删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于Sentinel卫星及无人机多光谱的滨海冬小麦种植区土壤盐分反演研究——以黄三角垦利区为例

本站小编 Free考研考试/2021-12-26

奚雪,1, 赵庚星,1, 高鹏1, 崔昆1, 李涛21山东农业大学资源与环境学院/土肥资源高效利用国家工程实验室,山东泰安 271018
2山东省土壤肥料总站,济南250100

Inversion of Soil Salinity in Coastal Winter Wheat Growing Area Based on Sentinel Satellite and Unmanned Aerial Vehicle Multi-Spectrum— A Case Study in Kenli District of the Yellow River Delta

XI Xue,1, ZHAO GengXing,1, GAO Peng1, CUI Kun1, LI Tao2 1College of Resources and Environment, Shandong Agricultural University/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai’an 271018, Shandong
2Soil and Fertilizer Working Station of Shandong, Jinan 250100

通讯作者: 赵庚星,E-mail: zhaogx@sdau.edu.cn

责任编辑: 杨鑫浩
收稿日期:2020-03-7接受日期:2020-05-5网络出版日期:2020-12-16
基金资助:国家自然科学基金.41877003
山东省重大科技创新工程项目.2019JZZY010724
山东省“双一流”奖补资金.SYL2017XTTD02


Received:2020-03-7Accepted:2020-05-5Online:2020-12-16
作者简介 About authors
奚雪,E-mail: 1349637259@qq.com







摘要
【目的】探究黄河三角洲麦田土壤盐分准确高效的遥感提取方法,掌握土壤盐渍化程度与分布。【方法】以垦利区为研究区,均匀布设冬小麦种植区样点77个,同时设置代表性试验区2个,网格布设样点99个,实测采集麦田土壤表层盐分数据及试验区无人机多光谱图像。筛选红、绿、红边、近红4个波段及SI、NDVI、DVI、RVI、GRVI 5个光谱指数中的敏感光谱参量,采用逐步回归、偏最小二乘法、BP神经网络及SVM支持向量机4种方法建立土壤盐分估测模型,使用波段比值均值法得到Sentinel-2A卫星影像相应波段的修正系数,进而将筛选的土壤盐分估测模型转换为基于卫星影像的反演模型,经麦区实测样点数据验证,得到最佳的麦区土壤盐分反演模型,实现试验区和研究区2个尺度的麦田土壤盐分反演。【结果】无人机4个波段及光谱指数NVDI、RVI、SI与土壤盐分含量相关性显著,4种建模方法的13个模型中,以NDVI、RVI、SI建立的4个指数模型的建模及验证R2均优于其他模型;对4个模型进行升尺度修正及验证,效果最佳的反演模型为偏最小二乘法光谱指数模型:Y=-9.4774×NDVI1+0.4794×RVI1+3.0747×SI1+5.0604,验证R2为0.513,RMSE为1.379;利用该模型反演得到了试验区及整个研究区麦田土壤盐分等级分布图,结合实测插值及调查结果,证明反演模型及空间分布结果准确、可靠。【结论】本研究构建了卫星、无人机一体化的滨海麦区土壤盐分反演模型,对滨海盐渍区农作物的生产管理有积极参考价值。
关键词: 冬小麦;无人机;Sentinel-2A卫星;土壤盐分;反演模型

Abstract
【Objective】 The purpose of this paper was to explore an accurate and efficient remote sensing method for soil salinity extraction of wheat field in the Yellow River Delta, and obtain the degree and distribution of soil salinization of wheat fields.【Method】This study took Kenli District as the research area, and set 77 sample points in winter wheat growing area evenly. At the same time, two representative test areas and 99 grid sample points were set, and the surface soil salinity data in wheat field and the multi-spectral images of UAV in the test area were collected. The sensitive spectral parameters were screened from four spectral bands (red, green, red edge, and near-infrared) and five spectral indexes (SI, NDVI, DVI, RVI, and GRVI). Stepwise regression, partial least squares, BP neural network and support vector machine methods were used to establish models for predicting the soil salinity, and the band ratio mean method was used to obtain the correction coefficient of the corresponding band of sentinel-2A satellite image. And then the selected soil salinity estimation model was converted into an inversion model based on satellite image. After using the data from the wheat field sample points to verify the models, the best soil salinity inversion model in wheat field was selected, and two scales of soil salinity inversion are realized in the test areas and the research area.【Result】The results showed that the four bands of UAV and the spectral indexes NVDI, RVI and SI were significantly correlated with soil salinity. Among the 13 models of the four modeling methods, the four index models established by NDVI, RVI and SI were better than the other models in modeling and verifying R2; The best inversion model was the spectral index model obtained by partial least square method: Y=-9.4774×NDVI1+ 0.4794×RVI1+ 3.0747×SI1+ 5.0604, and the accuracy R2 was 0.513 and RMSE was 1.379. By using this model, the soil salinity distribution map of the test area and the whole wheat area was obtained. Combined with the measured interpolation and the survey, the inversion model and spatial distribution results were proved to be accurate and reliable. 【Conclusion】In this study, the soil salinity inversion model of the coastal wheat area based on the integration of satellite and UAV was constructed, which had positive reference value for the production and management of crops in the coastal saline area.
Keywords:winter wheat;unmanned aerial vehicle;sentinel-2A satellite;soil salinity;inversion model


PDF (2671KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
奚雪, 赵庚星, 高鹏, 崔昆, 李涛. 基于Sentinel卫星及无人机多光谱的滨海冬小麦种植区土壤盐分反演研究——以黄三角垦利区为例[J]. 中国农业科学, 2020, 53(24): 5005-5016 doi:10.3864/j.issn.0578-1752.2020.24.004
XI Xue, ZHAO GengXing, GAO Peng, CUI Kun, LI Tao. Inversion of Soil Salinity in Coastal Winter Wheat Growing Area Based on Sentinel Satellite and Unmanned Aerial Vehicle Multi-Spectrum— A Case Study in Kenli District of the Yellow River Delta[J]. Scientia Acricultura Sinica, 2020, 53(24): 5005-5016 doi:10.3864/j.issn.0578-1752.2020.24.004


开放科学(资源服务)标识码(OSID):

0 引言

【研究意义】土壤盐渍化是国内外广泛关注的生态环境问题,由于自然和人为因素的影响,我国北方干旱、半干旱和半湿润地区盐渍化土壤广泛分布,滨海区域尤为突出,其中黄河三角洲自20世纪70年代开始,水沙减少、海水倒灌导致陆地水盐失衡,严重的盐渍化导致土壤退化、板结,地力降低限制了农作物的生长,严重阻碍了区域农业经济的可持续发展[1]。【前人研究进展】传统的土壤盐分监测方法为实地采样化验分析法,土壤采样样点数量受限且费时费力;电磁感应技术数据获取均匀但处理较为复杂;而遥感图像反演技术已经在土壤盐分监测上取得了较高的应用效果,且数据来源丰富、精度高、获取方便快捷[2,3]。多数****基于多源卫星影像,结合光谱及地面数据建模,实现了土壤盐分含量的大范围定量反演[4,5,6,7,8];陈俊英等[9]和ZHANG等[10]结合不同空间尺度,使用星机地一体的多平台遥感技术手段进行土壤盐分反演,均取得较好结果;SONG等[11]选取Landsat TM图像的数字波段、植被指数和地形指数作为变量,利用广义加性模型实现了土壤盐分的定量估测。在植被生长与土壤盐分含量关系遥感检测方面,多数****通过研究土壤盐分与植被覆盖、长势等的时空变化,寻找两者之间的定量关系,如贾吉超等[12]通过多时相影像叠加分析,研究了黄河三角洲典型区域麦棉种植面积的变化与土壤盐分含量的关系,并建立了研究区土壤盐分与小麦的长势模型;张同瑞等[13]采用多光谱数据,筛选敏感光谱植被指数,建立并优选出土壤盐分含量监测的最佳模型;ZHANG等[14]通过对7种典型盐敏植物的高光谱数据与其根区土壤样品的盐分含量进行分析,探讨了黄河三角洲地区植被光谱与土壤盐度的关系;张天举等[15]和张雪妮等[16]依据多种植物群落的空间变化,研究与之对应的土壤盐分分布特征。在建模过程中,选择敏感光谱参数与最佳建模类型和方法是提高模型精度的重要环节,如安德玉等[17]采用实测的高光谱数据进行多种模型的盐分反演,结合HICO波段进行模型修正,从而得到了可运用于大尺度的反演模型。对于不同来源、不同尺度的光谱数据,采用敏感光谱波段组合、光谱指数筛选、改进、微分等方法进行处理,建立多类土壤盐分估测模型,可以有效提升模型的土壤盐分反演效果[18,19,20,21,22,23,24,25]。在模型类型的选择上,多数****使用线性回归方法和机器学习算法建立反演土壤盐分模型,比较了不同方法得到的反演模型的精度[26,27,28,29]。【本研究切入点】在黄河三角洲滨海盐渍土典型区,采用星机一体化的技术方法,专门针对冬小麦种植区域的土壤盐分反演研究较为薄弱。【拟解决的关键问题】本文通过实地调查获取土壤盐分数据,筛选无人机多光谱波段并构建光谱参数,建立小麦光谱与土壤盐分间的多种关系模型,进而根据无人机图像与卫星影像关系进行模型修正,实现麦田土壤盐分估测模型的升尺度反演,最终得到研究区冬小麦种植区域的土壤盐分分布。

1 材料与方法

1.1 研究区概况

研究区选择山东省东营市垦利区,位于东经117°90′—119°82′,北纬37°01′—37°99′,是黄河三角洲滨海盐渍土的典型区域,地处暖温带半湿润大陆性季风气候区,光照充足降水少,蒸发大,旱涝不均,季节性干湿交替明显。研究区地势低平,自西南至东北降低,地表水来源为自然降水及黄河水,地下水矿化度高、埋深浅,主要土壤类型为盐土和潮土,盐化程度高,盐渍土分布广泛。种植的主要农作物为小麦、玉米和棉花,主要的种植区分布在区内西南部的地势较高区和东北部的黄河沿岸区2个部分,其土壤盐渍化变异明显,是本研究的理想区域。

综合垦利区域调查、地貌土壤及作物分布情况,分别在研究区西南部和东北部2个作物集中分布区,选择A、B 2个试验区,均处于麦田集中种植区域,耕作方式一致,灌排条件良好,小麦长势存在空间差异性,具有较好的代表性。其中A试验区为100 m×50 m的长方形区域,其南侧分布着灌溉沟渠及农用道路,B试验区为50 m×50 m的四边形区域,其西侧有灌溉沟渠及乡道,其余相邻区域均分布着麦田(图1)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1研究区及试验区分布图

Fig. 1Distribution of study area and test area



1.2 地面数据采集与处理

4月份垦利降雨较少,地表盐化明显、稳定,各地类与农作物覆被差异显著,其他主要农作物均未播种,冬小麦处于返青拔节期,便于提取光谱特征[30]。于2019年4月10日至16日进行了研究区野外调查,为确保布点均匀,研究区每5 km×5 km的网格内预布设3个样点,最终采集了位于麦区的77个样点。针对2个试验区,分别在A、B试验区的测量区域外围边界,每10 m放置一个插地牌,使用测绳连接后形成10 m×10 m的样点格网,以其格网交叉点作为采样点,最终共采集99个样点数据,其中A试验区63个,B试验区36个。

使用TrimbleGeo7手持式差分GPS,测量试验区四至点坐标作为无人机图像空间校正的地面控制点。将EC110便携式盐分计进行电导率温度校正后,对每个样点植株下方0—10 cm土层厚度的土壤电导率(EC)进行多次测量,待稳定后记录,取测量值均值作为各样点EC值,dS·m-1。根据前期研究结果[31],利用公式SS= 2.18×EC+0.727,将实测EC数据转换为土壤盐分含量(SS),g·kg-1

1.3 无人机图像数据采集及预处理

使用Matrice600PRO六旋翼无人机搭载Sequoia多光谱相机采集多光谱数据,相机带有4个120万单色传感器:绿(bG)、红(bR)、红边(bREG)、近红(bNIR)光谱波段,中心波长分别为550、660、735、790 nm。阳光传感器可进行自校准,且带有GPS模块,每幅相片均存储了地理标记。飞行时,天气晴朗微风,飞行时间为10:00—14:00,飞行高度50 m,速度5 m·s-1,地面分辨率2—3 cm。

使用Pix4D软件进行无人机多幅图像拼接及辐射校正,ENVI5.3进行波段叠加与图像裁剪,在ArcGIS10.1中使用控制点进行空间校正后展点,提取99个样点在4个波段的像元反射率。

1.4 卫星图像获取及预处理

Sentinel-2卫星是具有高分辨率、重访率及更新率的多光谱成像卫星,包含A、B 2颗小卫星,重访周期5 d,主要载荷为MSI多光谱成像仪,覆盖0.4—2.4 μm光谱范围,包含10 m(4个波段)、20 m(6个波段)、60 m(3个波段)的地面分辨率,可监测陆地植被生长、覆盖、健康状况,获取农作物种植、土地利用变化等信息。本文下载2019年4月17日的Sentinel-2A卫星影像(https://scihub.copernicus.eu/),选择的Level-2A级产品是经辐射定标和大气校正的大气底层反射率数据。

选择与无人机光谱波段中心波长相近的Sentinel卫星波段:b3、b4、b6、b7,中心波长依次为560、665、740、783 nm,空间分辨率依次为10、10、20、20 m,在ENVI5.3中为影像统一投影坐标,进行重采样、边界裁剪、图层叠加,输出多波段影像。

1.5 基于无人机的土壤盐分估测模型构建与验证

根据植被冠层在可见光强吸收及近红外强反射的特性,使用无人机采集的多波段光谱计算归一化植被指数NDVI、差值植被指数DVI、比值植被指数RVI、绿波段比值植被指数GRVI和盐分指数SI(表1)。

Table 1
表1
表1光谱指数计算公式
Table 1Calculation formula of spectral index
光谱指数
Spectral index
计算公式
Computational formula
参考文献
Reference
归一化植被指数NDVI(bNIR-bR)/( bNIR+bR)[32]
比值植被指数RVIbNIR/bR[32]
差值植被指数DVIbNIR-bR[32]
绿波段比值植被指数GRVIbNIR/bG[32]
盐分指数SI$\sqrt{bG\times bR}$[33]

新窗口打开|下载CSV

将99个样本随机划分为66个建模样本和33个验证样本,对66个样点土壤盐分含量数据与无人机图像4个波段、5种光谱指数进行相关性分析,利用公式VIF=1/(1-r×r)(r为光谱参量间的相关系数)计算光谱参量间的方差膨胀因子(VIF[19],排除相关性较低或VIF>10,即无法通过共线性诊断的参数。对敏感波段及光谱指数,分别在IBM SPSS19和Matlab R2012b软件中使用线性逐步回归方法、偏最小二乘法,建立统计分析模型,在Matlab R2012b软件中使用BP神经网络、支持向量机方法建立机器学习模型,其中BP神经网络设置训练的迭代次数1 000,精度0.003,学习速率为0.01;支持向量机方法设置类型为v-SVR,选用高斯核函数(RBF),通过网络搜索和交叉验证选择最佳惩罚因子C与核函数参数gamma,训练出支持向量机模型。

