![](https://www.chinaagrisci.com/richhtml/0578-1752/richHtml_jats1_1/images/REemail.gif)
![](https://www.chinaagrisci.com/richhtml/0578-1752/richHtml_jats1_1/images/REemail.gif)
Prediction of Suitable Area and Risk Analysis for Citrus Target Spot
XU YongHong![](https://www.chinaagrisci.com/richhtml/0578-1752/richHtml_jats1_1/images/REemail.gif)
![](https://www.chinaagrisci.com/richhtml/0578-1752/richHtml_jats1_1/images/REemail.gif)
通讯作者:
责任编辑: 岳梅
收稿日期:2020-03-19接受日期:2020-04-22网络出版日期:2020-11-01
基金资助: |
Received:2020-03-19Accepted:2020-04-22Online:2020-11-01
作者简介 About authors
徐永红,E-mail:
![](https://www.chinaagrisci.com/richhtml/0578-1752/richHtml_jats1_1/images/down.png)
摘要
关键词:
Abstract
Keywords:
PDF (2139KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
徐永红, 陈力, 唐松, 丁德宽, 杨宇衡. 柑橘轮斑病的适生区预测及风险分析[J]. 中国农业科学, 2020, 53(21): 4430-4439 doi:10.3864/j.issn.0578-1752.2020.21.011
XU YongHong, CHEN Li, TANG Song, DING DeKuan, YANG YuHeng.
0 引言
【研究意义】我国不仅是柑橘主要的起源中心和世界柑橘资源的宝库,同时已经成为世界上第一大柑橘生产国[1,2]。与此同时,柑橘病害对我国柑橘产业造成的严重损失不容小视。柑橘轮斑病(citrus target spot)是2006年在我国陕西省城固县(107.3°E,33.2°N)柑橘产区发现的一种新发的低温性真菌病害,初次暴发便对温州蜜柑和金橘造成落叶和枯梢,甚至死亡,给当地柑橘产业带来严重的威胁[3]。自2018年12月中旬至2019年3月,重庆市万州区突然暴发该病,造成当地柠檬树大量感病,受害重的柠檬树几乎无花无果,少量挂果也干枯易落,损失严重。因此,分析柑橘轮斑病菌适生区,研究柑橘轮斑病发生风险,可及时监控病害,对减少该病害的发生和由此造成的经济损失具有重要意义。【前人研究进展】柑橘轮斑病是由病原真菌Pseudofabraea citricarpa造成的毁灭性病害[4],在病害发生初始地陕西省城固县部分果园病害发生率达100%[5]。此后数年,该县柑橘园每到晚冬和早春大面积暴发柑橘轮斑病[6]。该病通常危害柑橘叶片、叶柄、嫩梢、枝干、茎、果实等形成轮纹状病斑。病情发展造成叶片凋落,枝干萎蔫,枝条干枯,木质部变色,甚至扩展至韧皮部,严重时造成整株枯死[7]。柑橘轮斑病通常在12月中旬开始出现症状,2月下旬至3月中旬达发病高峰,病叶在3月中下旬基本落光,之后导致枝干干枯同时造成大量落果,病情发展非常迅速。据万州区农业农村委不完全统计,截至3月下旬该病发生面积达596 hm2,其中重发区面积约10 hm2,严重威胁着当地的柑橘产业。以上信息表明,该病已经从我国柑橘种植的最北缘逐步向南扩展,未来极有可能流行至临近柑橘优势产区。但是,目前对于该病害的流行情况尚无相关报道。【本研究切入点】为更好地监控柑橘轮斑病的发展流行,防止病害继续扩展至其他地区,对柑橘轮斑病进行风险分析尤为重要。MaxEnt模型是物种地理尺度空间分布模型,可用于物种分布预测,以最大熵理论为基础,利用物种分布数据和环境变量,获取限制物种分布的环境变量和模拟物种分布的生态位[8,9,10,11]。基于MaxEnt模型预测柑橘轮斑病菌的适生区并对不同地区划分其适生等级,可以加强全国范围的病害监测,及时阻止病害扩展。参考多指标综合评价体系[12],对柑橘轮斑病进行定性、定量风险分析,确立风险等级,达到风险评价的目的。【拟解决的关键问题】通过MaxEnt模型预测柑橘轮斑病菌的适生区,同时采用多指标综合评价方法对柑橘轮斑病进行风险分析,确定该病的风险等级,为降低病害风险等级、有效防治和监测病害提供依据。1 材料与方法
1.1 材料来源
1.1.1 样本数据 图1为陕西城固、安康、重庆万州等发病地区当地果树及植保相关部门提供的2018—2019年柑橘轮斑病发病情况。发病地区种植数据信息来自陕西及重庆统计年鉴。图1
