删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

长期免耕和深松提高了土壤团聚体颗粒态有机碳及全氮含量

本站小编 Free考研考试/2021-12-26

李景,1,2, 吴会军,2, 武雪萍,2, 王碧胜3, 姚宇卿4, 吕军杰41河北地质大学水资源与环境学院/河北省水资源可持续利用与产业结构优化协同创新中心,石家庄 050031
2中国农业科学院农业资源与农业区划研究所,北京 100081
3青岛农业大学农学院,山东青岛 266109
4洛阳市农林科学研究院,河南洛阳471022

Long-Term Conservation Tillage Enhanced Organic Carbon and Nitrogen Contents of Particulate Organic Matter in Soil Aggregates

LI Jing,1,2, WU HuiJun,2, WU XuePing,2, WANG BiSheng3, YAO YuQing4, Lü JunJie41School of Water Resources and Environment, Hebei GEO University/Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Shijiazhuang 050031
2Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
3College of Agronomy, Qingdao Agricultural University, Qingdao 266109, Shandong
4Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471022, Henan

通讯作者: 吴会军,E-mail: wuhuijun@caas.cn武雪萍,E-mail: wuxueping@caas.cn

责任编辑: 李云霞
收稿日期:2020-04-27接受日期:2020-07-21网络出版日期:2021-01-16
基金资助:国家重点研发计划.2018YFD0200408
国家重点研发计划.2016YFD0300804
中央级公益性科研院所基本科研业务费专项.1610132019034
中央级公益性科研院所基本科研业务费专项.1610132019033
河北地质大学博士科研启动基金.BQ2019039
国家科技支撑计划.2015BAD22B03


Received:2020-04-27Accepted:2020-07-21Online:2021-01-16
作者简介 About authors
李景,E-mail: lijing315666@163.com








摘要
【目的】耕作措施对土壤有机碳(SOC)和全氮(TN)具有重要影响。本研究利用团聚体和密度联合分级方法,旨在揭示长期耕作对表层土壤团聚体内密度颗粒组分SOC及TN的影响,为深入理解黄土高原农田土壤碳氮提升机理提供依据。【方法】长期试验位于黄土高原东部边缘地区,开始于1999年,共设4个处理:少耕无覆盖(RT)、免耕覆盖(NT)、深松覆盖(SM)和传统翻耕(CT)。于2013年7月采集0—10 cm土层样品,首先通过干筛法筛分>2、1—2、0.25—1和<0.25 mm粒级团聚体,之后利用颗粒密度分组,将团聚体有机质分为轻组有机质(LF)、粗颗粒有机质(cPOM)、细颗粒有机质(fPOM)和矿质结合有机质(m-SOM)。【结果】(1)15年保护性耕作(包括NT和SM处理)显著提高了0—10 cm土层的SOC和TN含量,与CT相比,NT和SM处理的SOC含量分别提高了22.9%和21.8%,TN含量分别提高了35.2%和42.3%。不进行秸秆覆盖的少耕处理(RT)对SOC和TN无显著影响。(2)不同耕作措施改变了团聚体质量组成及其内部SOC和TN含量。NT和SM处理显著提高了1—2 mm和0.25—1 mm粒级的干筛大团聚体含量,相对地,降低了>2 mm和<0.25 mm粒级团聚体的含量。NT和SM处理不同程度提高了团聚体的SOC和TN含量,与CT相比,团聚体SOC平均提高了8.5%和9.5%,尤其对>1 mm粒级团聚体SOC含量提高幅度最大;团聚体TN平均提高了12.2%和24.1%,尤其对<0.25 mm微团聚体TN含量提高幅度最大。(3)fPOM和m-SOM组分对团聚体SOC和TN的贡献最大,对SOC的贡献率分别为27.3%—45.1%和25.0%—52.6%;对TN的贡献率分别为23.5%—34.7%和42.2%—64.3%。不同有机质组分对耕作的响应不同,cPOM和fPOM组分最为敏感。与CT相比,NT和SM处理显著提高了土壤所有粒级团聚体的cPOM和fPOM的SOC和TN含量,尤其对>2 mm团聚体cPOM和<2 mm团聚体fPOM的SOC和TN含量提升幅度最大。【结论】长期免耕和深松提高了团聚体中有机碳及全氮含量,尤其提高了团聚体中颗粒有机质的碳氮含量,有利于土壤碳氮的长效累积,是黄土高原坡耕地区值得推荐的耕作管理方式。
关键词: 保护性耕作;长期耕作;团聚体;有机碳;;密度分组

Abstract
【Objective】 Tillage management has essential effects on soil organic carbon (SOC) and total nitrogen (TN). Based on a combined soil aggregate size, particle density and size fractionation method, the study aimed at revealing effects of different tillage treatments on SOC and TN of physical fractions within different sizes of aggregates. This study provided theoretical basis for understanding mechanisms soil carbon and nitrogen sequestration and selecting optimized tillage management for loess hilly region of China. 【Method】 The long-term tillage experiment, started in 1999, was used for the study. The tillage treatments included: reduced tillage without mulch (RT), no-tillage (NT), sub-soiling with mulch (SM), and conventional tillage (CT). The soil samples from the 0-10 cm layer were collected to obtain physical fractions, including free light fraction (LF), coarse and fine particulate organic matter (cPOM and fPOM) and mineral associated organic matter (m-SOM) within four dry-sieving aggregate sizes (>2 mm, 1-2 mm, 0.25-1 mm and <0.25 mm), by applying a combined soil aggregate size, and particle density and size fractionation procedure.【Result】 (1) 15 years application of conservation tillage (including NT and SM) significantly increased SOC and TN contents in 0-10 cm layer. Compared to CT, NT and SM increased SOC content by 22.9% and 21.8%, and increased TN content by 35.2% and 42.3%, respectively. However, RT had no significant effects on SOC and TN contents. (2) Different tillage practices changed the mass distribution, SOC and TN contents of aggregates. Compared to CT, NT and SM improved the mass percentage of 1-2 mm and 0.25-1 mm size aggregates, relatively, increased the mass percentage of >2 mm and<0.25 mm aggregates. Moreover, conservation tillage enhanced SOC and TN contents across four sizes aggregates. Compared to CT, NT and SM averagely increased SOC content in aggregates by 8.5% and 9.5% and increased TN contents by 12.2% and 24.1%, respectively. The fPOM and m-SOM stored largest parts of aggregate SOC and TN, constituting 27.3%-45.1% and 25.0%-52.6% of aggregate SOC, 23.5%-34.7% and 42.2%-64.3% of aggregate TN. Different physical fractions had different reflects to tillage managements. The cPOM and fPOM were the most sensitive fractions. Compared to CT, NT and SM led to higher contents of SOC and TN accumulated in cPOM and fPOM in all aggregates, especially cPOM in >2 mm aggregates and fPOM in <2 mm aggregates.【Conclusion】The long-term conservation tillage (included no-tillage and sub-soiling and mulch management) promoted SOC and TN sequestration in aggregates by increasing the storage of physical protected particulate organic matter in aggregates. Thus, the conservation tillage was a sustainable soil carbon and nitrogen enhancement management for dryland soils for the loess hilly region of China.
Keywords:conservation tillage;long-term tillage;soil aggregate;organic carbon;nitrogen;density fraction


