Regenerative Agriculture-Sustainable Agriculture Based on the Conservational Land Use
HAN MingHui,1, LI BaoGuo,2, ZHANG Dan1, LI Ying1通讯作者:
责任编辑: 李云霞
收稿日期:2020-06-24接受日期:2020-12-14网络出版日期:2021-03-01
基金资助: |
Received:2020-06-24Accepted:2020-12-14Online:2021-03-01
作者简介 About authors
韩明会,E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (1350KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
韩明会, 李保国, 张丹, 李颖. 再生农业——基于土地保护性利用的可持续农业[J]. 中国农业科学, 2021, 54(5): 1003-1016 doi:10.3864/j.issn.0578-1752.2021.05.012
HAN MingHui, LI BaoGuo, ZHANG Dan, LI Ying.
开放科学(资源服务)标识码(OSID):
1 提出背景和意义
1.1 发展背景
根据《联合国防治荒漠化公约》(UNCCD)[1],在过去40年里,由于土壤退化和荒漠化,世界30%的农田被遗弃,而52%的农业用地受到土壤退化的中度至严重影响。土壤因人类活动,主要是农业活动而退化。频繁翻耕或整地、灌溉、不合理施用化肥和农药、过度放牧以及重型农业装备使用,都会造成土壤退化。开垦土地和毁林对土壤的形成和腐殖质的组成有着深刻的影响:各种原始植被被次生植被所取代,其中单一栽培会造成一系列生态环境问题。土壤的退化直接表现为土壤变为一个碳源,更多土壤有机质分解释放二氧化碳到大气中,还会导致土壤生物多样性的丧失,且随着土壤的板结压实,可改变地表反照率,增加甲烷和一氧化二氮等温室气体的排放,对全球变暖产生重要影响[2]。据统计,全世界44%的粮食生产系统和50%的牲畜被认为易受气候变化的影响,且每年损失的耕地达1 200万公顷(每分钟23公顷)。预计2050年要多生产60%的粮食才能满足人类的需求。而我们只能通过不断提高单位土地的生产力来实现[1,3]。面对生态危机和粮食危机的双重胁迫,全球科学家提出了有机农业(organic agriculture)、保护性农业(conservation agriculture)、低碳农业(low carbon agriculture)、生态农业(ecological agriculture)等以实现可持续农业为目的的农业模式,但是全球农业可持续危机仍在加剧。一个主要原因是这些模式没有真正从土地可持续利用或保护性利用为基础出发实现农业自身可持续的发展。据此,20世纪80年代罗伯特·罗代尔(Robert Rodale)探索提出了再生农业的概念。“再生”一词本质上意味着“重新产生的能力”。因此,如果一个项目或系统是再生的,它就有内在的能力使自己不断更新永存。一个完全可持续/再生系统的完美例子是森林,在那里没有废物,系统完全自给自足。再生农业经罗代尔研究所(Rodale Institute)进行了30多年的探索试验后实现了二氧化碳排放量降低35.3%和利润增加193.7%的显著生态经济改善效果[4,5]。利用再生农业的措施,不仅可以大幅增加现有土壤有机碳和氮元素的含量,同时也可改善土壤结构和土壤健康,提高土壤肥力和作物产量,保持水分和蓄水层的补给,从而提高应对极端天气的弹性。气候变化会增加土壤侵蚀、造成土壤质量和农业生产效率下降,对粮食安全和全球可持续发展产生不利影响,而再生农业良好的土壤管理措施则可增强土壤和植物减缓以及适应气候变化的能力[2]。
2020年荣获世界粮食奖的国际土壤科学联合会主席Rattan Lal将再生农业当作重要研究课题,并认为该模式能够真正同时满足日益增加的粮食需求和生态环境改善需求[6]。随着再生农业相关研究的不断深入,越来越多的国际组织加入进来。2019年,再生农业被联合国开发计划署(UNDP)定为在全球变暖的严峻态势下有望应对生态脆弱地区农业可持续发展问题的、基于自然的解决方案[7]。商业界对再生农业的投资也日益增加,据土壤财富统计发现,2019年就有70项投资策略包括一个或多个与再生农业相关内容,总资产达475亿美元[8]。
在北美,通过再生农业推广,预计到2025年改善0.96亿公顷农牧土壤质量,从而改善野生动物栖息地,提高土壤碳储存能力和水质,振兴农村经济[9]。中国作为农业大国,改革开放以来的集约化生产虽然增加了粮食产量,但却付出了极大的生态环境代价,威胁农业可持续发展。在当前满足中国粮食安全的绿色农业发展大趋势下,再生农业是在满足粮食安全基础上,实现农业绿色发展的重要途径。据此,也有必要在中国进行再生农业措施的试验示范与推广模式的探索,以期为新挑战下的农业可持续发展寻求可行的途径[10,11]。
1.2 定义和原则
许多被贴上“可持续”标签的农业生产方式,相对于传统的农业生产方式来说,只是在某个方面做出了改进,并没有考虑实现农业生态系统的可再生,因而实际上只是减缓了土地退化的速度[12]。采用“再生”做法需要从根本上重新设计系统,以便通过自然生态系统服务功能恢复农业资源[13]。再生农业作为全球新挑战下应运而生的农业模式,国内外****目前尚没有明确的定义,其内容也在不断完善和发展中,以下汇总了文献中提到的再生农业的定义(表1)。Table 1
表1
表1再生农业的定义
Table 1
角度 Perspective | 定义内容 Definition | 参考文献 Reference |
---|---|---|
