.75%, and increased with the rise of quantity of irrigation water.
URL [本文引用: 1]
Inspired from the comparatively mature technology of soil moisture conservation, developing in the semi-arid and arid region in China, the authors proposed the new concept of "Soil Moisture Conserving Irrigation(SMCI)", which may play a role, just like casting a brick to attract jade, in widening relevant research on water-saving irrigation and the development of water-saving undertaking of China. At the same time, through the plot experiment, the effect of the straw mulch on the field environment was studied. Result indicates soil water content with straw covered is obviously higher than contrast in 0~50 cm depth of soil Variation of temperature in one day inclined to moderation after straw mulching, the lowest range of temperature per day is 12.43℃, compared to 50.03℃. Topsoil soil bacterium, actinomyces, and fungi after straw mulching are 1.63 times, 1.68 times and 1.07 times as much as those of the contrast. The indexes of height, diameter and leaf area are obviously greater than those of the contrast, in the same treatment, the photosynthesis rate, transpiration rate of maize are all greater than those of the contrast, but the water use efficiency of single leaf is nearly the same between treatment and contrast. The yield of the treatment increased at the percent of 22.16%, 20.28% and 12.75%, and increased with the rise of quantity of irrigation water.
,
[本文引用: 3]
[本文引用: 3]
,
DOI:10.1016/j.fcr.2020.107758URL [本文引用: 7]
,
DOI:10.3864/j.issn.0578-1752.2016.15.004URL [本文引用: 3]
【Objective】 Soil water and temperature are key factors for determining crop growth and resource use efficiency, response of soil water and temperature of crops to previous straw usually plays an important role in establishing efficient cropping systems and optimizing tillage measures. 【Method】 A field experiment was carried out in typical oasis irrigation region in order to optimize soil water and temperature of rotated maize under different previous wheat straw treatments and tillage modes, including no tillage with 25 cm height of wheat straw standing (NTSS), no tillage with 25 cm height of wheat straw covering (NTS), tillage with 25 cm height of wheat straw was incorporated in the soil (TIS), and conventional tillage without straw retention (CT). 【Result】 The results showed that NTSS, NTS significantly increased soil water content by 5.0% to 7.8% in 0 to 110 cm soil layer from sowing to seedling stage, 4.4% to 5.4% from jointing to big flare stage, 4.8% to 7.1% from silking to flowering stage, but there was no significant difference between NTSS and NTS, and NTS increased by 4.7% at filling stage, compared with CT. In particular, the treatment on NTS had advantage on maintaining high soil water content at whole growth period of maize. NTSS and NTS decreased evapotranspiration of rotated maize under plastic film mulching before silking stage, but evapotranspiration was increased after silking stages, which effectively coordinated water demand contradiction of maize growth at early and late stage, the effect of NTS was the best. NTSS and NTS optimized soil temperature of rotated maize under plastic film mulching, and the effect of NTS was obvious. NTS had higher soil temperature by 0.76℃ at eight o’clock in 0 to 25 cm soil layers in 2010, but lower by 3.67 to 3.87℃ at fourteen o’clock and 1.19 to 1.30℃ at eighteen o’clock, in 2010 and 2012, which indicate that NTS had effects on preservating soil temperature at low temperature stage at the day and night, and decreasing soil temperature at the high temperature stage. Meanwhile, NTSS and NTS reduced soil accumulated temperature in rotated maize field, and the reduction of NTS was more significant, it reduced by 67.1 to 76.2℃ from sowing to jointing stage, 29.3 to 50.5℃ from jointing to silking stage, and 46.7 to 75.3℃ from silking to late-filling stage, compared with CT. However, according to the value of difference between air and soil temperatures, NTS had the effect of maintaining soil heat in low temperature season and reducing soil temperature in high temperature season, which is an important regulation mechanism on growth and development of maize through reducing the excessive influence resulted from the temperature change. The grain yield of maize was 11.3% to 17.5% higher in the three straw returning treatments than that in CT check, NTS exhibited the most significant effect on high yield, reached 13 470 and 13 274 kg·hm-2 in two study years, which were higher than TIS by 5.6% to 9.0%. 【Conclusion】 The results show that NTS treatment can be recommended as the best previous wheat straw treatment for optimizing soil moisture and temperature of rotated maize at oasis irrigation areas.