![](https://www.chinaagrisci.com/article/2020/0578-1752/0578-1752-53-21-4430/thumbnail/img_1.png)
图1柑橘轮斑病症状
A:叶片病斑;B:枝干病斑;C:木质部侵染;D:果实病斑;E:整株落叶。箭头所示为发病部位
Fig. 1Symptoms of citrus target spot
A:leaf spot;B:infected stem;C:infected xylem;D:fruit spot;E:all leaves fall。Arrows show the infected parts of citrus trees
1.1.2 环境数据 采取1950—2000年的19个生物气候变量(Bio1—Bio19)(表1),下载自世界气象数据库WorldClim(https://www.worldclim.org),版本为WorldClim Version 2,空间分辨率为10 min。
Table 1
表1
表1气候数据变量名称及描述
Table 1
代码Code | 描述Description |
---|---|
Bio1 | 年均温Annual mean temperature |
Bio2 | 昼夜温差月均值Mean diurnal range |
Bio3 | 等温性Isothermality |
Bio4 | 温度季节性变化的标准差Temperature seasonality |
Bio5 | 最暖月最高温Maximum temperature of the warmest month |
Bio6 | 最冷月最低温Minimum temperature of the coldest month |
Bio7 | 年均温变化范围Temperature annual range |
Bio8 | 最湿季度平均温度Mean temperature of the wettest quarter |
Bio9 | 最干季度平均温度Mean temperature of the driest quarter |
Bio10 | 最暖季度平均温度Mean temperature of the warmest quarter |
Bio11 | 最冷季度平均温度Mean temperature of the coldest quarter |
Bio12 | 年均降水量Annual precipitation |
Bio13 | 最湿月降水量Precipitation of wettest month |
Bio14 | 最干月降水量Precipitation of driest month |
Bio15 | 降水量变异系数Precipitation seasonality |
Bio16 | 最湿季度降水量Precipitation of the wettest quarter |
Bio17 | 最干季度降水量Precipitation of the driest quarter |
Bio18 | 最暖季度降水量Precipitation of the warmest quarter |
Bio19 | 最冷季度降水量Precipitation of the coldest quarter |
新窗口打开|下载CSV
1.1.3 软件及模型 利用MaxEnt 3.3.3软件获取气候变量的贡献率,使用刀切法(Do jackknife to measure variable importance)分析各气候因子对病害适生影响的重要性,创建响应曲线(create response curves)获取各气候因子与分布概率的关系曲线,利用ROC(receiver operating characteristic)曲线下面积(area under the curve,AUC)评估模型预测结果的精度。根据模拟预测结果,建立MaxEnt模型并使用Arc-GIS10.2软件对预测结果重分类得到适生区预测范围。
1.2 分析方法
1.2.1 柑橘轮斑病菌适生区预测 随机选取现有柑橘轮斑病分布点的地理位置数据和气候变量数据导入MaxEnt 3.3.3中,分析柑橘轮斑病菌与每个气候变量因子的相关性,得到最终模拟预测的结果。采用Arc-GIS10.2软件对MaxEnt 3.3.3软件预测结果进行掩膜提取(extract by mask)和栅格重分类(raster reclassify)分析,得到柑橘轮斑病菌在我国的适生范围。1.2.2 柑橘轮斑病病害风险分析 柑橘轮斑病病害风险评估体系的建立:根据蒋青等[13]提出的多指标综合评价方法,结合柑橘轮斑病实际发生与危害情况,分析可能影响风险分析的因素。将风险指标划分为国内分布状况、潜在的危害性、受害栽培寄主的经济重要性、扩散的可能性、危险性管理的难度5个大的方面来进行风险分析,以对病害的定殖、传播、危害性、危险性管理进行综合性评价分析,最终得出13个指标的柑橘轮斑病病害多指标综合评价分析体系。
柑橘轮斑病病害风险性分析指标评判标准的建立:本研究主要结合有害生物危险性的指标评判标准[14],对评价体系的指标进行评判,确定各指标赋值标准的柑橘轮斑病病害指标评判标准。