特点 Characteristic | 再生农业是一种趋向于闭合养分循环的农业模式,它使生物群落的多样性更大,最大程度依赖于内部资源而不是外部资源投入 Regenerative organic agriculture is marked by tendencies towards closed nutrient loops, greater diversity in the biological community, fewer annuals and more perennials, and greater reliance on internal rather than external resources | [5] |
原则 Principle | 最小土壤扰动、最大化生物多样性、保持土壤覆盖、保持全年活根和引入牲畜 Minimize soil disturbance; maximize crop diversity; keep the soil covered; maintain living root year-round; integrate livestock | [6,14-15] |
措施 Practice | 免耕少耕(或在耕作后积极重建土壤群落);覆盖作物;培育田地的植物多样性(如多种作物轮作);整合畜牧业和种植业(如整体放牧) (1) Abandoning/reducing tillage (or actively rebuilding soil communities following a tillage event); (2) Eliminating spatio-temporal events of bare soil by cover crop, etc; (3) Fostering plant diversity on the farm by crop rotation, etc; (4) Integrating livestock and cropping operations on the land such as holistic grazing | [15] |
功能 Function | 促进土壤肥力与健康;提高水的渗滤和减少地表径流,净化水源;增加生物多样性,增强生态系统的健康和复原能力;将当前农业的碳排放转化为显著的碳封存 (1) Contribute to generating/building soils and soil fertility and health; (2) Increase water percolation, water retention, and clean and safe water runoff; (3) Increase biodiversity and ecosystem health and resiliency; (4) Invert the carbon emissions of our current agriculture to one of remarkably significant carbon sequestration thereby cleansing the atmosphere of legacy levels of CO2 | [16] |
新窗口打开|下载CSV
总的来说,再生农业是以实现农业可持续发展为目的,基于土地保护性利用,在减少机械作业和化学品投入的基础上,通过基于自然的解决方案实现在提高作物产出的同时,提升土壤有机质和氮元素、促进土壤固碳、改善土壤健康、最大化生物多样性的农业模式。该模式以实现土壤功能再生为核心目标,考虑对整个农业生态环境的优化并最终实现粮食安全的长期保障[6]。图1是再生农业的概念框架图。首先,再生农业中的覆盖作物和整体放牧措施可快速提高土壤有机质及氮元素含量[17,18];再生农业中的轮作与覆盖作物措施可抑制杂草的生长,且大大有利于提高农田的生物多样性[19,20],进而减少病虫害的数量。此外,免耕和覆盖作物还可有效减少水土流失[21],尤其是覆盖作物通过大量活的根系提高土壤的持水能力[22],节水净水能力[23,24],以及间接提高作物的抗旱能力[25,26]。免耕、覆盖作物和整体放牧都是稳定和提高碳封存以减缓全球变暖的有效措施[5,27]。再生农业通过采用基于自然的手段,减少机械和化学品的投入,对作物生长环境从本质进行全方位的优化和调整,提升作物产出和土壤健康状况,从而实现农业的可持续发展[28]。
图1
新窗口打开|下载原图ZIP|生成PPT图1再生农业的概念框架图
Fig. 1Conceptual framework of regenerative agriculture
1.3 与保护性农业等的比较
虽然现在国内外****提出了很多以实现可持续农业为目的的农业模式,如低碳农业(low carbon agriculture)[29]、有机农业(organic agriculture)[30]、保护性农业(conservation agriculture)[31]等,但是就可持续发展农业的几个重要方面评价来看[32,33],它们各有优势和不足(图2)。图2
新窗口打开|下载原图ZIP|生成PPT图2再生农业与其他可持续农业模式比较的文献分析
Fig. 2A literature analysis comparing regenerative agriculture with other sustainable agriculture models
低碳农业是以减少大气温室气体含量为目标,以减少碳排放、增加碳固定以及适应气候变化的技术为手段的农业模式[29]。与传统农业相比,它的优势在于通过减少化石能源的应用缓解气候变暖,并且重视通过土壤固碳措施提高土壤碳固定,且水污染得到一定缓解,但产量、净收益和生物多样性未得到明显提高[29,34-36]。
