Evaluation of Nitrogen Supply Capacity of Paddy and Wheat Rotation Soil in Hanzhong Basin by Different Determination Methods
ZHANG FangFang,1,2, MA NingBo1,3, YUE ShanChao1,2, LI ShiQing,1,2通讯作者:
责任编辑: 李云霞
收稿日期:2020-01-7接受日期:2020-04-13网络出版日期:2020-10-01
基金资助: |
Received:2020-01-7Accepted:2020-04-13Online:2020-10-01
作者简介 About authors
张方方,Tel:18907799055;E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (1557KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
张方方, 马宁博, 岳善超, 李世清. 基于不同方法的汉中盆地稻麦轮作土壤供氮能力评价[J]. 中国农业科学, 2020, 53(19): 3996-4009 doi:10.3864/j.issn.0578-1752.2020.19.013
ZHANG FangFang, MA NingBo, YUE ShanChao, LI ShiQing.
0 引言
【研究意义】汉中盆地是我国西部第三大平原区,也是西部地区重要的粮油生产地。近年来,水稻种植面积超过 12万 hm2,水稻总产量超过70万t,其中60%以上为稻麦轮作的农田。汉中市化肥年使用量约52.11万t,平均施用量高达606 kg N·hm-2·a-1,远高于全国 460 kg N·hm-2·a-1的平均水平[1]。可见,稻麦轮作农田具有产量高、氮肥用量高、氮素利用效率低的特点。土壤供氮能力是估算氮肥合理用量的关键参数[2],因此,有必要掌握稻麦轮作土壤供氮能力特点来合理施用氮肥,这对于实现农业绿色发展和维持主要粮食作物高产稳产具有重要意义。目前,确定土壤供氮能力主要有测定土壤全氮和有机氮矿化产生的氮素两类方法,后者又分为化学方法和生物方法。化学方法在反映土壤供氮能力上简单、方便,受到研究者重视;生物方法是通过创造适合微生物活动的最佳条件,使微生物充分发挥矿化作用,且累积矿化量与作物吸氮量相关性较好,是常用的供氮能力评价方法[3]。【前人研究进展】研究发现,土壤全氮变化幅度较小,在反映土壤供氮能力变化时不够敏感[4],测定有机氮矿化成为研究土壤供氮能力的最佳选择。有机氮矿化受到很多因素影响,包括施肥等管理措施的直接影响[5]和土壤理化性质的间接影响[6],以及微生物活动的影响[7]。DRIDI[8]的研究表明,土壤氮素矿化随深度的增加而减少,并随土壤类型的不同而呈现不同的模式,高含量有机质、全氮和低C﹕N促进氮素矿化,高粉黏粒、低pH降低氮素矿化量,氮的潜在矿化率呈下降趋势:钙积土>变性土>始成土>淋溶土。JIA等[9]研究结果显示,水分含量升高促进氮素矿化、盐碱度却降低氮矿化量。王慧等[10]、张敬昇等[11]、鲁彩艳等[12]研究结果均显示无论是单施氮肥、控释氮肥与尿素掺混还是有机无机肥配施都能提高土壤氮素矿化率,且后两者矿化能力均高于单施氮肥。金发会等[13]比较了不同化学方法测定土壤供氮能力水平,结果以酸性高锰酸钾法最优,其次为KCl水浴法和硫酸-高锰酸钾法。金发会等[14]、赵坤等[15]评价了不同生物培养法测定土壤供氮能力水平,研究结果均表明原状土通气培养法可用于评价旱地石灰性土壤供氮能力。【本研究切入点】目前,土壤理化性质对氮素矿化影响的研究主要集中在全氮、有机质、碱解氮等指标上[16,17],而对其他理化指标间接影响的研究较少;当前测定土壤供氮能力已有众多化学和生物方法[13,14,15,16,17,18,19,20],但究竟何种方法是适合于稻麦轮作土壤的理想方法还有待进一步研究,且在研究区域上也较少关注稻麦产量较高的汉中盆地。【拟解决的关键问题】基于以上问题,本研究以汉中盆地采集的12个稻麦轮作农田耕层土壤为供试土壤,测定土壤养分含量,并以盆栽黑麦草累积吸氮量为参比,研究土壤基本理化性质指标以及矿质氮法、KCl冷凝回流法、酸性高锰酸钾法3种化学方法和淹水培养法、通气培养法 2 种生物培养方法在反映汉中盆地土壤供氮能力上的可靠性,以期为合理评价汉中盆地稻麦轮作土壤供氮能力提供理论依据。1 材料与方法
1.1 研究区域概况
汉中盆地(东经105.8°—108.2°,北纬32.2°—33.5°)位于陕西省西南部(图1),北靠秦岭,南接巴山,汉江贯穿东西,总面积约3 600 km2。汉中盆地属暖温带和亚热带过渡地带,年均气温12—14℃,年降雨量700—1 800 mm,无霜期约240 d,森林植被覆盖率达56%,生态环境良好,自然条件优越。汉中盆地东西狭长,呈椭圆形,海拔约500 m,东西长约116 km,南北宽约5—30 km。汉中盆地内河网密布,水量充沛,汉江横穿盆地中部形成冲积平原,其支流牧马河与泾洋河在汉中东南部形成冲积性宽谷坝子,冲积田、平坝田及低山丘陵区梯田是主要田地类型。汉中盆地是陕西主要农业区之一,总耕地面积29.53万hm2,稻麦轮作农田超过60%,水稻产量达9 000—10 500 kg·hm-2,小麦产量4 500— 6 000 kg·hm-2 [21]。图1
新窗口打开|下载原图ZIP|生成PPT图1汉中盆地采样点分布图
Fig. 1Distribution of sampling sites in Hanzhong Basin
1.2 样品采集与基本性质测定
2018 年 5 月,在资料分析和多次野外实地调查的基础上,在汉中盆地主要农业区确定12个采样点(图1)。在小麦收获后的田地,以“S”采样法采集农田耕层(0—20 cm)为供试土壤(表1)。取部分新鲜土样测定土壤供氮能力指标;部分新鲜土样置于通风处风干,过 1 mm筛用于测定pH,过 0.25 mm筛用于测定基本理化性质,其余过6 mm筛的土样用作盆栽试验。供试土壤 pH 测定采用电位法(水土比为 5﹕1);有机质(organic matter, OM)测定用重铬酸钾外加热容量法;全氮(total nitrogen, TN)采用凯氏定氮法,全自动定氮仪(瑞典FOSS公司,2300型)测定;硝态氮(nitrate nitrogen, NO3--N)和铵态氮(ammonium nitrogen, NH4+-N)用连续流动分析仪(美国AAA公司,AutAnalyel型)测定,矿质氮(mineral nitrogen,mineral N)为两者之和;土壤阳离子交换量(cation exchange capacty,CEC)测定采用1 mol·L-1乙酸铵交换法;有效磷(available phosphate, Ava.P)测定用0.5 mol·L-1 NaHCO3提取-钼锑抗比色法;土壤碳酸钙(calcium carbonate,CaCO3)采用气量法测定;土壤颗粒组成利用马尔文激光粒度仪(英国马尔文公司,APA2000型)进行测定。供试土壤基本性质差异较大(表2):pH 5.6—7.8,均值6.2(除10号采样点为石灰性土壤呈微碱性外,其余均呈现微酸性),有机质变化在20.5—44.7 g·kg-1,全氮变化在1.5—2.5 g·kg-1之间,有效磷变化在9.6—98.0 mg·kg-1之间,CEC变化在10.8—24.1 cmol·kg-1之间,碳酸钙变化在8.5—25.2 g·kg-1之间。Table 1