PDF (530KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
李景, 吴会军, 武雪萍, 王碧胜, 姚宇卿, 吕军杰. 长期免耕和深松提高了土壤团聚体颗粒态有机碳及全氮含量[J]. 中国农业科学, 2021, 54(2): 334-344 doi:10.3864/j.issn.0578-1752.2021.02.009
LI Jing, WU HuiJun, WU XuePing, WANG BiSheng, YAO YuQing, Lü JunJie. Long-Term Conservation Tillage Enhanced Organic Carbon and Nitrogen Contents of Particulate Organic Matter in Soil Aggregates[J]. Scientia Acricultura Sinica, 2021, 54(2): 334-344 doi:10.3864/j.issn.0578-1752.2021.02.009


开放科学(资源服务)标识码(OSID):

0 引言

【研究意义】保护性耕作有利于改善土壤结构,提高土壤肥力,是一种可持续农田管理技术[1,2]。土壤有机碳(SOC)和全氮(TN)是土壤肥力的核心,是维持土壤生产力的关键属性。SOC和TN与团聚作用关系密切[3],团聚体对有机物质的物理保护作用是土壤有机碳稳定性机制[4,5]。因此,研究长期不同耕作方式下土壤团聚体内SOC及TN变化规律,对理解土壤固碳固氮机制具有重要意义。【前人研究进展】大量研究表明,长期频繁耕作破坏了土壤团聚体结构[7,8],使受保护的有机质暴露出来,从而加速了其分解,降低土壤碳氮的含量[9],而保护性耕作,通过秸秆覆盖和减少耕作,促进大团聚体的形成[10],使越来越多的有机质被包裹在团聚体中[5,11]。WRIGHT等[12]通过20年长期定位试验发现,在单季小麦种植体系中,免耕提高了表层(0—5 cm)SOC及TN含量,比翻耕分别提高了47%和56%,增加的SOC主要累积于>0.25 mm大团聚体中,对<0.25 mm微团聚体影响较小。土壤团聚体中的有机质并不均一,不同组分来源不同,其稳定性和功能也不同[13]。颗粒密度组分是研究团聚体有机质转化的常用方法[13]。基于该方法,不同组分对耕作的响应不同。SIX等[14]的研究表明0.25—2 mm大团聚体中的细颗粒有机碳对耕作的响应最为敏感,免耕条件下该组分碳含量是翻耕的5倍。HASSINK等[15]的研究表明,与黏粉粒结合紧密的矿质结合有机质易达到饱和状态,不同管理方式对其影响较小。而另一些研究则认为[16,17],矿质结合有机质也包含生物活性成分,也可受到外界环境的影响。【本研究切入点】黄土高原地区生态系统十分脆弱,土壤结构破坏严重,SOC和TN长期处于较低水平[18]。目前国内外对该地区团聚体内密度组分SOC及TN的研究较少,亟待探讨长期保护性耕作对黄土高原团聚体碳氮组分的影响机制。【拟解决的关键问题】(1)明确15年长期耕作对黄土高原地区土壤团聚体SOC及TN的影响;(2)通过颗粒和密度联合分组技术,分析长期耕作下土壤团聚体内碳氮组分的分布规律。

1 材料与方法

1.1 研究区概况

试验地位于河南孟津县农业部旱地农业野外科学观测实验站保护性耕作田间试验区内(34.80° N,112.56° E),海拔324 m,属于黄土高原东部丘陵区。该区域土层深厚(50—100 m),土壤类型是壤质黄土。气候类型属于亚热带向温带过渡地带,年平均气温13.7℃,多年平均降水量为650 mm,全年平均日照时数为2 270 h,全年平均日照率为51%,平均积温为5 046 ℃,平均无霜期为235 d。

1.2 试验设计

耕作试验开始于1999年,共设4个处理,少耕无覆盖(RT):冬小麦收获时留根茬10 cm,秸秆和麦穗带走不还田,收获后翻耕20 cm,之后耙耱;免耕覆盖(NT):冬小麦收获时留根茬30 cm,剩余秸秆及脱粒麦穗还田;深松覆盖(SM):冬小麦收获时留根茬30 cm,剩余秸秆及脱粒麦穗还田,收获后间隔60 cm深松30 cm;传统翻耕(CT):冬小麦收获时留茬10 cm,秸秆和麦穗带走不还田,收获后翻耕20 cm,不耙耱,播种前进行第2次耕翻、施肥、耙耱、播种。试验小区种植的作物为冬小麦,夏季休闲。各处理施肥量相同,均为N 150 kg·hm-2,P2O5 105 kg·hm-2,K2O 45 kg·hm-2。试验前耕层(0—20 cm)土壤的基础理化性质见表1

Table 1
表1
表1试验前土壤理化性质
Table 1Soil physical and chemical properties before the testing
pH有机碳
SOC
(g·kg-1
全氮
TN
(g·kg-1
全磷
Total P
(g·kg-1
全钾
Total K
(g·kg-1
有效氮
Available N
(mg·kg-1
有效磷
Available P
(mg·kg-1
速效钾
Available K
(mg·kg-1
CaCO3
(g·kg-1
颗粒组成 Partical size (%)
黏粒
Clay
粉粒
Silt
砂粒
Sand
7.76.671.10.691882.56.1139.511314.374.810.9

