The Actin Binding Protein FgAbp1 is Involved in Growth, Development and Toxisome Formation in Fusarium graminearum
ZHANG ChengQi,, WANG XiaoYan, CHEN Li,School of Plant Protection, Anhui Agricultural University/Anhui Province Key Laboratory of Integrated Pest Management on Crops/Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036
Abstract 【Objective】Abp1 is one of the actin binding proteins that plays a central role in actin cytoskeleton of diverse eukaryotic organisms. The objective of this study is to analyze functions of the actin binding protein FgAbp1 in growth and development, sensitivity to the novel fungicide phenamacril and toxisome formation inFusarium graminearum.【Method】Targeted gene deletion construct and fluorescent protein fusion vectors were generated by double-joint PCR and budding yeast gap repair system, respectively. Then, the mutant ΔFgAbp1 and fluorescently labeled strains were obtained using polyethylene glycol (PEG) mediated protoplast transformation. Mycelia growth, sexual/asexual reproduction and sensitivity to phenamacril of wild type PH-1, the mutant ΔFgAbp1 and complemented strain ΔFgAbp1-C were investigated. Localization of FgAbp1 in hyphae was examined through fusion green fluorescent protein. Transmission electron microscopy was carried out to assay the role of FgAbp1 in vacuole/vesicle morphology. Under noninducing medium and DON biosynthesis induction conditions, the role of FgAbp1 in the toxisome formation of F. graminearum was performed by dual fluorescence colocalization assay.【Result】FgAbp1 is primarily localized near the cell membrane in patches of F. graminearum. In MM medium, the growth rate of gene knockout mutant ΔFgAbp1 was reduced by 15% compared with the wild type. But in the nutrient-rich CM, the growth rate of ΔFgAbp1 was decreased by 38%. The mutant ΔFgAbp1 had no obvious defects in sexual and asexual reproduction in comparison with the wild type, while the mycelial growth of ΔFgAbp1 was completely inhibited and the conidia showed significant reduction of germination rate with 0.5 μg·mL -1 phenamacril treatment. Moreover,FgAbp1 deletion resulted in a high vesicle number and a block of normal vacuole formation. During growth in a toxin noninducing condition, FgAbp1 and the DON biosynthetic key enzyme Tri1 co-fluoresced in vesicles. Unexpectedly, FgAbp1 and Tri1 cellular co-localized in toxisomes under DON biosynthesis inducing conditions. Furthermore, disruption of FgAbp1resulted in abnormal toxisomes.【Conclusion】The actin binding protein FgAbp1 plays an important role in vegetative growth, development, phenamacril tolerance and toxisome formation inF. graminearum. Keywords:Fusarium graminearum;FgAbp1;phenamacril;toxisome
PDF (3712KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 张承启, 王晓妍, 陈莉. 肌动蛋白结合蛋白FgAbp1参与禾谷镰孢生长、发育和毒素体形成[J]. 中国农业科学, 2021, 54(13): 2759-2768 doi:10.3864/j.issn.0578-1752.2021.13.006 ZHANG ChengQi, WANG XiaoYan, CHEN Li. The Actin Binding Protein FgAbp1 is Involved in Growth, Development and Toxisome Formation in Fusarium graminearum[J]. Scientia Acricultura Sinica, 2021, 54(13): 2759-2768 doi:10.3864/j.issn.0578-1752.2021.13.006
高保真和普通DNA聚合酶、RNA反转录试剂盒、SYBR Green Ⅰ荧光染料购自南京诺唯赞生物科技有限公司;酵母转化试剂盒购自美国MP Biomedicals公司;潮霉素、酵母质粒提取试剂盒购自北京索莱宝科技有限公司;质粒小量提取试剂盒、胶回收试剂盒、引物以及常规生化试剂均采购于上海生工生物工程有限公司。