表1
表1供试土壤基本情况
Table 1
土样编号 Soil No. | 采样地点 Location | 田地类型 Field type | 土壤质地 Soil texture | 土壤类型 Soil type |
---|---|---|---|---|
1 | 汉台区Hantai District | 平坝田Flat field | 壤土Loam | 黄棕壤Yellow brown soil (YBS) |
2 | 勉县Mian County | 平坝田Flat field | 壤土Loam | 黄棕壤Yellow brown soil (YBS) |
3 | 勉县Mian County | 平坝田Flat field | 黏土Clay | 黄褐土Yellow cinnamon soil (YCS) |
4 | 南郑区Nanzheng District | 平坝田Flat field | 壤土Loam | 黄棕壤Yellow brown soil (YBS) |
5 | 南郑区Nanzheng District | 平坝田Flat field | 壤土Loam | 棕壤Brown soil (BS) |
6 | 城固县Chenggu County | 平坝田Flat field | 黏土Clay | 黄棕壤Yellow brown soil (YBS) |
7 | 洋县Yang County | 冲积田Alluvial field | 壤土Loam | 黄棕壤Yellow brown soil (YBS) |
8 | 洋县Yang County | 平坝田Flat field | 壤土Loam | 黄棕壤Yellow brown soil (YBS) |
9 | 洋县Yang County | 平坝田Flat field | 壤土Loam | 黄棕壤Yellow brown soil (YBS) |
10 | 城固县Chenggu County | 梯田Terraces | 壤土Loam | 黄棕壤Yellow brown soil (YBS) |
11 | 汉台区Hantai District | 平坝田Flat field | 壤土Loam | 黄棕壤Yellow brown soil (YBS) |
12 | 汉台区Hantai District | 平坝田Flat field | 黏土Clay | 黄褐土Yellow cinnamon soil (YCS) |
新窗口打开|下载CSV
Table 2
表2
表2供试土壤基本性质
Table 2
土样编号 Soil No. | pH (5﹕1) | 有机质 OM (g·kg-1) | 全氮 TN (g·kg-1) | 有效磷 Ava.P (mg·kg-1) | 阳离子交换量 CEC (cmol·kg-1) | 碳酸钙 CaCO3 (g·kg-1) | 颗粒组成Soil particle (%) | ||
---|---|---|---|---|---|---|---|---|---|
砂粒 Sand | 粉粒 Silt | 黏粒 Clay | |||||||
1 | 6.1 | 28.9±0.64 | 1.76±0.13 | 21.8±0.36 | 17.8±4.9 | 8.46±3.38 | 8.96±5.34 | 64.5±3.07 | 26.6±2.28 |
2 | 5.8 | 24.8±0.43 | 1.47±0.08 | 11.6±0.26 | 20.0±0.85 | 25.1±2.51 | 5.95±0.03 | 65.3±0.02 | 28.8±0.05 |
3 | 5.6 | 21.8±1.71 | 1.56±0.11 | 26.9±1.02 | 20.9±1.05 | 16.7±1.67 | 2.66±0.04 | 64.6±0.03 | 32.7±0.01 |
4 | 5.7 | 20.5±1.28 | 1.53±0.07 | 36.5±2.14 | 19.2±0.5 | 8.46±0.85 | 7.93±0.14 | 62.9±0.12 | 29.1±0.02 |
5 | 5.6 | 22.8±0.96 | 1.31±0.09 | 18.2±0.51 | 13.1±1.35 | 16.7±0.84 | 20.6±0.01 | 62.6±0.02 | 16.9±0.03 |
6 | 6.4 | 34.4±0.96 | 2.02±0.08 | 23.8±8.52 | 17.2±1.83 | 25.1±3.35 | 7.63±0.19 | 61.2±0.07 | 31.2±0.12 |
7 | 6.1 | 28.7±0.43 | 1.68±0.09 | 20.1±2.96 | 10.8±0.6 | 16.8±0 | 19.0±0.21 | 56.0±0.2 | 25.0±0.01 |
8 | 6.0 | 32.5±0 | 2.14±0.27 | 98.0±2.55 | 18.6±0.45 | 25.1±4.18 | 19.5±0.58 | 55.5±0.4 | 25.0±0.17 |
9 | 6.2 | 30.6±0.64 | 1.74±0.22 | 26.0±1.33 | 24.1±3.94 | 25.1±2.51 | 13.7±0.34 | 56.4±0.23 | 29.9±0.11 |
10 | 7.8 | 24.6±1.07 | 1.67±0.15 | 17.1±0.82 | 22.8±3.28 | 16.8±0.84 | 15.8±1.61 | 54.8±1 | 29.3±0.61 |
11 | 7.0 | 27.6±3.21 | 1.85±0.11 | 9.59±0.41 | 15.8±1.14 | 25.2±1.68 | 11.7±0.33 | 63.1±0.21 | 25.3±0.12 |
12 | 6.2 | 44.7±1.5 | 2.53±0.16 | 20.9±0 | 21.3±1.5 | 25.2±2.52 | 14.5±0.23 | 53.9±0.2 | 31.5±0.03 |
Ave. | 6.21±0.58 | 28.49±6.38 | 1.77±0.32 | 27.55±22.29 | 18.45±3.7 | 19.56±6.22 | 12.3±5.56 | 60.1±4.17 | 27.6±4.09 |
新窗口打开|下载CSV
1.3 化学测定方法
方法(1):矿质氮法(起始矿质氮)。称取5.0 g 新鲜土样,加入50 mL 1 mol·L-1 KCl溶液,振荡30 min后过滤,用连续流动分析仪测定滤液中的NH4+-N和NO3--N。方法(2):KCl冷凝回流法。称取20.0 g 鲜土,置于250 mL三角瓶中,加入100 mL 2 mol·L-1 KCl溶液,放置在可调温电炉上加热,回流冷凝4 h。冷却后加3滴5 mol·L-1 CaCl2,摇匀,转移至200 mL容量瓶中定容,用连续流动分析仪测定NH4+-N和NO3-N。
方法(3):酸性高锰酸钾法。取1.0 g新鲜土样,加25 mL 1 mol·L-1 H2SO4振荡1 h后,4 000 r/min离心20 min后过滤,在土样残渣中加入0.05 mol·L-1 KMnO4和1 mol·L-1 H2SO4混合溶液25 mL,振荡1 h,4 000 r/min离心5 min,悬浮液中NH4+-N用自动定氮仪测定。