新窗口打开|下载CSV

1.3 样品采集与团聚体分级

于2013年7月利用直径为5 cm的土钻采集各小区0—10 cm土层土样约500 g,每个小区随机采取5点制成混合样装入硬质塑料盒内。取土之前,清理土壤周边表层的作物残留物,剥除土块外面直接与土钻接触而变形的土壤。样品带回实验室后,分成两份,一部分用于团聚体分级及密度分组,另一部分在室内进行风干,用于测定SOC和TN含量。

团聚体分级方法参考周虎等[19]的干筛法并稍作修改:将250 g鲜土(含水量10%—12%)置于套筛上(孔径依次为2、1和0.25 mm)顶部,以30次/min手工上下振动5 min。将收集到的>2 mm、1—2 mm、0.25—1 mm和<0.25 mm团聚体称重,并在阴凉处自然风干,利用元素分析仪测定各级土壤团聚体中的SOC及TN含量。为方便阐述,以0.25 mm为界,将团聚体划分为大团聚体(>0.25 mm)和微团聚体(<0.25 mm)。

1.4 土壤团聚体的颗粒密度分组

土壤团聚体颗粒密度分组采用SIX等[20]和CAMBARDELLA等[21]的方法,并稍作修改,具体方法如下:称取10 g风干团聚体样品放入在50 mL离心管中,加入40 mL的密度为1.85 g·cm-3聚钨酸钠溶液中,用手轻轻上下颠倒混匀,再用10 mL聚钨酸钠溶液将附着在离心管帽和管壁的物质冲入管内。将样品在放于离心机中,在20℃下离心90 min。将悬浊液从离心管中轻轻倒出,在0.45 μm尼龙滤膜上进行真空抽滤,用去离子水洗除去聚钨酸钠,将滤膜转移到一个小铝盒,滤膜上的物质为轻组组分(LF)。离心管中的重组部分转移到三角瓶中,进行颗粒有机碳的分离。向盛有重组组分的离心管中加入30 mL 0.5%六偏磷酸钠溶液,5粒直径为5 mm的玻璃珠,往复式振荡器上振荡18 h,使之分散。分散溶液过0.25 mm和0.053 mm筛,将筛上保留物组分分离出>0.25 mm、0.053—0.25 mm和<0.053 mm 3个组分,分别为粗颗粒有机质(cPOM)、细颗粒有机质(fPOM)和矿质结合有机质(m-SOM),其分组示意图见图1。将分离出的各组分在55℃下烘干后称重,之后用于测定SOC及TN浓度。

图1

新窗口打开|下载原图ZIP|生成PPT
图1土壤团聚体颗粒密度分组示意图

Fig. 1Schematic of the applied size and density fractionation procedure



1.5 有机碳的测定及相关计算

风干的土壤、团聚体及烘干后的密度组分利用元素分析仪(Elementar Vario MACRO,Germany)测定土壤及各组分中的SOC及TN浓度。在测定有机碳含量之前,样品用1 mol·L-1的盐酸去除碳酸盐[22]

SOC/TN储量采用等质量土壤储量法计算:

MSOC=SOC×BD×H×10-1
MTN=TN×BD×H×10-1
式中,MSOC为0—10 cm土层土壤SOC储量(t C·hm-2);MTN 为0—10 cm土层土壤TN储量(t N·hm-2);SOC为土壤有机碳含量(g·kg-1);TN为土壤全氮含量(g·kg-1);BD为0—10 cm土层容重(g·cm-3);H为土层厚度,取10 cm。

团聚体中各密度组分的SOC/TN含量利用该密度组分的SOC/TN浓度和质量百分比计算而来,具体公式如下:

SOC含量(g·kg-1)= SOCC×MD
TN含量(g·kg-1)= TNC×MD
式中,SOCC为由元素分析仪测得的有机碳浓度(g·kg-1fraction),TNC为由元素分析仪测得的有机碳浓度(g·kg-1 fraction),MD为该密度组分的质量百分比(%)。

团聚体中各密度组分的SOC/TN对团聚体有机碳的贡献率计算公式如下:

SOC贡献率(%)=SOC含量/∑SOC
TN贡献率(%)=TN含量/∑TN
式中,∑SOC为4种组分SOC含量之和;∑TN为4种组分TN含量之和。

1.6 统计分析

采用Sigmaplot 12.5作图,利用SAS 9.2中的单因素方差分析(one-way ANOVA)进行显著性检验,采用最小显著差数法(LSD)进行多重比较(P<0.05)。

2 结果

2.1 长期不同耕作措施对土壤有机碳及全氮含量的影响

连续15年保护性耕作(包括NT和SM处理)显著提高了0—10 cm表层的SOC含量和储量(表2)。同CT处理相比,NT和SM处理的SOC含量分别提高了22.9%和21.8%,SOC储量分别提高了21.8%和16.7%。与试验开始前相比,15年的NT和SM处理下SOC储量呈增加趋势,年固碳速率分别为0.094和0.061 t C·hm-2·a-1

Table 2
表2
表2不同耕作处理下土壤表层(0—10 cm)有机碳及全氮的含量及年固定率
Table 2The contents and annual sequestration rate of SOC and TN in 0-10 cm layer under different tillage treatments
处理
Treatment
SOC含量
SOC content
(g·kg-1)
SOC储量
SOC stock
(t C·hm-2)
年固碳速率
Annual C sequestration rate (t C·hm-2·a-1)
TN含量
TN content
(g·kg-1)
TN储量
TN stock
(t N·hm-2)
年固氮速率
Annual N sequestration rate (t N·hm-2·a-1)
RT7.35 b8.46 b-0.078 b0.67 b0.77 b-0.057 b
NT9.20 a10.86 a0.094 a0.96 a1.13 a-0.032 a
SM9.13 a10.40 a0.061 a1.01 a1.15 a-0.030 a
CT7.49 b8.92 b-0.045 b0.71 b0.84 b-0.052 b
试验开始初期SOC储量为9.55 t C·hm-2,初始TN 储量为1.57 t N·hm-2。数据后不同小写字母表示不同耕作处理间差异显著(P<0.05)。下同
The initial SOC stock is 9.55 t C·hm-2, TN stock is 1.57 t N·hm-2. Different lowercase letters mean significant difference among different tillage treatment (P<0.05). The same as below