用33个样本验证所得模型,以决定系数R2为主要评价依据,结合均方根误差RMSE评价建模及验证精度,R2在0.50—0.65,0.66—0.81,0.82—0.90,0.91—1.00的闭区间内的预测能力依次为一般、中等、良好、优秀[10]。分别筛选出4种方法中拥有较高R2及相对较低RMSE的土壤盐分估测模型,同时,基于试验区卫星影像数据,建立4个同方法、同光谱自变量的估测模型。通过比较两者的模型精度,以验证采用无人机多光谱建模是否提高了反演精度,确认无人机盐分估测模型进行升尺度修正及应用的必要性,其中BP神经网络模型根据其验证精度进行筛选和比较。

1.6 基于卫星影像的土壤盐分反演模型修正与应用

1.6.1 卫星影像的反射率修正及反演模型 由于卫星数据及无人机图像数据存在光谱分辨率的差异,需要对卫星光谱波段进行修正,以期达到一体化的目的。在试验区每个样点对应的卫星影像单个像元范围内,提取无人机图像各波段的平均反射率bRⅴGⅴREGⅴNIR及对应波段的卫星单一像元反射率b3ⅴ4ⅴ6ⅴ7,参照前人研究[10],选用比值均值法确定卫星4个波段的修正系数C,公式如下:

$C=\frac{\sum\nolimits_{i=1}^{n}{bR\vee G\vee REG\vee NIR}/b3\vee 4\vee 6\vee 7}{n}$
式中,n为参与计算的样点数量(n=99),以各波段修正系数乘以对应卫星波段参量,对筛选出的模型中的光谱自变量进行修正后,得到升尺度土壤盐分反演模型。

1.6.2 反演模型验证 导出卫星影像上研究区77个样点的各波段像元值,计算修正后的光谱参数。升尺度土壤盐分反演的统计分析模型代入修正后的光谱参数,得到的结果与冬小麦种植区实测盐分数据进行相关性分析;机器学习模型则直接将修正的光谱参数、实测盐分作为验证集放入BP神经网络及支持向量机模型中进行验证,根据R2RMSE判断模型修正效果。

1.6.3 研究区冬小麦分布信息提取及土壤盐分反演 为得到研究区中的麦区空间分布,使用ENVI对Sentinel-2A多波段影像划分小麦、居民点、水体、滩涂、荒地5类感兴趣区,统计不同地物在各个波段的感兴趣区像元值均值,计算NDVI均值,绘制折线以确定分类的阈值,建立决策树模型进行地物分类,结合目视解译提取研究区小麦种植区域。

综合试验区不同方法盐分估测模型精度及研究区升尺度修正反演模型的验证结果,筛选出2个尺度土壤盐分反演的最佳模型,使用该模型进行土壤盐分反演,得到试验区及冬小麦种植区盐分反演图,使用反距离加权(inverse distance weighted,IDW)方法进行土壤盐分实测值插值,得到2个尺度盐分等级分布图。统计反演图与实测插值图的等级面积比例,综合2个图的空间分布及不同等级占比变化趋势的一致性,结合实际调查分析模型反演效果。土壤盐渍化程度按照相关分级标准划分为5个等级(表2[34]

Table 2
表2
表2垦利区土壤盐渍化程度分级标准
Table 2Grade standard of soil salinization degree in Kenli district
土壤盐渍化等级
Soil salinity grade
非盐渍化
Non-salinized
轻度盐渍化
Mild salinized
中度盐渍化
Moderate salinized
重度盐渍化
Severe salinized
盐土
Salinized soil
分级标准
Grade standard (g·kg-1)
SS<11≤SS<22≤SS<44≤SS<6SS>6
等级 Grade12345

新窗口打开|下载CSV

2 结果

2.1 光谱参数筛选

4个无人机光谱波段及5种光谱指数与试验区地面盐分数据进行的相关性分析结果如表3—4所示。在相关性矩阵中,4个波段与土壤盐分相关性均较好,光谱指数中的GRVI与土壤盐分相关性较低,DVI与NDVI间的r为0.953,VIF值大于10,存在较强的多重共线性,故选择4个波段和光谱指数NDVI、RVI、SI作为自变量进行建模。

Table 3
表3
表3试验区样点各波段与实测土壤盐分含量相关性
Table 3Correlation between the bands of sample points and the measured soil salinity content in test area
变量 VariableSSGRREGNIR
SS1
G0.677**1
R0.667**0.506**1
REG0.616**0.431**0.578**1
NIR-0.671**-0.561**-0.449**-0.486**1
** 表示在 0.01水平(双侧)上显著相关。下同
** indicates the significant correlation at 0.01 level(bilateral). The same as below

新窗口打开|下载CSV

Table 4
表4
表4试验区样点光谱指数与实测土壤盐分含量相关性
Table 4Correlation between the spectral indexes of sample points and the measured soil salinity content in test area
变量 VariableSSSINDVIDVIRVIGRVI
SS1
SI0.770**1
NDVI-0.787**-0.808**1
DVI-0.780**-0.768**0.953**1
RVI-0.560**-0.696**0.890**0.844**1
GRVI-0.432**-0.690**0.468**0.557**0.398**1

新窗口打开|下载CSV

2.2 土壤盐分估测模型的构建与验证

采用逐步回归、偏最小二乘、BP神经网络及SVM支持向量机方法,基于无人机多光谱图像,以66个建模样本的4个波段和3个光谱指数为自变量,土壤盐分含量为因变量建立土壤盐分估测模型,并使用33个验证样本对模型进行验证(表5)。可以看出,4种建模方法的13个模型中,由NDVI、RVI、SI建立的4个光谱指数模型的建模和验证精度均为最佳,均高于光谱波段模型。其中,建模精度最高的是支持向量机模型,R2为0.835,但其验证精度相比其他3个模型较低,说明该模型稳定性较差。从逐步回归模型可以看出,叠加敏感波段项、指数项可以逐步提高建模精度。使用4种建模方法,基于卫星影像,以指数NDVI、RVI、SI为自变量建立土壤盐分估测模型(表6)。通过比较发现,4个无人机光谱指数模型精度均高于同一方法的卫星光谱指数模型,表明采用无人机光谱建模可以提高土壤盐分的反演精度。因此,选择由NDVI、RVI、SI建立的4个无人机光谱指数模型进行下一步的升尺度模型修正与验证。

Table 5
表5
表5基于无人机多光谱的土壤盐分估测模型
Table 5Soil salinity estimation model based on multi-spectral of UAV
建模方法
Modeling approach
光谱参量
Spectral parameter
估测模型
Estimating model
建模精度
Modeling accuracy
验证精度
Verification accuracy
R2RMSER2RMSE
逐步回归
Stepwise regression
bGY=18.609×bG+0.1690.4581.2670.4010.882
bG,bRY=12.546×bG+19.044×bR-1.1200.5991.0890.6000.729
bG,bR,bNIRY=8.360×bG+15.775×bR-9.912×bNIR +3.1160.6730.9830.6500.847
bG,bR,bNIR,bREGY=7.988×bG+12.282×bR-8.525×bNIR+6.979×bREG+2.1010.6940.9510.6480.771
NDVIY=-7.507×NDVI+6.3080.6201.0610.6680.685
NDVI,RVIY=-13.261×NDVI+0.69×RVI+6.7340.7150.9180.6920.897
NDVI,RVI,SIY=-10.287×NDVI+0.651×RVI+13.486×SI+3.8430.7560.8500.7100.907
偏最小二乘法
Partial least squares
bG,bR,bNIR,bREGY=6.021×bG+6.5986×bR+6.2650×bNIR-4.1737×bREG+1.32600.6891.1140.7191.177
NDVI,RVI,SIY=-9.4774×NDVI+0.4794×RVI+3.0747×SI+5.06040.7340.9540.7840.769
BP神经网络
The BP neural network
bG,bR,bNIR,bREG0.7140.893
NDVI,RVI,SI0.7530.993
支持向量机
Support vector machine
bG,bR,bNIR,bREG0.8040.5900.4670.473
NDVI,RVI,SI0.8350.3530.6400.512

新窗口打开|下载CSV

Table 6
表6
表6基于卫星影像光谱指数的土壤盐分估测模型
Table 6Soil salinity estimation model based on spectral index of satellite image
建模方法
Modeling approach
估测模型
Estimating model
建模精度
Modeling accuracy
验证精度
Verification accuracy
R2RMSER2RMSE
逐步回归Stepwise regressionY=-97.012×NDVI+22.298×RVI-13.905×SI-8.4890.5091.1900.4340.874
偏最小二乘法Partial least squaresY=-57.4889×NDVI+13.3418×RVI+21.9667×SI-9.03230.5550.9400.4140.964
BP神经网络The BP neural network0.6020.900
支持向量机Support vector machine0.6121.1660.4380.432

新窗口打开|下载CSV

2.3 反演模型的升尺度修正与验证

2.3.2 反演模型修正 在试验区每个样点对应卫星单个像元范围内,统计无人机各波段图像多个小像元的平均反射率,提取样点的卫星影像反射率,通过比值均值法,计算出卫星数据每个波段的修正系数为0.82483(b3)、0.63767(b4)、0.51249(b6)和1.15859(b7),将4个模型的自变量NDVI、RVI、SI使用卫星波段乘以修正系数进行修正,从而将基于无人机平台的土壤盐分估测模型转换为基于卫星影像的反演模型。修正后的基于卫星图像的各模型自变量为:

$NDVI1=\frac{1.15859\times b7-0.63767\times b4}{1.15859\times b7+0.63767\times b4}$
$RVI1=1.81691\frac{b7}{b4}$
$SI1=0.72524\sqrt{b3\times b4}$
2.3.3 反演模型验证 根据研究区中77个麦区样点4个波段反射率,计算已修正的指数NDVI1、RVI1、SI1,分别代入4个修正后的反演模型,结合实测土壤盐分含量进行验证。其中逐步回归反演模型Y=-10.287×NDVI1+0.651×RVI1+13.486×SI1+3.843的验证R2为0.485,RMSE为1.339;偏最小二乘模型Y=-9.4774×NDVI1+0.4794×RVI1+3.0747×SI1+5.0604的验证R2为0.513,RMSE为1.379。同样地,将指数NDVI1、RVI1、SI1作为测试集放入已构建好的BP神经网络和支持向量机模型进行验证,结果R2分别为0.436、0.387,RMSE分别为1.297、1.006。机器学习模型的验证RMSE相对较低,而统计分析模型验证R2均高于机器学习模型,其中仅偏最小二乘法构建的指数模型R2大于0.5。

2.4 模型应用与盐分反演

综合建模及2个尺度的验证结果,4个模型中偏最小二乘法建立的光谱指数具有更好的适用性和稳定性,选用该模型进行2个尺度的土壤盐分反演。

2.4.1 试验区土壤盐分反演 基于试验区土壤盐分实测值和最佳模型,得到试验区土壤盐分等级分布(图2),并对其进行等级面积统计(表7),总体看,麦田土壤盐分的反演结果与实测结果基本一致,各等级面积占比的变化趋势大致相同,而比较看,反演结果对土壤盐分空间分布的反映则更为精细。试验区A总体盐渍化程度较高,无非盐渍化及轻度盐渍化土壤分布,中、重度盐渍化土壤面积占83.72%,盐土面积占16.28%。土壤盐分含量呈现南部高、北部低趋势,其中盐土集中分布于西南部区域。试验区B总体盐渍化程度偏低,其中非盐化和轻度盐渍化土壤面积比例为39.11%,集中在小麦长势良好的北部,而试验区中部和南部重度盐渍化土壤面积达50.63%,且空间分布差异不大。

图2

新窗口打开|下载原图ZIP|生成PPT
图2试验区土壤盐分实测插值图(左)及反演图(右)

Fig. 2Interpolation diagram (left) and inversion diagram (right) of soil salinity in the test area



Table 7
表7
表7试验区土壤盐分等级面积统计
Table 7Grade-area statistics of soil salinity in test area (%)
土壤盐分等级分布图
Distribution diagram of soil salinity grade
试验区A Test area A试验区B Test area B
1234512345
实测图Interpolation diagram0047.6336.1616.2132.7409.8157.450
反演图Inversion diagram0047.3436.3816.2831.277.848.1050.632.16

新窗口打开|下载CSV

2.4.2 研究区麦田面积与分布 对研究区典型地物 光谱曲线进行分析(图3),在b7波段各地类出现清晰反射率区间,水体、滩涂平均反射率小于0.2,首先被去除,NDVI均值大于0.2的地物为冬小麦,由此建立决策树模型,提取冬小麦种植区域(图4)。结果显示,研究区麦田集中分布在垦利西南部及东北部黄河沿岸区域,提取结果符合冬小麦实际分布。

图3

新窗口打开|下载原图ZIP|生成PPT
图3研究区典型地物光谱曲线(左)及冬小麦决策树提取模型(右)

Fig. 3Spectral curve of typical features in the study area (left) and extraction model of winter wheat decision tree (right)



图4

新窗口打开|下载原图ZIP|生成PPT
图4麦区土壤盐分实测插值图(左)及升尺度反演图(右)

Fig. 4Interpolation diagram (left) and upscaling inversion diagram (right) of soil salinity in wheat area



2.4.3 研究区麦田土壤盐分升尺度反演 对比研究区麦区土壤盐分反演及实测插值结果(图4),结合其等级面积统计情况(表8),可以看出,土壤盐分反演结果与空间插值结果一致,面积占比均呈现出随着盐渍化程度升高而减少的变化趋势,与调查情况相符,表明麦区升尺度反演效果较好。研究区小麦种植区无非盐渍化土壤分布,轻度盐渍化土壤分布广泛,面积占比达73.09%,集中在地势相对较高的西南部和黄河淡水影响的东北部区域;中度盐渍化土壤面积次之,占比14.01%,且在麦区零散分布;重度盐渍化土壤及盐土面积较小,集中分布于研究区中西部沿黄河滩区。

Table 8
表8
表8麦区土壤盐分等级面积统计
Table 8Grade-area statistics of soil salinity in wheat area (%)
土壤盐分等级分布图
Distribution diagram of soil salinity grade
12345
实测图Interpolation diagram063.0718.2814.454.20
反演图Inversion diagram073.0914.0110.082.82

新窗口打开|下载CSV

3 讨论

在星机一体化的土壤盐分反演研究中,针对农作物种植区域的土壤盐分反演研究相对匮乏,需要深入细致的研究探索。本研究为提高采集的农作物光谱精度,使用格网交点采集地面数据,保障样点的均匀及位置准确,无人机飞行高度较低,搭载 Sequoia多光谱相机的分辨率高达2—3 cm,保证了建模精度,因此,反演结果能更精确地反映小麦种植区的盐分分布状况。

植被覆盖差异与土壤盐分空间变化息息相关,特征光谱参数的选择是土壤盐分准确反演的重要基础。本研究中,2个试验区冬小麦长势、覆盖度差异较明显,样点间可见光与近红外光谱差异增强,选用光谱指数进行土壤盐分反演,增强了原本与土壤盐分含量相关性接近的4个无人机光谱波段的敏感程度,提高了模型的精度及空间普适性,与前人研究结果相符[28, 35-36]。光谱指数中,GRVI及RVI与土壤盐分相关性不高,这与前人研究中波段比值与土壤盐分相关性较低的结果一致[22]