a:野生型PH-1、敲除突变体ΔFgAbp1和回补体ΔFgAbp1-C在PDA、MM和CM中25℃培养3 d的菌落形态Colony morphology of the wild-type PH-1, deletion mutant ΔFgAbp1 and the complemented strain ΔFgAbp1-C on PDA, MM and CM after 3 days of incubation at 25℃;b:统计分析各菌株在PDA、MM和CM中25℃生长3 d后的菌落直径。误差线表示标准差,*:P<0.05 Statistical analysis of each strain colony diameters following growth on PDA, MM and CM at 25℃ for 3 days. Error bars represent standard deviation Fig. 1Effects of FgAbp1 deletion on mycelial growth of F. graminearum
a:PH-1、ΔFgAbp1和ΔFgAbp1-C的分生孢子经荧光增白剂染色,标尺20 μm Conidia of PH-1, ΔFgAbp1 and ΔFgAbp1-C were stained with calcofluor white. Bar = 20 μm;b:各菌株在CMC培养液中3 d的产孢量Conidiation of each strain was assayed with 3-day-old CMC cultures;c:PH-1、ΔFgAbp1和ΔFgAbp1-C在胡萝卜培养基中的有性生殖。有性生殖诱导20 d后拍照;插入框中为子囊和子囊孢子Sexual development of PH-1, ΔFgAbp1 and ΔFgAbp1-C grown on carrot agar media. Photos were taken 20 days after sexual induction. Dissecting the perithecia exhibited the asci and ascospores of each strain (inset boxes) Fig. 2Asexual and sexual development of gene disruption mutant ΔFgAbp1
a:PH-1、ΔFgAbp1和ΔFgAbp1-C在含有0.5 μg·mL-1氰烯菌酯的PDA中25℃培养3 d的生长比较。溶剂DMSO作为对照组Comparison of PH-1, ΔFgAbp1 and ΔFgAbp1-C following incubation at 25℃ for 3 days on PDA plates supplemented 0.5 μg·mL -1 phenamacril. DMSO was used as a control treatment;b:各菌株在0.5 μg·mL -1氰烯菌酯处理下的生长抑制率。误差线表示标准差,**:P<0.01 The growth inhibition rate of each strain under 0.5 μg·mL-1 phenamacril treatment. Error bars represent standard deviation;c:氰烯菌酯对PH-1、ΔFgAbp1和ΔFgAbp1-C分生孢子萌发的抑制作用。激光共聚焦显微镜拍摄微分干涉(DIC)和荧光增白剂(CFW)染色照片。标尺50 μm Inhibitory effect of 0.5 μg·mL-1 phenamacril on conidial germination of PH-1, ΔFgAbp1 and ΔFgAbp1-C. Differential interference contrast (DIC) images of conidia stained with calcofluor white (CFW) were taken with a confocal fluorescence microscope. Bar = 50 μm;d:0.5 μg·mL -1氰烯菌酯处理下各菌株分生孢子的萌发率。误差线表示标准差**:P<0.01 The conidial germination rate of each strain under 0.5 μg·mL-1 phenamacril treatment. Error bars represent standard deviation Fig. 3Sensitivity of mutant ΔFgAbp1 to the fungicide phenamacril
a:FgAbp1的亚细胞定位。DIC,微分干涉;GFP,绿色荧光蛋白。标尺10 μm Subcellular localization of FgAbp1. DIC, differential interference contrast. GFP, green fluorescent protein. Bar = 10 μm;b:突变体ΔFgAbp1细胞中形成大量的囊泡和异常的液泡。透射电子显微镜拍摄PH-1和ΔFgAbp1细胞超微结构中液泡/囊泡的形态The mutant ΔFgAbp1 caused a high vesicle number and abnormal vacuole. The ultrastructural morphology of vacuole/vesicle in PH-1 and ΔFgAbp1 was visualized by transmission electron microscopy Fig. 4Blocking of vacuole formation in the mutant ΔFgAbp1
a:PDB培养液中生长48 h后Tri1-GFP和FgAbp1-RFP共定位情况。标尺5 μm Co-localization of Tri1-GFP with FgAbp1-RFP in liquid PDB medium for 48 h. Bar = 5 μm;b:TBI培养基中诱导48 h后,Tri1-GFP和FgAbp1-RFP共定位于毒素体。标尺5 μm Tri1-GFP and FgAbp1-RFP co-localized in toxisomes after 48 h incubation in TBI medium. Bar = 5 μm;c:TBI培养基中诱导48 h后,PH-1和ΔFgAbp1菌丝中毒素体的形成状态。Tri1-GFP指示毒素体的形成。标尺5 μm The toxisome formation patterns in the mycelia of PH-1 and ΔFgAbp1 after 48 h incubation in TBI medium. The toxisome formation was visualized using Tri1-GFP as the indicator. Bar = 5 μm Fig. 5FgAbp1 regulates toxisome formation in F. graminearum