新窗口打开|下载CSV

相似的,长期保护性耕作提高了TN含量及储量,与CT相比,NT和SM处理的TN含量分别提高了35.2%和42.3%,TN储量分别提高了34.0%和36.3%。不同处理的年固氮速率均为负值,说明试验所在区域土壤氮素流失较为严重,而NT和SM的变化速率显著小于RT和CT,可见保护性耕作可以一定程度缓解氮素流失。

2.2 长期不同耕作措施对不同粒级土壤团聚体组成的影响

总的来看,干筛团聚体更多分布在>2 mm、0.25—1 mm和<0.25 mm粒级,共占团聚体质量总量的89.9%—85.1%,在1—2 mm粒级团聚体分布较少,仅占11.1%—14.9%(表3)。与CT相比,15年的NT处理显著(P<0.05)提高了1—2 mm和0.25—1 mm粒级的大团聚体含量,提高幅度分别为25.2%和16.7%,相对地,降低了>2 mm和<0.25 mm粒级的团聚体含量。相似的,SM处理也提高了1—2 mm和0.25—1 mm粒级的大团聚体含量,分别提高9.1%和16.8%,降低了<0.25 mm粒级的团聚体含量。RT处理仅提高了>2 mm大团聚体的含量,较CT处理提高了19.7%。

Table 3
表3
表3不同耕作处理下干筛团聚体的质量百分含量
Table 3The mass percentage of aggregates under different tillage treatments
处理
Treatment
团聚体相对含量 Mass percentage of aggregates(%)
>2 mm1-2 mm0.25-1 mm<0.25 mm
RT35.53 a11.11 c24.71 c28.65 b
NT26.19 c14.87 a31.46 a27.47 b
SM27.53 bc12.95 b31.48 a28.04 b
CT29.68 b11.88 c26.95 b31.49 a

新窗口打开|下载CSV

2.3 长期不同耕作措施对土壤团聚体有机碳及全氮含量的影响

总体来看(图2-a),大团聚体的SOC含量高于微团聚体,>2 mm、1—2 mm和0.25—1 mm团聚体SOC含量平均为5.7、6.0和5.4 g·kg-1,分别比<0.25 mm微团聚体高出4.8%、9.8%和9.5%。与CT相比,NT处理提高了所有粒级团聚体的SOC含量,平均提高了8.5%,对1—2 mm粒级团聚体提高幅度最大,达15.0%。SM处理也提高了所有粒级团聚体的SOC含量,平均提高了9.5%,对>2 mm团聚体SOC含量的提高幅度最大,达13.6%。RT处理对所有粒级团聚体SOC均无显著影响。

图2

新窗口打开|下载原图ZIP|生成PPT
图2不同耕作措施下土壤团聚体的有机碳(a)和全氮含量(b)

小写字母表示相同团聚体粒级不同耕作处理间的比较,大写字母代表相同耕作处理不同团聚体粒级间的比较。不同字母表示差异显著(P<0.05)。下同
Fig. 2SOC (a) and TN contents (b) of aggregates under different tillage treatments

Lowercase letters denote differences between tillage treatments in the same size class of aggregate, likewise uppercase letters denote significant differences among aggregate size classes in a single tillage treatment and, different letters mean significance at 5% level. The same as below


团聚体的TN含量受耕作和粒级的双重影响。对于CT处理,1—2 mm团聚体的TN含量最高,而对于NT和SM,<0.25 mm微团聚体的TN含量最高(图2-b)。与CT相比,NT和SM显著提高了>2 mm和<0.25 mm粒级团聚体的TN含量,尤其对<0.25 mm粒级提高幅度最大,分别达到35.3%和47.1%。RT处理显著降低了>2 mm、1—2 mm和0.25—1 mm粒级大团聚体的TN含量,与CT相比,分别降低了21.1%、20.3%和21.1%。

2.4 长期不同耕作对团聚体内有机碳组分含量的影响

不同密度组分的SOC含量由该组分的浓度和质量含量计算而来(公式3)。由图3-a、3-b、3-c、3-d可见,fPOM和m-SOM组分的SOC含量较高,分别为1.2—1.8和1.3—1.8 g·kg-1,这两种组分的SOC含量且随团聚体粒级减小而增加,而LF和cPOM的SOC含量较低,分别为0.5—1.2和0.7—1.3 g·kg-1。NT和SM处理提高了所有粒级团聚体中LF-C、cPOM-C和fPOM-C的含量,对m-SOM-C影响较小。

图3

新窗口打开|下载原图ZIP|生成PPT
图3不同耕作措施下土壤密度组分有机碳含量及对团聚体有机碳的贡献率

Fig. 3SOC contents and relative contribution of density fractions with aggregates under different tillage treatments



不同团聚体来看,对于>2 mm团聚体,NT和SM处理对cPOM-C含量的提升幅度最大,分别为81.0%和57.0%;对于1—2 mm、0.25—1 mm和<0.25 mm团聚体,NT和SM处理对fPOM-C的提升幅度最大,在1—2 mm团聚体中分别提高了39.2%和30.7%,在0.25—1 mm团聚体中提高了28.7%和26.6%,在<0.25 mm团聚体中提高了44.4%和51.1%。

不同密度组分SOC含量占团聚体总SOC含量的比例,可以衡量各组分对团聚体SOC的贡献程度。总体来看,fPOM-C和m-SOM-C对团聚体SOC的贡献较高,分别达到27.3%—45.1%和25.0%—52.6%。从不同团聚体来看,>0.25 mm团聚体的SOC以LF-C、cPOM-C和fPOM-C为主,占到团聚体SOC总量的66.3%—75.0%(图3-e、3-f、3-g);<0.25 mm团聚体的SOC以m-SOM-C为主,所占比例为40.0%—52.6%(图3-h)。与CT相比,NT和SM处理提高了所有粒级团聚体中LF-C、cPOM-C和fPOM-C所占比例,尤其是>2 mm团聚体cPOM-C所占比例和<2 mm团聚体fPOM-C所占比例;同时降低了m-SOM-C的比例。