本研究通过评价模型的精度、不同尺度的稳定性和适应性筛选最佳土壤盐分反演模型。选择的评价指标决定系数R2衡量模型的拟合程度,RMSE反映实测值与预测值的偏差,考虑前者性能度量在0—1之间,而后者对于数据没有准确的度量范围,故模型精度评价以R2作为主要依据。本文建立的统计分析模型的建模R2小于支持向量机模型,说明机器学习方法的数据拟合效率较高,这与前人机器学习算法土壤盐分估测效果优于多元线性回归方法的研究结果一致[29]。但模型升尺度验证时,4个模型精度均降低,可能与无人机和卫星波段的中心波长存在5—13 nm的差异且大尺度农作物光谱状况较为复杂有关。同时,由于BP神经网络存在数据过拟合现象,使其预测能力与训练能力出现矛盾,而支持向量机模型对新输入样本的泛化能力低[37,38] ,可能导致了机器学习模型的稳定性较低,精度降幅较大。

在试验时期的考察选点尽量做到了均匀且具有代表性,使其插值结果较好地反映土壤盐分的空间分布情况,但插值方法以距离权重进行赋值,在部分小区域内盐分出现较大变化时,会在一定程度上影响插值准确性。试验区的土壤盐分反演结果与土壤盐分的实测插值图比较时,2个图北部的盐土区域分布存在一定的差异,此外,在试验区和研究区需要减少对插值图定量结果的依赖,而是要结合空间分布情况、各等级占比的相对变化趋势及实际调查结果综合验证反演模型的应用效果。

本研究针对滨海冬小麦作物种植区,实现了多尺度、多类建模方法的土壤盐分遥感反演,在此基础上,后续需考虑区域中玉米、水稻等其他农作物类型,筛选适宜的光谱参数及高效反演模型,开展对农作物种植区的土壤盐分系统定量研究;另外,为提高升尺度反演模型精度,升尺度反演中尺度间数据的修正方法也有待进一步的优化。

4 结论

(1)基于冬小麦试验区无人机图像的多光谱波段,构建光谱指数,4个波段与土壤盐分含量的相关性均大于0.6,5个光谱指数中筛选出了用于建模的NDVI、RVI、SI,使用4种方法构建了9个统计分析模型和4个机器学习模型,不同方法中由NDVI、RVI、SI建立的光谱指数模型综合精度均优于波段模型和基于卫星影像的光谱指数模型。

(2)红、绿、红边、近红波段进行升尺度修正的修正系数分别为0.82483、0.63767、0.51249、1.15859,对4个试验区估测模型进行修正,构建了基于卫星波段的升尺度土壤盐分反演模型,经验证筛选出麦区最佳反演模型Y=-9.4774×NDVI1+0.4794×RVI1+3.0747× SI1+ 5.0604,验证R2为0.513。

(3)由最佳模型反演得到了试验区及研究区2个尺度的麦区土壤盐分等级分布图,反演效果较好,表明模型有良好的预测能力和适用性。研究区小麦种植区土壤以轻度盐渍化为主,面积占73.09%,集中在研究区地势相对较高的西南部和黄河淡水影响的东北部区域,中度盐渍化土壤在麦区零散分布,重度盐渍化及盐土则分布于中西部沿黄滩区。

本研究综合卫星、无人机及地面数据,采用统计分析和机器学习的建模方法,得到了星机一体化的麦区土壤盐分反演最佳模型,为把握麦区土壤盐分等级分布状况、指导研究区农业生产提供了科学依据。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

王建华, 胡鹏, 龚家国. 实施黄河口大保护推动黄河流域生态文明建设
人民黄河, 2019,41(10):7-10.

[本文引用: 1]

WANG J H, HU P, GONG J G. Taking the great protection of the Yellow River estuary as the grasp to promote the construction of ecological civilization in the Yellow River basin
Yellow River, 2019,41(10):7-10. (in Chinese)

[本文引用: 1]

刘丽娟, 李小玉. 干旱区土壤盐分积累过程研究进展
生态学杂志, 2019,38(3):891-898.

[本文引用: 1]

LIU L J, LI X Y. Progress in the study of soil salt accumulation in arid region
Chinese Journal of Ecology, 2019,38(3):891-898. (in Chinese)

[本文引用: 1]

张顺, 贾永刚, 连胜利, 付腾飞, 潘玉英. 电导率法在土壤盐渍化中的改进和应用进展
土壤通报, 2014,45(3):754-759.

[本文引用: 1]

ZHANG S, JIA Y G, LIAN S L, FU T F, PAN Y Y. Application and improvement of electrical conductivity measurements in soil salinity
Chinese Journal of Soil Science, 2014,45(3):754-759. (in Chinese)

[本文引用: 1]

阿尔达克·克里木, 塔西甫拉提·特依拜, 张东, 依力亚斯江·努尔麦麦提. 基于高光谱的ASTER影像土壤盐分模型校正及验证
农业工程学报, 2016,32(12):144-150.

URL [本文引用: 1]
快速准确地获取土壤盐分信息是监测和治理土壤盐渍化现象的重要前提。该文以新疆维吾尔自治区典型盐渍化区域--艾比湖流域为研究区,analytical spectral devices(ASD)光谱仪采集的土壤高光谱数据和advanced space borne thermal emission and reflection radiometer(ASTER)影像为数据源,结合实测土壤盐分含量信息,对遥感定量反演土壤盐渍化现象进行研究。再经过光谱反射率数学变换后,结合相关性分析,利用多元回归方法分别建立基于重采样后的高光谱和影像光谱的土壤含盐量估算模型,对遥感影像光谱盐分估算模型进行校正,以提高遥感定量监测盐渍化土壤的精度。结果表明:ASTER影像光谱反射率二阶导数变换和ASD重采样光谱的对数的二阶导数变换所建立的盐分估算模型最佳,决定系数R2分别为0.59和0.82。经ASD重采样光谱模型校正后的ASTER影像光谱的盐分估算模型精度R2为0.91,有效地提高大尺度条件下土壤盐渍化反演精度。研究为大尺度土壤盐分定量遥感监测提供了一种有效方法。
ARDAK K L M, TAXIPULAT T Y P, ZHANG D, ILYASJ N R M M T. Calibration and validation of soil salinity estimation model based on measured hyperspectral and Aster image
Transactions of the Chinese Society of Agricultural Engineering, 2016,32(12):144-150. (in Chinese)

URL [本文引用: 1]
快速准确地获取土壤盐分信息是监测和治理土壤盐渍化现象的重要前提。该文以新疆维吾尔自治区典型盐渍化区域--艾比湖流域为研究区,analytical spectral devices(ASD)光谱仪采集的土壤高光谱数据和advanced space borne thermal emission and reflection radiometer(ASTER)影像为数据源,结合实测土壤盐分含量信息,对遥感定量反演土壤盐渍化现象进行研究。再经过光谱反射率数学变换后,结合相关性分析,利用多元回归方法分别建立基于重采样后的高光谱和影像光谱的土壤含盐量估算模型,对遥感影像光谱盐分估算模型进行校正,以提高遥感定量监测盐渍化土壤的精度。结果表明:ASTER影像光谱反射率二阶导数变换和ASD重采样光谱的对数的二阶导数变换所建立的盐分估算模型最佳,决定系数R2分别为0.59和0.82。经ASD重采样光谱模型校正后的ASTER影像光谱的盐分估算模型精度R2为0.91,有效地提高大尺度条件下土壤盐渍化反演精度。研究为大尺度土壤盐分定量遥感监测提供了一种有效方法。

吴亚坤, 刘广明, 苏里坦, 杨劲松. 多源数据的区域土壤盐渍化精确评估
光谱学与光谱分析, 2018,38(11):3528-3533.

[本文引用: 1]

WU Y K, LIU G M, SU L T, YANG J S. Accurate evaluation of regional soil salinization using multi-source data
Spectroscopy and Spectral Analysis, 2018,38(11):3528-3533. (in Chinese)

[本文引用: 1]

胡盈盈, 王瑞燕, 陈红艳, 李玉萍, 刘燕群. 黄河三角洲春秋两季土壤盐分遥感反演及时空变异研究
测绘与空间地理信息, 2018,41(8):78-81.

[本文引用: 1]

HU Y Y, WANG R Y, CHEN H Y, LI Y P, LIU Y Q. Research on remote sensing retrieval and temporal variation of soil salinity in the spring and autumn of the Yellow River Delta
Geomatics & Spatial Information Technology, 2018,41(8):78-81. (in Chinese)

[本文引用: 1]

SCUDIERO E, SKAGGS T H, CORWIN D L. Regional-scale soil salinity assessment using Landsat ETM+ canopy reflectance
Remote Sensing of Environment, 2015,169:335-343.

DOI:10.1016/j.rse.2015.08.026URL [本文引用: 1]

梁静, 丁建丽, 王敬哲, 王飞. 基于反射光谱与 Landsat 8 OLI 多光谱数据的艾比湖湿地土壤盐分估算
土壤学报, 2019,56(2):320-330.

[本文引用: 1]

LIANG J, DING J L, WANG J Z, WANG F. Quantitative estimationand mapping of soil salinity in the Ebinur Lake wetland based on Vis-NIR reflectance and Landsat 8 OLI data
Acta Pedologica Sinica, 2019,56(2):320-330. (in Chinese)

[本文引用: 1]

陈俊英, 王新涛, 张智韬, 韩佳, 姚志华, 魏广飞. 基于无人机-卫星遥感升尺度的土壤盐渍化监测方法
农业机械学报, 2019,50(12):161-169.

[本文引用: 1]

CHEN J Y, WANG X T, ZHANG Z T, HAN J, YAO Z H, WEI G F. Soil salinization monitoring method based on UAV-satellite remote sensing scale-up
Transactions of the Chinese Society for Agricultural Machinery, 2019,50(12):161-169. (in Chinese)

[本文引用: 1]

ZHANG S M, ZHAO G X. A harmonious satellite-unmanned aerial vehicle-ground measurement inversion method for monitoring salinity in coastal saline soil
Remote Sensing, 2019,11(14):1700.

DOI:10.3390/rs11141700URL [本文引用: 3]

SONG C Y, REN H X, HUANG C. Estimating soil salinity in the Yellow River Delta, Eastern China—An integrated approach using spectral and terrain indices with the generalized additive model
Pedosphere, 2016, 26(5):626-635.

URL [本文引用: 1]
Soil salinity is one of the most severe environmental problems worldwide. It is necessary to develop a soil-salinity-estimation model to project the spatial distribution of soil salinity. The aims of this study were to use remote sensed images and digital elevation model (DEM) to develop quantitative models for estimating soil salinity and to investigate the influence of vegetation on soil salinity estimation. Digital bands of Landsat Thematic Mapper (TM) images, vegetation indices, and terrain indices were selected as predictive variables for the estimation. The generalized additive model (GAM) was used to analyze the quantitative relationship between soil salt content, spectral properties, and terrain indices. Akaike’s information criterion (AIC) was used to select relevant predictive variables for fitted GAMs. A correlation analysis and root mean square error between predicted and observed soil salt contents were used to validate the fitted GAMs. A high ratio of explained deviance suggests that an integrated approach using spectral and terrain indices with GAM was practical and efficient for estimating soil salinity. The performance of the fitted GAMs varied with changes in vegetation cover. Salinity in sparsely vegetated areas was estimated better than in densely vegetated areas. Red, near-infrared, and mid-infrared bands, and the second and third components of the tasseled cap transformation were the most important spectral variables for the estimation. Variable combinations in the fitted GAMs and their contribution varied with changes in vegetation cover. The contribution of terrain indices was smaller than that of spectral indices, possibly due to the low spatial resolution of DEM. This research may provide some beneficial references for regional soil salinity estimation.

贾吉超, 赵庚星, 高明秀, 王卓然, 常春艳, 姜曙千, 李晋. 黄河三角洲典型区域冬小麦播种面积变化与土壤盐分关系研究
植物营养与肥料学报, 2015,21(5):1200-1208.

DOI:10.11674/zwyf.2015.0513URL [本文引用: 1]
【目的】将土壤盐分含量与冬小麦分布变化结合,分析两者之间的时空关系,旨在探索土壤盐碱化对冬小麦种植的影响,为冬小麦生产决策提供科学依据。【方法】以黄河三角洲垦利县为研究区,采用2003年4月、2008年4月和2013年3月三期ETM影像,通过分析典型地物光谱曲线生成决策树模型,提取冬小麦分布信息,将各时相冬小麦种植分布提取结果做空间叠加,分析了近10年来冬小麦面积与分布的变化规律;并结合实地土壤盐分调查分析数据,分析了冬小麦种植面积变化与土壤盐分的关系。一方面,将垦利县冬小麦分布图分别与相应时相的土壤含盐量分布图进行空间叠加分析,并对叠加图的属性进行统计,对比分析冬小麦分布与土壤含盐量分布的关系。另一方面,通过叠加2008和2013年土壤盐分含量分布图,将盐分变化分为盐分升高区和盐分降低区,将其与同时段的冬小麦种植范围变化图进行叠加,分析土壤盐分含量变化对冬小麦分布变化的影响。【结果】1)垦利县冬小麦的分布具有明显的空间特征,主要分布在垦利县域西南部和东北部黄河沿岸两个区域,与土壤低含盐量区具有一致的空间分布特征。2)垦利县冬小麦种植面积呈现2003~2008时段大幅减少和2008~2013时段的少许增加趋势。3)冬小麦种植范围变化与土壤盐分含量的相关性极高,冬小麦种植无变化区域土壤含盐量都集中在1.5~2.5 g/kg之间,冬小麦种植增加区域的土壤盐分含量集中在2~3 g/kg,而冬小麦种植减少区的土壤盐分含量都在3 g/kg以上,即超过3 g/kg的土壤含盐量已不再适合冬小麦的生长。4)2008~2013年垦利县冬小麦分布区域变化显著受到土壤含盐量的变化。在土壤含盐量降低的小麦区域中,冬小麦种植增加区和不变区的面积占98.07%,而在土壤含盐量升高的小麦区域中,冬小麦种植减少的面积占84.54%。【结论】冬小麦种植范围及其变化显著受到土壤盐分状况及其变化的影响,冬小麦种植减少区的土壤盐分含量都在3 g/kg以上,且随着土壤含盐量的升高冬小麦种植面积骤减,3 g/kg的土壤含盐量是适合冬小麦生长的上限,土壤含盐量调控是维持和扩大冬小麦种植范围的关键手段。
JIA J C, ZHAO G X, GAO M X, WANG Z R, CHANG C Y, JIANG S Q, LI J. Study on the relationship between winter wheat sowing area changes and soil salinity in the typical area of the Yellow River Delta
Journal of Plant Nutrition and Fertilizers, 2015,21(5):1200-1208. (in Chinese)

DOI:10.11674/zwyf.2015.0513URL [本文引用: 1]
【目的】将土壤盐分含量与冬小麦分布变化结合,分析两者之间的时空关系,旨在探索土壤盐碱化对冬小麦种植的影响,为冬小麦生产决策提供科学依据。【方法】以黄河三角洲垦利县为研究区,采用2003年4月、2008年4月和2013年3月三期ETM影像,通过分析典型地物光谱曲线生成决策树模型,提取冬小麦分布信息,将各时相冬小麦种植分布提取结果做空间叠加,分析了近10年来冬小麦面积与分布的变化规律;并结合实地土壤盐分调查分析数据,分析了冬小麦种植面积变化与土壤盐分的关系。一方面,将垦利县冬小麦分布图分别与相应时相的土壤含盐量分布图进行空间叠加分析,并对叠加图的属性进行统计,对比分析冬小麦分布与土壤含盐量分布的关系。另一方面,通过叠加2008和2013年土壤盐分含量分布图,将盐分变化分为盐分升高区和盐分降低区,将其与同时段的冬小麦种植范围变化图进行叠加,分析土壤盐分含量变化对冬小麦分布变化的影响。【结果】1)垦利县冬小麦的分布具有明显的空间特征,主要分布在垦利县域西南部和东北部黄河沿岸两个区域,与土壤低含盐量区具有一致的空间分布特征。2)垦利县冬小麦种植面积呈现2003~2008时段大幅减少和2008~2013时段的少许增加趋势。3)冬小麦种植范围变化与土壤盐分含量的相关性极高,冬小麦种植无变化区域土壤含盐量都集中在1.5~2.5 g/kg之间,冬小麦种植增加区域的土壤盐分含量集中在2~3 g/kg,而冬小麦种植减少区的土壤盐分含量都在3 g/kg以上,即超过3 g/kg的土壤含盐量已不再适合冬小麦的生长。4)2008~2013年垦利县冬小麦分布区域变化显著受到土壤含盐量的变化。在土壤含盐量降低的小麦区域中,冬小麦种植增加区和不变区的面积占98.07%,而在土壤含盐量升高的小麦区域中,冬小麦种植减少的面积占84.54%。【结论】冬小麦种植范围及其变化显著受到土壤盐分状况及其变化的影响,冬小麦种植减少区的土壤盐分含量都在3 g/kg以上,且随着土壤含盐量的升高冬小麦种植面积骤减,3 g/kg的土壤含盐量是适合冬小麦生长的上限,土壤含盐量调控是维持和扩大冬小麦种植范围的关键手段。

张同瑞, 赵庚星, 高明秀, 王卓然, 贾吉超, 李萍, 安德玉. 基于近地面多光谱的黄河三角洲典型地区土壤含盐量估算研究
光谱学与光谱分析, 2016,36(1):248-253.