DOI:10.3864/j.issn.0578-1752.2016.15.004URL [本文引用: 3]
【Objective】 Soil water and temperature are key factors for determining crop growth and resource use efficiency, response of soil water and temperature of crops to previous straw usually plays an important role in establishing efficient cropping systems and optimizing tillage measures. 【Method】 A field experiment was carried out in typical oasis irrigation region in order to optimize soil water and temperature of rotated maize under different previous wheat straw treatments and tillage modes, including no tillage with 25 cm height of wheat straw standing (NTSS), no tillage with 25 cm height of wheat straw covering (NTS), tillage with 25 cm height of wheat straw was incorporated in the soil (TIS), and conventional tillage without straw retention (CT). 【Result】 The results showed that NTSS, NTS significantly increased soil water content by 5.0% to 7.8% in 0 to 110 cm soil layer from sowing to seedling stage, 4.4% to 5.4% from jointing to big flare stage, 4.8% to 7.1% from silking to flowering stage, but there was no significant difference between NTSS and NTS, and NTS increased by 4.7% at filling stage, compared with CT. In particular, the treatment on NTS had advantage on maintaining high soil water content at whole growth period of maize. NTSS and NTS decreased evapotranspiration of rotated maize under plastic film mulching before silking stage, but evapotranspiration was increased after silking stages, which effectively coordinated water demand contradiction of maize growth at early and late stage, the effect of NTS was the best. NTSS and NTS optimized soil temperature of rotated maize under plastic film mulching, and the effect of NTS was obvious. NTS had higher soil temperature by 0.76℃ at eight o’clock in 0 to 25 cm soil layers in 2010, but lower by 3.67 to 3.87℃ at fourteen o’clock and 1.19 to 1.30℃ at eighteen o’clock, in 2010 and 2012, which indicate that NTS had effects on preservating soil temperature at low temperature stage at the day and night, and decreasing soil temperature at the high temperature stage. Meanwhile, NTSS and NTS reduced soil accumulated temperature in rotated maize field, and the reduction of NTS was more significant, it reduced by 67.1 to 76.2℃ from sowing to jointing stage, 29.3 to 50.5℃ from jointing to silking stage, and 46.7 to 75.3℃ from silking to late-filling stage, compared with CT. However, according to the value of difference between air and soil temperatures, NTS had the effect of maintaining soil heat in low temperature season and reducing soil temperature in high temperature season, which is an important regulation mechanism on growth and development of maize through reducing the excessive influence resulted from the temperature change. The grain yield of maize was 11.3% to 17.5% higher in the three straw returning treatments than that in CT check, NTS exhibited the most significant effect on high yield, reached 13 470 and 13 274 kg·hm-2 in two study years, which were higher than TIS by 5.6% to 9.0%. 【Conclusion】 The results show that NTS treatment can be recommended as the best previous wheat straw treatment for optimizing soil moisture and temperature of rotated maize at oasis irrigation areas.
,
DOI:10.2134/agronj2012.0459URL [本文引用: 2]
,
DOI:10.3923/jas.2010.564.569URL [本文引用: 1]
,
DOI:10.1093/jxb/erq304URLPMID:21030385 [本文引用: 1]
Past increases in yield potential of wheat have largely resulted from improvements in harvest index rather than increased biomass. Further large increases in harvest index are unlikely, but an opportunity exists for increasing productive biomass and harvestable grain. Photosynthetic capacity and efficiency are bottlenecks to raising productivity and there is strong evidence that increasing photosynthesis will increase crop yields provided that other constraints do not become limiting. Even small increases in the rate of net photosynthesis can translate into large increases in biomass and hence yield, since carbon assimilation is integrated over the entire growing season and crop canopy. This review discusses the strategies to increase photosynthesis that are being proposed by the wheat yield consortium in order to increase wheat yields. These include: selection for photosynthetic capacity and efficiency, increasing ear photosynthesis, optimizing canopy photosynthesis, introducing chloroplast CO(2) pumps, increasing RuBP regeneration, improving the thermal stability of Rubisco activase, and replacing wheat Rubisco with that from other species with different kinetic properties.