2.5 长期不同耕作对团聚体内氮组分含量的影响

图4-a、4-b、4-c、4-d可见,m-SOM组分中的TN含量最高(0.30—0.45 g·kg-1),其次为fPOM(0.14— 0.32 g·kg-1),LF(0.05—0.14 g·kg-1)和cPOM中的TN含量(0.07—0.12 g·kg-1)最低。与CT相比,NT和SM处理对fPOM-N含量的提高幅度最高,分别为59.2%和60.7%,其次为cPOM-N,提高幅度分别为48.3%和64.6%,对m-SOM-N的提高幅度最小,仅为6.0%和7.6%。从不同团聚体来看,对于>2 mm团聚体,NT和SM处理对cPOM-N含量提升幅度最大,分别为91.0%和80.6%;对于1—2 mm、0.25—1 mm和<0.25 mm团聚体,NT和SM处理对fPOM-N含量提升幅度最大,在1—2 mm团聚体中分别提高了57.8%和48.9%,在0.25—1 mm团聚体中提高了39.3%和49.8%,在<0.25 mm团聚体中提高了111.6%和127.1%。

图4

新窗口打开|下载原图ZIP|生成PPT
图4不同耕作措施下土壤密度组分全氮含量及对团聚体全氮的贡献率

Fig. 4TN contents and relative contribution of density fractions with aggregates under different tillage treatments



耕作处理改变了有机质各组分中TN在团聚体中的分布。m-SOM-N所占比例最高,占到团聚体TN含量的42.2%—64.3%,并在微团聚体中所占比例最高;其次是fPOM-N,占到团聚体TN含量23.5%—34.7%(图4-e、4-f、4-g、4-h)。与CT相比,NT和SM处理不同程度地提高了所有粒级团聚体的LF-N、cPOM-N和 fPOM-N所占的比例,尤其是>2 mm团聚体cPOM-N所占比例和<2 mm团聚体fPOM-N所占比例;同时降低了m-SOM-N的比例。

2.6 不同团聚体有机质组分的碳氮比

总体来看(图5),LF和cPOM组分的C/N比较高,其次为fPOM,m-SOM的C/N比最低。LF组分的C/N比随团聚体粒级减小而减小,其他组分随团聚体粒级变化较小。与CT相比,NT和SM处理降低了各组分的C/N比,尤其是cPOM和fPOM组分降低幅度最大,cPOM组分平均降低14.6%和22.8%,fPOM组分平均降低15.9%和16.7%。

图5

新窗口打开|下载原图ZIP|生成PPT
图5不同耕作措施下土壤密度组分的碳氮比

Fig. 5C/N ratios in density fractions within aggregates under different tillage treatments



3 讨论

3.1 长期保护性耕作对土壤有机碳及全氮的影响

保护性耕作一方面通过秸秆覆盖增加了外源秸秆碳投入,一方面通过减少耕作频率,降低SOC的分解速率,最终达到提高SOC水平的目的[23,24]。我们的研究结果表明,与传统耕作相比,经过15年以秸秆覆盖为主要特征的免耕和深松处理显著提高了SOC含量,而无秸秆还田的少耕处理对SOC无显著影响。王成己等[25]的研究结果也表明,保护性耕作通过秸秆还田增加土壤碳投入是维持和提高SOC的有效途径,不进行秸秆还田的减少耕作措施相对于对照SOC增加效果甚微。将土壤容重考虑在内的等质量土壤碳储量计算方法可以更准确地反映耕作对土壤碳库的影响[26]。保护性耕作对SOC储量的影响在不同区域差别较大。李倩等[27]比较了不同土壤类型下免耕对碳储量的影响,与传统耕作相比,在黄土高原东部的砂壤质褐土(寿阳)和粉砂壤质黄土(临汾)、华北砂质潮土(廊坊),免耕下0—80 cm土层SOC储量分别提高了74.6%、109.4%、66.1%,并指出SOC储量受气候因子、土壤持水能力、土壤紧实度的影响显著。本次试验地位于坡度为8°的黄土高原坡耕地上,在该地区实施免耕覆盖和深松覆盖虽提高了0—10 cm土层的SOC储量,但固碳速率较低,这可能与该地区水土流失严重,土壤矿化强烈有关[6]。结合我们之前发表的文章对固碳速率及碳投入的分析,总结出在该地区实施保护性耕作,秸秆还田的作用更加突出,需要投入大量的外源碳才能使土壤拥有较好的固碳效果[6]

土壤全氮是反映土壤总氮库的重要指标。已有研究结果普遍认为,保护性耕作可通过秸秆覆盖直接增加土壤氮素固持,减少氮素流失,也可通过间接作用,增加微生物活性,从而将作物秸秆中的氮素更多地转移到土壤中[28]。我们的研究表明,与试验开始时期相比,所有处理的TN含量均呈下降趋势,土壤TN总体呈流失状态。每年投入的150 kg·hm-2氮素并不能够维持土壤原有的氮素含量。处在较低水平的土壤TN 对耕作的反应更加敏感,15年的NT和SM处理均显著增加了土壤TN含量,且提高幅度高于SOC,但保护性耕作增加的这部分TN并不能够抵消TN的总体流失。

3.2 长期保护性耕作对土壤团聚体有机碳及全氮的影响

本研究发现NT和SM处理提高了1—2 mm和0.25—1 mm大团聚体的含量,降低了<0.25 mm微团聚体的含量。周虎等[19]等的研究也有相似的结论,免耕显著提高了0—10 cm土层>0.25 mm干筛大团聚体的含量。本研究也发现,NT和SM处理并不能提高>2 mm大团聚体的含量,这说明>2 mm干筛大团聚体的形成可能还受到其他因素的影响。本研究的土壤CaCO3含量为113 g·kg-1,属于弱碱性的钙盐基饱和土壤。XIE等[29]在关中平原的研究也发现壤质褐土团聚体形成的主要胶结物质可能为CaCO3。DENEF等[30]发现干湿交替可以促进大团聚体的破裂和形成,从而加速大团聚体的周转速率。翻耕处理由于频繁耕作和缺少秸秆覆盖,干湿交替会更加剧烈,可能一定程度的促进了>2 mm大团聚体的形成。