1.4 生物培养方法
本研究采用淹水培养1周和通气培养2周两种培养方法。(1)淹水培养1周:称取20.0 g鲜土于150 mL塑料瓶中,加入20 mL蒸馏水(淹没土样),密闭摇匀,置于(40±1)℃恒温培养箱中培养1周。培养结束后,各加入80 mL 1.25 mol·L-1 KCl溶液以稀释成1 mol·L-1 KCl溶液浸提,振荡 1 h,过滤,测定NH4+-N含量。培养结束后的测定值与起始NH4+-N之差为淹水培养1 周产生的矿化氮。
(2)通气培养2周:称取10.0 g鲜土,与30.0 g洗净烘干的石英砂充分混匀后,置于干燥洁净广口瓶中,调节含水量至田间持水量的60%,瓶口用带孔保鲜膜封住,置于(30±1)℃恒温培养箱中培养2周。培养结束后,各加入100 mL 1 mol·L-1 KCl溶液,振荡 1 h,过滤,测定NH4+-N和NO3--N含量。培养结束后的测定值与起始矿质氮之差为通气培养2 周产生的矿化氮。
1.5 盆栽试验
将风干后过 6 mm筛的土样用作盆栽土,以规格为内径约 30 cm、高约 20 cm 的塑料花盆为试验钵,每盆装土 3 kg,每个土样装3盆,共36盆。装土过程中轻轻压实,装好后土面离盆口约2.5 cm。为防止降雨带入氮素,盆栽试验在室内进行。盆栽试验于2018年7月11日播种,出苗后,每盆定苗30株。自出苗日起,约每40天收割1次,分别于2018年的8月30日、10月10日、11月21日、12月26日收割黑麦草地上部,每次收割后立即杀青(105℃)、烘干(75℃),称量干重并测定含氮量。最后一次收割后收集根系,称其干重和测定含氮量。根据全氮含量和干重,分别计算地上部和根系氮素累积量。1.6 数据分析
数据整理采用 WPS Office Excel 软件,用 SPSS 22.0进行 Pearson 相关性分析和 Duncan 方差分析,用OriginPro 9.0 作图。2 结果
2.1 土壤理化性质对供氮能力的影响
以植物吸氮量作为参比进行相关分析,是评价室内测定土壤供氮能力指标优劣的有效手段[2]。由图2可知,以汉中盆地 12 个采样点土壤为盆栽土种植的黑麦草吸氮量变异很大,变化在 83.54—246.10 mg/pot之间。不同采样点土壤种植的黑麦草吸氮量变化明显,这可能是由土壤理化性质不同造成的。按照土壤质地和土壤类型对各采样点土壤种植的黑麦草吸氮量分类后的平均值比较(图3),可知,黄褐土和棕壤2种类型土壤种植的黑麦草吸氮量差异显著,而土壤质地对黑麦草吸氮量影响未达到显著水平。表明,土壤类型是土壤供氮能力的重要影响因素。图2
新窗口打开|下载原图ZIP|生成PPT图2不同采样点土壤盆栽黑麦草地上部和地下部累积吸氮量
不同字母间表示在 P<0.05 水平差异显著。下同
Fig. 2The aboveground N uptake and root N uptake by ryegrass at different sampling sites
There are significant differences at P<0.05 between different letters. The same as below
图3
新窗口打开|下载原图ZIP|生成PPT图3土壤质地和土壤类型对盆栽黑麦草地上部累积吸氮量的影响
Fig. 3Effects of the soil texture and soil type on aboveground N uptake of ryegrass
由图4可知,盆栽黑麦草地上部累积吸氮量与有机质和全氮相关系数分别为0.752和0.792(P<0.01),而与其他土壤理化性质指标均未达到显著水平。由于土壤全氮中的有机氮占70%以上,且全氮和有机质之间有着密切的联系,但土壤全氮和有机质含量的变异性相对于土壤矿质氮要小得多,因此,难以反映包括矿质氮在内的土壤总供氮能力。表明,土壤全氮或有机质可以用于反映稻麦轮作土壤潜在供氮能力,而其他理化性质指标包括pH、有效磷、阳离子交换量、碳酸钙、颗粒组成(砂粒、粉粒、黏粒)均不能反映稻麦轮作土壤潜在供氮能力和总供氮能力。
图4
新窗口打开|下载原图ZIP|生成PPT图4土壤理化性质指标与盆栽黑麦草地上部累积吸氮量的相关关系
*P<0.05,**P<0.01。下同 The same as below
Fig. 4Correlations between soil physical and chemical property parameters and aboveground N uptake of ryegrass
2.2 矿质氮法、KCl冷凝回流法和酸性高锰酸钾法反映供氮能力的效果
3 种化学方法测定结果见表3。相关分析表明,矿质氮法测得氮素值(起始矿质氮)与盆栽黑麦草地上部累积吸氮量相关性达到极显著水平,相关系数为0.963(P<0.01)(图5),表明作物可以直接吸收利用矿质氮,吸收的矿质氮主要供给地上部分生长。由于起始矿质氮不能反映有机氮的矿化量,因此,矿质氮法只能作为汉中盆地土壤当前供氮指标,不宜作为土壤供氮能力评价指标。Table 3
表3
表3化学方法所得的氮素值
Table 3
土样编号 Soil No. | 化学方法Chemical methods (mg·kg-1) | ||||||
---|---|---|---|---|---|---|---|
方法(1)Method (1) | 方法(2) Method (2) | 方法(3) Method (3) | |||||
NO3--N | NH4+-N | ∑ | NO3--N | NH4+-N | ∑ | NH4+-N | |
1 | 15.87±1.48 | 0.14±0.26 | 16.01±1.74 | 6.44±0.74 | 11.9±0.81 | 18.34±1.55 | 255.49±6.74 |
2 | 12.6±1.47 | 1.25±0.15 | 13.85±1.61 | 5.47±0.75 | 10.44±1.24 | 15.91±1.88 | 156.24±9.43 |
3 | 12.77±0.25 | 2.32±0.08 | 15.09±0.32 | 7.82±0.86 | 10.09±0.51 | 17.91±1.27 | 190.47±36.49 |
4 | 11.01±0.78 | 3.18±1.48 | 14.2±2.26 | 6.17±1.58 | 10.97±0.98 | 17.14±2.53 | 169.33±6.3 |
5 | 5.63±0.79 | 2.12±0.58 | 7.75±1.37 | 4.8±0.89 | 9.55±0.39 | 14.35±0.73 | 154.23±5.32 |
6 | 17.58±0.73 | 2.91±0.41 | 20.49±1.14 | 13.22±2.66 | 12.18±1.4 | 25.4±3.84 | 273.13±9.41 |
7 | 14.46±1.01 | 1.08±0.11 | 15.54±1.12 | 5.02±0.92 | 13.01±1.68 | 18.03±2.4 | 238.99±36.7 |
8 | 23.18±1.55 | 2.37±0.73 | 25.55±2.28 | 9.51±1.67 | 16.42±2.28 | 25.93±3.8 | 356±27.27 |