有机农业是指不使用化学肥料和杀虫剂等农用化学品,而是依赖于当地生态过程和生物多样性的农业模式[37]。它通过施用有机肥替代化肥,以增加土壤有机质,提高了农田的生物多样性。因为有机农产品的品质安全的保障,因此售价提升,收益增加,但是由于追求品质而忽略产量,因此不能实现满足所有人口粮食安全的目标,并且未能解决温室气体排放和水污染问题[37,38,39,40]。
保护性农业(也称保护性耕作)被定义为将最小的土壤扰动(免耕、少耕)、永久土壤覆盖(覆盖物)与轮作相结合的耕作系统[41]。由于减少土壤扰动,其相比传统农业可保护和增加生物多样性[42],秸秆还田可为土壤增加有机质等,促进土壤健康[42]。保护性农业的目的是改善土壤健康,因而短期内并不一定看到产量的提升,但是长期增产效果显著,尤其是干旱地区的雨养作物[43],可显著提高水利用效率[42]。保护性农业可以通过减少机械作业,可减少化石能源的燃油碳排放,同时保护性农业的免耕措施还能帮助土壤固碳,因此具有一定的温室气体减排效果[41, 44]。尽管保护性耕作减少了二氧化碳的排放,有助于增加土壤有机碳,但是其措施也可能会增加氧化亚氮(N2O)的排放[45,46]。
可以看出,以上4种农业都在追求农业的可持续发展,能在一定情形下实现农业可持续发展部分目标。而再生农业强调的是一个基于自然的和土地可持续利用的一个整体解决方案,目标是通过系统性协同提升生态和经济效益进而实现农业的可持续发展。其重点是加强和恢复整体性、再生性,目标是通过系统性提升生态和经济效益进而实现农业的可持续发展[47]。因而再生农业是目前离实现可持续发展农业目标最近的农业模式[2]。
再生农业与保护性农业都是以实现可持续发展为目的的农业模式,且措施和原则有很多相似之处,因此本文将重点讨论两者技术采用和效益的异同(表2)。1930年,由于人类对土地的不合理利用导致的美国震惊世界的 “黑风暴”灾难卷走了3亿吨土壤,造成了巨大农业损失。由此美国开始大力推行免耕等保护性耕作。自20世纪70年代以来,由于机械装备、除草剂和其他技术的改进,越来越多的土地采用了保护性耕作。保护性耕作产生了几个长期的、递增的效益,其中最重要的效益是增加了土壤中有机物的积累和减少了水土流失。然而在新的可持续发展挑战(人口增加、食品质量下降和气候变化等)下,其措施和应用效果不能应对现在的多方面挑战。而再生农业是在当前应对多方面挑战背景下提出的,其措施和效益都更为全面,能够实现多个效益的同步提升,实现农业的可持续发展[2]。
Table 2
表2
表2保护性农业与再生农业的比较
Table 2
农业类型 Agro-type | 保护性农业[48,49] Conservation agriculture | 再生农业[2] Regenerative agriculture |
---|---|---|
提出背景 Background | 耕作加速土壤荒漠化/退化 Tillage accelerates soil desertification/degradation | 有限的耕地如何应对人口增加、粮食和食品安全、极端天气频发、气候变化 Challenges of population growth, food security, climate change etc. |
主要原则 Principles | 最小土壤扰动;提高生物多样性和保持土壤覆盖 Minimum mechanical soil disturbance; species diversification; permanent soil organic cover | 最小土壤扰动;最大化生物多样性;保持土壤覆盖;保持全年活根和引入牲畜[14,15] Minimize soil disturbance; maximize crop diversity; keep the soil covered; maintain living root year-round; integrate livestock |
主要措施 Main practices | 免耕少耕、轮作、秸秆覆盖还田/覆盖作物 No-till/reduced tillage; crop rotation; soil organic cover (at least 30%) with crop residues and/or cover crops | 免耕少耕、轮作、覆盖作物、整体放牧 No-till/reduced tillage; crop rotation; cover crop; holistic grazing |
对土壤影响 Impact on soil | 改善土壤结构,提高土壤有机质含量;增强土壤持水能力,减少土壤侵蚀,维护生物多样性,控制杂草 Improve soil structure and increase soil organic matter content; enhance soil water retention, reduce soil erosion, maintain biodiversity, and control weeds | 改善土壤结构,大幅提高土壤有机质和氮元素含量,增强土壤持水能力,减少水土流失,防止土壤侵蚀,增加生物多样性(尤其是土壤微生物多样性),控制杂草[25] Improve soil structure, substantially increase soil organic matter and nitrogen content, enhance soil water-holding capacity, reduce soil erosion, prevent soil erosion, increase biodiversity (especially soil microbial diversity), and control weeds |