DEANR, VAN KANJ A L, PRETORIUSZ A, HAMMOND-KOSACKK E, DI PIETROA, SPANUP D, RUDDJ J, DICKMANM, KAHMANNR, ELLISJ, FOSTERG D. The top 10 fungal pathogens in molecular plant pathology Molecular Plant Pathology, 2012, 13(4):414-430. DOI:10.1111/j.1364-3703.2011.00783.xURL [本文引用: 1]
AUDENAERTK, VANHEULEA, HOFTEM, HAESAERTG. Deoxynivalenol: A major player in the multifaceted response of Fusarium to its environment Toxins, 2013, 6(1):1-19. DOI:10.3390/toxins6010001URL [本文引用: 1]
BIANCHINIA, HORSLEYR, JACK MM, KOBIELUSHB, RYUD, TITTLEMIERS, WILSON WW, ABBAS HK, ABELS, HARRISONG, MILLER JD, SHIER WT, WEAVERG. DON occurrence in grains: A north American perspective Cereal Foods World, 2015, 60(1):32-56. DOI:10.1094/CFW-60-1-0032URL [本文引用: 1]
PESTKA JJ. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance Archives of Toxicology, 2010, 84(9):663-679. DOI:10.1007/s00204-010-0579-8URL [本文引用: 1]
CHENY, WANG JQ, YANG RM, MA ZH. Current situation and management strategies of Fusarium head blight in China Plant Protection, 2017, 43(5):11-17. (in Chinese) [本文引用: 1]
SHI JR, LIUX, QIU JB, JIF, XU JH, DONGF, YIN XC, RAN JJ. Deoxynivalenol contamination in wheat and its management Scientia Agricultura Sinica, 2014, 47(18):3641-3654. (in Chinese) [本文引用: 1]
TANG GF, CHENY, XU JR, KISTLER HC, MA ZH. The fungal myosin I is essential for Fusarium toxisome formation PLoS Pathogens, 2018, 14(1):e1006827. DOI:10.1371/journal.ppat.1006827URL [本文引用: 2]
ZHANG CQ, CHENY, YIN YN, JI HH, SHIM WB, HOU YP, ZHOU MG, LI XD, MA ZH. A small molecule species specifically inhibits Fusarium myosin I Environmental Microbiology, 2015, 17(8):2735-2746. DOI:10.1111/1462-2920.12711URL [本文引用: 2]
BEREPIKIA, LICHIUSA, READ ND. Actin organization and dynamics in filamentous fungi. Nature Reviews Microbiology, 2011, 9(12):876-887. [本文引用: 3]
GARCIAB, STOLLAR EJ, DAVIDSON AR. The importance of conserved features of yeast actin-binding protein 1 (Abp1p): The conditional nature of essentiality Genetics, 2012, 191(4):1199-1211. DOI:10.1534/genetics.112.141739URL [本文引用: 1]
DRUBIN DG, MILLER KG, BOTSTEIND. Yeast actin-binding proteins: Evidence for a role in morphogenesis Journal of Cell Biology, 1988, 107(6):2551-2561. [本文引用: 3]
LAPPALAINENP, KESSELS MM, COPE MJ, DRUBIN DG. The ADF homology (ADF-H) domain: A highly exploited actin-binding module Molecular Biology of the Cell, 1998, 9(8):1951-1959. DOI:10.1091/mbc.9.8.1951URL [本文引用: 2]
STOLLAR EJ, GARCIAB, CHONG PA, RATHA, LINH, FORMAN-KAYJ D, DAVIDSONA R. Structural, functional, and bioinformatic studies demonstrate the crucial role of an extended peptide binding site for the SH3 domain of yeast Abp1p Journal of Biological Chemistry, 2009, 284(39):26918-26927. DOI:10.1074/jbc.M109.028431URL [本文引用: 2]
GOODE BL, RODAL AA, BARNESG, DRUBIN DG. Activation of the Arp2/3 complex by the actin filament binding protein Abp1p Journal of Cell Biology, 2001, 153(3):627-634. [本文引用: 2]
FAZIB, COPEM, DOUANGAMATHA, FERRACUTIS, SCHIRWITZK, ZUCCONIA, DRUBIN DG, WILMANNSM, CESARENIG, CASTAGNOLIL. Unusual binding properties of the SH3 domain of the yeast actin-binding protein Abp1: Structural and functional analysis Journal of Biological Chemistry, 2002, 277(7):5290-5298. DOI:10.1074/jbc.M109848200URL [本文引用: 1]