团聚体有机碳可作为预测农田土壤有机碳变化的重要工具[31]。本研究发现NT和SM处理提高了所有粒级团聚体SOC的含量,尤其是>1 mm的别大团聚体,这与很多已有结果一致[11,32]。根据经典的团聚体等级模型[5],免耕覆盖和深松覆盖处理增加了新鲜植物残体有机碳,更多的有机碳被团聚体保护起来。邸佳颖等[33]的研究表明秸秆还田增加的SOC主要累积于较大团聚体中,对较小粒级的团聚体影响较小。本研究发现,NT和SM处理提高了所有粒级团聚体TN的含量。值得注意的是,微团聚体TN含量的提高幅度高于大团聚体。这说明保护性耕作下,氮素的累积可能更依赖于微团聚体。

3.3 长期保护性耕作对土壤团聚体内碳氮组分的影响

新鲜有机残体经过微生物的作用,逐渐被降解,同时,与土壤中的黏粒结合得越来越紧密,最终形成较为稳定的矿质结合态[34]。团聚体SOC及TN主要分布在fPOM和m-SOM组分。这与GAO等[24]的研究结果相似,其结果表明,fPOM和m-SOM对SOC的贡献率最高,总贡献率约为60%。我们还发现,大团聚体的SOC和TN主要分布在LF、cPOM和fPOM组分,而微团聚体的SOC和TN主要分布在m-SOM组分。LI等[35]发现在大团聚体或cPOM中,来源于植物残体的烷氧基比例更多,更容易被微生物和植物分解利用;而微团聚体内主要以烷基碳、芳香族碳和羰基碳为主,这部分碳来源于微生物活动的代谢产物,有机质的稳定化程度较高。

保护性耕作提高了所有粒级团聚体的LF、cPOM和fPOM组分中的SOC及TN含量,尤其对cPOM和fPOM组分提升幅度最大,对m-SOM组分影响较小。黄雅楠等[36]研究表明,闭蓄态有机碳对不同耕作方式敏感性最强,变化幅度最大,与常规翻耕相比,免耕秸秆覆盖处理的闭蓄态有机碳含量分别提高144.0%。YAMASHITA等[37]的数据表明,各密度组分有机碳的变化主要取决于该组分的干物质量的变化。免耕覆盖和深松覆盖处理下<0.25 mm微团聚体fPOM组分氮提高了111.6%和127.1%,远高于其他粒级的团聚体,可见保护性耕作下微团聚体氮的提高主要依赖于fPOM的增加,相比于有机碳,氮的周转速率更快,使越来越多的氮素以fPOM的形式被固定在微团聚体中。同时,保护性耕作改变了团聚体中不同有机质组分的碳氮分布。NT和SM处理提高了>2 mm团聚体cPOM组分中SOC和TN所占比例,及<2 mm各粒级别团聚体中fPOM组分的SOC和TN所占比例,可见保护性耕作促进了>2 mm团聚体碳氮从LF组分向cPOM组分转化,<2 mm团聚体碳氮从cPOM组分向fPOM组分转化。因此,保护性耕作促进了各级团聚体碳氮向更稳定的形态转化,有利于土壤碳氮的长效累积。

4 结论

15年保护性耕作(包括NT和SM处理)显著提高了0—10 cm土层的SOC和TN含量,与CT相比,NT和SM处理的SOC含量分别提高了22.9%和21.8%,TN含量分别提高了35.2%和42.3%。NT和SM处理提高了所有粒级团聚体内SOC和TN含量,对>1 mm粒级团聚体的SOC含量和<0.25 mm微团聚体的TN含量提高幅度最大。不同有机质组分对耕作的响应不同,cPOM和fPOM组分最为敏感。与CT相比,NT和SM显著提高了土壤所有粒级团聚体的cPOM组分和fPOM组分的SOC和TN含量,尤其对>2 mm团聚体cPOM组分和<2 mm团聚体fPOM的提升幅度最大。因此,长期免耕和深松提高了干筛团聚体有机碳及全氮含量,尤其提高了团聚体中粗颗粒有机质和细颗粒有机质的碳氮含量,有利于土壤碳氮的长效累积,是黄土高原坡耕地区值得推荐的耕作管理方式。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

张丽华, 李军, 贾志宽, 刘冰峰, 赵洪利, 尚金霞. 渭北旱塬保护性耕作对冬小麦-春玉米轮作田蓄水保墒效果和产量的影响
应用生态学报, 2011,22(7):1750-1758.

URLPMID:22007451 [本文引用: 1]

ZHANG L H, LI J, JIA Z K, LIU B F, ZHAO H L, SHANG J X. Effects of conservation tillage on soil water conservation and crop yield of winter wheat-spring maize rotation field in Weibei highland
Chinese Journal of Applied Ecology, 2011,22(7):1750-1758. (in Chinese)

URLPMID:22007451 [本文引用: 1]

GAO L L, WANG B S, LI S P, WU H J, WU X P, LIANG G P, GONG D Z, ZHANG X M, CAI D X, AURORE D. Soil wet aggregate distribution and pore size distribution under different tillage systems after 16-years in the Loess Plateau of China
Catena, 2019,173:38-47.

[本文引用: 1]

GUNINA A, RYZHOVA I, DORODNIKOV M, KUZYAKOV Y. Effect of plant communities on aggregate composition and organic matter stabilisation in young soils
Plant and Soil, 2015,387:265-275.

[本文引用: 1]

SIX J, BOSSUYT H, DEGRYZE S, DENEF K. A history of research on the link between micro aggregates, soil biota, and soil organic matter dynamics
Soil and Tillage Research, 2004,79:7-31

[本文引用: 1]

TISDALL J M, OADES J. Organic matter and water-stable aggregates in soils
Journal of Soil Science, 1982,33:141-163.

[本文引用: 3]

李景, 吴会军, 武雪萍, 蔡典雄, 王碧胜, 梁国鹏, 姚宇卿, 吕军杰. 15年保护性耕作对黄土坡耕地区土壤及团聚体固碳效应的影响
中国农业科学, 2015,53(4):782-794.

[本文引用: 2]

LI J, WU H J, WU X P, CAI D X, WANG B S, LIANG G P, YAO Y Q, Lü J J. Effects of 15-year conservation tillage on soil and aggregate organic carbon sequestration in the Loess Hilly Region of China
Scientia Agricultura Sinica, 2015,53(4):782-794. (in Chinese)

[本文引用: 2]

李景, 吴会军, 武雪萍, 蔡典雄, 姚宇卿, 吕军杰, 郑凯, 刘志平. 长期保护性耕作提高土壤大团聚体含量及团聚体有机碳的作用
植物营养与肥料学报, 2015,21(2):378-386.