减少化肥投入 Fertilizer | 在一年一季的地区可以减少氮肥投入,但某些地区需要增加氮肥投入,调节因为秸秆还田而不平衡的碳氮比[37, 44] Nitrogen fertilizer input can be reduced in seasonal areas, but it needs to be increased in some areas to adjust the imbalance of carbon nitrogen ratio due to straw returning | 养分有机转化以及整体放牧的粪肥,能够减少无机化肥投入 Organic conversion of nutrients and integrated grazing of manure can reduce the input of inorganic fertilizers |
动物福利 Animal welfare | 无影响 No effect | 提升动物福利,提高畜牧产量和质量[4] Improve animal welfare, livestock production and quality |
国外发展情况 Development abroad | 免耕少耕和秸秆还田已大面积推广 No-till/reduced tillage and straw returning have been widely spread | 覆盖作物和整体放牧初具规模,发展迅速 Cover crops and holistic grazing have taken shape and developed rapidly |
我国发展情况 Development in China | 免耕少耕和秸秆还田在我国多省快速发展[50] No-till/reduced tillage and straw returning are developing rapidly in many provinces of China | 覆盖作物和整体放牧尚未得到发展 Cover crops and holistic grazing have not been developed |
新窗口打开|下载CSV
在化学投入品方面,保护性农业仍需投入化肥、农药等大量的化学投入品[37],而再生农业的覆盖作物和整体放牧措施则可大大提高土壤有机质和氮元素含量,从而减少化学肥料的投入。在改善土壤健康方面,再生农业中的覆盖作物措施使大量活的植物根系扎于地下,增加了土壤孔隙度,改善了土壤物理性质,增加了水分渗透,提高土壤微生物丰度,从而可以达到更好的养分和水分管理效果,并可大大减少土壤侵蚀[25]。另外,覆盖作物还可以帮助早期杂草控制,能抑制地上地下的作物病虫害。除了对土壤本身的影响之外,再生农业还可显著降低生产投入成本,有效提高作物产量,达到降本增效的目的,增加生物固碳、减少碳排放,从而缓解气候变暖,增强农民应对气候变化的风险能力[22]。保护性农业对减缓温室气体排放方面不如再生农业显著[44]。另外,再生农业考虑动物福利,在此基础上提高畜牧产量和质量。
2 主要技术措施和效益
2.1 主要措施
2.1.1 免耕少耕 免耕少耕播种作业是在地表秸秆覆盖还田情况下,不耕整地或少耕后播种,以减少水蚀、风蚀,提高土壤肥力和抗旱能力的一项作业技术,其具有拦蓄径流、增加土壤入渗、改良土壤结构、优化耕地环境等多重优点[37]。当免耕与其他再生农业措施相结合,可以增强土壤的渗水保水性能和稳定碳的储存[16]。我国在20世纪50年代引入了这一技术,随着该技术的不断发展,我国免耕技术应用普及开来。经过多年努力,我国东北黑土地区保护性耕作或免耕研究和技术推广取得明显进展[51]。2020年国家启动了东北黑土地保护性耕作行动计划,开始在适宜区域全面推广应用。
2.1.2 轮作 轮作是指在同一块土地上,按照规定顺序轮换种植不同作物的种植方式[52]。作物轮作有利于提高生物的多样性,进而可促使均衡利用土壤中的各种元素,提高肥料利用率,可改良土壤结构,防止病虫害[19]。多样化的生态系统,能够有效提升土壤的健康水平和生态服务功能。ZHAO等[53]通过对我国45项轮作研究的汇总分析得知,与连续单作耕作相比,轮作因其对土壤生态环境的多方面改善,使得作物单产提高20%,且轮作对作物产量的影响在中国西南部(+38%)比在东部地区(+10%)更为明显。在砂质和壤质土壤上,即初始土壤有机碳(7—10 g·kg-1)和较低的总氮(≤1.2 g·kg-1)下,轮作具有更大的增产效益。
2.1.3 覆盖作物 在两季作物之间,许多农田会有一段时间没有种植作物的空闲时间。如果在这段时间种上某种植物以提供稳定的土壤覆盖,这种植物便被称为“覆盖作物(cover crop)”[37]。覆盖作物是再生农业的关键技术,它们可以保护土壤免受风和水的侵蚀,减少径流泥沙和养分流失,可保持土壤肥力,从而减少氮肥施加。在美国西北太平洋地区进行的一项研究表明,奥地利冬季豌豆、多毛野豌豆和紫花苜蓿(Austrian winter peas, hairy vetch and NITRO alfalfa)可以为后续马铃薯作物提供80%到100%的氮需求[18]。覆盖作物也是缓解水污染、改善水质的重要措施[23,54]。另一项研究显示,黑麦覆盖能够迅速吸收乔治亚州(Georgia State)传统玉米田和免耕玉米田中25%到100%的残留氮,减少过量氮肥对周围水体的面源污染[55]。覆盖植物能够有效控制杂草和积累土壤碳。理想的覆盖作物是那些能在开花前终止其生长,这样他们就不会产出种子从而变成杂草。在它们活着的时候,其光合作用是土壤碳的一个重要来源,死后可作为生物质被利用[56]。