柑橘轮斑病的风险等级划分:病害风险等级划分依赖病害危险性R值和外来有害生物风险评价等级划分标准。病害的国内分布状况(P1)、潜在的危害性(P2)、受害栽培寄主的经济重要性(P3)、扩散的可能性(P4)、危险性管理的难度(P5)共同影响其危险性综合评价值R[15],这些因素相互依存,共同决定危险性R值,因此危险性综合评价R值的计算公式为:
$R=\sqrt[5]{P_{1}\times P_{2}\times P_{3}\times P_{4}\times P_{5}}$
根据有害生物的危险等级标准,将综合风险值R的大小分为4级[16]:R值<0.5为低度风险,0.5—1.5为中度风险,1.5—2.5为高度风险,>2.5为极高风险。经综合评判公式计算柑橘轮斑病的综合风险值后,最终判定该病害的风险等级。
2 结果
2.1 柑橘轮斑病国内潜在适生区预测
2.1.1 柑橘轮斑病菌国内适生区分布 基于MaxEnt模型预测结果,柑橘轮斑病菌在我国的适生区分布较集中,适生区面积约占全国面积12.19%。其中,高适生区、中适生区、低适生区各占全国面积约2.85%、3.99%、5.35%。高适生区主要集中在四川、重庆、陕西南部地区,以及贵州、湖北等少量地区。中适生区主要表现为高适生区的向外扩展,主要分布于贵州大部、湖北大部、四川东南局部地区、关中陕西南部以及云南的部分地区。低适生区是中适生区的外部扩展,主要包括河南大部、江苏大部、山东大部、安徽及山西、河北、湖南、云南等部分地区。高、中适生区主要集中于长江中上游柑橘优势区及其周边,湖北西部-湖南西部柑橘优势区的部分地区是柑橘轮斑病菌的中、低适生区(表2)。Table 2
表2
表2柑橘轮斑病在中国的潜在适生区
Table 2
适生等级 Suitable level | 潜在适生区 Potential suitable area | 适生区所属柑橘优势区 Citrus-producing advantage area |
---|---|---|
高适生区 High suitable area | 四川东部、重庆、陕西南部、贵州北部、湖北西北部 Eastern Sichuan, Chongqing, Southern Shaanxi, Northern Guizhou, Northwest Hubei | 长江中上游柑橘优势区 The upper and middle reaches of the Yangtze River |
中适生区 Medium suitable area | 贵州大部、湖北大部、四川东南部、云南东北局部 Most of Guizhou and Hubei, Southeast Sichuan, part of Northeast Yunnan | 湖北西部-湖南西部柑橘优势区 Western Hubei-Western Hunan |
低适生区 Low suitable area | 河南大部、江苏大部、山东大部,安徽、山西、河北、湖南及云南局部 Most of Henan, Jiangsu and Shandong, parts of Anhui, Shanxi, Hebei, Hunan, and Yunnan |
新窗口打开|下载CSV
2.1.2 模型精度评价分析 MaxEnt模型运行时绘制出ROC曲线(图2),同时计算出模型精度评价指标AUC值。柑橘轮斑病菌MaxEnt模型预测结果的平均AUC值为0.998,预测精度远高于随机预测分布模型的AUC值0.5,可见柑橘轮斑病菌实际的分布区与预测得到的分布区拟合度较好。
图2
![](https://www.chinaagrisci.com/article/2020/0578-1752/0578-1752-53-21-4430/thumbnail/img_2.png)
图2MaxEnt模型对柑橘轮斑病菌预测结果的ROC曲线
Fig. 2ROC curve of MaxEnt model for predicting results of P. citricarpa
2.1.3 环境变量重要性分析 采用MaxEnt模型正规化训练增益刀切法(regularized training gain)分析不同环境变量对柑橘轮斑病菌适生影响的差异(图3)。深蓝色条带表示该环境因子单独使用时具有的增益,条带对应的值越大代表该环境因子越重要。分析结果表明,最冷季度平均温度(Bio11)、最干季度平均温度(Bio9)、最冷月最低温(Bio6)是对柑橘轮斑病菌分布影响最大的3个环境因子,而其他环境变量相对影响较小。
图3
![](https://www.chinaagrisci.com/article/2020/0578-1752/0578-1752-53-21-4430/thumbnail/img_3.png)
图3正规化训练增益的刀切结果
Fig. 3Jackknife results of regularized training gain
2.2 柑橘轮斑病风险评估