URL [本文引用: 1]

LI J, WU H J, WU X P, CAI D X, YAO Y Q, Lü J J, ZHENG K, LIU Z P. Impact of long-term conservation tillage on soil aggregate formation and aggregate organic carbon contents
Plant Nutrition and Fertilizer Science, 2015,21(2):378-386. (in Chinese)

URL [本文引用: 1]

SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture
Soil Biology and Biochemistry, 2000,32:2099-2103.

[本文引用: 1]

蔡立群, 齐鹏, 张仁陟. 保护性耕作对麦-豆轮作条件下土壤团聚体组成及有机碳含量的影响
水土保持学报, 2008,22(2):141-145.

[本文引用: 1]

CAI L Q, QI P, ZHANG R D. Effects of conservation tillage measures on soil aggregates stability and soil organic carbon in two sequence rotation system with spring wheat and field pea
Journal of Soil and Water Conservation, 2008,22(2):141-145. (in Chinese)

[本文引用: 1]

MARTINEZ J M, GALANTINI J A, DUVAL M E, LOPEZ F. Tillage effects on labile pools of soil organic nitrogen in a semi-humid climate of Argentina: A long-term field study
Soil and Tillage Research, 2017,169:71-80.

[本文引用: 1]

WRIGHT A L, HONS F M. Tillage impacts on soil aggregation and carbon and nitrogen sequestration under wheat cropping sequences
Soil and Tillage Research, 2005,84(1):67-75.

[本文引用: 2]

GUNINA A, KUZYAKOV Y. Pathways of litter C by formation of aggregates and SOM density fractions: implications from 13C natural abundance
Soil Biology and Biochemistry, 2014,71:95-104.

URL [本文引用: 1]

CHENG M, XIAN Y, XUE Z, AN S, DARBOUX F. Soil aggregation and intra-aggregate carbon fractions in relation to vegetation succession on the Loess Plateau, China
Catena, 2015,124:77-84.

[本文引用: 2]

SIX J, ELLIOTT E T, PAUSTIAN K. DORAN J W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils
Soil Science Society of America Journal, 1998,62:1367-1377.

[本文引用: 1]

HASSINK J. The capacity of soils to preserve organic C and N by their association with clay and silt particles
Plant and Soil, 1997,191:77-87.

[本文引用: 1]

CYLE K, HILL N, YOUN K, JENKINS T, HANCOCK D, SCHROEDER P, THOMPSON A. Substrate quality influences organic matter accumulation in the soil silt and clay fraction
Soil Biology and Biochemistry, 2016,103:138-148.

[本文引用: 1]

VIRTO I, MONI C, SWANSTON C, CHENU C. Turnover of intra- and extra-aggregate organic matter at the silt-size scale
Geoderma, 2010,156:1-10.

[本文引用: 1]

ZHANG D B, YAO Z Y, CHEN J, YAO P W, ZHAO N, HE W X, LI Y Y, ZHANG S Q, ZHAI B N, WANG Z H, HUANG D L, CAO W D, GAO Y J. Improving soil aggregation, aggregate‐associated C and N, and enzyme activities by green manure crops in the Loess Plateau of China
European Journal of Soil Science, 2019,70(6):1267-1279.

[本文引用: 1]

周虎, 吕贻忠, 杨志臣, 李保国. 保护性耕作对华北平原土壤团聚体特征的影响
中国农业科学, 2007,40(9):1973-1979.

URL [本文引用: 2]

ZHOU H, Lü Y Z, YANG Z C, LI B G. Effects of conservation tillage on soil aggregates in Huabei Plain, China
Scientia Agricultura Sinica, 2007,40(9):1973-1979. (in Chinese)

URL [本文引用: 2]

SIX J, CONANT R T, PAUL E A, PAUSTIAN K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils
Plant and Soil, 2002,241:155-176.

URL [本文引用: 1]

CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic-matter changes across a grassland cultivation sequence
Soil Science Society of America Journal, 1992,56(3):777-783.

[本文引用: 1]

ZHANG H, DING W, YU H, HE X. Carbon uptake by a microbial community during 30-day treatment with 13C-glucose of a sandy loam soil fertilized for 20 years with NPK or compost as determined by a GC-C-IRMS analysis of phospholipid fatty acids
Soil Biology and Biochemistry, 2013,57:228-236.

URL [本文引用: 1]

王小彬, 王燕, 代快, 武雪萍, 赵全胜, 张丁辰, 冯宗会, 蔡典雄. 旱地农田不同耕作系统的能量/碳平衡
生态学报, 2011,31(16):4638-4652.

URL [本文引用: 1]

WANG X B, WANG Y, DAI K, WU X P, ZHAO Q S, ZHANG D C, FENG Z H, CAI D X. Coupled energy and carbon balance analysis under dryland tillage systems
Acta Ecologica Sinica, 2011,31(16):4638-4652. (in Chinese)

URL [本文引用: 1]

GAO L L, WANG B S, LI S P, HAN Y, ZHANG X M, GONG D Z, MA M C, LIANG G P, WU H J, WU X P, CAI D X, AURORE D. Effects of different long-term tillage systems on the composition of organic matter by 13C CP/TOSS NMR in physical fractions in the Loess Plateau of China
Soil and Tillage Research, 2019,194:104321.

[本文引用: 2]

王成己, 潘根兴, 田有国. 保护性耕作下农田表土有机碳含量变化特征分析—基于中国农业生态系统长期试验资料
农业环境科学学报, 2009,28(12):2464-2475.

[本文引用: 1]

WAND C J, PAN G X, TIAN Y G. Characteristics of cropland topsoil organic carbon dynamics under different conservation tillage treatments based on long-term agro-ecosystem experiments across mainland China
Journal of Agro-Environment Science, 2009,28(12):2464-2475. (in Chinese)

URL [本文引用: 1]

梁爱珍, 张晓平, 杨学明, DRURY C F. 耕作方式对耕层黑土有机碳库储量的短期影响
中国农业科学, 2006,39(6):1287-1293.