9 | 14.78±3.07 | 1.1±0.59 | 15.88±3.66 | 4.04±0.33 | 14.08±1.5 | 18.12±1.7 | 243.77±41.79 |
10 | 6.61±0.98 | 0.04±0.14 | 6.64±1.12 | 3.73±0.67 | 10.09±0.93 | 13.82±1.59 | 148.69±5.49 |
11 | 18.81±6.46 | 0.44±0.46 | 19.25±6.92 | 8.05±1.39 | 12.59±1.41 | 20.64±2.49 | 255.99±38 |
12 | 26.05±2.16 | 0.75±0.04 | 26.81±2.19 | 10.28±1.92 | 17.54±1.5 | 27.82±3.38 | 504.32±30.74 |
Avi. | 14.95±5.75 | 1.47±1.03 | 16.42±5.78 | 7.05±2.72 | 12.4±2.43 | 19.45±4.39 | 245.55±97.78 |
新窗口打开|下载CSV
图5
新窗口打开|下载原图ZIP|生成PPT图5盆栽黑麦草地上部累积吸氮量与化学方法测定氮素值的相关关系
a:测得氮素值包括起始矿质氮;b:测得氮素值不包括起始矿质氮。下同
Fig. 5Correlations between aboveground N uptake of ryegrass and N value determined by chemical methods
a: The measured N values include initial mineral N; b: The measured N values don’t include initial mineral N. The same as below
相关分析表明,KCl冷凝回流法测的氮素值(包括起始矿质氮时)与盆栽黑麦草地上部累积吸氮量相关性较高,相关系数为0.912(P<0.01),而不包括起始矿质氮时与盆栽黑麦草地上部累积吸氮量呈负相关,相关系数为 -0.766(P<0.01)(图5)。KCl冷凝回流法能够反映土壤总供氮能力,但不能有效反映土壤潜在供氮能力。因此,KCl冷凝回流法不是反映汉中盆地土壤供氮能力的理想指标。
相关分析表明,酸性高锰酸钾法测得的氮素值在包括起始矿质氮时和不包括起始矿质氮时均与盆栽黑麦草地上部累积吸氮量达到 1%显著相关,相关系数分别为 0.847和0.833(图5)。表明,酸性高锰酸钾法既可以有效反映土壤潜在供氮能力,又可以用于评价土壤总供氮能力。而且,KCl冷凝回流法和酸性高锰酸钾法测的得氮素值在包括起始矿质氮时与盆栽黑麦草地上部累积吸氮量相关系数均达到0.8 以上,表明两种方法在反映土壤总供氮能力上差异不大,但KCl冷凝回流法在反映潜在供氮能力上的不稳定性,使得该方法不如酸性高锰酸钾法理想。因此,酸性高锰酸钾法是反映汉中盆地稻麦轮作土壤供氮能力较为的理想化学方法。
2.3 淹水培养法和通气培养法反映土壤供氮能力的效果
在淹水培养试验中,矿化氮(NH4+-N)量为(14.02± 8.77)mg·kg-1;在通气培养试验中,矿化氮量(NH4+-N + NO3--N)达到了(21.57±9.42) mg·kg-1。表明,淹水条件下的土壤氮矿化量显著低于通气培养条件下的矿化量。为了准确评价两种培养方法在反映汉中盆地稻麦轮作土壤供氮能力上的可靠度,将两种培养条件下测得的总矿质氮量和矿化量与盆栽黑麦草地上部吸氮量进行了相关分析(图6)。图6
新窗口打开|下载原图ZIP|生成PPT图6盆栽黑麦草地上部累积吸氮量与生物方法测定氮素值的相关关系
a*:测得氮素值包括起始铵态氮;b*:测得氮素值不包括起始铵态氮
Fig. 6Correlations between aboveground N uptake of ryegrass and the results of biological methods
a*: The measured N values include initial ammonium N; b*: The measured N values don’t include initial ammonium N
淹水培养和通气培养过程中产生的矿化氮可反映土壤潜在供氮能力,淹水培养和通气培养结束后测得的氮素值可反映土壤总供氮能力。相关性分析表明,淹水培养条件下的总矿质氮量与盆栽黑麦草地上部累积吸氮量显著相关,相关系数为 0.921(P<0.01),淹水培养条件下的可矿化氮量与盆栽黑麦草地上部累积吸氮量相关系数下降为0.890(P<0.01)。表明,在淹水培养条件下既可以反映土壤潜在供氮能力,又可以反映土壤总供氮能力。通气培养条件下的总矿质氮量和可矿化氮量与盆栽黑麦草地上部累积吸氮量相关系数分别为0.526和0.009,均未达到5% 显著水平。这表明,虽然在通气培养条件在反映土壤总供氮能力上要优于反映土壤潜在供氮能力,但通气培养法并不适宜用于评价汉中盆地稻麦轮作土壤的供氮能力。因此,淹水培养法是适宜汉中盆地稻麦轮作土壤的供氮能力生物方法。
2.4 氮素矿化势和起始矿质氮+氮素矿化势反映土壤供氮能力的效果
氮素矿化势(N0)反映着土壤供氮容量[22]。根据STANFORD等[23]的求解公式N0 = Nt / (1-10-k0 t/2.303) 可以求得氮素矿化势N0。式中,N0为培养时间t趋于无限长时的累积矿化氮,即矿化势(mg·kg-1);Nt为培养条件下实测的累积矿化量(mg·kg-1);k0为矿化速率常数(d-1);t为培养时间(周),本试验t值为1周。根据修正的埃伦纽斯方程式lg k0=7.71- 2758/T和开尔文温度计算公式T = C+273.15[12],求得 C = 40℃时的矿化速率常数k0为0.0799。氮素矿化势(N0)可以有效反映土壤潜在供氮能力,而起始矿质氮+N0可以反映土壤总供氮能力。根据以上模型计算出淹水培养条件下氮素矿化势N0,将N0和起始矿质氮+N0与盆栽黑麦草地上部累积吸氮量进行相关分析(表4)。相关分析表明,N0和起始矿质氮+N0与前 4 期黑麦草地上部累积吸氮量相关系数分别为0.834和0.845(P<0.01),与整株累积吸氮量的相关系数分别为0.840和0.851(P<0.01)。N0和起始矿质氮+N0与作物吸氮量相关性均较好,说明,这两个指标均可用于评价汉中盆地土壤供氮能力水平,但N0仅能反映土壤潜在供氮能力,不如起始矿质氮+N0优越。因此,起始矿质氮+N0是评价汉中盆地稻麦轮作土壤供氮能力的理想指标。
Table 4
表4
表4淹水培养氮矿化势(N0)与不同收割期黑麦草累积吸氮量间的相关系数
Table 4
黑麦草吸氮量 Raygrass uptake N | 4次整株累积 The four cubulation in the whole plant | ||||
---|---|---|---|---|---|
第1次 The first | 前2次 The former two | 前3次 The former three | 前4次 The former four | ||
氮素矿化势N mineralization potential (N0) | 0.39 | 0.855** | 0.845** | 0.834** | 0.840** |