URLPMID:27228776 [本文引用: 1]
This study chooses the core demonstration area of 'Bohai Barn' project as the study area, which is located in Wudi, Shandong Province. We first collected near-ground and multispectral images and surface soil salinity data using ADC portable multispectral camera and EC110 portable salinometer. Then three vegetation indices, namely NDVI, SAVI and GNDVI, were used to build 18 models respectively with the actual measured soil salinity. These models include linear function, exponential function, logarithmic function, exponentiation function, quadratic function and cubic function, from which the best estimation model for soil salinity estimation was selected and used for inverting and analyzing soil salinity status of the study area. Results indicated that all models mentioned above could effectively estimate soil salinity and models using SAVI as the dependent variable were more effective than the others. Among SAVI models, the linear model (Y = -0.524x + 0.663, n = 70) is the best, under which the test value of F is the highest as 141.347 at significance test level, estimated R2 0.797 with a 93.36% accuracy. Soil salinity of the study area is mainly around 2.5 per thousand - 3.5 per thousand, which gradually increases from southwest to northeast. The study has probed into soil salinity estimation methods based on near-ground and multispectral data, and will provide a quick and effective technical soil salinity estimation approach for coastal saline soil of the study area and the whole Yellow River Delta.
ZHANG T R, ZHAO G X, GAO M X, WANG Z R, JIA J C, LI P, AN D Y. Soil salinity estimation based on near-ground multispectral imagery in typical area of the Yellow River Delta
Spectroscopy and Spectral Analysis, 2016,36(1):248-253. (in Chinese)

URLPMID:27228776 [本文引用: 1]
This study chooses the core demonstration area of 'Bohai Barn' project as the study area, which is located in Wudi, Shandong Province. We first collected near-ground and multispectral images and surface soil salinity data using ADC portable multispectral camera and EC110 portable salinometer. Then three vegetation indices, namely NDVI, SAVI and GNDVI, were used to build 18 models respectively with the actual measured soil salinity. These models include linear function, exponential function, logarithmic function, exponentiation function, quadratic function and cubic function, from which the best estimation model for soil salinity estimation was selected and used for inverting and analyzing soil salinity status of the study area. Results indicated that all models mentioned above could effectively estimate soil salinity and models using SAVI as the dependent variable were more effective than the others. Among SAVI models, the linear model (Y = -0.524x + 0.663, n = 70) is the best, under which the test value of F is the highest as 141.347 at significance test level, estimated R2 0.797 with a 93.36% accuracy. Soil salinity of the study area is mainly around 2.5 per thousand - 3.5 per thousand, which gradually increases from southwest to northeast. The study has probed into soil salinity estimation methods based on near-ground and multispectral data, and will provide a quick and effective technical soil salinity estimation approach for coastal saline soil of the study area and the whole Yellow River Delta.

ZHANG T T, ZENG S L, GAO Y, QUYANG Z T, LI B, FANG C M, ZHAO B. Using hyperspectral vegetation indices as a proxy to monitor soil salinity
Ecological Indicators, 2011,11(6):1552-1562.

DOI:10.1016/j.ecolind.2011.03.025URL [本文引用: 1]
The spectral bands most sensitive to salt-stress across diverse plants have not yet been defined; therefore, the predictive ability of previous vegetation indices (VIs) may not be satisfied for salinization monitoring. The hyperspectra of seven typical salt-sensitive/halophyte species and their root-zone soil samples were collected to investigate the relationship between vegetation spectra and soil salinity in the Yellow River Delta (YRD) of China. Several VIs were derived from the recorded hyperspectra and their predictive power for salinity was examined. Next, a univariate linear correlogram as well as multivariate partial least square (PLS) regression was employed to investigate the sensitive bands. VIs examination and band investigation confirmed that the responses of the vegetation differed from species to species, which explained the vibrations of the VIs in many study cases. These differences were primarily between salt-sensitive and halophyte plants, with the former consistently having higher sensitivity than the latter. With the exception of soil adjusted vegetation index (SAVI), most VIs were found to have weak relationships with soil salinity (with average R-2 of 0.28) and some were not sensitive to all species [e.g. photochemical reflectance index (PRI) and red edge position (REP)I, which verified that most currently available VIs are not adequate indicators of salinity for various species. PLS was validated as a more useful tool than linear correlogram for identification of sensitive bands due to well dealing with multicollinear spectral variables. From PLS, wavelengths at 395-410, 483-507, 632-697, 731-762, 812-868, 884-909, and 918-930 nm were determined to be the most sensitive bands. By combining the most sensitive bands in a SAVI form, we finally proposed four soil adjusted salinity indices (SASIs) for all species. Satisfactory relationships were observed between ECe and four SASIs for all species, with largely improved R-2 values ranging from 0.50 to 0.58. Our findings indicate the potential to monitor soil salinity with the hyperspectra of salt-sensitive and halophyte plants. (C) 2011 Elsevier Ltd.

张天举, 陈永金, 刘加珍. 黄河三角洲湿地不同植物群落土壤盐分分布特征
浙江农业学报, 2018,30(11):1915-1924.

[本文引用: 1]

ZHANG T J, CHEN Y J, LIU J Z. Characteristics of spatial distribution of soil salinity under different plant communities on wetland in Yellow River Delta
Acta Agriculturae Zhejiangensis, 2018,30(11):1915-1924. (in Chinese)

[本文引用: 1]

张雪妮, 吕光辉, 杨晓东, 贡璐, 秦璐, 何学敏, 刘昊奇. 基于盐分梯度的荒漠植物多样性与群落、种间联接响应
生态学报, 2013,33(18):5714-5722.

DOI:10.5846/stxb201306071403URL [本文引用: 1]
土壤盐分是影响干旱区荒漠植物群落动态的决定因素之一。基于样方调查和不同土壤盐分梯度下植物多样性指数及群落与种间关联的计算结果,分析干旱区荒漠群落植物多样性、群落联接性和种间关联对土壤盐分梯度的响应动态。结果表明,在土壤盐含量为0.03%-0.55% (S1)、0.61%-1.24% (S2)和1.41%-1.79% (S3)的盐分梯度上,(1)随土壤盐含量升高,群落生活型结构改变,草本比例减少,乔木比例增加;(2)植物多样性指数随土壤盐分增加而下降,低盐分梯度下,二者极显著正相关(P<0.01),中盐梯度下二者间呈部分显著负相关(P<0.05),高盐梯度下则转为以正相关为主(P>0.05);(3)群落联接性随土壤盐分梯度转变,在0.61%-1.24%的中度盐含量时正联接性最强(VR=1.89),高盐度含量下群落转为不显著的负联接,稳定性降低;(4)沿盐分升高梯度,种间的负相关种对数增加,正相关种对数减少,种间关联(相关)强度提高,正负相关种对比(PNR)与多样性指数呈显著正相关(P<0.05)。综上可知,干旱区荒漠植物多样性在土壤盐含量达到1.41%-1.79%水平时总体显著降低;土壤盐分水平显著影响植物群落和种间联接性,种间互利性随盐分梯度增加下降,物种趋于独立分布,并最终导致荒漠植物多样性降低。
ZHANG X N, Lü G H, YANG X D, GONG L, QIN L, HE X M, LIU H Q. Responses of desert plant diversity, community and interspecific association to soil salinity gradient
Acta Ecologica Sinica, 2013,33(18):5714-5722. (in Chinese)

DOI:10.5846/stxb201306071403URL [本文引用: 1]
土壤盐分是影响干旱区荒漠植物群落动态的决定因素之一。基于样方调查和不同土壤盐分梯度下植物多样性指数及群落与种间关联的计算结果,分析干旱区荒漠群落植物多样性、群落联接性和种间关联对土壤盐分梯度的响应动态。结果表明,在土壤盐含量为0.03%-0.55% (S1)、0.61%-1.24% (S2)和1.41%-1.79% (S3)的盐分梯度上,(1)随土壤盐含量升高,群落生活型结构改变,草本比例减少,乔木比例增加;(2)植物多样性指数随土壤盐分增加而下降,低盐分梯度下,二者极显著正相关(P<0.01),中盐梯度下二者间呈部分显著负相关(P<0.05),高盐梯度下则转为以正相关为主(P>0.05);(3)群落联接性随土壤盐分梯度转变,在0.61%-1.24%的中度盐含量时正联接性最强(VR=1.89),高盐度含量下群落转为不显著的负联接,稳定性降低;(4)沿盐分升高梯度,种间的负相关种对数增加,正相关种对数减少,种间关联(相关)强度提高,正负相关种对比(PNR)与多样性指数呈显著正相关(P<0.05)。综上可知,干旱区荒漠植物多样性在土壤盐含量达到1.41%-1.79%水平时总体显著降低;土壤盐分水平显著影响植物群落和种间联接性,种间互利性随盐分梯度增加下降,物种趋于独立分布,并最终导致荒漠植物多样性降低。

安德玉, 邢前国, 赵庚星. 基于HICO波段的滨海土壤盐分遥感反演研究
海洋学报, 2018,40(6):51-59.

[本文引用: 1]

AN D Y, XING Q G, ZHAO G X. Hyperspectral remote sensing of soil salinity for coastal saline soil in the Yellow River Delta based on HICO bands
Acta Oceanologica Sinica, 2018,40(6):51-59. (in Chinese)

[本文引用: 1]

张素铭, 赵庚星, 王卓然, 肖杨, 郎坤. 滨海盐渍区土壤盐分遥感反演及动态监测
农业资源与环境学报, 2018,35(4):349-358.

[本文引用: 1]

ZHANG S M, ZHAO G X, WANG Z R, XIAO Y, LANG K. Remote sensing inversion and dynamic monitoring of soil salt in coastal saline area
Journal of Agricultural Resources and Environment, 2018, 35(4):349-358. (in Chinese)

[本文引用: 1]

陈红艳, 赵庚星, 陈敬春, 王瑞燕, 高明秀. 基于改进植被指数的黄河口区盐渍土盐分遥感反演
农业工程学报, 2015,31(5):107-114.

URL [本文引用: 2]
快速获取土壤盐分的含量、特征及空间分布信息是盐渍土治理、利用的客观需求。该文针对黄河三角洲盐渍土,以垦利县为例,基于Landsat 8 OLI 多光谱影像,在传统植被指数的基础上引入短波红外波段进行扩展,提出了改进植被指数;然后基于改进前后对应的植被指数,分别采用多元逐步回归(multivariable linear regression,MLR)、反向传播神经网络(back propagation neural networks,BPNN)和支持向量机(support vector machine,SVM)方法构建土壤盐分含量的遥感反演模型,并进行模型验证、对比和优选;最后基于最佳模型进行研究区土壤盐分含量的空间分布反演和分析。结果显示:相对传统植被指数,扩展后植被指数可增强与土壤盐分的相关性,大幅降低指数间的多重共线性;采用上述3种方法建模,改进后模型的精度比改进前都有提高,验证集决定系数R2提高0.04~0.10,均方根误差RMSE降低0.13~0.73,相对分析误差RPD提高0.25~0.34,改进后模型RPD均大于2.0,普遍达到性能良好;对比3种建模方法,SVM建模精度最高,BPNN模型次之,MLR分析精度最低,最佳模型为基于改进植被指数的土壤盐分含量支持向量机反演模型,建模集R2和RMSE为0.75、3.48,验证集R2、RMSE和RPD为0.78、3.02和2.56,模型较为准确、可靠;基于该模型反演的研究区土壤盐分含量整体较高,盐渍化程度空间分布表现为自西南部农业生产区至东北沿海区域逐渐加重,与实地调查一致。研究表明基于Landsat 8 OLI多光谱影像,引入第7波段对植被指数进行改进,从而构建土壤盐分含量的支持向量机模型,可获得较好的土壤盐分空间分布反演结果。
CHEN H Y, ZHAO G X, CHEN J C, WANG R Y, GAO M X. Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River
Transactions of the Chinese Society of Agricultural Engineering, 2015,31(5):107-114. (in Chinese)

URL [本文引用: 2]
快速获取土壤盐分的含量、特征及空间分布信息是盐渍土治理、利用的客观需求。该文针对黄河三角洲盐渍土,以垦利县为例,基于Landsat 8 OLI 多光谱影像,在传统植被指数的基础上引入短波红外波段进行扩展,提出了改进植被指数;然后基于改进前后对应的植被指数,分别采用多元逐步回归(multivariable linear regression,MLR)、反向传播神经网络(back propagation neural networks,BPNN)和支持向量机(support vector machine,SVM)方法构建土壤盐分含量的遥感反演模型,并进行模型验证、对比和优选;最后基于最佳模型进行研究区土壤盐分含量的空间分布反演和分析。结果显示:相对传统植被指数,扩展后植被指数可增强与土壤盐分的相关性,大幅降低指数间的多重共线性;采用上述3种方法建模,改进后模型的精度比改进前都有提高,验证集决定系数R2提高0.04~0.10,均方根误差RMSE降低0.13~0.73,相对分析误差RPD提高0.25~0.34,改进后模型RPD均大于2.0,普遍达到性能良好;对比3种建模方法,SVM建模精度最高,BPNN模型次之,MLR分析精度最低,最佳模型为基于改进植被指数的土壤盐分含量支持向量机反演模型,建模集R2和RMSE为0.75、3.48,验证集R2、RMSE和RPD为0.78、3.02和2.56,模型较为准确、可靠;基于该模型反演的研究区土壤盐分含量整体较高,盐渍化程度空间分布表现为自西南部农业生产区至东北沿海区域逐渐加重,与实地调查一致。研究表明基于Landsat 8 OLI多光谱影像,引入第7波段对植被指数进行改进,从而构建土壤盐分含量的支持向量机模型,可获得较好的土壤盐分空间分布反演结果。

周晓红, 张飞, 张海威, 张贤龙, 袁婕. 艾比湖湿地自然保护区土壤盐分多光谱遥感反演模型
光谱学与光谱分析, 2019,39(4):12 29-1235.