2.2.1 柑橘轮斑病病害风险评估体系建立 根据多指标综合评价方法,结合柑橘轮斑病实际发生与危害情况,分析确定可能影响风险分析的因素,最终得到影响风险分析的指标,建立病害风险评估体系(图4)。图4
![](https://www.chinaagrisci.com/article/2020/0578-1752/0578-1752-53-21-4430/thumbnail/img_4.png)
图4柑橘轮斑病多指标综合评价体系
Fig. 4Multi-index comprehensive evaluation system of citrus target spot
2.2.2 柑橘轮斑病病害风险性分析指标评判标准 根据多指标的综合评价分析体系,结合有害生物危险性的指标评判标准,确定指标的赋值标准的柑橘轮斑病病害指标评判标准(表3)。
Table 3
表3
表3柑橘轮斑病风险性定量分析评判指标赋分表
Table 3
评价指标 Evaluation index | 评判标准 Criterion of evaluation | 赋分原因 Reason for scoring | 赋分值 Score | ||||
---|---|---|---|---|---|---|---|
P1 | 分布面积 Distribution area | 0 | P1=3 | 在国内分布最大占比0.3% The largest domestic distribution accounts for 0.3% | P1=2 | ||
0-20% | P1=2 | ||||||
20%-50% | P1=1 | ||||||
>50% | P1=0 | ||||||
P21 | 产量或品质损失 Loss of yield or quality | >50% | P21=3 | 柑橘轮斑病造成的产量损失难以统计,用其危害程度进行间接评价 The yield loss caused by citrus target spot is difficult to count, and its damage is used for indirect evaluation | P21=3 | ||
20%-50% | P21=2 | ||||||
1%-5% | P21=1 | ||||||
0 | P21=0 | ||||||
P22 | 可传带检疫性有害生物数量 Number of quarantine pests that can be carried | ≥3 | P22=3 | 不传带任何检疫性有害生物 Does not carry any quarantine pest | P22=0 | ||
2 | P22=2 | ||||||
1 | P22=1 | ||||||
0 | P22=0 | ||||||
P31 | 受害栽培寄主 Variety of damaged hosts | ≥10 | P31=3 | 目前受该病原侵染的栽培寄主仅限柑橘 The host currently infected by the pathogen is only citrus | P31=1 | ||
5-9 | P31=2 | ||||||
1-4 | P31=1 | ||||||
0 | P31=0 | ||||||
P32 | 寄主种植面积 Planting area of damaged host | >35×105 hm2 | P32=3 | 城固、万州、安康柑橘总种植面积4.47×104 hm2 The citrus planting in the affected area is 4.47×104 hm2 | P32=1 | ||
(15—35)×105 hm2 | P32=2 | ||||||
<15×105 hm2 | P32=1 | ||||||
0 | P32=0 | ||||||
P33 | 寄主应用价值、出口创汇等方面 Host economic values | P33=3,2,1,0 | 柑橘是国际贸易第一大水果,是重要的经济作物 Citrus is the largest fruit in international trade and an important cash crop | P33=3 | |||
P41 | 经常被截获Often intercepted | P41=3 | 截至目前,柑橘轮斑病从未被截获 Citrus target spot has never been intercepted until now | P41=1 | |||
偶尔被截获Occasionally intercepted | P41=2 | ||||||
从未被截获或历史上只截获几次 Never intercepted or intercepted only a few times | P41=1 | ||||||
P42 | 存活率 Survival rate | >40% | P42=3 | 运输过程中柑橘轮斑病不会被破坏,仍继续存在 Citrus target spot cannot be destroyed during transportation | P42=3 | ||