,
DOI:10.4067/S0718-58392014000300011URL [本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
DOI:10.1016/0378-4290(93)90145-DURL [本文引用: 3]
,
URL [本文引用: 1]
Using two summer maize (Zea mays L.) varieties Zhengdan 958 and Xianyu 335, a field experiment was conducted to study the regulatory effects of row-spacing (equidistant row and narrow-wide row) and plant-spot spacing arrangement (1 plant per spot, 2 plants per spot, 3 plants per spot) on grain yield components, canopy structure and photosynthetic characteristics after anthesis under plant population density 7.5×104 plants·hm-2. Moreover, the characters of grain-filling were simulated by Richards’model. The results suggested that yield, dry matter accumulated, crop growth rate, grainfilling rate, canopy photosynthesis capacity were higher under widenarrow row than under equidistant row, and were higher for 2 plants per spot than for 1 or 3 plants per spot. The highest maize yields (13.12 and 13.72 t·hm-2 for Zhengdan 958 and Xianyu 335, respectively) were observed under widenarrow row with 2 plants per spot. Under this pattern, internal illumination condition of the canopy, net photosynthetic rate and leaf area index were improved, and the contradiction between the plant individual and group was alleviated. Meanwhile, grainfilling capacity was promoted and accumulated amount of dry matter was elevated ultimately. It was concluded that widenarrow pattern with 2 plants per spot is an effective cultivation pattern to increase maize yield in HuangHuaiHai Plain.
URL [本文引用: 1]
Using two summer maize (Zea mays L.) varieties Zhengdan 958 and Xianyu 335, a field experiment was conducted to study the regulatory effects of row-spacing (equidistant row and narrow-wide row) and plant-spot spacing arrangement (1 plant per spot, 2 plants per spot, 3 plants per spot) on grain yield components, canopy structure and photosynthetic characteristics after anthesis under plant population density 7.5×104 plants·hm-2. Moreover, the characters of grain-filling were simulated by Richards’model. The results suggested that yield, dry matter accumulated, crop growth rate, grainfilling rate, canopy photosynthesis capacity were higher under widenarrow row than under equidistant row, and were higher for 2 plants per spot than for 1 or 3 plants per spot. The highest maize yields (13.12 and 13.72 t·hm-2 for Zhengdan 958 and Xianyu 335, respectively) were observed under widenarrow row with 2 plants per spot. Under this pattern, internal illumination condition of the canopy, net photosynthetic rate and leaf area index were improved, and the contradiction between the plant individual and group was alleviated. Meanwhile, grainfilling capacity was promoted and accumulated amount of dry matter was elevated ultimately. It was concluded that widenarrow pattern with 2 plants per spot is an effective cultivation pattern to increase maize yield in HuangHuaiHai Plain.
,
DOI:10.1016/j.fcr.2017.01.005URL [本文引用: 3]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3724/SP.J.1006.2015.00633URL [本文引用: 1]
Conservation tillage has the advantages of enhancing water use efficiency and reducing water/energy consumption simultaneously in common cropping systems. However, this technique has not been well studied and practiced in intercropping system. A field experiment was conducted in 2011 and 2012 growing seasons to investigate the effects of different straw returning ways on crop yields, and interspecific competitiveness and complementation in wheat/maize intercropping system. Three wheat straw returning treatments were designed, which were no-tillage with 25 cm straw standing (NTSS), no-tillage with 25 cm straw covering (NTS), and tillage with 25 cm straw incorporation (TIS). Conventional tillage (CT) was used as the control. In the intercropping system, the land use efficiency (LER) of reduced tillage treatments under straw returning condition increased compared with that of CT, showing the intercropping superiority (LER>1). Simultaneously, the competitiveness of wheat with maize in the whole wheat growing duration decreased in treatments NTSS, NTS and TIS by 37–54%, 108–141%, and 22–24%, respectively. Compared with monocropping maize, intercropping maize had higher rates of relative growth with the increased percentages of 54–59% in NTSS, 66–71% in NTS, 61–63% in TIS and 71–78% in CT. Clearly, NTS showed the most effect on maize growth after wheat harvest. In the intercropping system, the total yields of both crops were 6–10% (2011) and 4–12% (2012) higher in the straw returning treatments than in CT. NTS exhibited the most significant effect on enhancing yield. A quadratic relationship was observed between the total yield of intercropping system and the competitivenessof wheatversus maize, and high yields of both crops were obtained when the competitiveness ranged from 0.24 to 0.27. Our results showed that straw returning in combination with reduced tillage is feasible to regulate the interspecific competitiveness in wheat/maize intercropping system, and NTS treatment is recommended.