起始矿质氮+氮素矿化势Initial mineral N + N0 | 0.39 | 0.866** | 0.855** | 0.845** | 0.851** |
新窗口打开|下载CSV
3 讨论
为评价指标和方法在反映土壤供氮能力上可靠性,本研究依据金发会等[13]的报道,将土壤供氮能力分为当前供氮能力、潜在供氮能力和总供氮能力。当前供氮能力指可浸提态矿质氮,即起始矿质氮,潜在供氮能力指有机氮经矿化形成的矿质氮,总供氮能力为前两项之和。因此,本研究将各测定方法的测定结果分为两类:一类是测得氮素值包括土壤起始矿质氮的结果;另一类是测得氮素值不包括对应的起始矿质氮(淹水培养法为起始铵态氮)的结果。前者反映土壤总供氮能力,后者反映潜在供氮能力。理想的评价指标是能同时反映潜在供氮能力和总供氮能力的指标。土壤理化性质指标是常见的基础指标,与有机氮矿化密切相关。本研究结果显示,土壤类型是影响土壤供氮能力的重要因素。土壤全氮(或有机质)可以在一定程度上反映土壤潜在供氮能力,但难以反映总供氮能力。党廷辉等[24]研究结果表明,土壤有机质、全氮与作物吸氮量关系密切,土壤质地与可矿化氮相关性较低,这与本研究结果一致。本研究结果还表明,pH、有效磷、阳离子交换量、碳酸钙、颗粒组成(砂粒、粉粒、黏粒)均不能反映土壤供氮能力,这与DRIDI等[8]研究结果不同,可能是土壤类型不同导致的。
金发会等[13]和赵坤等[15]通过比较矿质氮与淋洗和未淋洗土壤作物吸氮量的相关性来判断该指标是否适合于评价土壤供氮能力,结果表明,矿质氮适用于起始矿质氮(特别是NO3--N)含量高时作为当前供氮指标,但难以反映土壤潜在供氮能力,这与本研究结果一致,主要原因在于矿质氮法无法反映有机氮矿化部分。有研究表明[25],KCl 等中性盐类比较温和,在加热条件下提取土壤有效氮能够维持土壤本身的性质不发生大的变化,能较好地反映土壤本身的情况。然而,本研究中出现了KCl冷凝回流法所得氮素值(不包括起始矿质氮时)与作物累积吸氮量呈负相关的结果,这是因为KCl冷凝回流法浸取土壤可矿化氮过程中会造成铵态氮的挥发[26]。为解决该过程中铵态氮挥发问题,金发会[2]利用酸化KCl法测定了淋洗NO3--N前后的石灰性土壤供氮能力,结果发现,改进后的方法仍不能反映淋洗NO3--N后的总供氮能力,只能反映包括起始NO3--N总供氮能力,表明该方法在反映潜在供氮能力上并不理想。酸性高锰酸钾法所测得氮素值在包括和不包括起始矿质氮时,相关系数均高达0.8以上,说明该方法可以有效反映汉中盆地土壤潜在供氮能力和总供氮能力。金发会等[13]比较了几种化学方法在反映旱地土壤供氮能力上有效性,结果显示,酸性高锰酸钾法是较好的石灰性土壤供氮能力指标,这与本研究结果一致。另外,酸性高锰酸钾法所测的可矿化氮量显著高于KCl冷凝回流法,这是可能是因为酸性高锰酸钾的酸解、氧化作用与作物根系分泌一些有机酸成分分解有机质的机理相近[2]。
STANFORD[27]提出的间歇淋洗长期通气培养法被广泛采用,但该方法培养时间长。沈其荣等[28]研究发现短期通气培养矿化氮量与作物吸氮量密切相关,也可避免土壤淋洗操作繁琐且长时间培养中土壤水分难以控制等问题,短期通气培养受到研究者的关注[29]。宇万太等[30]利用短期通气培养测定酸性土壤可矿化氮的结果也表明,短期培养测定的可矿化氮与吸氮量极显著相关。李平等[31]研究显示,在室温通气培养条件下,土壤氮素矿化速率在 0— 14 d为矿化激发阶段,而 14 d以后达到稳定矿化阶段;顾春朝等[32]研究发现,在模拟淹水连续培养条件下,各施肥类型稻田土壤在前 7 d均表现出强烈的氨化和硝化作用,之后则表现较弱。这些均与本研究培养过程相似。通气培养法是反映旱地土壤氮矿化的有效方法[33],可能难以有效反映稻麦轮作土壤的供氮能力,因此,本研究比较了通气和淹水培养在反映汉中盆地土壤供氮能力上的可靠性。结果显示,通气培养下总矿质氮量和可矿化氮量与盆栽黑麦草地上部累积吸氮量均未达到显著相关,而淹水培养条件下均达到了极显著相关,说明淹水培养法适宜评价稻麦轮作。与旱地土壤相比,金发会等[14]研究显示,对于旱地土壤,淹水培养法与作物吸氮量相关性较低,而几种通气培养与作物吸氮量相关性均大幅提高,尤其是通气培养2周相关系数最高,达0.963(P<0.01)。这与本研究结果相反,原因在于以下两点[34]:一是稻麦轮作土壤长期处于淹水条件下,土壤中厌氧和兼性厌氧微生物种群数量和种类丰富,而盆栽在通气条件下,这些微生物降解效率大幅下降,导致有机质矿化量大幅减少;二是水稻土中同样含有好氧微生物,水稻能够通过根系泌氧促进水稻根际土壤中有机氮的矿化,且二者可以相互作用,促进有机氮矿化。与其他稻麦轮作土壤相比,闫德智等[17]研究显示稻麦轮作土壤在淹水培养条件下,铵态氮累积量随培养时间的延长而增长,在第7周达到最高后降低,表明长时间淹水密闭会对土壤微生物产生抑制,这也从侧面证明稻麦轮作土壤适合于短期淹水培养。与南方水稻土相比,曹竞雄等[35]研究显示南方水稻土厌氧矿化与温度均呈正相关,与pH相关不显著,这与本研究基本理化性质中结果一致,表明土壤基本理化性质能够通过影响微生物活动间接影响氮矿化。与东北水稻土相比,彭显龙等[36]研究发现,寒地稻田土壤氮素矿化前期较慢后期快,这与稻麦轮作土壤和南方水稻土矿化前期较快不同,表明温度和微生物活动对氮矿化有重要影响;在低温(25℃)条件下,北方土壤矿化势(N0)比对应肥力南方土壤高 35.9%—36.3%,表明矿化势可以有效反映土壤供氮能力,这与本研究2.4中结果一致。
氮素矿化势反映着土壤供氮容量和强度[22]。赵坤等[15]研究表明,N0和起始矿质氮+N0与均与包括土壤起始 NO3--N盆栽黑麦草吸氮量不相关,这与本研究结果不同,可能是土壤起始矿质氮含量不同造成的。本研究中,N0和起始矿质氮+N0均与作物地上部吸氮量显著相关,表明这两个指标均可用于土壤供氮能力评价。但N0仅能反映土壤潜在供氮能力,起始矿质氮+N0能够反映土壤潜在供氮能力和总供氮能力。可见,起始矿质氮+N0可以作为土壤供氮能力评价的可靠指标。
4 结论
土壤类型是影响土壤氮矿化的重要因素;土壤全氮(或有机质)能够反映土壤潜在供氮能力,但难以反映总供氮能力;土壤质地、pH、有效磷、阳离子交换量、碳酸钙、颗粒组成(砂粒、粉粒、黏粒)均不能反映稻麦轮作土壤供氮能力。矿质氮法测得氮素值仅能反映土壤当前供氮能力;KCl冷凝回流法能够反映土壤总供氮能力,但不能有效反映土壤潜在供氮能力;酸性高锰酸钾法既可以有效反映土壤潜在供氮能力,又可以用于评价土壤总供氮能力,是理想的化学方法。通气培养条件下的总矿质氮量和可矿化氮量与作物吸氮量相关性均未达到5%显著水平,故通气培养不适宜用于评价汉中盆地稻麦轮作土壤的供氮能力;淹水培养条件下的总矿质氮量和可矿化氮量与作物吸氮量相关性均达到1% 显著水平,在淹水培养条件下可以反映土壤潜在供氮能力和总供氮能力,故淹水培养是适宜汉中盆地稻麦轮作土壤的生物培养方法。淹水培养条件下,N0和起始矿质氮+N0均可反映土壤潜在供氮能力水平,但N0仅能反映土壤潜在供氮能力,起始矿质氮+N0可反映土壤潜在供氮能力和总供氮能力,因此,起始矿质氮+N0是评价汉中盆地土壤供氮能力水平理想指标。
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
[本文引用: 1]
[本文引用: 1]
[D]. ,
[本文引用: 4]
[D].