在美国农民的种植实践中发现,覆盖作物可以快速改善土壤健康,让玉米和大豆在干旱年份增产9.6%和11.6%,因此最近几年覆盖作物在美国迅速推广[57,58]。覆盖作物和保护性耕作中提倡的作物残茬覆盖不同,前者是在农田空闲期种植的活的覆盖作物,而后者是将收获的作物秸秆和残茬保留在地表从而使土壤得到覆盖。覆盖作物不仅增加了生物多样性,还大大提升了土壤生物质的量。覆盖作物因其不同的特质具有不同的功能,如有庞大根系的黑麦草,高达2 m可抑制杂草的高丹草和遏制土壤板结的毛苕子等,因此混合播种也是其发展的趋势。美国覆盖作物种植面积在2017年达到623万公顷,同比5年前增长50%[59],而该措施在我国的相关研究和应用大多只局限在豆科绿肥(“绿肥”属于覆盖作物的一类,种植目的是为土壤提供有机物质和养分,但再生农业所包括的覆盖作物措施的生态效益不仅限于此),其种植区主要分布在我国稻区、华北、西北、西南地区,且在20世纪 70 年代达到最高峰,面积最高年份约1 300 万公顷,但由于化肥的普及,而后种植面积迅速减少[60,61]。
2.1.4 整体放牧 虽然我国种植业与养殖业发展迅速,但饲料粮供给总体不足,营养缺乏、价格高成为近年来国内畜牧业发展的制约因素。 整体放牧是一种考虑动物福利的模式,从而提高畜牧业产品的产量和质量[4]。传统圈养饲养系统往往是不健康的单一生产系统,喂养的饲料营养密度低,且该系统增加了水污染和抗生素的使用。整体放牧是由Allan SAVORY提出,意在模拟大自然本身的形态,让成群被驯养的动物(主要是牛)适时地在田地上迁移,它们的粪、尿也排放于土壤上[2,62]。良好的放牧措施促进了植物生长,增加了土壤碳沉积,提高了整个牧场的生产力,同时大大提高了土壤肥力、昆虫和植物的生物多样性,以及土壤的固碳能力。这些措施不仅改善了生态健康,也改善了动物和消费者的健康[62,63]。采用整体放牧可以在几年内快速重建土壤表层(一般一层土壤可能需要200—1 000年才能形成),而且新建的土壤表层富含生物体[17]。这也被实践证实:在3年的时间里成功培育出了10 cm厚的土层[64]。在一项为期10年的试验中,发现使用堆肥牛粪进行轮作的田地每年每公顷可吸收超过2吨的碳[65]。此外,当用堆肥代替合成氮肥时,则可促使植物长出更多的根,使植物固定更多的二氧化碳[66]。同时整体放牧还能够通过提高动物福利(世界农场动物福利协会(CIWF)制定的动物福利“五大自由”),提升畜牧业产品的产量和质量。
2.2 生态和经济效益
2.2.1 改善土壤质量,减少水土流失 覆盖作物和整体放牧是增加有机质、提高土壤持水量的有效措施[67]。增加的有机物间接增加了土壤孔隙度(通过增加土壤动物活动),渗透到土壤中的雨水比例取决于所提供的土壤覆盖量。覆盖在土壤表面的植物也可保护土壤免受雨滴的冲击而结块和结皮,从而增强雨水的渗透性并减少径流。研究表明覆盖作物使土壤保水性和植物可利用水分分别提高10%—11%和21%—22%[24]。另外,富含碳的土壤也往往更能抵抗干旱胁迫和病虫害等[68]。再生农业不仅有减少水土流失的效果,其措施还可以降低水污染[25,69]。根据多年生黑麦草作为大麦的覆盖作物对硝酸盐淋失和主要作物氮的有效性试验表明,覆盖作物使硝酸盐浸出浓度从10—18 mg·L-1降低了不到5 mg·L-1 [69]。2.2.2 增加生物多样性 再生农业中的轮作和覆盖作物(种植各种类型的覆盖作物和混合物)措施都有利于提高田地里的生物多样性。覆盖作物可为有益昆虫提供栖息地,提高种群多样性,进一步控制害虫种群。覆盖作物也有助于吸引传粉昆虫以提高作物田间的授粉率[20]。随着对土壤碳稳定机制认识的不断深入,研究发现土壤生物群落在其中扮演着重要的角色,真菌生物量的丰度与土壤碳的丰度呈正相关[70]。
2.2.3 提高作物产量和质量 植物的生产力与土壤有机质紧密相关[71]。再生农业可大大提高土壤中有机质含量,土壤碳储存的增加会积累更多的团聚体,团聚体能够辅助土壤保持住水分,改善作物质量和产量[72]。当植物有充足的阳光、养分、水、氧气、二氧化碳时,植物才能处于最佳的健康状态。在再生农业中,高碳储条件能够培育有着多样和大量微生物的健康土壤,这使作物有着高营养密度,抗病虫害,富含抗氧化剂和较长的保存期限[73]。另外,健康的植物会合成更多易挥发的分子与更多的代谢物使粮食作物产生香味和香气。使农民获得高产,口感更好的作物,消费者得到更健康的食品[56]。
2.2.4 减少温室气体排放 2018年,全球温室气体排放量为553亿吨,其中二氧化碳排放占大部分(375亿吨)[74]。来自农业系统和牧场试验的数据表明,如果采用免耕,种植覆盖作物,加强作物轮作,以及堆肥和轮牧等措施,碳可以被土壤高效固定[5,75]。如果所有现有农田(15亿公顷的农田)各种作物都能采用覆盖作物措施,土壤可以封存2018年二氧化碳排放总量的4%[76],但若联合其他再生农业措施,如堆肥[77]、多种作物轮作[78]等则可将碳封存量分别提高到11.6%和32.11%。特别地,针对全球热带地区的玉米作物实践覆盖作物措施的研究表明,该措施可使玉米地碳(CO2)封存量高达21.28 t·hm-2·a-1[79]。与此同时,如果所有的全球牧场(33亿公顷的草地)都采用再生模式(尤其是再生放牧系统),那么额外地,每年二氧化碳排放总量的114%—355%可被封存于地下,使地球实现二氧化碳负排放的情景[80,81]。