10%-40% | P42=2 | ||||||
0-10% | P42=1 | ||||||
0 | P42=0 | ||||||
P43 | 适生区范围 Suitable area | >50% | P43=3 | 适生区约占全国总面积的12.19%,即在全国12.19%的地区适宜生存 Suitable area accounts for 12.19% of total area of China | P43=1 | ||
25%-50% | P43=2 | ||||||
0-25% | P43=1 | ||||||
0 | P43=0 | ||||||
P44 | 传播力 Transmissibility | 强Strong | P44=3 | 自2006年在城固发病后,10年左右才传至万州,认为其传播力很弱 Citrus target spot has only spread from Chenggu to Wanzhou in about 10 years, and it is believed that its spread is very weak | P44=1 | ||
中Medium | P44=2 | ||||||
弱Weak | P44=1 | ||||||
P51 | 检验鉴定方法 Identification method | 可靠性低,耗时长 Low reliability and time-consuming | P51=3 | 目前柑橘轮斑病菌的鉴定检验耗时较长,采用鉴定技术复杂 The identification of the pathogen takes a long time and the identification technology is complicated | P51=2 | ||
非常可靠且快速简便 High reliability and time-saving | P51=0 | ||||||
介于之间Medium | P51=2,1 | ||||||
P52 | 除害率 Removal rate | 几乎完全不能除害 Almost impossible to eliminate | P52=3 | 病害一经发生,尽管采取防治除害方法,病害依旧有部分肆意,不能完全消除病害 Once the disease occurs, the disease cannot be completely eliminated | P52=2 | ||
<50% | P52=2 | ||||||
50%-100% | P52=1 | ||||||
100% | P52=0 | ||||||
P53 | 防治效果 Control effect | 差Poor | P53=3 | 防治措施采取后,见效甚微 Control measures have little effect | P53=3 | ||
显著Significant | P53=0 | ||||||
介于之间Medium | P53=2,1 |
新窗口打开|下载CSV
2.2.3 柑橘轮斑病风险定性分析
(1)柑橘轮斑病国内分布情况的分析评估:柑橘轮斑病于陕西城固始发。一经发生,危害严重,因而被称为一种毁灭性病害。陕西安康、重庆万州柑橘产区也相继发生了柑橘轮斑病,严重阻碍柑橘产业的发展。
(2)潜在的危害性:目前柑橘轮斑病造成的产量损失较难统计,笔者用其危害程度来间接评价柑橘轮斑病潜在的经济危害性。柑橘轮斑病危害包括温州蜜柑、金柑、柠檬、脐橙、杂柑等不同柑橘品种的叶片、嫩梢和枝干果实等,造成树势衰弱。柑橘果实受危害初期形成病斑,后期果实腐烂,不可食用。枝干受到危害时枝条萎蔫甚至枝干枯死。严重时一些病株甚至整株枯死,足见其危害程度极大。加之柑橘幼苗及成年柑橘树都易感染柑橘轮斑病,可见危害柑橘的时期之长。同时,该病可危害多个柑橘品种。因此,柑橘轮斑病潜在危害性较为严重。
(3)受害栽培寄主的经济重要性:目前柑橘轮斑病在我国主要侵染柑橘,柑橘作为全球最重要的经济作物之一,既是中国乃至世界第一大水果,也是世界第三大贸易农产品[17]。朱丽认为柑橘轮斑病菌可能对苹果和梨存在潜在的危害风险[3]。苹果和梨作为我国的两大落叶果树,同样是推动我国区域经济发展、增加国民经济收入的支柱产业之一。若该病原菌危害苹果与梨,农民收入降低,该产业发展受到阻碍,我国的经济发展也将会受到限制。
(4)扩散的可能性:柑橘轮斑病自2006年发生于城固后,到目前2019年扩展至万州地区,病害从城固传播到安康、万州,可见其传播力较弱,可能与不同发病地区主栽柑橘品种的差异有关。柑橘轮斑病的远距离传播主要依靠其寄主柑橘苗木携带进行传播,因此对于一些已遭受柑橘轮斑病菌危害但还未表现症状的柑橘,检验检疫需要严密的鉴定程序,技术复杂,耗时较长,且不一定成功取到受害组织,检验难度较大,易导致柑橘轮斑病从发病地区传出而传入其他未发病地区。若不能及时发现并阻止病害的传播及扩散,当遇大量潜在携带柑橘轮斑病的柑橘作物时,更易导致病害传播蔓延,难以控制。