[本文引用: 1]

ZHOU X H, ZHANG F, ZHANG H W, ZHANG X L, YUAN J. A study of soil salinity inversion based on multispectral remote sensing index in Ebinur Lake Wetland Nature Reserve
Spectroscopy and Spectral Analysis, 2019,39(4):1229-1235. (in Chinese)

[本文引用: 1]

张贤龙, 张飞, 张海威, 李哲, 海清, 陈丽华. 基于光谱变换的高光谱指数土壤盐分反演模型优选
农业工程学报, 2018,34(1):110-117.

URL [本文引用: 1]
该文探索基于光谱变换建立光谱指数,进而建立土壤盐分反演模型的可行性。运用倒数、导数、对数等15种光谱变换对土壤含盐量进行反演,并利用原始光谱的波段反射率构造光谱指数对土壤盐分进行建模。在15种高光谱变换中,一阶微分R?和一阶对倒数(log1/R?)变换下土壤盐分估算模型的精度较高。但总体而言,基于单一光谱变换和光谱指数的模型模拟精度均较低。采用光谱变换建立光谱指数,并进一步建立土壤盐分反演模型,结果表明,基于(log1/R?)光谱变换构建归一化植被指数,然后建立的土壤盐分精度最高,经验证,其R2为0.89,均方根误差为3.34 g/kg,高于单一方法构建的模型,可为半干旱地区土壤盐分反演提供参考。
ZHANG X L, ZHANG F, ZHANG H W, LI Z, HAI Q, CHEN L H. Optimization of soil salt inversion model based on spectral transformation from hyperspectral index
Transactions of the Chinese Society of Agricultural Engineering, 2018,34(1):110-117. (in Chinese)

URL [本文引用: 1]
该文探索基于光谱变换建立光谱指数,进而建立土壤盐分反演模型的可行性。运用倒数、导数、对数等15种光谱变换对土壤含盐量进行反演,并利用原始光谱的波段反射率构造光谱指数对土壤盐分进行建模。在15种高光谱变换中,一阶微分R?和一阶对倒数(log1/R?)变换下土壤盐分估算模型的精度较高。但总体而言,基于单一光谱变换和光谱指数的模型模拟精度均较低。采用光谱变换建立光谱指数,并进一步建立土壤盐分反演模型,结果表明,基于(log1/R?)光谱变换构建归一化植被指数,然后建立的土壤盐分精度最高,经验证,其R2为0.89,均方根误差为3.34 g/kg,高于单一方法构建的模型,可为半干旱地区土壤盐分反演提供参考。

王丹阳, 陈红艳, 王桂峰, 丛津桥, 王向锋, 魏学文. 无人机多光谱反演黄河口重度盐渍土盐分的研究
中国农业科学, 2019,52(10):1698-1709.

DOI:10.3864/j.issn.0578-1752.2019.10.004URL [本文引用: 2]
【Objective】The purpose of this paper was to improve the extraction accuracy of soil salinity information based on remote sensing and understand accurately the degree and distribution of soil salinization. 【Method】Firstly, the severe and concentrated saline soil area of Huanghekou town, Kenli district, was selected as the experimental area, and the unmanned aerial vehicle (UAV) equipped with Sequoia multispectral camera was adopted to acquire the near earth remote sensing image from April 26th to 28th, 2018, then the image preprocessing, including image splicing, radiation correction, orthorectification and geometric correction, was performed. Secondly, the sensitive bands of soil salinity were screened by correlation analysis and grey correlation analysis, respectively, and the spectral parameters were constructed and screened. Thirdly, the soil salinity quantitative analysis models were built by multivariate linear regression (MLR), support vector machine (SVM) and partial least square (PLS) method, then the models’ accuracy was evaluated and the best one was selected. Finally, the best model was applied to the inversion and analysis of soil salinity distribution in the experimental area, and the inversion accuracy was compared with the interpolation result by inverse distance weighting (IDW) method. 【Result】The results showed that the accuracy and significance of the estimation model based on gray correlation analysis were improved by compared with the correlation analysis; Compared the three modeling methods, the prediction ability of the SVM was the best, followed by the PLS, the MLR models’ precision was the lowest, with the calibration R 2 and RMSE of 0.820 and 3.626, the validation R 2, RMSE and RPD of 0.773, 4.960 and 2.200, and the SVM model of soil salinity based on screened variables by grey correlation analysis was selected the best one; Based on the best model, the soil salinity content in this region was between 0.323 and 21.210 g·kg -1 with the average of 6.871 g·kg -1 and the severe salinity accounted for 58.094%, which was consistent with the result of the field investigation; The 80% of the error between the inversion result and the interpolation result by the IDW method was controlled within 20% of the sample salt content average, which showed that the two kind of result were similar. 【Conclusion】It could be concluded that the accurate extraction of severe soil salinity information could be achieved on the UAV multi-spectra.
WANG D Y, CHEN H Y, WANG G F, CONG J Q, WANG X F, WEI X W. Salinity inversion of severe saline soil in the Yellow River estuary based on UAV multi-spectra
Scientia Agricultura Sinica, 2019,52(10):1698-1709. (in Chinese)

DOI:10.3864/j.issn.0578-1752.2019.10.004URL [本文引用: 2]
【Objective】The purpose of this paper was to improve the extraction accuracy of soil salinity information based on remote sensing and understand accurately the degree and distribution of soil salinization. 【Method】Firstly, the severe and concentrated saline soil area of Huanghekou town, Kenli district, was selected as the experimental area, and the unmanned aerial vehicle (UAV) equipped with Sequoia multispectral camera was adopted to acquire the near earth remote sensing image from April 26th to 28th, 2018, then the image preprocessing, including image splicing, radiation correction, orthorectification and geometric correction, was performed. Secondly, the sensitive bands of soil salinity were screened by correlation analysis and grey correlation analysis, respectively, and the spectral parameters were constructed and screened. Thirdly, the soil salinity quantitative analysis models were built by multivariate linear regression (MLR), support vector machine (SVM) and partial least square (PLS) method, then the models’ accuracy was evaluated and the best one was selected. Finally, the best model was applied to the inversion and analysis of soil salinity distribution in the experimental area, and the inversion accuracy was compared with the interpolation result by inverse distance weighting (IDW) method. 【Result】The results showed that the accuracy and significance of the estimation model based on gray correlation analysis were improved by compared with the correlation analysis; Compared the three modeling methods, the prediction ability of the SVM was the best, followed by the PLS, the MLR models’ precision was the lowest, with the calibration R 2 and RMSE of 0.820 and 3.626, the validation R 2, RMSE and RPD of 0.773, 4.960 and 2.200, and the SVM model of soil salinity based on screened variables by grey correlation analysis was selected the best one; Based on the best model, the soil salinity content in this region was between 0.323 and 21.210 g·kg -1 with the average of 6.871 g·kg -1 and the severe salinity accounted for 58.094%, which was consistent with the result of the field investigation; The 80% of the error between the inversion result and the interpolation result by the IDW method was controlled within 20% of the sample salt content average, which showed that the two kind of result were similar. 【Conclusion】It could be concluded that the accurate extraction of severe soil salinity information could be achieved on the UAV multi-spectra.

HAMZEH S, NASERI A A, ALAVIPANAH S K, MOJARADI B, BARTHOLOMEUS H M, CLEVERS J G P W, BEHZAD M. Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices
International Journal of Applied Earth Observation & Geoinformation, 2013,21:282-290.

DOI:10.1016/j.jag.2012.07.002URL [本文引用: 1]

朱赟, 申广荣, 项巧巧, 吴裕. 基于不同光谱变换的土壤盐含量光谱特征分析
土壤通报, 2017,48(3):560-568.

[本文引用: 1]

ZHU Y, SHEN G R, XIANG Q Q, WU Y. Spectral characteristics of soil salinity based on different pre-processing methods
Chinese Journal of Soil Science, 2017,48(3):560-568. (in Chinese)

[本文引用: 1]

姚远, 丁建丽, 张芳, 赵振亮, 江红南. 基于高光谱指数和电磁感应技术的区域土壤盐渍化监测模型
光谱学与光谱分析, 2013,33(6):1658-1664.

[本文引用: 1]

YAO Y, DING J L, ZHANG F, ZHAO Z L, JIANG H N. Research on model of soil salinization monitoring based on hyperspectral index and EM38
Spectroscopy and Spectral Analysis, 2013,33(6):1658-1664. (in Chinese)

[本文引用: 1]

厉彦玲, 赵庚星, 常春艳, 王卓然, 王凌, 郑佳荣. OLI与HSI影像融合的土壤盐分反演模型
农业工程学报, 2017,33(21):173-180.

URL [本文引用: 1]
土壤盐渍化问题是黄河三角洲地区主要的土地退化问题,借助遥感技术快速、准确地掌握土壤盐渍化信息,对农业可持续发展具有重要意义。该文以黄河三角洲垦利县为研究区,利用超球体色彩空间变换算法,将环境一号卫星HSI高光谱影像与Landsat 8 OLI多光谱影像进行融合,选择土壤盐分的特征波段,结合土壤盐分的实测数据,建立统计分析模型(多元线性回归、偏最小二乘回归)和机器学习模型(BP神经网络、支持向量机和随机森林),对土壤盐分进行遥感反演。结果表明:OLI影像的统计分析模型和机器学习模型精度均较低,精度最高的随机森林模型相关系数仅为0.570;HSI影像的反演模型精度高于OLI,BP神经网络模型相关系数为0.607;融合影像反演模型精度明显高于HSI影像和OLI影像,土壤盐分含量的实测值与机器学习模型预测值具有良好的相关性,BP神经网络模型、支持向量机模型和随机森林模型的决定系数R2分别达到0.966、0.821和0.926,模型反演精度较高。研究表明,多光谱和高光谱影像融合能显著提高土壤盐分遥感反演精度,机器学习模型的反演效果明显优于统计分析模型。研究结果对黄河三角洲典型地区的土壤盐分反演具有积极的理论和实践意义。
LI Y L, ZHAO G X, CHENG C Y, WANG Z R, WANG L, ZHENG J R. Soil salinity retrieval model based on OLI and HSI image fusion
Transactions of the Chinese Society of Agricultural Engineering, 2017,33(21):173-180. (in Chinese)

URL [本文引用: 1]
土壤盐渍化问题是黄河三角洲地区主要的土地退化问题,借助遥感技术快速、准确地掌握土壤盐渍化信息,对农业可持续发展具有重要意义。该文以黄河三角洲垦利县为研究区,利用超球体色彩空间变换算法,将环境一号卫星HSI高光谱影像与Landsat 8 OLI多光谱影像进行融合,选择土壤盐分的特征波段,结合土壤盐分的实测数据,建立统计分析模型(多元线性回归、偏最小二乘回归)和机器学习模型(BP神经网络、支持向量机和随机森林),对土壤盐分进行遥感反演。结果表明:OLI影像的统计分析模型和机器学习模型精度均较低,精度最高的随机森林模型相关系数仅为0.570;HSI影像的反演模型精度高于OLI,BP神经网络模型相关系数为0.607;融合影像反演模型精度明显高于HSI影像和OLI影像,土壤盐分含量的实测值与机器学习模型预测值具有良好的相关性,BP神经网络模型、支持向量机模型和随机森林模型的决定系数R2分别达到0.966、0.821和0.926,模型反演精度较高。研究表明,多光谱和高光谱影像融合能显著提高土壤盐分遥感反演精度,机器学习模型的反演效果明显优于统计分析模型。研究结果对黄河三角洲典型地区的土壤盐分反演具有积极的理论和实践意义。

冯娟, 丁建丽, 杨爱霞, 蔡亮红. 干旱区土壤盐渍化信息遥感建模
干旱地区农业研究, 2018,36(1):266-273.

[本文引用: 1]

FENG J, DING J L, YANG A X, CAI L H. Remote sensing modeling of soil salinization information in arid areas
Agricultural Research in the Arid Areas, 2018,36(1):266-273. (in Chinese)

[本文引用: 1]

曹肖奕, 丁建丽, 葛翔宇, 王敬哲. 基于光谱指数与机器学习算法的土壤电导率估算研究
土壤学报, 2020,56(4):867-877.

[本文引用: 2]

CAO X Y, DING J L, GE X Y, WANG J Z. Estimation of soil electrical conductivity based on spectral index and machine learning algorithm
Acta Pedologica Sinica, 2020,56(4):867-877. (in Chinese)

[本文引用: 2]

张智韬, 魏广飞, 姚志华, 谭丞轩, 王新涛, 韩佳. 基于无人机多光谱遥感的土壤含盐量反演模型研究
农业机械学报, 2019,50(12):151-160.

[本文引用: 2]

ZHANG Z T, WEI G F, YAO Z H, TAN C X, WANG X T, HAN J. Soil salt inversion model based on UAV multispectral remote sensing
Transactions of the Chinese Society for Agricultural Machinery, 2019,50(12):151-160. (in Chinese)

[本文引用: 2]

林芬, 赵庚星, 常春艳, 王卓然, 李慧. 基于相邻轨道图像的冬小麦面积提取及长势分析
农业资源与环境学报, 2016,33(4):384-389.

[本文引用: 1]

LIN F, ZHAO G X, CHANG C Y, WANG Z R, LI H. Extraction of winter wheat area and growth analysis based on remote sensing imagery of adjacent tracks
Journal of Agricultural Resources and Environment, 2016,33(4):384-389. (in Chinese)

[本文引用: 1]

王卓然, 赵庚星, 高明秀, 常春艳, 姜曙千, 贾吉超, 李晋. 黄河三角洲垦利县夏季土壤水盐空间变异及土壤盐分微域特征
生态学报, 2016,36(4):1040-1049.