[本文引用: 4]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
由于环境条件和施肥措施等差异导致土壤有机质的含量和组成上存在很大的差异,而这种差异又影响了土壤中有机氮素的矿化过程.笔者对现阶段有关土壤有机质和土壤有机氮素矿化方面的研究进行了综述,探讨了影响土壤有机氮矿化的因素.
URL [本文引用: 1]
由于环境条件和施肥措施等差异导致土壤有机质的含量和组成上存在很大的差异,而这种差异又影响了土壤中有机氮素的矿化过程.笔者对现阶段有关土壤有机质和土壤有机氮素矿化方面的研究进行了综述,探讨了影响土壤有机氮矿化的因素.
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
,
DOI:10.1016/j.chemosphere.2019.04.006URLPMID:31029963 [本文引用: 1]
The interactive effects of salinity and moisture on the net nitrogen mineralization were seldom studied in coastal wetlands. To reveal the phenomenons and mechanisms of salinity and moisture effects, we conducted a 30-days laboratory experiment with different salt addition levels (0, ppt, 5ppt and 35ppt) and moisture levels (10%, 50% and 100% of water holding capacity (WHC)), and the key N transformation rates and enzymes activities were measured. Our results showed that during the incubation, the rates of soil net nitrogen mineralization (Rmin) and nitrification (Rnit) under all treatments, increased during 0-1 day, decreased during 1-3 days, then increased and kept around zero. As incubation time increased, urease activities increased, arylamidase activities decreased and fluorescein diacetate activities increased first and then decreased. Increasing salinity under high moisture (100% WHC) treatments and increasing moisture under high salinity (35ppt) treatments would promote Rmin and Rnit. Whereas, increasing salinity under low moisture (10% WHC) treatments, and increasing moisture under low salinity (0ppt) treatments would suppress Rmin and Rnit. The responses of enzyme activities to salinity and moisture gradients almost correspond with Rmin, indicating salinity and moisture could affect N transformation by the regulation of related microbial enzyme activities.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 5]
[本文引用: 5]
,
[本文引用: 3]
[本文引用: 3]
,
[本文引用: 4]
[本文引用: 4]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 3]
[本文引用: 3]
,
DOI:10.11674/zwyf.2000.0406URL [本文引用: 1]
在黄土高原南部的“国家黄土肥力和肥料效益监测基地”进行的长期定位试验结果表明 ,在小麦 玉米轮作中 ,当年施氮量为N 352kg/hm2 时 ,单施氮肥或氮钾配合的 0~4m土壤剖面的NO3--N累积量达 1000kg/hm2 以上 ,其中约 50%~60%的NO3--N分布在 2~ 4m以下的土层中 ,而氮磷配合的 0~ 4m土壤剖面的NO3--N累积量仅为 220kg/hm2,且 80 %的NO3--N分布在 0~2m的土层中 ,增施磷肥由于增加了氮的吸收和对水分的利用而有效地降低了土壤中NO3--N的累积。
DOI:10.11674/zwyf.2000.0406URL [本文引用: 1]
在黄土高原南部的“国家黄土肥力和肥料效益监测基地”进行的长期定位试验结果表明 ,在小麦 玉米轮作中 ,当年施氮量为N 352kg/hm2 时 ,单施氮肥或氮钾配合的 0~4m土壤剖面的NO3--N累积量达 1000kg/hm2 以上 ,其中约 50%~60%的NO3--N分布在 2~ 4m以下的土层中 ,而氮磷配合的 0~ 4m土壤剖面的NO3--N累积量仅为 220kg/hm2,且 80 %的NO3--N分布在 0~2m的土层中 ,增施磷肥由于增加了氮的吸收和对水分的利用而有效地降低了土壤中NO3--N的累积。
,
URL [本文引用: 1]
A field experiment was conducted in Guanzhong of Shaanxi Province to study the effects of long-term cultivation patters and fertilization on organic matter, total soil nitrogen, and the quantity and distribution of nitrate N in soil profile under maize-wheat rotation system. The results indicate that the order of effect of the different cultivation patterns on soil organic matter and total nitrogen contents is: straw mulching > furrow planting > conventional cultivation > water-saving cultivation. Straw mulching has the most significant effect on soil organic matter and total nitrogen contents. Nitrogen application significantly influences soil organic matter and total nitrogen. After 6 years of maize-wheat rotation cropping, the order of residual nitrate N in the 0~200 cm soil profile under different cultivation patterns is: furrow planting > water-saving cultivation > straw mulching > conventional cultivation. There are significant differences in nitrate N accumulation among furrow planting, water-saving cultivation and the conventional cultivation. Nitrate N accumulation in the 0~200 cm soil profile increases with longer cultivation periods and increasing nitrogen application rates. Accumulated nitrate N under 240 kg(N)?hm-2 (N240) treatment is significantly higher than that under 120 kg(N)?hm-2 (N120) treatment. The pattern of nitrate N distribution across the soil profiles differs with differing nitrogen application rate. Under N240 treatment, nitrate N content below the 120 cm soil depth increases with soil depth.
URL [本文引用: 1]
A field experiment was conducted in Guanzhong of Shaanxi Province to study the effects of long-term cultivation patters and fertilization on organic matter, total soil nitrogen, and the quantity and distribution of nitrate N in soil profile under maize-wheat rotation system. The results indicate that the order of effect of the different cultivation patterns on soil organic matter and total nitrogen contents is: straw mulching > furrow planting > conventional cultivation > water-saving cultivation. Straw mulching has the most significant effect on soil organic matter and total nitrogen contents. Nitrogen application significantly influences soil organic matter and total nitrogen. After 6 years of maize-wheat rotation cropping, the order of residual nitrate N in the 0~200 cm soil profile under different cultivation patterns is: furrow planting > water-saving cultivation > straw mulching > conventional cultivation. There are significant differences in nitrate N accumulation among furrow planting, water-saving cultivation and the conventional cultivation. Nitrate N accumulation in the 0~200 cm soil profile increases with longer cultivation periods and increasing nitrogen application rates. Accumulated nitrate N under 240 kg(N)?hm-2 (N240) treatment is significantly higher than that under 120 kg(N)?hm-2 (N120) treatment. The pattern of nitrate N distribution across the soil profiles differs with differing nitrogen application rate. Under N240 treatment, nitrate N content below the 120 cm soil depth increases with soil depth.