2.2.5 农场及非农经济效益预估 对于再生农业可带来的经济效益,以美国为例进行了模拟研究结果表明:美国玉米、大豆或小麦农田每增加1%的再生农业措施(仅涵盖了免耕、轮作、覆盖作物)实践面积,将产生非农经济效益包括温室气体排放减少、营养损失减少、土壤侵蚀降低和节水净水等分别为0.297亿美元、0.901亿美元、0.758亿美元和0.306亿美元,即一共2.26亿美元,而若将推广面积增加到50%则可产生74.35亿美元,推广到100%的农田则有187.44亿美元的潜在社会效益[9]。另外,据统计,美国玉米地每增加1%的再生农业推广面积,可提高的潜在农场经济效益为3 670万美元/年[9]。针对再生农业可带来的巨大效益,大自然保护协会(TNC)联合美国农业部(USDA)、美国国家自然资源保护委员会(NRCS)和美国能源部(DOE)等政府机构以及土壤健康合作伙伴和土壤健康研究所等实践再生农业措施,目标是到2025年,减少2 500万吨的温室气体排放,减少15.6万吨养分损失,减少1.16亿吨的土壤侵蚀和在农田土壤中创造44.4亿立方米的可用水[9]。
2.3 典型案例剖析
2.3.1 罗代尔研究所针对玉米和大豆的农业模式对比研究 罗代尔研究所联合各地相关研究人员在世界各地展开了超过30年的再生农业长期实践效果监测,如在美国中西部和哥斯达黎加新热带农业区域等[5]。鉴于玉米和大豆在美国的种植面积占到总面积的近一半,因此这两种作物被定为研究重点,其中再生农业采取的主要技术措施包括免耕、轮作(8年内7种作物)、种植覆盖作物和施用有机粪肥(不同于整体放牧)。传统农业的主要技术措施包括连续耕作、施用杀虫剂以及在种植空闲期土地裸露。通过再生农业的采用发现,与传统农业相比明显提高了土壤有机质含量,迅速改善了当地土壤健康。在不影响产量的前提下,该地区的农民不但可以减少28.5%的能量投入,还可增加近两倍利润,并且有效帮助减少35.3%的温室气体的排放[5]。2.3.2 南达科塔州立大学针对玉米的农业模式对比研究 玉米作为一种重要的粮食作物,在世界上占有重要地位,其种植面积占所有作物面积的39.9%[82]。为了探究再生农业这一农业模式对玉米地的多重影响,LACANNE等[15]在美国北部平原区10个农场的40块田地开展了再生农业试验,其措施包括免耕、播种多种覆盖作物(2—40种)、不使用杀虫剂且在农田放牧牲畜。与之对比的是传统农业模式(8个农场的36块田),其措施包括每年连续耕作、施用杀虫剂以及在种植空闲期土地裸露。
研究人员就再生和传统玉米生产系统对害虫、土壤和农民利润等的相对影响进行评估,发现杀虫剂处理过的玉米田的害虫数量是无杀虫剂的再生农场的10倍,这表明再生农场丰富的生物多样性对害虫有明显的抑制作用。传统农业模式下的农场所需的种子和肥料金额占到总收入的32%,而再生农业模式下该投入只占12%。由于再生农业的肥料等资金投入大大减少,且肉产品等的收入增加,最后的净利润相比传统农业提高了78%[15],可见再生农业的重要经济效益。并且利润大小和土壤有机质含量呈显著正相关。有机质的增加(主要通过覆盖作物和整体放牧)可提高水的渗透率,促进生物多样性,进而抑制单一害虫的繁殖,促进土壤健康。
3 中国再生农业的发展探讨
我国耕地资源的稀缺性日益突出,已成为我国农业生产和国民经济可持续发展的瓶颈[83]。中国的人地矛盾在世界上是最尖锐突出的[84],我国2004年的人均耕地面积不足世界平均水平的40%[85],其中72%的耕地质量较差、产量不高。我国北方粮食主产区更是用全国19%的水资源灌溉着62%的耕地[83]。近些年,随着我国对可持续发展农业模式不断研究和优化,目前全国6个农业生产区域基于其自然资源禀赋、农业生产现状及存在问题,发展出其各自可持续发展模式及特征[86]。以下针对这6个区域其各自特点又进一步归类为4类区域,并提出了初步的研究建议和途径。3.1 东北地区
黑土是世界公认最肥沃的土壤。我国东北黑土区是全球仅有的四片黑土区之一,是我国重要的商品粮基地。由于多年高强度开发利用,我国东北多地每年春耕季节掀起铺天盖地的沙尘暴,农田的珍贵表土大量流失,再加上用养失衡,黑土地土壤有机质含量显著下降,这严重威胁着国家粮食安全基础的稳固,因此黑土地保护刻不容缓[87]。因此,东北区应该加快推广如“梨树模式”的保护性耕作等适宜的黑土地保护技术[51]。在某些作物种植模式如马铃薯和花生、全株收割的青贮玉米等优势产区,应进行覆盖作物的种植探索,有望解决马铃薯和花生及青贮玉米产区因长达7个月的冬季地表严重裸露风蚀造成的农田土壤退化问题,保障农户长期经济收益和提高土壤健康的覆盖作物模式。近些年,我国东北区(辽宁、吉林、黑龙江、内蒙古东部)已发展出“玉米青贮—奶牛、肉牛生态养殖—粪污处理还田”的现代种养循环模式[86]。这在东北西部风沙盐碱地区,值得大力推广并进一步完善(如保持高留茬)。这些对农牧业结合理念的重视对再生农业模式的推广奠定了良好基础。未来需要考虑综合效益和可行性,进行有针对性的研究和试验,探索区域差异性的种养结合方式。内蒙古某些地区长期以来过度放牧已造成草地严重退化,使得草地的可持续利用难以为继,为了促进草地的恢复和修复地的可持续管理,已试点整体放牧措施[88]。
3.2 黄淮海平原地区
作为粮食主产区的黄淮海平原地区则面临着气候干旱和水资源缺乏、耕地质量下降、生产资源成本提高等不利于农业可持续发展的问题[89,90]。此外,随着全球气候不断变暖,降雨量不足的问题日益加重。由于全球变暖对北方干湿的负面影响较大,北方气候干湿空间分布格局的变化同时也对农业需水、作物布局和种植制度产生重大影响。贾艳青等通过对中国1981—2010年的干湿气候状况进行区划,分析了干湿气候界线的移动变化及干湿区域差异特征,发现干旱化趋势主要发生在华北和东北部分地区[91],在半干旱加剧的区域进行水分高效利用的再生农业的推广更具有深远意义。黄淮海地区与中部平原区主要为夏玉米-冬小麦一年两熟的农业模式,因而可产生大量秸秆,且农田空闲期很短,因此秸秆还田相比覆盖作物可能对该地区的农户更为适宜。研究发现免耕和秸秆覆盖的联合举措对半干旱气候下的雨养农业生态系统作物产量的提升颇有效果,并且可增加土壤水稳定团聚体24.2%,大大提高土壤持水能力和土壤水分利用率,从而起到抗旱节水效果[92,93]。在滨海或黄河三角洲地区,也应该以再生农业的理念以农牧结合或整体放牧的方式进行盐渍化土地的开发利用。3.3 西北灌区