(5)危害性管理的难度:一方面,目前对于柑橘轮斑病常规的病原鉴定已有相应技术[5],但该技术复杂繁琐,耗时较长。另一方面,柑橘轮斑病作为一种毁灭性病害,其防治方案尚不成熟,现有药剂的田间防治效果不佳,仍需不断探索合理的防治措施。
2.2.4 柑橘轮斑病风险定量分析 通过定性分析及对指标赋分可以得到柑橘轮斑病风险性定量分析评判指标赋分表(表3)。根据公式计算危险性R值必须先计算出一级指标值P1、P2、P3、P4、P5,结合有害生物危险性评价的定量分析方法,这些指标值的计算结果如下[18]:
(1)国内分布状况P1:由柑橘轮斑病风险性定量分析评判指标赋分表可知,P1=2.00。
(2)潜在的危害性P2:其二级指标与一级指标为叠加,一级指标潜在的危害性主要是由二级指标潜在的经济危害性决定,在此处对潜在的经济危害性赋予权重值0.7,对另一项赋值为0.3,P2=0.7×P21+0.3× P22=2.10。
(3)受害栽培寄主的经济重要性P3:二级指标的最大值为该项受害栽培寄主的经济重要性的指标值,P3=Max(P31,P32,P33)=3.00。
(4)扩散的可能性P4:该项二级指标共同决定一级指标,故该项计算公式$P_{4}=\sqrt[4]{P_{41}\times P_{42}\times P_{43}\times P_{44}}=1.32$。
(5)危险性管理的难度P5=(P31+P32+P33)/3=2.33。
最终算得R=2.08。参照评价标准,柑橘轮斑病风险等级属于高度危险。
3 讨论
MaxEnt和CLIMEX是目前使用最为广泛的两款用于创建物种分布的模型[19]。CLIMEX模型通过分析目标物种在已知发生地区的气候条件来模拟预测特定区域对目标物种的气候适应性,模型预测基于物种的生物学参数,如发育最高温度和有效积温等[20]。与CLIMEX模型不同,MaxEnt模型主要是根据物种分布数据和环境变量,分析环境因子与病害发生的相关性,根据环境因素限制条件模拟出潜在的适生区,预测未来可能会发生该病的地区[21]。MaxEnt模型使用范围无限制,广泛用于适生区研究,其预测结果较同类预测模型更精确。即便物种分布数据不全,仍能有效预测出合理的结果[21,22,23,24]。本研究通过MaxEnt模型分析得到影响柑橘轮斑病菌分布的重要气候因子有最冷季度平均温度(Bio11)、最干季度平均温度(Bio9)、最冷月最低温(Bio6)。病害发生分布除环境因素外,还存在人为、寄主、环境中的非气候因素[24],这些均为MaxEnt模型中难以把握的因素。运用MaxEnt模型对柑橘轮斑病菌适生区进行预测分析时,若不讨论以上3类非气候因素,可能会对预测出的适生区范围有所影响。2003年,农业部对我国柑橘产区进行了优势区域布局规划,构建了长江中上游柑橘带、江西南部-湖南南部-广西北部柑橘带和浙江南部-福建西部-广东东部柑橘带以及一批特色柑橘生产基地(简称“三带一基地”)[25]。规划制定和发布实施以来,优势区域柑橘产业得到了快速发展。然而,病虫害监测及防治措施不到位依然是柑橘生产过程中的重要制约因素[5]。本研究结果表明,柑橘轮斑病高、中适生区主要集中环绕长江中上游柑橘优势区分布,中、低适生区占湖北西部-湖南西部柑橘优势区较大面积,此结果恰与我国两大柑橘主要优势区——长江中上游柑橘优势区和湖北西部-湖南西部柑橘优势区重叠,为优势产区柑橘产业的健康持续发展带来了严重隐患。
柑橘轮斑病从始发地陕西城固,再到陕南安康、重庆万州,一路由北方传播至南方并逐步向东部扩展,若继续按此方向传播,可能影响到长江中上游柑橘优势区和湖北西部-湖南西部柑橘优势区,对南部及东部的其他柑橘种植区亦造成威胁。柑橘轮斑病从首次发现开始,就不同于柑橘其他叶类病害发生在温暖和潮湿的季节,而是发生于寒冷的晚冬和早春[3,5,7]。这与本研究环境变量重要性分析结果完全一致,表明温度条件对柑橘轮斑病菌的分布影响较大,包括最冷季度平均温度、最干季度平均温度和最冷月最低温。可见一旦遇到冬季低温、干冷年份,柑橘轮斑病发生流行的概率将变大。
本研究采取多指标综合评价体系对柑橘轮斑病进行风险分析,为今后该病害的防治提供了依据。但风险分析是一个复杂而长期的工程[26,27,28,29],柑橘轮斑病发生危害原因复杂,潜在的危害因素等仍待发掘,需要不断地补充与完善。后续应不断收集信息,完善柑橘轮斑病风险评估体系,为该病害的绿色防控提供理论依据[30]。
4 结论
通过多指标综合评价方法分析柑橘轮斑病的风险性,确定其风险等级属于高度危险,这意味着在适宜条件下柑橘轮斑病发生可能性大、潜在危害的可能性较大、发生时破坏力较大、传播风险较大及危害较强。我国作为柑橘的重要生产国家,柑橘种植面积广,一旦柑橘轮斑病发病面积扩大,造成的经济损失将不可估量。因此,应加强对柑橘轮斑病的重视,加强检验检疫与监控管理降低其传播,采取多种防治措施控制病害的发生发展。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[本文引用: 1]
[本文引用: 1]
URLPMID:29414943 [本文引用: 1]
[D].