STEFAN CJ, PADILLA SM, AUDHYAA, EMR SD. The phosphoinositide phosphatase Sjl2 is recruited to cortical actin patches in the control of vesicle formation and fission during endocytosis Molecular and Cellular Biology, 2005, 25(8):2910-2923. DOI:10.1128/MCB.25.8.2910-2923.2005URL
HAYNESJ, GARCIAB, STOLLAR EJ, RATHA, ANDREWS BJ, DAVIDSON AR. The biologically relevant targets and binding affinity requirements for the function of the yeast actin-binding protein 1 Src-homology 3 domain vary with genetic context Genetics, 2007, 176(1):193-208. DOI:10.1534/genetics.106.070300URL [本文引用: 1]
KESSELS MM, ENGQVIST-GOLDSTEINA E Y, DRUBIND G, QUALMANNB. Mammalian Abp1, a signal-responsive F-actin- binding protein, links the actin cytoskeleton to endocytosis via the GTPase dynamin Journal of Cell Biology, 2001, 153(2):351-366. [本文引用: 2]
MISE-OMATAS, MONTAGNEB, DECKERTM, WIENANDSJ, ACUTOO. Mammalian actin binding protein 1 is essential for endocytosis but not lamellipodia formation: Functional analysis by RNA interference Biochemical and Biophysical Research Communications, 2003, 301(3):704-710. DOI:10.1016/S0006-291X(02)02972-8URL [本文引用: 1]
KESSELS MM, ENGQVIST-GOLDSTEINA E Y, DRUBIND G. Association of mouse actin-binding protein 1 (mAbp1/SH3P7), an Src kinase target, with dynamic regions of the cortical actin cytoskeleton in response to Rac1 activation Molecular Biology of the Cell, 2000, 11(1):393-412. DOI:10.1091/mbc.11.1.393URL [本文引用: 1]
CORTESIO CL, PERRIN BJ, BENNIN DA, HUTTENLOCHERA. Actin-binding protein-1 interacts with WASp-interacting protein to regulate growth factor-induced dorsal ruffle formation Molecular Biology of the Cell, 2010, 21(1):186-197. DOI:10.1091/mbc.e09-02-0106URL [本文引用: 1]
FENSTER SD, KESSELS MM, QUALMANNB, CHUNG WJ, NASHJ, GUNDELFINGER ED, GARNER CC. Interactions between Piccolo and the actin/dynamin-binding protein Abp1 link vesicle endocytosis to presynaptic active zones Journal of Biological Chemistry, 2003, 278(22):20268-20277. DOI:10.1074/jbc.M210792200URL [本文引用: 1]
HANJ, KORIR, SHUI JW, CHEN YR, YAO ZB, TAN TH. The SH3 domain-containing adaptor HIP-55 mediates c-Jun N-terminal kinase activation in T cell receptor signaling Journal of Biological Chemistry, 2003, 278(52):52195-52202. DOI:10.1074/jbc.M305026200URL [本文引用: 1]
HOLTZMAN DA, YANGS, DRUBIN DG. Synthetic-lethal interactions identify two novel genes, SLA1and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae Journal of Cell Biology, 1993, 122(3):635-644. [本文引用: 3]
TUOS, NAKASHIMAK, PRINGLE JR. Role of endocytosis in localization and maintenance of the spatial markers for bud-site selection in yeast PLoS ONE, 2013, 8(9):e72123. DOI:10.1371/journal.pone.0072123URL [本文引用: 1]
COPE MJ, YANGS, SHANGC, DRUBIN DG. Novel protein kinases Ark1p and Prk1p associate with and regulate the cortical actin cytoskeleton in budding yeast Journal of Cell Biology, 1999, 144(6):1203-1218. [本文引用: 1]
WESPA, HICKEL, PALECEKJ, LOMBARDIR, AUSTT, MUNN AL, RIEZMANH. End4p/Sla2p interacts with actin-associated proteins for endocytosis in Saccharomyces cerevisiae Molecular Biology of the Cell, 1997, 8(11):2291-2306. DOI:10.1091/mbc.8.11.2291URL [本文引用: 1]
AGHAMOHAMMADZADEHS, SMACZYNSKA-DE ROOIJI I, AYSCOUGHK R. An Abp1-dependent route of endocytosis functions when the classical endocytic pathway in yeast is inhibited PLoS ONE, 2014, 9(7):e103311. DOI:10.1371/journal.pone.0103311URL [本文引用: 1]