DOI:10.5846/stxb201406231296URL [本文引用: 1]
黄河三角洲作为我国重要的后备土地资源区,土壤盐渍化问题突出,切实掌握季节性土壤水盐状况及其微域特征是该区土壤盐渍化防控和土地资源高效利用的重要基础。选择黄河三角洲垦利县,通过野外调查实测与室内化验分析获取土壤水盐含量数据,利用统计分析、GIS空间插值、实地观测与数据分析对比等方法,分析了研究区夏季土壤水盐状况及其微域变异规律。结果显示:研究区夏季土壤水盐含量总体较高,含盐量以中度盐渍化为主,随着土层深度的增加含盐量呈上升趋势,且各层土壤含盐量呈显著正相关性;含盐量较高的地区主要分布在该区东北部和中东部,含盐量较低的地区主要分布在西南部和中部;土壤含盐量从大到小的植被类型依次为光板地→碱蓬→高粱→芦苇→茅草→水稻→棉花→玉米;土壤盐分微域变化特征明显,含盐量受距路边远近、不同耕作措施、地形部位、植被群落等因素影响较大,表现出微域规律性和复杂性。该研究基本摸清了研究区夏季时相的土壤水盐状况及其微域特征,为黄河三角洲农作物栽培管理及土壤资源可持续利用提供了科学依据。
WANG Z R, ZHAO G X, GAO M X, CHANG C Y, JIANG S Q, JIA J C, LI J. Spatial variation of soil water and salt and microscopic variation of soil salinity in summer in typical area of the Yellow River Delta in Kenli county
Acta Ecologica Sinica, 2016,36(4):1040-1049. (in Chinese)

DOI:10.5846/stxb201406231296URL [本文引用: 1]
黄河三角洲作为我国重要的后备土地资源区,土壤盐渍化问题突出,切实掌握季节性土壤水盐状况及其微域特征是该区土壤盐渍化防控和土地资源高效利用的重要基础。选择黄河三角洲垦利县,通过野外调查实测与室内化验分析获取土壤水盐含量数据,利用统计分析、GIS空间插值、实地观测与数据分析对比等方法,分析了研究区夏季土壤水盐状况及其微域变异规律。结果显示:研究区夏季土壤水盐含量总体较高,含盐量以中度盐渍化为主,随着土层深度的增加含盐量呈上升趋势,且各层土壤含盐量呈显著正相关性;含盐量较高的地区主要分布在该区东北部和中东部,含盐量较低的地区主要分布在西南部和中部;土壤含盐量从大到小的植被类型依次为光板地→碱蓬→高粱→芦苇→茅草→水稻→棉花→玉米;土壤盐分微域变化特征明显,含盐量受距路边远近、不同耕作措施、地形部位、植被群落等因素影响较大,表现出微域规律性和复杂性。该研究基本摸清了研究区夏季时相的土壤水盐状况及其微域特征,为黄河三角洲农作物栽培管理及土壤资源可持续利用提供了科学依据。

方孝荣, 高俊峰, 谢传奇, 朱逢乐, 黄凌霞, 何勇. 农作物冠层光谱信息检测技术及方法综述
光谱学与光谱分析, 2015,35(7):1949-1955.

URLPMID:26717758
Compared with the traditional chemical methods and the subjective visual ways for measuring plant physiology information indicators, the assessments of crop canopy information through spectral radiometer are more simple, rapid and accurate. The applications of different types of spectral radiometer, especially for international general used Cropscan multispectral radiometer, for predicting crop canopy leaf area index under different growth stage, biomass, nitrogen, chlorophyll and yield, and monitoring plant diseases and insect pests were summarized based on crop group information acquisition methods in recent years. The varity of vegetation indices (VIs) were concluded after comparing regression coefficients of related models among different crops. In general, the correlation coefficients of mathematical models were high and it can realize the crop detection of various kinds of physiological information. Besides, the combination of multispectral radiometer and other sensors can provide useful information to evaluate the status of crops growth, which is very important in practice.
FANG X R, GAO J F, XIE C Q, ZHU F L, HUANG L X, HE Y. Review of crop canopy spectral information detection technology and methods
Spectroscopy and Spectral Analysis, 2015,35(7):1949-1955 . (in Chinese)

URLPMID:26717758
Compared with the traditional chemical methods and the subjective visual ways for measuring plant physiology information indicators, the assessments of crop canopy information through spectral radiometer are more simple, rapid and accurate. The applications of different types of spectral radiometer, especially for international general used Cropscan multispectral radiometer, for predicting crop canopy leaf area index under different growth stage, biomass, nitrogen, chlorophyll and yield, and monitoring plant diseases and insect pests were summarized based on crop group information acquisition methods in recent years. The varity of vegetation indices (VIs) were concluded after comparing regression coefficients of related models among different crops. In general, the correlation coefficients of mathematical models were high and it can realize the crop detection of various kinds of physiological information. Besides, the combination of multispectral radiometer and other sensors can provide useful information to evaluate the status of crops growth, which is very important in practice.

DOUAOUI A E K, NICOLAS H, WALTER C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data
Geoderma, 2006,134(1/2):217-230.



鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
[本文引用: 1]

BAO S D. Soil and Agricultural Chemistry Analysis. Beijing: China Agricultural Press, 2000. (in Chinese)
[本文引用: 1]

NGUYEN K A, LIOU Y A, TRAN H, HOANG P P, NGUYEN T H. Soil salinity assessment by using nearinfrared channel and vegetation soil salinity index derived from Landsat 8 OLI data: A case study in the Tra Vinh province, Mekong Delta, Vietnam
Progress Earth and Planetary Science, 2020,7(1).

[本文引用: 1]

ALLBED A, KUMAR L, ALDAKHEEL Y Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region
Geoderma, 2014,230/231:1-8.

DOI:10.1016/j.geoderma.2014.03.025URL [本文引用: 1]

葛哲学, 孙志强. 神经网络理论与MATLAB R2007实现. 北京: 电子工业出版社, 2005.
[本文引用: 1]

GE Z X, SUN Z Q. Neural Network Theory and MATLAB R2007 Realization. Beijing: Publishing House of Electronics Industry, 2005. (in Chinese)
[本文引用: 1]

丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述
电子科技大学学报, 2011,40(1):2-10.

[本文引用: 1]

DING S F, QI B J, TAN H Y. An overview on theory and algorithm of support vector machines
Journal of University of Electronic Science and Technology of China, 2011,40(1):2-10. (in Chinese)

[本文引用: 1]