,
URL [本文引用: 1]
土壤氮的矿化是土壤氮素肥力的重要指标,是影响作物产量至关重要的因素。本研究依托黑土长期定位试验,通过取样分析研究了32 a不同培肥模式下黑土碳、氮及主要活性组分的变化,采用淹水培养法研究了不同施肥模式下黑土氮素的矿化特征。结果表明,施肥显著提高黑土可溶性碳(DOC)、氮(DON)的含量及其比例。在氮、磷、钾化肥的基础上配施有机肥,显著降低了土壤微生物量氮(SMBN)占土壤总氮的比例,提高了土壤微生物量的C/N比值(SMBC/SMBN),促进了土壤氮的生物固持。施肥32 a后,单施常量和高量有机肥处理的土壤氮的矿化量(Nt)显著提高,分别相当于不施肥的8.2倍和10.2倍,而单施氮或氮磷钾化肥对黑土氮素矿化量无明显影响。施用有机肥显著提高了土壤氮素的矿化率(Nt/TN),但有机肥配施化肥(氮或氮磷钾)的处理与单施有机肥相比,黑土氮的矿化率显著降低,降低幅度分别为23.5%~32.1% 和14.1%~17.8%。土壤氮素矿化量与土壤有机质、全氮储量、活性碳、氮组分均呈极显著线性相关,但氮素的矿化率随着有机质和全氮含量的提高而提高至0.4% 后基本稳定。表明尽管土壤氮的矿化与有机质的含量直接相关,但土壤有机质的品质同样决定着土壤氮素的矿化能力。施有机氮是提高土壤供氮能力的重要途径。
URL [本文引用: 1]
土壤氮的矿化是土壤氮素肥力的重要指标,是影响作物产量至关重要的因素。本研究依托黑土长期定位试验,通过取样分析研究了32 a不同培肥模式下黑土碳、氮及主要活性组分的变化,采用淹水培养法研究了不同施肥模式下黑土氮素的矿化特征。结果表明,施肥显著提高黑土可溶性碳(DOC)、氮(DON)的含量及其比例。在氮、磷、钾化肥的基础上配施有机肥,显著降低了土壤微生物量氮(SMBN)占土壤总氮的比例,提高了土壤微生物量的C/N比值(SMBC/SMBN),促进了土壤氮的生物固持。施肥32 a后,单施常量和高量有机肥处理的土壤氮的矿化量(Nt)显著提高,分别相当于不施肥的8.2倍和10.2倍,而单施氮或氮磷钾化肥对黑土氮素矿化量无明显影响。施用有机肥显著提高了土壤氮素的矿化率(Nt/TN),但有机肥配施化肥(氮或氮磷钾)的处理与单施有机肥相比,黑土氮的矿化率显著降低,降低幅度分别为23.5%~32.1% 和14.1%~17.8%。土壤氮素矿化量与土壤有机质、全氮储量、活性碳、氮组分均呈极显著线性相关,但氮素的矿化率随着有机质和全氮含量的提高而提高至0.4% 后基本稳定。表明尽管土壤氮的矿化与有机质的含量直接相关,但土壤有机质的品质同样决定着土壤氮素的矿化能力。施有机氮是提高土壤供氮能力的重要途径。
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 2]
[本文引用: 2]
,
DOI:10.2136/sssaj1972.03615995003600030029xURL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.2136/sssaj1968.03615995003200050029xURL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
URL [本文引用: 1]
模拟旱地条件进行黑麦草盆栽试验,对不同供氮力指标与黑麦草吸氮量相关性进行研究,结果表明,短期好气培养法测定的可矿化氮与吸氮量相关系数为0.820;氯化钾与氯化钙浸提的硝态氮与黑麦草吸氮量的相关系数分别为0.892和0.916,表明硝态氮含量作为土壤供氮能力指标具有一定的稳定性;微生物量氮的测定结果不够稳定且与黑麦草吸氮量相关性不高(r=0.751).分析表明,氯仿熏蒸-浸提全氮与吸氮量的相关性最好,相关系数可达0.941,是一个较好的供氮力指标.
URL [本文引用: 1]
模拟旱地条件进行黑麦草盆栽试验,对不同供氮力指标与黑麦草吸氮量相关性进行研究,结果表明,短期好气培养法测定的可矿化氮与吸氮量相关系数为0.820;氯化钾与氯化钙浸提的硝态氮与黑麦草吸氮量的相关系数分别为0.892和0.916,表明硝态氮含量作为土壤供氮能力指标具有一定的稳定性;微生物量氮的测定结果不够稳定且与黑麦草吸氮量相关性不高(r=0.751).分析表明,氯仿熏蒸-浸提全氮与吸氮量的相关性最好,相关系数可达0.941,是一个较好的供氮力指标.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
根系泌氧(radial oxygen loss, ROL)是水稻在长期淹水状况下从土壤中有效获得养分的重要机制之一,对水稻的生长发育具有重要意义。近年来,研究人员发现并阐明了水稻根系泌氧对于包括厌氧菌、好氧菌及兼性厌氧菌在内的土壤微生物种群数量和种群多样性的影响;大量研究也报道了根系泌氧能促进水稻根际土壤中有机氮的矿化。土壤有机氮矿化与土壤中的微生物区系密切相关,二者之间的相互作用进一步促进水稻对氮素营养的吸收与代谢。本文就水稻根系泌氧对土壤微生物区系和有机质矿化作用的影响进行综述,系统介绍了水稻根系泌氧可能的机理、对微生物区系的影响以及对有机氮矿化的促进作用,提出了目前水稻根系泌氧研究所面临的问题,并展望了水稻根系泌氧的研究前景。
URL [本文引用: 1]
根系泌氧(radial oxygen loss, ROL)是水稻在长期淹水状况下从土壤中有效获得养分的重要机制之一,对水稻的生长发育具有重要意义。近年来,研究人员发现并阐明了水稻根系泌氧对于包括厌氧菌、好氧菌及兼性厌氧菌在内的土壤微生物种群数量和种群多样性的影响;大量研究也报道了根系泌氧能促进水稻根际土壤中有机氮的矿化。土壤有机氮矿化与土壤中的微生物区系密切相关,二者之间的相互作用进一步促进水稻对氮素营养的吸收与代谢。本文就水稻根系泌氧对土壤微生物区系和有机质矿化作用的影响进行综述,系统介绍了水稻根系泌氧可能的机理、对微生物区系的影响以及对有机氮矿化的促进作用,提出了目前水稻根系泌氧研究所面临的问题,并展望了水稻根系泌氧的研究前景。
,
URL [本文引用: 1]
Nitrogen mineralization has been one of the most important links of nitrogen cycle in soil ecosystems. Temperature and pH are important environmental factors influencing nitrogen mineralization. In this study, two paddy soils with different pH values were used to anaerobically incubate at four different temperatures - 15 ℃, 25 ℃, 37 ℃ and 50 ℃. Using the first order reaction kinetics equation in combination with the effective accumulated temperature equation, mineralization parameters such as soil nitrogen mineralization potential (NO), mineralization rate (k), mineralization degree (ka) and potential/total nitrogen mineralization rate (NO/Tot.N) were analyzed in order to determine the impact of temperature on soil nitrogen mineralization under anaerobic condition. The results showed that soil nitrogen mineralization potential (NO) of two paddy soils increased with increasing temperature. The changes in k and ka depended on temperature degrees of soils with different nitrogen mineralization potentials. At 15-37 ℃, soil k and ka increased with increasing temperature. However, the differences between every two soils were not significant at the same temperature. Then within 37-50 ℃, the changes in soil k and ka grew significantly (P< 0.01) different with increasing temperatures in different soils. It suggested that at high temperatures, the effect of temperature on the mineralization of different paddy soils changed greatly. NO/Tot. N increased with increasing temperatures, suggesting that the quality of organic nitrogen improved at higher temperatures. Correlation analysis showed a positive correlation between temperature and mineralization parameters within the range of 15-37 ℃. Within the range of 37-50 ℃, the correlation decreased and some even became negative. The pH values did not fluctuate or change with the mineralization parameters. This implied that under anaerobic condition, theresponse of nitrogen mineralization of soils with different pH was similar to temperature within low to medium temperatures, but was significantly different at high temperatures.