LI LW, ZHANG SP, LIU XY, YUR, LI XR, LIU MX, ZHANG HF, ZHENG XB, WANGP, ZHANG ZG. Magnaporthe oryzae Abp1, a MoArk1 kinase-interacting actin binding protein, links actin cytoskeleton regulation to growth, endocytosis, and pathogenesis Molecular Plant-Microbe Interactions, 2019, 32(4):437-451. DOI:10.1094/MPMI-10-18-0281-RURL [本文引用: 3]
YU JH, HAMARIZ, HAN KH, SEO JA, REYES-DOMINGUEZY, SCAZZOCCHIOC. Double-joint PCR: A PCR-based molecular tool for gene manipulations in filamentous fungi Fungal Genetics and Biology, 2004, 41(11):973-981. DOI:10.1016/j.fgb.2004.08.001URL [本文引用: 1]
PROCTOR RH, HOHN TM, MCCORMICK SP. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene Molecular Plant-Microbe Interactions, 1995, 8(4):593-601. DOI:10.1094/MPMI-8-0593URL [本文引用: 1]
BRUNO KS, TENJOF, LIL, HAMER JE, XU JR. Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea Eukaryotic Cell, 2004, 3(6):1525-1532. DOI:10.1128/EC.3.6.1525-1532.2004URL [本文引用: 1]
CHENY, ZHENG SY, JU ZZ, ZHANG CQ, TANG GF, WANGJ, WEN ZY, CHENW, MA ZH. Contribution of peroxisomal docking machinery to mycotoxin biosynthesis, pathogenicity and pexophagy in the plant pathogenic fungus Fusarium graminearum Environmental Microbiology, 2018, 20(9):3224-3245. DOI:10.1111/emi.2018.20.issue-9URL [本文引用: 1]
TANG GF, ZHANG CQ, JU ZZ, ZHENG SY, WEN ZY, XUS, CHENY, MA ZH. The mitochondrial membrane protein FgLetm1 regulates mitochondrial integrity, production of endogenous reactive oxygen species and mycotoxin biosynthesis in Fusarium graminearum Molecular Plant Pathology, 2018, 19(7):1595-1611. DOI:10.1111/mpp.2018.19.issue-7URL [本文引用: 1]
TRAILF. For blighted waves of grain: Fusarium graminearum in the postgenomics era Plant Physiology, 2009, 149(1):103-110. DOI:10.1104/pp.108.129684URL [本文引用: 1]
WINDER SJ, AYSCOUGH KR. Actin-binding proteins Journal of Cell Science, 2005, 118(4):651-654. DOI:10.1242/jcs.01670URL [本文引用: 1]
DOS REMEDIOS CG, CHHABRAD, KEKICM, DEDOVA IV, TSUBAKIHARAM, BERRY DA, NOSWORTHY NJ. Actin binding proteins: Regulation of cytoskeletal microfilaments Physiological Reviews, 2003, 83(2):433-473. DOI:10.1152/physrev.00026.2002URL [本文引用: 1]
ARAUJO-BAZANL, PENALVA MA, ESPESO EA. Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans Molecular Microbiology, 2008, 67(4):891-905. DOI:10.1111/mmi.2008.67.issue-4URL [本文引用: 2]
QUALMANNB, KESSELS MM, KELLY RB. Molecular links between endocytosis and the actin cytoskeleton Journal of Cell Biology, 2000, 150(5):F111-F116. [本文引用: 1]
MATSUOK, HIGUCHIY, KIKUMAT, ARIOKAM, KITAMOTOK. Functional analysis of Abp1p-interacting proteins involved in endocytosis of the MCC component in Aspergillus oryzae Fungal Genetics and Biology, 2013, 56:125-134. DOI:10.1016/j.fgb.2013.03.007URL [本文引用: 1]
ZHENG ZT, HOU YP, CAI YQ, ZHANGY, LI YJ, ZHOU MG. Whole-genome sequencing reveals that mutations in myosin-5 confer resistance to the fungicide phenamacril in Fusarium graminearum Scientific Reports, 2015, 5:8248. DOI:10.1038/srep08248URL [本文引用: 1]
CHENY, KISTLER HC, MA ZH. Fusarium graminearum trichothecene mycotoxins: Biosynthesis, regulation, and management Annual Review of Phytopathology, 2019, 57:15-39. DOI:10.1146/annurev-phyto-082718-100318URL [本文引用: 1]