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙缂佺姷濞€閺岀喖宕滆鐢盯鏌涚€c劌鈧繈寮婚弴鐔虹闁绘劦鍓氶悵鏃傜磽娴f彃浜炬繝銏e煐閸旀牠鎮″▎鎾寸厽闁瑰鍊栭幋锕€鐓曢柟鎵閸婂灚鎱ㄥ鍡楀⒒闁绘挸銈搁弻鈥崇暆鐎n剛袦閻庢鍣崳锝呯暦閹烘埈娼╂い鎺嗗亾妞ゎ剙妫濆铏规嫚閹绘帩鍔夌紒鐐緲缁夋挳鎮惧┑瀣濞达絾鐡曢幗鏇炩攽閻愭潙鐏﹂懣銈夋煛鐎n亝鎹i柍褜鍓欑粻宥夊磿闁秴绠犻幖娣灪閸欏繘骞栧ǎ顒€濡介柍閿嬪灴瀵爼鎮欓弶鎴偓婊勩亜閺傛妯€闁哄矉绻濆畷銊╊敍濮橈絾鐎版俊銈囧Х閸嬫盯宕导鏉戠闁告洦鍘介崑姗€鏌嶉埡浣告灓婵炲吋妫冨娲传閸曞灚笑闂佺粯顨呴崯鏉戭嚕閹绘巻妲堟慨姗嗗幗濞堜即姊洪棃娴ゆ盯宕ㄩ銈囬棷婵犵數鍋犻幓顏嗗緤閼测晛鍨濇繛鍡樻尭娴肩娀鏌ц箛鎾磋础缁炬儳銈搁幃褰掑炊椤忓嫮姣㈡繝鈷€鍕闁哄矉缍侀弫鎰板川椤撶啘鈺侇渻閵堝骸浜濈紒璇插楠炴垿宕熼姘炊闂佸憡娲﹂崰鎺楀磻閹捐閿ゆ俊銈勮閹锋椽姊洪崨濠勭畵閻庢凹鍙冨畷鎺楀Ω閳哄倻鍘遍梺闈浨归崕娲偂閼测斁鍋撶憴鍕┛缂傚秳绶氶悰顕€宕堕浣镐罕闂佸壊鍋侀崹褰掔嵁濡ゅ懏鈷掑ù锝堟鐢盯鏌ㄥ鎵佸亾濞堝灝鏋涢柣鏍с偢閻涱噣寮介鐐电杸濡炪倖甯掗ˇ閬嶅船閻㈠憡鍋℃繝濠傚暟閻忛亶鏌涢幒鎾崇瑨闁宠閰i獮姗€鎼归锛版岸姊绘笟鈧ḿ褏鎹㈤崼銉ョ9闁哄稁鍘奸崥褰掓煕閹伴潧鏋熼柣鎾冲暣閺屾稑鈹戦崱妤婁患闂侀€炲苯澧柟顔煎€块獮鍡涘礃椤曞懏鏅濋梺鎸庢琚欓柟閿嬫そ濮婃椽宕ㄦ繝鍕ㄦ闂佹寧娲忛崕鎻掝嚗閸曨垰绀嬫い鏍ㄧ〒閸橀亶姊洪崷顓炰壕婵炲吋鐟╁畷顐⒚洪鍛幍濡炪倖姊归弸濠氭嚀閹稿寒娈介柣鎰级閸犳﹢鏌熼銊ユ搐闁卞洦鎱ㄥ鍡楀箹妞ゅ繐缍婂濠氬磼濞嗘埈妲梺纭咁嚋缁绘繈鐛幇鏉垮耿婵炴垶岣块ˇ銊╂偡濠婂啰效閽樼喐鎱ㄥΟ鍨厫闁抽攱鍨堕幈銊╂偡閻楀牊鎮欓梺缁樺笚濡炰粙寮诲☉銏犖╅柕鍫濇噹缁侇喖顪冮妶鍐ㄧ仾鐎光偓閹间降鈧礁顫滈埀顒勫箖閵忥紕鐟规い鏍ㄧ洴閺佹粓姊婚崒娆戭槮闁硅绱曠划娆撳箣閿旇姤娅囬梺闈涳紡閸涱垼妲搁梻浣规偠閸庮垶宕濇繝鍐洸婵犲﹤鐗婇悡娆撴煙娴e啯鐝繛鍛嚇閺岋綀绠涙繝鍐╃彆濡炪們鍔婇崕鐢稿箖濞嗗浚鍟呮い鏃傚帶婢瑰孩绻濆▓鍨灈闁挎洏鍎遍—鍐寠婢跺本娈惧┑掳鍊曢幊蹇涘磻閸岀偛绠圭紒顔煎帨閸嬫捇骞嶉幐搴$伌婵﹦绮幏鍛喆閸曨偂鍝楅梻浣规偠閸斿繘宕戦幇顓狀洸闁归棿绶¢弫鍌炴煕椤愶絾鍎曢柨鏇炲€归悡娆撴煙濞堝灝鏋涙い锝呫偢閺岋繝宕ㄩ钘夆偓鎰版煛鐏炶濮傞柟顔哄€濆畷鎺戔槈濮楀棔绱�40%闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆浜ら柤鏉挎健瀵爼宕煎顓熺彅闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼鍩栭崝鏍偂濞戞埃鍋撻獮鍨姎濡ょ姵鎮傞悰顕€寮介鐔哄幈闂侀潧枪閸庨亶鍩€椤掆偓缂嶅﹪鐛崼銉ノ╅柕澶婃捣閸犳牕鐣风粙璇炬棃鍩€椤掑嫬绠洪柣銏犳啞閻撶喖鐓崶銊﹀暗缂佺姳鍗抽幃妤€鈽夐幒鎾寸彋濡ょ姷鍋涢悧鎾翠繆閹间礁唯閹艰揪绲介弸娑氣偓瑙勬礀缂嶅﹪銆佸▎鎾崇畾鐟滃秶绱撳鑸碘拻濞达絿鐡旈崵娆戠磼缂佹ê濮囬棁澶嬫叏濮楀棗骞樻い鈺佸级閵囧嫯绠涢幘璺侯暫闂佽棄鍟伴崰鏍蓟閺囩喓绠鹃柛顭戝枛婵鈹戦埄鍐ㄧ祷闁绘鎹囧鏄忣樁缂佺姵鐩弫鎰板川椤掑倻娉垮┑锛勫亼閸婃洘顨ヨ箛娑樼闁跨噦鎷�
闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ帒锕︾粙蹇旂節閵忥絾纭炬い鎴濇喘閵嗗懘骞撻幑妤€缍婇幃鈺侇啅椤旂厧澹堢紓鍌欒閸嬫挸顭跨捄鍝勵槵闁稿鎹囧畷妤佸緞婵犱礁顥氶梻鍌欑窔閳ь剛鍋涢懟顖涙櫠娴煎瓨鐓曢柟鐑樻尭缁椦囨煙妞嬪骸孝妞ゆ柨绻橀、娆撳礂閻撳簶鍋撻鐐粹拻濞达綀顫夐崑鐘绘煕鎼搭喖鐏︾€规洘绻傞悾婵嬪礋椤掆偓閸擃厼顪冮妶鍡楀闁瑰啿娲銊╂嚍閵夛絼绨婚梺鍝勫暙濞村倸岣块敍鍕枑闁绘鐗嗙粭鎺楁煛閸曗晛鍔﹂柡灞糕偓鎰佸悑閹肩补鈧尙鏆楅梻浣虹帛鐢帡鏁冮妷鈺佄﹂柛鏇ㄥ枤閻も偓闂佽宕樺▔娑⒙烽埀顒勬⒒娴h櫣甯涢柟姝屽吹缁瑩骞嬮敂鍏夊亾閿旂偓宕夐柕濠忕畱绾绢垶姊虹紒妯碱暡婵炲吋鐟︾€靛ジ骞囬悧鍫氭嫼闂佸憡绻傜€氼參藟閻樼粯鐓曢柣妯哄暱婵鏌熼獮鍨仼闁宠棄顦埢搴ょ疀閺囩姷宓佸┑鐘殿暯濡插懘宕规导鏉戠妞ゆ劑鍊楃亸鐢碘偓骞垮劚濡稓寮ч埀顒傜磼閸撗冾暭闁挎艾顭胯閻擄繝寮婚悢铏圭煓闁割煈鍠楀В鎰版⒑娴兼瑧鎮奸柛蹇旓耿閻涱噣骞掑Δ鈧粻锝夋煛閸愶絽浜鹃梺鍝勫€甸崑鎾绘⒒閸屾瑧顦︾紓宥咃躬瀹曟垶绻濋崶褏顦┑顔斤耿椤ゅ倿寮繝鍥ㄧ厸闁搞儮鏅涙禍褰掓煛閳ь剚绂掔€n偆鍘介梺褰掑亰閸撴岸鍩㈤弴銏$厱闁靛牆娲ら弸搴ㄦ煃鐟欏嫬鐏存い銏$☉椤繈鎮℃惔銏╁晙缂傚倸鍊峰ù鍥ㄧ椤掑嫬纾婚柕鍫濐槸閺勩儵鏌嶈閸撴岸濡甸崟顖氱闁瑰瓨绻嶆禒楣冩⒑缂佹ɑ灏紒缁橈耿瀵鈽夐姀鐘靛姶闂佸憡鍔楅崑鎾绘偩閸洘鈷戦柛婵嗗閿涙梻绱掗幓鎺撳仴闁糕斁鍋撳銈嗗笒閸犳艾岣块幇顓犵婵炴潙顑嗗▍鍥╃磼鏉堚晛浠︾紒妤冨枛閸┾偓妞ゆ帒瀚繚婵炶揪绲跨涵璺何i崼銉︾厪闊洤艌閸嬫捇寮妷銉ゅ闂佺粯鍨兼慨銈夋偂閸愵喖绾ч柣鎰版涧椤e吋銇勯敃鈧崲鏌モ€︾捄銊﹀枂闁告洦鍓涢ˇ銉╂⒑鐎圭媭娼愰柛銊ユ健閵嗕礁鈻庨幘鏉戝壒濡炪倖鍔﹂崑鍌滆姳閽樺鐔嗛悷娆忓缁€瀣亜閵忊槄鑰块柟顔规櫊瀹曟宕妷褎鍠掗梻鍌氬€风粈渚€骞栭銈囩煓濞撴埃鍋撻柟顔斤耿楠炲洭鎮ч崼婵呯敾闂備礁缍婂ḿ褔宕崸妤佸亱婵ǹ鍩栭埛鎴︽煕濞戞﹫鏀诲璺哄閺屾稓鈧綆浜濋ˉ銏°亜閵忥紕澧电€规洜鍠栭、妤呭磼濠婂骸鏅梻浣筋嚙濞寸兘寮崨濠勪粴闁诲孩绋掔换鍫濐潖閾忓湱纾兼慨妤€妫欓悾鍓佺磽娴h櫣甯涢悽顖涘笒瀹撳嫰姊洪崷顓烆暭婵犮垺岣块悮鎯ь吋婢跺鍘卞銈嗗姧缁茶法绮诲Ο姹囦簻闁规儳鐡ㄩ妵婵囨叏婵犲懏顏犵紒杈ㄥ笒铻i煫鍥风导闁垶鏌熼鐭亪锝炲┑鍫熷磯闁惧繐婀遍弳浼存⒒娴g懓顕滅紒璇插€胯棟濞村吋娼欓悡鏇㈡煙閻戞ê鐏熼柍褜鍓氱敮鎺楋綖濠靛鏁嗗ù锝堫潐閸婂嘲鈹戦悙鑼憼缂侇喖绉堕幑銏ゅ醇閵夈儴鎽曢梺鎸庣☉鐎氼亜鈻介鍫熷仯闁搞儯鍔岀徊缁樸亜椤掆偓椤戝懘鍩為幋锔藉€烽柛娆忣樈濡垿姊洪幖鐐插缂侇喗鐟╅悰顕€宕橀妸銏$€婚梺鐟扮摠閺屻劍绂嶆ィ鍐╃厽闁靛繈鍨洪弳鈺呮煏閸℃韬柡宀嬬磿閳ь剨缍嗛崑鍡樻櫠閸偅鍙忓┑鐘叉噺椤忕姷绱掓潏銊ョ瑨閾伙綁鏌ц箛娑掑亾濞戞瑯鏁囬梻鍌欐祰濡嫰宕€涙ḿ顩查柛顐f礀閽冪喖鏌i弬鍨倯闁稿浜濋妵鍕冀閵娧勫櫑闂佽鍨伴悧蹇曟閹惧瓨濯村ù鐘差儏閹界敻鏌i姀鈺佺仚闁逞屽墯閸撴岸宕甸弴鐔翠簻闁哄洦顨呮禍楣冩⒑缁洘鏉归柛瀣尭椤啴濡堕崱妤冪懆闁诲孩鍑归崣鍐ㄧ暦閹达附鏅搁柣妯虹-閸欏棝姊洪崫鍕殭闁稿﹤鎲$粋宥嗐偅閸愨晝鍘搁梺绯曞墲宀e潡鎯屽畝鍕厵闁告瑥顦伴崐鎰版煙椤斻劌娲ら柋鍥ㄧ節闂堟稓澧遍柛搴$焸閺岋絾鎯旈妶搴㈢秷闂佽鎮傞ˉ鎾斥枎閵忕媭娼╅悹娲細閹芥洖鈹戦悙鏉戠亶闁瑰啿娲崺鈧い鎺戯功閻e灚顨ラ悙宸剰闁宠鍨垮畷鍫曞煛娴h姤瀚梻鍌氬€搁崐椋庣矆娓氣偓楠炲鏁撻悩鍐叉疄婵°倧绲介崯顐ょ不閻樿绠规繛锝庡墮婵$晫绱掗悩鍐叉诞婵﹦绮幏鍛矙閹稿骸鈧垳绱撴担椋庡妽闁圭ǹ鍟块锝夊箵閹哄棙顫嶅┑鐘欏嫬鍔ょ憸鐗堟そ濮婂宕掑顑藉亾妞嬪孩顐芥慨妯挎硾閻掑灚銇勯幒鎴濃偓鍛婄濠婂牊鐓犳繛鑼额嚙閻忥繝鏌¢崨顓犲煟妞ゃ垺鐩幃娆戝垝鐟欏嫬顏归梻鍌欑閸氬绂嶆禒瀣?闂侇剙绉撮悡鏇炩攽閸屾稓绠撻柍瑙勫灴閹晠宕归锝嗙槑闂備胶枪椤戝洭宕戝☉妯煎箵闁割煈鍠掗弸搴ㄦ煙閹呮瀮鐞氭繈姊虹拠鎻掑毐缂傚秴妫濆畷鏉课旈崨顓炴優闁诲繒鍋犳繛鍥籍閸喐娅滈梺鍛婁緱閸樿棄鈻撻鐘电=濞达絽鎼暩闂佸摜濮甸悧鐘差嚕婵犳碍鍋勯柣鎾虫捣閻i箖姊虹紒姗嗘當闁绘绮岃灋闁告洦鍨遍埛鎴︽偣閸ヮ亜鐨虹紒鐘靛劋缁绘盯宕ㄩ鐣岊槶闂佺懓绠嶉崹褰掑煘閹寸姭鍋撻敐搴濈盎闁诲寒鍘奸—鍐Χ閸℃衼缂備浇寮撶划娆忣嚕閸愬弬鏃堝礃椤忓棴绱冲┑鐐舵彧缁叉崘銇愰崘鈺冾洸闁绘劦鍓涚弧鈧梺闈涢獜缁蹭粙鎮¢幇鐗堢厱闁哄啠鍋撻柣妤冨█楠炲啴鏁撻悩鍐蹭簻闂佺ǹ绻楅崑鎰板储閹剧粯鍋℃繝濠傚閻帞鈧娲樼划宀勫煝鎼淬劌绠涙い蹇撴閻f儳鈹戦悙宸殶濠殿喗鎸抽、鏍幢濞戞瑥浜楅梺鍝勬储閸ㄦ椽鎮¢崘顔界厱婵犻潧妫楅鈺呮煃瑜滈崜婵嬵敋瑜忛崣鍛存⒑閸︻叀妾搁柛鐘愁殜閹€斥槈閵忊€斥偓鍫曟煟閹邦垱纭剧悮姘舵⒑闂堚晝绉い顐㈩樀婵$敻宕熼锝嗘櫇闂佹寧绻傚ú銊╂偩閻㈠憡鈷戝ù鍏肩懅閹ジ鏌涜箛鏂嗩亪鎮鹃悜钘夐唶闁哄洨鍋熼崢鎼佹⒑閸涘﹤濮€闁哄懏绮撻幆渚€骞掑Δ浣叉嫽闂佺ǹ鏈悷锔剧矈閹殿喒鍋撶憴鍕闁诲繑宀搁獮鍫ュΩ閳轰胶楠囬梺鍦仺閸斿秴顪冮懞銉ょ箚闁割偅娲栭柋鍥ㄧ箾閹寸儐娈曢柣顐㈢箻濮婄粯鎷呴搹鐟扮闂佸憡姊瑰ú鐔肩嵁閺嶎収鏁冮柨鏃囨濞堟繈鏌i悢鍝ユ噧閻庢哎鍔嶇粋宥呪堪閸喓鍘甸梺缁樺灦閿氶柣蹇嬪劦閺屽秷顧侀柛鎾寸懅缁辩偞绻濋崒婊勬闂佺懓鐡ㄧ换宥呩缚閵娾晜鐓冪憸婊堝礈閻斿鍤曞┑鐘宠壘閸楁娊鏌i弮鍥仩妞ゆ梹娲熼幃宄扳堪閸愵€倝鏌嶈閸撴岸宕欒ぐ鎺戦棷闁挎繂鎷嬮崵鏇㈡煙閹澘袚闁稿鍔楃槐鎾存媴妤犮劍宀搁獮蹇撁洪鍛嫼闂佸憡绋戦敃锕傚煡婢舵劖鐓ラ柡鍥埀顒侇殘閸掓帡顢橀姀鐘殿唺闂佽宕樼亸娆戠不濮橆剦娓婚柕鍫濇婵呯磼閺屻儳鐣洪挊鐔兼煕椤愩倕鏋嶇紒璇叉閵囧嫰骞囬埡浣轰痪闂佹悶鍊曞ú顓㈠蓟濞戙垹鐓涢悗锝庡墰閻﹀牓鎮楃憴鍕8闁告梹鍨块妴浣糕枎閹惧磭鐣鹃悷婊冪Ч瀹曪絾绻濋崶銊㈡嫽闂佺ǹ鏈悷銊╁礂瀹€鈧槐鎺楊敋閸涱厾浠搁悗瑙勬礃缁诲牓寮崘顔肩<婵﹢纭稿Σ鑸电節閻㈤潧浠滄俊顐g懇瀹曟繈寮撮悩鎰佸仺闂佺粯鍔楅。