URL [本文引用: 1]
Nitrogen mineralization has been one of the most important links of nitrogen cycle in soil ecosystems. Temperature and pH are important environmental factors influencing nitrogen mineralization. In this study, two paddy soils with different pH values were used to anaerobically incubate at four different temperatures - 15 ℃, 25 ℃, 37 ℃ and 50 ℃. Using the first order reaction kinetics equation in combination with the effective accumulated temperature equation, mineralization parameters such as soil nitrogen mineralization potential (NO), mineralization rate (k), mineralization degree (ka) and potential/total nitrogen mineralization rate (NO/Tot.N) were analyzed in order to determine the impact of temperature on soil nitrogen mineralization under anaerobic condition. The results showed that soil nitrogen mineralization potential (NO) of two paddy soils increased with increasing temperature. The changes in k and ka depended on temperature degrees of soils with different nitrogen mineralization potentials. At 15-37 ℃, soil k and ka increased with increasing temperature. However, the differences between every two soils were not significant at the same temperature. Then within 37-50 ℃, the changes in soil k and ka grew significantly (P< 0.01) different with increasing temperatures in different soils. It suggested that at high temperatures, the effect of temperature on the mineralization of different paddy soils changed greatly. NO/Tot. N increased with increasing temperatures, suggesting that the quality of organic nitrogen improved at higher temperatures. Correlation analysis showed a positive correlation between temperature and mineralization parameters within the range of 15-37 ℃. Within the range of 37-50 ℃, the correlation decreased and some even became negative. The pH values did not fluctuate or change with the mineralization parameters. This implied that under anaerobic condition, theresponse of nitrogen mineralization of soils with different pH was similar to temperature within low to medium temperatures, but was significantly different at high temperatures.
,
DOI:10.3864/j.issn.0578-1752.2014.04.010URL [本文引用: 1]
【Objective】Compare to southern paddy fields, total applied nitrogen amount is lower and nitrogen use efficiency is higher in northeast of China. Soil N supply ability is closely related to nitrogen application and nitrogen efficiency. It is very important to compared nitrogen supply ability between southern and northern paddy soil. This would be helpful to reveal the relationship between soil nitrogen supply and high N efficiency in northern paddy.【Method】The tested soil was composed of gleyed paddy soil with high fertility and hydromorphic paddy soil with medium fertility from Jiangsu province, as well as albic paddy soil with high and medium fertility from Heilongjiang province. The samples were incubated at 25℃,30℃ and 40℃ for 28 days, respectively. Soil ammonium nitrogen was detected before and after incubation. At the same time, soil organic matter, total nitrogen and organic N forms were determined before incubation. Effective cumulated temperature model and One-pool model were fitted to the observed mineral-N vs incubation days using non-linear regression procedure. 【Result】 Ratios of the hydrolysamino acid N and amino acid N to total N were higher in southern paddy soil than the northern soil with corresponding fertility, however, the C/N in northern soil was higher. There was no significant difference of cumulative mineralization N on 28 days after incubation between southern and northern paddy soil under 25℃. When the incubation temperature was increased from 25℃ to 40℃, the cumulative mineralization N of southern soil with high fertility or medium fertility was higher than northern soil with corresponding fertility due to high organic nitrogen forms of soil or ratio of organic nitrogen forms to total nitrogen in southern soil. One-pool model between cumulative soil mineralization N and incubation days showed that soil N mineralization potential (N0) of northern soil increased by 35.9%-36.3% compared to southern soil with corresponding fertility under 25℃. On the contrary, N0 of northern soil decreased by 6.1%-32.7% and 20.9%-36.7% than southern soil with corresponding fertility under 30 ℃ and 40℃, respectively. Low soil microbial activity under high temperature may be the reason of lower N0 in northern soil. Effective cumulated temperature model between cumulative soil mineralization N and incubation days showed that the n value of same soil decreased with the increase of temperature. Southern soil had higher K value and Northern soil had higher n value. Therefore, earlier mineralization rate of southern soil was clearly higher than northern soil, but later N mineralization rate was lower. 【Conclusion】 The content of mineralized nitrogen and N0 depends on soil microbial activity, ratio of soil carbon to nitrogen, content of soil organic nitrogen and the proportion of organic form nitrogen to total nitrogen. Nitrogen mineralization potential of northern paddy soil was higher than southern soil under 25 ℃. Compared to southern paddy soil, the rate of nitrogen mineralization in northern soil was slower and faster in the early and late stage, respectively. This nitrogen mineralization character for northern paddy soil matched to rice N uptake, which was one of the reasons for high nitrogen use efficiency in cold area.
DOI:10.3864/j.issn.0578-1752.2014.04.010URL [本文引用: 1]
【Objective】Compare to southern paddy fields, total applied nitrogen amount is lower and nitrogen use efficiency is higher in northeast of China. Soil N supply ability is closely related to nitrogen application and nitrogen efficiency. It is very important to compared nitrogen supply ability between southern and northern paddy soil. This would be helpful to reveal the relationship between soil nitrogen supply and high N efficiency in northern paddy.【Method】The tested soil was composed of gleyed paddy soil with high fertility and hydromorphic paddy soil with medium fertility from Jiangsu province, as well as albic paddy soil with high and medium fertility from Heilongjiang province. The samples were incubated at 25℃,30℃ and 40℃ for 28 days, respectively. Soil ammonium nitrogen was detected before and after incubation. At the same time, soil organic matter, total nitrogen and organic N forms were determined before incubation. Effective cumulated temperature model and One-pool model were fitted to the observed mineral-N vs incubation days using non-linear regression procedure. 【Result】 Ratios of the hydrolysamino acid N and amino acid N to total N were higher in southern paddy soil than the northern soil with corresponding fertility, however, the C/N in northern soil was higher. There was no significant difference of cumulative mineralization N on 28 days after incubation between southern and northern paddy soil under 25℃. When the incubation temperature was increased from 25℃ to 40℃, the cumulative mineralization N of southern soil with high fertility or medium fertility was higher than northern soil with corresponding fertility due to high organic nitrogen forms of soil or ratio of organic nitrogen forms to total nitrogen in southern soil. One-pool model between cumulative soil mineralization N and incubation days showed that soil N mineralization potential (N0) of northern soil increased by 35.9%-36.3% compared to southern soil with corresponding fertility under 25℃. On the contrary, N0 of northern soil decreased by 6.1%-32.7% and 20.9%-36.7% than southern soil with corresponding fertility under 30 ℃ and 40℃, respectively. Low soil microbial activity under high temperature may be the reason of lower N0 in northern soil. Effective cumulated temperature model between cumulative soil mineralization N and incubation days showed that the n value of same soil decreased with the increase of temperature. Southern soil had higher K value and Northern soil had higher n value. Therefore, earlier mineralization rate of southern soil was clearly higher than northern soil, but later N mineralization rate was lower. 【Conclusion】 The content of mineralized nitrogen and N0 depends on soil microbial activity, ratio of soil carbon to nitrogen, content of soil organic nitrogen and the proportion of organic form nitrogen to total nitrogen. Nitrogen mineralization potential of northern paddy soil was higher than southern soil under 25 ℃. Compared to southern paddy soil, the rate of nitrogen mineralization in northern soil was slower and faster in the early and late stage, respectively. This nitrogen mineralization character for northern paddy soil matched to rice N uptake, which was one of the reasons for high nitrogen use efficiency in cold area.