我国西北地区生态环境脆弱,荒漠区面积占全国荒漠区总面积的 63.7%,是一个资源性缺水大区,水资源开发中的生态与经济矛盾十分突出[94],该地区大部分干旱区年降水量在200 mm以下[95],且土地瘠薄。农业生产的精华地在绿洲,农田灌溉用水占总用水量接近 70%,部分地区农业用水比例达到了90% 以上[96]。西北绿洲灌溉地区作物多在秋天收获,冬天农田裸露时间长达7个月,大风加剧了表土的流失,到春季又可能使得表层积盐加剧,秸秆覆盖免耕可通过减少翻耕次数保护土壤结构,防治水土流失、土地沙化与土壤盐渍化。针对西北绿洲农业发展主要挑战,覆盖作物的种植将有效缓解冬天表层土流失并加强土壤持水能力,但覆盖作物的种植也要消耗珍贵的水资源,如何真正做到节水保水控盐下绿洲土地的可持续利用,今后应加强在有限水资源的供给条件下,探索周年多年尺度下的绿洲再生农业模式。3.4 长江中下游、华南和西南地区
我国南方地区水资源丰富。由于化肥、农药等长期投入较高的原因我国南方土壤污染重于北方,其中长江中下游地区面临严重水体面源污染,江河湖水体富营养化问题也引发担忧[97,98,99]。而南方的红壤地区更是水土流失和土壤酸化严重地区[86]。我国根据南方各地区的特殊情况发展了各具特色的可持续发展农业模式,如长江中下游的鱼虾—水稻田综合种养模式,“猪—沼肥—作物—猪”的生态循环农业模式;华南区的蚕桑循环种养模式等[86]。鉴于南方的农户耕地面积较小以及其自然生态环境情况,以上种养模式相比整体放牧更为适合当地农业。为有效解决水污染、水土流失和土壤酸化问题,可在现有绿肥种植的基础上,考虑引入多种覆盖作物,发展创新红壤旱作农区的再生农业模式,以防治水土流失,提高与稳定土壤有机质的含量,减少化肥施用,从而真正防治此区内土壤退化,并使旱作红壤的地力再生。由于覆盖作物需要一定资金投入(主要是作物种子和除草剂),在南方高经济价值的水果种植区(可接受额外资金投入)应用覆盖作物将有可观收益[100]。我国南方部分地区也引入了覆盖作物这一农业实践。如四川绵竹猕猴桃产业园区、河南丹江水库樱桃种植区、千岛湖水源保护区坡地茶园等。还需要提到的是由于我国南方地区水热条件丰富,通过覆盖作物的推广还将能大力发挥此区草牧业的发展优势,能做到整体放牧模式广泛实施。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
URL [本文引用: 2]
,
DOI:10.3184/003685017X14876775256165URLPMID:28693674 [本文引用: 6]
A review is made of the current state of agriculture, emphasising issues of soil erosion and dependence on fossil fuels, in regard to achieving food security for a relentlessly enlarging global population. Soil has been described as
,
DOI:10.1126/science.1185383URLPMID:20110467 [本文引用: 1]
Continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years. Growing competition for land, water, and energy, in addition to the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. The effects of climate change are a further threat. But the world can produce more food and can ensure that it is used more efficiently and equitably. A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.
URL [本文引用: 3]
URL [本文引用: 5]
,
[本文引用: 2]
. https:// www.ndcs.undp.org/content/ndc-support-programme/en/home/ndc-events/global-and-regional/latin-america-caribbean-climate-week-ndc-dialogues.html.
URL [本文引用: 1]
URL [本文引用: 1]
URL [本文引用: 4]
,
[本文引用: 1]
[本文引用: 1]
URL [本文引用: 1]
https://baijiahao.baidu.com/s?id=1677353546098010828&wfr= spider&for=pc. (in Chinese)
URL [本文引用: 1]
,
[本文引用: 1]
URL [本文引用: 1]
URL [本文引用: 1]
,
URLPMID:29503771 [本文引用: 3]
http://www.regenerationinternational.org/2017/02/24/what-is-regenerative-agriculture/
URL [本文引用: 1]
URL [本文引用: 2]
. https://www.chinaagrisci.com/article/2021/0578-1752/www.sare.org/projects.