浠嬪磻閹捐崵宓侀柛顭戝枛婵骸顪冮妶蹇曠窗闁告濞婇獮鍐灳閺傘儲鐎婚梺鍦亾濞兼瑩鍩€椤掆偓閻忔氨鎹㈠☉銏犵闁绘劕鐏氶崰妤冪磽閸屾艾鈧綊鎳濇ィ鍐b偓锕傛嚄椤栵絾顎囬梻浣告啞閹搁箖宕伴弽褜鍤曞┑鐘崇閸嬪嫰鏌涜箛鏇炲付闁告搩鍓熷娲川婵犲嫮绱伴梺绋块閻ゅ洭鍩呴棃娑掓斀閹烘娊宕愬Δ浣瑰弿闁绘垼妫勭壕缁樼箾閹存瑥鐏柣鎾亾闂備焦瀵х换鍌毼涢弮鍌涘床闁糕剝绋掗悡鐔兼煙鏉堝墽绋绘い銉ヮ樀楠炲棝鎮㈤崗灏栨嫼闂傚倸鐗婃笟妤€顬婅閳规垿鍨鹃搹顐㈩槱缂備礁鍊哥粔鎾偩閿熺姴绠ラ柧蹇e亝閺夋悂姊绘担铏瑰笡闁告梹鐗曞玻鍨枎閹炬潙鈧爼鏌ㄩ弮鍥撻柛娆忕箰閳规垿鎮╅幓鎺濅痪闂佹悶鍊愰崑鎾翠繆閻愵亜鈧倝宕㈡總鍛婂€舵繝闈涱儜缂嶆牗绻濇繝鍌滃闁绘帒鐏氶妵鍕箳閹存繍浼€閻庤鎸风欢姘跺蓟濞戙垹绠涢柍杞扮椤ュ姊洪崫鍕殭闁绘妫楅蹇撯攽閸ャ儰绨婚梺鍝勫暙濞层倛顣块梻浣虹帛缁诲秹宕戞繝鍥ц摕闁挎繂妫欓崕鐔兼煃閵夈儱鏆遍弶鍫濇嚇濮婅櫣绮欏▎鎯у壉闂佸湱鎳撳ú顓烆嚕鐠囨祴妲堥柕蹇曞Х閻も偓婵$偑鍊栭幐楣冨磻濞戞瑦鍙忛柕蹇曞Л閺€浠嬫煟閹邦垰鐨哄褋鍨介弻娑氣偓锝庡亝鐏忕敻鏌熼獮鍨仼闁宠棄顦~婵嬫晲閸涱剙顥氶梻浣圭湽閸ㄨ鈻嶉妷銊d汗闁圭儤绻冮弲娑㈡⒑鐟欏嫬鍔ゅ褍娴锋竟鏇㈡偩鐏炵ǹ浜炬鐐茬仢閸旀瑧绱掗埀顒佹媴閸︻収娲告俊銈忕到閸燁垶鍩涢幒鎴欌偓鎺戭潩閿濆懍澹曟繝鐢靛仒閸栫娀宕楅悙顒傗槈閾绘牠鏌涘☉鍗炲箻闁哄苯鐗撳娲捶椤撯剝顎楅梺鍝ュУ閻楁粎鍒掓繝姘亹缂備焦岣块崢顏堟椤愩垺澶勬繛鍙夌墪閺嗏晠姊绘担鍛婃儓婵☆偅顨婇、鏍ㄥ緞閹邦剝鎽曢梺鏂ユ櫅閸燁偆娆㈤悙鍝勭婵烇綆鍓欓悘顕€鏌曢崱妤嬭含婵﹨娅i幏鐘诲灳閾忣偆褰查梻浣烘嚀閸ゆ牠骞忛敓锟�40%闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆浜ら柤鏉挎健瀵爼宕煎顓熺彅闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼鍩栭崝鏍偂濞戞埃鍋撻獮鍨姎濡ょ姵鎮傞悰顕€寮介鐔哄幈闂侀潧枪閸庨亶鍩€椤掆偓缂嶅﹪鐛崼銉ノ╅柕澶婃捣閸犳牠鐛幇顓熷劅闁挎繂鍟犻崑鎾诲箛閺夎法楠囬梺鍐叉惈閸婅崵绮婚悙瀛樺弿濠电姴鎳忛鐘电磼椤旂晫鎳囨鐐村姈閹棃濮€閳ユ剚浼嗙紓鍌氬€搁崐宄懊归崶顒夋晪鐟滃繒鍒掗弮鍫熷仭闁规鍠楀▓楣冩⒑濮瑰洤鐏╅柟璇х節瀵彃鈹戠€n偆鍘撻悷婊勭矒瀹曟粓鎮㈤崙銈堚偓鍨€掑锝呬壕濠殿喖锕ㄥ▍锝囨閹烘嚦鐔煎礂閻撳孩鐝i梻鍌欒兌椤㈠﹤鈻嶉弴銏犵婵°倕鍟崹婵嬫煛閸愩劎澧遍柡浣告閺屾盯寮撮妸銉ヮ潾闂佸憡锕╂禍顏勵潖閾忕懓瀵查柡鍥╁仜閳峰顪冮妶鍐ㄥ闁硅櫕锚椤曪綁骞庨懞銉ヤ簻闂佺ǹ绻楅崑鎰板储閻㈠憡鍊甸柣鐔告緲椤忣亜顭块悷鐗堫棤缂侇喗妫冮幃婊兾熼梹鎰泿闂備線娼х换鍡涘春濡ゅ拋鏁傞柛顐g箘閸樻挳姊虹涵鍛涧缂佺姵鍨块幃娆愮節閸曨剙鏋戝┑鐘诧工鐎氼剟顢氶柆宥嗙厱闁斥晛鍟伴埊鏇㈡煃闁垮绗掗棁澶愭煥濠靛棙鍣洪柛鐔哄仱閺岀喖顢涘鍗炩叺闂佸搫鐭夌徊鍊熺亙婵炶揪缍€濞咃綁鎮℃径鎰€甸悷娆忓缁€鍐磼椤旇偐鐒搁柛鈹垮劜瀵板嫰骞囬澶嬬秱闂備胶鍋ㄩ崕閬嶅储閺嶎厼绠i梺鍨儎缁诲棝鏌i幇鍏哥盎闁逞屽墯閻楃娀骞冭铻栭柛鎰典簽閻撴捇姊洪崷顓炰壕闁活亜缍婇崺鈧い鎺嗗亾闁硅櫕锕㈤獮鍐ㄢ堪閸喎娈熼梺闈涱槶閸庝即宕犻弽褉鏀介柣鎰煐瑜把呯磼闊厾鐭欐鐐搭殔楗即宕奸悢鍛婄彨闁诲骸绠嶉崕鍗灻洪妸褍顥氶柣鎾冲瘨閻斿棝鎮归搹鐟扮殤闁告梻鍠庨湁闁绘﹩鍠栭悘鍙変繆椤愶紕鍔嶇€垫澘瀚埀顒婄秵閸撴盯鎯侀崼銉﹀仭婵犲﹤鍟扮粻鏌ユ煙娓氬灝濮傛鐐达耿椤㈡瑩鎳栭埡鍌滃姼濠碉紕鍋戦崐鏍偋濠婂牆纾绘繛鎴炴皑娑撳秵鎱ㄥΟ鍨厫闁绘挻娲滈埀顒€鍘滈崑鎾绘煃瑜滈崜鐔风暦閹达附鍊烽柣鎴灻禍妤呮⒑闂堟侗妾у┑鈥虫川缁粯銈i崘鈺冨幍闁诲海鏁告灙闁逞屽墯閸ㄥ灝鐣烽悜绛嬫晣婵炴垶眉婢规洖鈹戦鐭亜鐣烽鍕┾偓鍌炴嚃閳哄啰锛滅紓鍌欑劍宀e灝煤閹绢喗鐓欐い鏃傛嚀婢ф煡鏌熼娑欘棃闁糕斂鍎靛畷鍗炍旈埀顒€鏁紓鍌氬€搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾鐎规洘鍔欏畷顐﹀Ψ瑜忛悡瀣偡濠婂懎顣奸悽顖氭喘閸┾偓妞ゆ垼娉曠粣鏃傗偓娈垮枟閹歌櫕鎱ㄩ埀顒勬煟濞嗗苯浜惧┑鐐靛帶閿曨亜顫忛搹鍦<婵☆垰澧庣槐浼存⒑鏉炴壆鍔嶉柣鈩冩礋閸╁懘鏁撻敓锟�9闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙8闁逞屽厸閻掞妇鎹㈠┑瀣倞鐟滃骸危椤掑嫭鈷戦柛婵嗗閳诲鏌涢幘瀵告噮缂佽京鍋涢~婊堝焵椤掆偓椤繒绱掑Ο鑲╂嚌闂侀€炲苯澧撮柛鈹惧亾濡炪倖甯掗崐鍛婄濠婂牊鐓犳繛鑼额嚙閻忥繝鏌¢崨顓犲煟妞ゃ垺宀搁崺鈧い鎺戝閽冪喐绻涢幋鐐垫噮缂佲檧鍋撻梻浣告啞閸斿繘寮插☉銏犵劦妞ゆ帊绀佹慨宥夋煛瀹€鈧崰鏍€佸☉姗嗘僵妞ゆ帊鐒﹂鎺戔攽閻樻剚鍟忛柛鐘冲浮瀹曟垿骞樼紒妯锋嫼闂傚倸鐗婄粙鎾存櫠閺囥垺鐓欓柧蹇e亜婵秹鎸婂┑鍥ヤ簻闁规澘鐖煎顕€鏌嶉柨瀣仼缂佽鲸甯¢、娑樷槈濞嗘埈妲┑鐘媰閸愩劎楠囩紓浣虹帛閻╊垶骞婇悩娲绘晢闁逞屽墴瀵ǹ鈽夐姀锛勫幍濡炪倖娲栧Λ娑氬姬閳ь剟姊虹化鏇熸珨缂佺粯绻傞悾鐑藉Ω閳哄﹥鏅╅柣鐔哥懃鐎氼剟顢旇ぐ鎺撯拻闁稿本鐟чˇ锕傛煙鐠囇呯瘈妤犵偞鍔欏畷鍗炩槈濡⒈妲伴柣鐔哥矊缁夌妫㈠┑顔角归崺鏍煕閹寸偞鍙忛柣鐔哄閹兼劙鏌i幒鎾淬仢闁哄本鐩俊鎼佸煛閳ь剟骞夐悙顒夋闁绘劖娼欐慨宥夋煙閻撳海绉烘い銏℃礋閺佸秹宕熼鐘虫瘞闂傚倷娴囬褏鈧稈鏅濈划娆撳箳閺囩喐鍣锋繝鐢靛У椤旀牠宕归柆宥呯闁规儼妫勭粻鏍偓鐟板婢瑰寮告惔銊у彄闁搞儯鍔嶉幆鍕归悩灞傚仮婵﹤顭峰畷鎺戭潩椤戣法鏁栭梻浣规偠閸斿繐鈻斿☉顫稏闊洦绋掗幆鐐烘偡濞嗗繐顏╅柛妯虹秺濮婃椽宕ㄦ繝浣虹箒闂佹悶鍔嬮崡鎶藉箖瑜嶉~婵嬫嚋绾版ɑ瀚肩紓鍌欑椤戝懎岣块敓鐙€鏁佹俊銈呭暊閸嬫挾鎲撮崟顒€顦╅梺鍛婃尵閸犲酣鏁冮姀鈩冨缂侇垱娲橀弬鈧俊鐐€栭弻銊╋綖閺囩喓顩锋繝濠傜墛閻撴洟鎮楅敐搴′簼鐎规洖鐭傞弻鈥崇暆閳ь剟宕伴弽顓溾偓浣糕枎閹炬緞鈺呮煏婢舵盯妾柟顔界懇濮婅櫣绱掑Ο鍝勵潓闂佹寧娲︽禍顏勵嚕鐠囧樊鍚嬪璺猴梗缁卞爼姊洪崨濠冨闁稿鎳庨埢鎾诲蓟閵夛腹鎷洪柣鐘叉礌閳ь剙纾导鍫㈢磽閸屾氨小缂佲偓娓氣偓閿濈偠绠涢幘浣规そ椤㈡棃宕熼褍鏁归梻浣侯攰婢瑰牓骞撻鍡楃筏闁告繂瀚€閿濆閱囬柕澶涜吂閹锋椽姊虹粙璺ㄧ闁告艾顑夋俊鐢告偄閸忚偐鍘遍梺闈浤涢崟顒佺槗濠电姷顣槐鏇㈠极婵犳氨宓侀柛銉墮缁狙囨偣娓氼垳鍘滅紒杈ㄧ叀濮婄粯鎷呴搹鐟扮闂佸憡姊瑰玻鎸庣缁嬪簱鏋庨柟鎯хТ濞差參銆侀弴銏℃櫆閻熸瑱绲剧€氬ジ姊绘担鍛婂暈缂佽鍊婚埀顒佽壘閸㈡彃宓勯柣鐔哥懃鐎氥劍绂嶅⿰鍫熺厵閻庣數枪娴犙囨煙閸愬弶宸濋柍褜鍓濋~澶娒哄Ο鍏煎床闁割偅绻勯弳锕傛煏婵炑€鍋撻柛瀣尭閳藉鈻庣€n剛绐楅梻浣告啞钃遍柟顔煎€块獮鍐ㄎ旈崘鈺佹瀭闂佸憡娲﹂崜娆撴瀹ュ鈷戦柛娑橈功缁犳捇姊虹敮顔惧埌闁伙絿鍏橀獮鍥级鐠囩嫏鍐剧唵閻犺櫣灏ㄩ崝鐔兼煛鐏炵晫澧︽慨濠冩そ瀹曟粓骞撻幒宥囨寜闂備胶枪鐎涒晠鎮¢敓鐘茬畺闁跨喓濮撮崡鎶芥煟濡搫鏆遍柡瀣灴閺岀喖鎳濋悧鍫濇锭缂備焦褰冨ḿ锟犲箚鐏炶В鏋庨柟鎹愭硾瑜板嫰姊洪幖鐐插姌闁告柨閰i崺銉﹀緞閹邦厾鍘介梺鍦劋閸ㄨ绂掑☉銏$厪闁搞儜鍐句純濡ょ姷鍋涢澶愬极閹版澘宸濇い鎾跺€妷鈺傗拻濞达絽鎳欓崷顓熷床闁圭増婢樼€氬銇勯幒鎴濃偓鐟扮暦閸欏绠鹃柟瀛樼懃閻忊晝鈧懓鎲$换鍐Φ閸曨垰绠涢柍杞拌兌娴犵厧顪冮妶搴″妞わ箓娼ч~蹇涙惞鐟欏嫬鐝伴梺鐐藉劚绾绢厽绂掗鐐╂斀闁宠棄妫楁禍婊堟煕閻斿憡缍戞い鏇秮椤㈡洟鏁冮埀顒傜矆閸愵喗鐓冮柛婵嗗閳ь剚鎮傞、鎾诲箻閸撲胶锛濇繛杈剧到婢瑰﹪宕曢幘瀵哥濠㈣泛顑嗙粈鍐磼閸屾稑娴い銏★耿婵偓闁抽敮鍋撻柟椋庣帛缁绘稒娼忛崜褍鍩岄梺纭咁嚋缁绘繂鐣烽鐐村€烽柣鎴炨缚閸樹粙姊洪棃娑掑悍濠碘€虫喘閹瞼鈧綆鍠楅悡娆戔偓鐟板婢ф宕甸崶顭戞闁绘劕鐡ㄥ畷灞绢殽閻愭潙绗掓い鎾炽偢瀹曨亝鎷呯拠鈩冿紖濠电姷鏁告慨鐑藉极閹间礁纾婚柣妯款嚙缁犲灚銇勮箛鎾搭棤缂佲偓婵犲倶鈧帒顫濋敐鍛闁诲孩顔栭崰妤呮偂閿熺姴绠犻柣妯绘た閺佸棝鏌涢幇鈺佸闁跨喓濮甸埛鎴︽偡濞嗗繐顏╅柛鏃囨硾閳规垿顢欓崫鍕ㄥ亾濠靛绠栭柨鐔哄Т閸楁娊鏌i弬鍨暢缂佺姵宀稿娲濞戞艾顣洪柣搴㈠嚬閸o綀妫熼梺鎸庢礀閸婂綊鎮″▎鎾寸厱闊洦鎸搁幃鎴︽煕婵犲啫濮嶉柡宀嬬磿娴狅箓鎮剧仦婵勫劜閵囧嫯顦辩紒鑸靛哺瀵鈽夊⿰鍛澑闂佸搫鍟崐鍫曞焵椤掍礁绗х紒杈ㄥ浮椤㈡瑩鎳栭埡渚囨澑闂備胶鎳撻崲鏌ュ箠濡櫣鏆﹂柣鎴犵摂閺佸洨鎲告惔銊︾叆闁靛牆顦伴埛鎺懨归敐鍛暈闁诡垰鐗婄换娑氫沪閸屾艾顫囬悗瑙勬磻閸楁娊鐛Ο鍏煎珰闁肩⒈鍓欓獮瀣煟鎼达紕鐣柛搴ㄤ憾钘濇い鏍ㄧ矌娑撳秹鏌熼幆鏉啃撻柣鎾寸懇閺岀喖顢涘⿰鍐炬毉濡炪們鍎遍ˇ鐢稿蓟閿濆绠抽柟瀵稿С缁敻姊洪棃娑欐悙閻庢矮鍗抽悰顔锯偓锝庝簴閺€浠嬫煕椤愶絿鐭庢俊鐐倐濮婄粯鎷呴崨闈涚秺閺佸啴濡烽妷搴悼閳ь剨缍嗛崜娑氬娴犲鐓曢悘鐐村礃婢规﹢鏌嶈閸撶喖藟閹捐泛鍨濋柛顐ゅ枔閻熷綊鏌嶈閸撴瑩顢氶敐澶嬪仺闁告挸寮堕弲銏ゆ⒑闁偛鑻晶鎾煃閵夛附顥堢€规洘锕㈤、娆撴寠婢跺本顎嶆繝鐢靛О閸ㄥ綊宕㈠⿰鍫濈柧婵犲﹤鐗婇崕搴€亜閺嶃劍鐨戦柡鍡缁辨帞鈧綆鍙庨崵锕傛煛閸愩劎澧曢柣鎺戠仛閵囧嫰骞掗幋婵囨缂備胶濮炬慨銈囨崲濠靛鍋ㄩ梻鍫熺◥閸濇姊虹憴鍕仧濞存粎鍋熷Σ鎰版倷閸濆嫮鍔﹀銈嗗笂閼冲墎绮绘ィ鍐╃厱婵犲﹤鍟弳鐔虹磼婢舵ê鏋ら柍褜鍓濋~澶娒洪埡鍐濞撴埃鍋撶€规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熼崫鍕ラ柛蹇撶灱缁辨帡鎮╅懡銈囨毇闂佸搫鐬奸崰鎾诲焵椤掑倹鏆╅弸顏劽归悪鍛暤闁哄矉缍侀獮姗€宕¢悙鎻捫戠紓鍌欐祰妞村摜鏁埄鍐х箚闁归棿鐒﹂弲婊冣攽椤旇棄濮冮柧蹇撻叄濮婄粯鎷呴搹骞库偓濠囨煛閸屾瑧绐旂€规洘鍨块獮姗€骞囨担鐟扮槣闂備線娼ч悧鍡椢涘Δ鍛€堕柨鏇炲€归崐鐢电磼濡や胶鈽夐柟铏姍閹矂宕煎婵嗙秺閹剝鎯旈敐鍡樺枛闂備胶绮幐楣冨窗閹版澘桅闁告洦鍠氶悿鈧梺鍦亾濞兼瑥鈻嶉妶澶嬬厽闊洦鎹囬悰婊呯磼閻樿櫕宕岀€殿喖顭烽幃銏㈠枈鏉堛劍娅撻梻浣稿悑娴滀粙宕曢娑氼浄闁靛繈鍊栭埛鎴﹀级閻愭潙顥嬮柛鏂跨Ч閺屾盯寮埀顒勬偡閵夆晜鍋╅柣鎴f闁卞洭鏌¢崶鈺佷户闁告ɑ鎮傚铏圭矙閹稿孩鎷辩紓浣割儐閸ㄥ灝鐣峰┑鍡╂建闁逞屽墮椤繑绻濆顒傦紲濠电偛妫欓崺鍫澪i鈧铏规兜閸滀礁娈濈紓浣虹帛缁诲牓鐛繝鍌楁斀閻庯綆浜為ˇ顓㈡偡濠婂喚妯€鐎规洘鍨块獮姗€骞囨担鐟板厞闂備胶绮幐鍛婎殽閹间礁鐓曢悗锝庡亞缁♀偓缂佺偓婢橀ˇ杈╁閸ф鐓涘ù锝囩摂閸ゆ瑩鏌i敐鍥у幋鐎规洖銈稿鎾Ω閿旇姤鐝滈梻鍌欒兌鏋柡鍫墮椤繈濡搁埡浣勓囨煥閺囩偛鈧綊鍩涢幒鎳ㄥ綊鏁愰崨顔兼殘闂佸摜鍠撻崑銈夊蓟濞戙垹绫嶉柍褜鍓熼幃褔鎮欓崫鍕庯箓鏌熼悧鍫熺凡缂佲偓閸愨斂浜滈柡鍐ㄥ€瑰▍鏇㈡煕濡濮嶆慨濠勭帛缁楃喖宕惰椤晝绱撴担鍓叉Ш闁轰礁顭烽獮鍐缂佺姵绋戦埥澶娾枎閹存繂绠為梻鍌欑閻ゅ洤螞閸曨倠娑樜旈崨顖氱ウ濠德板€曢幊蹇涘磹閸偅鍙忔俊顖滃帶娴滈箖鎮楀鐐
相关话题/土壤 光谱 数据 卫星 空间