URL [本文引用: 1]
【Objective】The short-term effects of no-tillage (NT), moldboard plow (MP) and ridge tillage (RT) on the amount of soil organic carbon (SOC) in the plow layer (30 cm) of a black soil (clay loam) in Northeast China were studied. 【Method】The tillage experiment trials were established in Dehui County, Jilin Province in 2001. Using two calculating methods based on an equivalent soil depth and soil mass SOC storages under different tillages were compared. 【Result】NT practices did not lead to significant increase of SOC at the top soil (0-5 cm) compared with MP and RT practices. However, SOC contents showed a notable reduction at 5-20 cm depth. SOC storage on an equivalent soil mass in all treatments reflected the short-term effects of tillage more accurately. Three-year NT practices didn't stratify the storage of SOC on an equivalent soil mass in the plow layer on this clay loam black soil.【Conclusion】Use of no-tillage practices on this fine-textured and poor-drained black soil might not sequester more SOC than conventional tillage, at least in the short term.
LIANG A Z, ZHANG X P, YANG X M, DRURY C F. Short-term effects of tillage on soil organic carbon storage in the plow layer of black soil in northeast china
Scientia Agricultura Sinica, 2006,39(6):1287-1293. (in Chinese)

URL [本文引用: 1]
【Objective】The short-term effects of no-tillage (NT), moldboard plow (MP) and ridge tillage (RT) on the amount of soil organic carbon (SOC) in the plow layer (30 cm) of a black soil (clay loam) in Northeast China were studied. 【Method】The tillage experiment trials were established in Dehui County, Jilin Province in 2001. Using two calculating methods based on an equivalent soil depth and soil mass SOC storages under different tillages were compared. 【Result】NT practices did not lead to significant increase of SOC at the top soil (0-5 cm) compared with MP and RT practices. However, SOC contents showed a notable reduction at 5-20 cm depth. SOC storage on an equivalent soil mass in all treatments reflected the short-term effects of tillage more accurately. Three-year NT practices didn't stratify the storage of SOC on an equivalent soil mass in the plow layer on this clay loam black soil.【Conclusion】Use of no-tillage practices on this fine-textured and poor-drained black soil might not sequester more SOC than conventional tillage, at least in the short term.

李倩, 李晓秀, 吴会军, 宋霄君, 王碧胜, 武雪萍. 不同气候和施肥条件下保护性耕作对农田土壤碳氮储量的影响
植物营养与肥料学报, 2018,24(6):1539-1549.

[本文引用: 1]

LI Q, LI X X, WU H J, SONG X J, WANG B S, WU X P. Effects of conservation tillage practices on soil carbon and nitrogen stocks in farmland under different climatic types and fertilization conditions
Journal of Plant Nutrition and Fertilizers, 2018,24(6):1539-1549. (in Chinese)

[本文引用: 1]

祁剑英, 王兴, 濮超, 马守田, 赵鑫, 薛建福, 张海林. 保护性耕作对土壤氮组分影响研究进展
农业工程学报, 2018,34:222-229.

URL [本文引用: 1]

QI J Y, WANG X, PU C, MA S T, ZHAO X, XUE J F, ZHANG H L. Research advances on effects of conservation tillage practice on soil nitrogen component
Transaction of Chinese Society of Agricultural Engineering, 2018,34:222-229. (in Chinese)

URL [本文引用: 1]

XIE J, HOU M, ZHOU Y, WANG R, ZHANG S, YANG X, SUN B. Carbon sequestration and mineralization of aggregate-associated carbon in an intensively cultivated Anthrosol in north China as affected by long term fertilization
Geoderma, 2017,296:1-9.

[本文引用: 1]

DENEF K, SIX J, BOSSUYT H, FREY S D, ELLIOT E T, MERCKX R, PAUSTIAN K. Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial activity dynamics
Soil Biology and Biochemistry, 2001,33:1599-1611.

[本文引用: 1]

SIX J, PAUSTIAN K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool
Soil Biology and Biochemistry, 2014,68:4-9.

[本文引用: 1]

CASTRO F C, LOURENCO A, GUIMARAES M F, FONSECA I C B. Aggregate stability under different soil management systems in a red latosol in the state of Parana Brazil
Soil and Tillage Research, 2002,65(1):45-51.

[本文引用: 1]

邸佳颖, 刘小粉, 杜章留, 肖小平, 杨光立, 任图生. 长期施肥对红壤性水稻土团聚体稳定性及固碳特征的影响
中国生态农业学报, 2014,22(10):1129-1138.

URL [本文引用: 1]

DI J Y, LIU X F, DU Z L, XIAO X P, YANG G L, REN T S. Influences of long-term organic and chemical fertilization on soil aggregation and associated organic carbon fractions in a red paddy soil
Chinese Journal of Eco-Agriculture, 2014,22(10):1129-1138. (in Chinese)

URL [本文引用: 1]

JOHN B, YAMASHITA T, LUDWIG B, FLESSA H. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use
Geoderma, 2005,128:63-79.

[本文引用: 1]

LI N, LONG J H, HAN X Z, YUAN Y R, SHENG M. Molecular characterization of soil organic carbon in water-stable aggregate fractions during the early pedogenesis from parent material of Mollisols
Journal of Soils and Sediments, 2020, https://doi.org/10.1007/s11368-020-02563-w.

URLPMID:26074728 [本文引用: 1]

黄雅楠, 黄丽, 薛斌, 成莉娟, 李小坤, 鲁剑巍. 保护性耕作对水-旱轮作土壤有机碳组分的影响-基于密度分组法
土壤通报, 2019,50(1):109-114.

[本文引用: 1]

HUANG Y N, HUANG L, XUE B, CHENG L J, LI X K, LU J W. Effects of conservation tillage on soil carbon fractions in paddy- upland rotation: based on density grouping method
Chinese Journal of Soil Science, 2019,50(1):109-114. (in Chinese)

[本文引用: 1]

YAMASHITA T, FLESSA H, JOHN B, HELFRICH M, LUDWIG B. Organic matter in density fractions of water-stable aggregates in silty soils: effect of land use
Soil Biology and Biochemistry, 2006,38, 3222-3234.

[本文引用: 1]

相关话题/土壤 比例 农田 科学 质量