URL [本文引用: 2]
,
[本文引用: 2]
,
[本文引用: 2]
,
[本文引用: 1]
,
[本文引用: 2]
,
[本文引用: 2]
,
[本文引用: 2]
,
[本文引用: 4]
URL [本文引用: 1]
,
DOI:10.1126/science.1097396URLPMID:15192216 [本文引用: 1]
The carbon sink capacity of the world's agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon. The rate of soil organic carbon sequestration with adoption of recommended technologies depends on soil texture and structure, rainfall, temperature, farming system, and soil management. Strategies to increase the soil carbon pool include soil restoration and woodland regeneration, no-till farming, cover crops, nutrient management, manuring and sludge application, improved grazing, water conservation and harvesting, efficient irrigation, agroforestry practices, and growing energy crops on spare lands. An increase of 1 ton of soil carbon pool of degraded cropland soils may increase crop yield by 20 to 40 kilograms per hectare (kg/ha) for wheat, 10 to 20 kg/ha for maize, and 0.5 to 1 kg/ha for cowpeas. As well as enhancing food security, carbon sequestration has the potential to offset fossil fuel emissions by 0.4 to 1.2 gigatons of carbon per year, or 5 to 15% of the global fossil-fuel emissions.
URL [本文引用: 1]
,
[本文引用: 3]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
URLPMID:27838119 [本文引用: 1]
,
,
URL [本文引用: 1]
URL [本文引用: 1]
,
[本文引用: 6]
,
[本文引用: 1]
,
URLPMID:29138387 [本文引用: 1]
,
DOI:10.1038/nature09183URLPMID:20596021 [本文引用: 1]
Human activity can degrade ecosystem function by reducing species number (richness) and by skewing the relative abundance of species (evenness). Conservation efforts often focus on restoring or maintaining species number, reflecting the well-known impacts of richness on many ecological processes. In contrast, the ecological effects of disrupted evenness have received far less attention, and developing strategies for restoring evenness remains a conceptual challenge. In farmlands, agricultural pest-management practices often lead to altered food web structure and communities dominated by a few common species, which together contribute to pest outbreaks. Here we show that organic farming methods mitigate this ecological damage by promoting evenness among natural enemies. In field enclosures, very even communities of predator and pathogen biological control agents, typical of organic farms, exerted the strongest pest control and yielded the largest plants. In contrast, pest densities were high and plant biomass was low when enemy evenness was disrupted, as is typical under conventional management. Our results were independent of the numerically dominant predator or pathogen species, and so resulted from evenness itself. Moreover, evenness effects among natural enemy groups were independent and complementary. Our results strengthen the argument that rejuvenation of ecosystem function requires restoration of species evenness, rather than just richness. Organic farming potentially offers a means of returning functional evenness to ecosystems.
,
[本文引用: 2]
,
[本文引用: 3]
,
URLPMID:25337882 [本文引用: 1]
,
[本文引用: 3]
,
[本文引用: 1]
,
URL [本文引用: 1]
URL [本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
URL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
URL [本文引用: 2]
,
[本文引用: 1]
,
[本文引用: 1]
URL [本文引用: 1]
,
URL [本文引用: 1]
URL [本文引用: 1]
,
URL [本文引用: 1]
URL [本文引用: 1]
,
URL [本文引用: 2]
URL [本文引用: 2]
URL [本文引用: 1]
URL [本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
URL [本文引用: 1]
,
[本文引用: 1]
,
URLPMID:11577874 [本文引用: 2]
,
[本文引用: 1]
,
DOI:10.2136/sssaj1994.03615995005800010027xURL [本文引用: 1]
,
[本文引用: 1]
, 2006(
[本文引用: 1]
URL [本文引用: 1]
URL [本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
.
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1038/ncomms7995URLPMID:25925997 [本文引用: 1]
The loss of organic matter from agricultural lands constrains our ability to sustainably feed a growing population and mitigate the impacts of climate change. Addressing these challenges requires land use activities that accumulate soil carbon (C) while contributing to food production. In a region of extensive soil degradation in the southeastern United States, we evaluated soil C accumulation for 3 years across a 7-year chronosequence of three farms converted to management-intensive grazing. Here we show that these farms accumulated C at 8.0 Mg ha(-1) yr(-1), increasing cation exchange and water holding capacity by 95% and 34%, respectively. Thus, within a decade of management-intensive grazing practices soil C levels returned to those of native forest soils, and likely decreased fertilizer and irrigation demands. Emerging land uses, such as management-intensive grazing, may offer a rare win-win strategy combining profitable food production with rapid improvement of soil quality and short-term climate mitigation through soil C-accumulation.
URL [本文引用: 1]
,
URL [本文引用: 2]
URL [本文引用: 2]
,
[本文引用: 1]
,
URL [本文引用: 1]
URL [本文引用: 1]
,
[本文引用: 4]
[本文引用: 4]
,
[本文引用: 1]
[本文引用: 1]
URL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
URL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]