[本文引用: 3]
[D].
[本文引用: 3]
DOI:10.1016/j.funbio.2015.09.013URLPMID:27742091 [本文引用: 1]
![](https://www.chinaagrisci.com/richhtml/0578-1752/richHtml_jats1_1/images/more.jpg)
Species in Neofabraea, Pezicula, and related genera have been reported as saprobes, plant pathogens or endophytes from a wide range of hosts. The asexual morphs of Neofabraea and Pezicula had been placed in Cryptosporiopsis, now a synonym of Pezicula, while Neofabraea was also linked to Phlyctema. Based on morphology and molecular data of the partial large subunit nrDNA (LSU), the internal transcribed spacer region with intervening 5.8S nrDNA (ITS), partial beta-tubulin region (tub2), and the partial RNA polymerase II second largest subunit region (rpb2), the taxonomy and phylogenetic relationships of these fungi were investigated. Five new species were described in Pezicula based on morphology, while a further eight unnamed phylogenetic lineages revealed further diversity in the genus. Based on these results, the generic concept of Neofabraea was also emended. Phlyctema, which was previously associated with Neofabraea, formed a distinct clade, separate from Neofabraea s. str. Two new neofabraea-like genera, Parafabraea and Pseudofabraea were proposed, along with one new combination in Neofabraea s. str. To stabilise the application of these names, an epitype was designated for Pe. carpinea, the type species of Pezicula, and for N. malicorticis, the type species of Neofabraea.
URLPMID:29967783 [本文引用: 4]
URLPMID:30727352 [本文引用: 1]
DOI:10.1111/1751-7915.13440URLPMID:31162831 [本文引用: 2]
![](https://www.chinaagrisci.com/richhtml/0578-1752/richHtml_jats1_1/images/more.jpg)
Target spot is a newly emerging citrus disease caused by Pseudofabraea citricarpa. Outbreaks of this disease result in massive economic losses to citrus production. Here, an integrated study involving comparative transcriptomic and secretomic analyses was conducted to determine the critical pathogenicity factors of P. citricarpa involved in the induction of citrus target spot. A total of 701 transcripts and their cognate proteins were quantified and integrated. Among these transcripts and proteins, 99 exhibited the same expression patterns. Our quantitative integrated multi-omic data highlight several potentially pivotal pathogenicity factors, including 16 unigenes that were annotated as plant cell-wall-degrading enzymes, 13 unigenes homologous to virulence factors from various fungi, and one unigene described as a small cysteine-rich secreted protein, were screened and analysed. The screening of differentially expressed genes that encode secondary metabolism core enzymes implicated terpene metabolism in the pathogenicity of P. citricarpa. Overall, results indicated that plant cell wall degradation, plant-pathogen protein/polyribonucleotide interaction, and terpene biosynthesis have critical roles in the pathogenicity of P. citricarpa. This work demonstrated that integrated omic approaches enable the identification of pathogenicity/virulence factors and provide insights into the mechanisms underlying the pathogenicity of fungi. These insights would aid the development of effective disease management strategies.
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
URLPMID:31236249 [本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 2]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 2]
[本文引用: 2]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]