DOI:10.3724/SP.J.1006.2015.00633URL [本文引用: 1]
Conservation tillage has the advantages of enhancing water use efficiency and reducing water/energy consumption simultaneously in common cropping systems. However, this technique has not been well studied and practiced in intercropping system. A field experiment was conducted in 2011 and 2012 growing seasons to investigate the effects of different straw returning ways on crop yields, and interspecific competitiveness and complementation in wheat/maize intercropping system. Three wheat straw returning treatments were designed, which were no-tillage with 25 cm straw standing (NTSS), no-tillage with 25 cm straw covering (NTS), and tillage with 25 cm straw incorporation (TIS). Conventional tillage (CT) was used as the control. In the intercropping system, the land use efficiency (LER) of reduced tillage treatments under straw returning condition increased compared with that of CT, showing the intercropping superiority (LER>1). Simultaneously, the competitiveness of wheat with maize in the whole wheat growing duration decreased in treatments NTSS, NTS and TIS by 37–54%, 108–141%, and 22–24%, respectively. Compared with monocropping maize, intercropping maize had higher rates of relative growth with the increased percentages of 54–59% in NTSS, 66–71% in NTS, 61–63% in TIS and 71–78% in CT. Clearly, NTS showed the most effect on maize growth after wheat harvest. In the intercropping system, the total yields of both crops were 6–10% (2011) and 4–12% (2012) higher in the straw returning treatments than in CT. NTS exhibited the most significant effect on enhancing yield. A quadratic relationship was observed between the total yield of intercropping system and the competitivenessof wheatversus maize, and high yields of both crops were obtained when the competitiveness ranged from 0.24 to 0.27. Our results showed that straw returning in combination with reduced tillage is feasible to regulate the interspecific competitiveness in wheat/maize intercropping system, and NTS treatment is recommended.
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1007/s00374-013-0805-7URL [本文引用: 1]
Proper rice straw management in paddy fields is necessary in order to sustain soil productivity and reduce greenhouse gas emissions. A field experiment was carried out from 2008 to 2011 in subtropical China: (1) to monitor rice yield, soil available nutrients, CH4, and N2O emissions and (2) to evaluate the effects of timing of rice straw incorporation and joint N application rate in a double rice cropping system. The total amount of rice straw from one cropping season was incorporated in winter (W-S) or in spring (S-S) and mineral N was jointly applied with rice straw incorporation at rates of 0, 30, and 60 % of the basal fertilization rate (N-0B, N-30B, and N-60B) for the first rice crop. Soil water was naturally drained during the period of winter fallow (P-WF) and controlled under intermittent irrigation during the period of first rice growth (P-FR). Compared with S-S, W-S significantly (P < 0.05) increased the first rice yield only in the flooding year (2010), and increased the soil available K concentration after P-WF and P-FR in 2008-2009 and the hydrolysable N concentration after P-WF in 2010-2011. Meanwhile, W-S significantly decreased the total CH4 emission by about 12 % in 2009-2010 and 2010-2011, but increased the total N2O emission by 15-43 % particularly during P-WF in all 3 years, resulting in a lower GWP in W-S in the flooding year and no differences in the nonflooding years. Compared with N-0B, joint N application (N-60B and N-30B) increased the soil hydrolysable N after P-WF in all 3 years. Meanwhile, it decreased the total CH4 emissions by 21 % and increased the N2O emissions during P-WF by 75-150 % in the nonflooding years, but the net GWP was lower in N-60B than in N-0B. The results suggested that the rice straw incorporation with joint N application in winter is more sustainable compared with the local practices such as rice straw incorporation in spring or open-field burning.
,
[本文引用: 1]
[本文引用: 1]