删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

早熟矮秆高粱不育系P03A生育期和株高性状的遗传分析

本站小编 Free考研考试/2021-12-26

段有厚,, 卢峰,辽宁省农业科学院高粱研究所,沈阳 110161

Genetic Analysis on Growth Period and Plant Height Traits of Early-maturing Dwarf Sorghum Male-Sterile Line P03A

DUAN YouHou,, LU Feng,Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161

通讯作者: 卢峰,E-mail:lufeng740202023@163.com

责任编辑: 李莉
收稿日期:2019-07-31接受日期:2019-10-24网络出版日期:2020-07-16
基金资助:国家谷子高粱产业技术体系项目.CARS-06-13.5-A11
国家谷子高粱产业技术体系项目.CARS-06-13.5-A22
中央引导地方项目.2018416023


Received:2019-07-31Accepted:2019-10-24Online:2020-07-16
作者简介 About authors
段有厚,E-mail:duanyouhou@163.com




摘要
【目的】研究早熟矮秆高粱不育系P03A生育期和株高遗传效应,探讨P03A早熟矮秆性状遗传规律,为早熟矮秆性状遗传改良提供理论依据。【方法】2016年以P03A、L025A、L080A、L081和P02A为母本,分别与恢复系L242、L2381、LNK1、L280、L237和L298采用不完全双列杂交方法进行杂交组配,获得F1杂交种子,并于2016年冬天在海南加代种植,套袋自交获得F2种子。2017—2018年通过配合力分析筛选出在生育期和株高性状上一般配合力负效应大的亲本早熟矮秆高粱不育系P03A和正效应大的中晚熟高秆恢复系L237,并以P03A和L237及其杂交后代F1、F2群体为研究对象,运用主基因+多基因混合遗传模型对生育期和株高的遗传进行4个世代联合分析。【结果】P03A/L237通过相互作用表现出较短的生育期和较矮的株高,与一般配合力较强的L237杂交组配,P03A表现出缩短生育期和降低株高的能力。与其他4个不育系相比,P03A与6个恢复系组配不同F1组合生育期和株高的超高亲值都是最小,即,另4个不育系与6个恢复系组配的F1生育期更长,株高更高,进一步验证了P03A具有缩短生育期和降低株高的遗传力。通过主基因与多基因的遗传分析方法对P03A/L2374个世代的生育期与株高进行分析研究,发现生育期和株高性状均受2对加性-显性-上位性主基因和加性-显性多基因共同控制。生育期遗传效应分析发现加性互作效应对生育期性状的影响较大,上位性效应和显性效应真实存在。生育期主基因遗传率为81.13%,多基因遗传率为10.36%,主基因+多基因决定了生育期表型变异的91.49%,环境因素决定了生育期表型变异的8.51%;通过株高遗传效应分析,发现在控制株高的2对主效基因中,第1对主基因的加性和显性作用均大于第2对主基因,控制株高性状的2对主基因以显性效应为主,株高性状存在较大的加性互作效应。主基因遗传率为84.80%,多基因遗传率为6.89%。环境方差占表型方差的比例为8.31%。【结论】明确了早熟矮秆高粱不育系P03A生育期和株高的遗传力较高,受环境因素影响较小,在后代中遗传比较稳定的特性。在今后的亲本创造和新品种选育过程中,可充分利用P03A的遗传效应和特点挖掘早熟矮秆基因,创制适宜机械化新材料和新品种,适应未来机械化品种选育和轻简栽培要求。
关键词: 早熟;矮秆;高粱;遗传分析

Abstract
【Objective】In order to identify the genetic effect of early-maturing and dwarf traits on sorghum male-sterile line P03A, here we, provide a theoretical basis for sorghum early-maturing and dwarf breeding improvement by genetic analysis on growth period and plant height. 【Method】In 2016, sorghum male-sterile line P03A,L025A, L080A, L081 and P02A were used as female parent lines, and restoring line L242, L2381, LNK1, L280, L237, and L298 were used as male parent lines the F1 hybrid seeds were obtained by NCⅡ crossing method. And in the winter of 2016, F2 seeds were harvested from F1 selfing plantlets in Hainan province. During 2017-2018, Combining ability analysis on growth period and plant height traits were performed, together with 4 generation conjoint analysis from hybrid F1 and F2 population using mixed major gene plus poly-gene inheritance model. P03A and L237 were selected as female and male parent respectively. 【Result】 Hybrid combination P03A/L237 show the characters of short growth period and short plant height through interaction of the 2 parent lines. P03A contribute to shortening the growth period and plant height in hybrid. Compared with the rest 4 sterile lines, the hybrid combinations with P03A show shorter growth period and plant height, and heritability on the 2 traits was identified. 4-generation analysis of P03A/L237 on growth period and plant height were performed using major gene plus poly-gene inheritance model, which indicate that growth period and plant height traits were both controlled by two major genes with additive-dominate-epistatic effects and poly-genes. Analysis result of growth period suggest that additive effect is higher than epistatic and dominate effects. Heritability of major genes is 81.13%, and heritability of poly-genes is 10.36% respectively. 91.49% phenotypic variation is conducted by major genes plus poly-genes, and 8.51% phenotypic variation is conducted by environmental factors. Analysis of plant height indicate that additive effects and dominant effects of the first major gene are all stronger than the second major gene, and the dominant effect is much more important. Heritability of major genes and poly-genes is 84.80%, and 6.89% respectively. 8.31% phenotypic variation is conducted by environmental factors. 【Conclusion】Genetic effects of growth period and plant height of sorghum sterile line P03A were analyzed in this study. It was identified that the heritability of the two traits mentioned above are relatively high, not easily affected by environmental factors, and with stable hereditary characters. Thus, P03A can be utilized due to its early maturing and dwarf genes in sorghum hybrid breeding, which can meet the requirement of sorghum mechanized production.
Keywords:early maturity;dwarf;sorghum;genetic analysis


PDF (467KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
段有厚, 卢峰. 早熟矮秆高粱不育系P03A生育期和株高性状的遗传分析[J]. 中国农业科学, 2020, 53(14): 2828-2839 doi:10.3864/j.issn.0578-1752.2020.14.007
DUAN YouHou, LU Feng. Genetic Analysis on Growth Period and Plant Height Traits of Early-maturing Dwarf Sorghum Male-Sterile Line P03A[J]. Scientia Acricultura Sinica, 2020, 53(14): 2828-2839 doi:10.3864/j.issn.0578-1752.2020.14.007


0 引言

【研究意义】中国高粱新品种选育较长时间内多以高秆大穗型为主,株高普遍在180—220 cm,耐密性差,不抗倒伏,难以适应目前规模化、机械化生产,制约了中国高粱产业机械化规模化的进一步发展。因此,选育适于机械化栽培矮秆高粱亲本系及杂交种成为促进高粱产业发展的关键。早熟矮秆不育系的选育是组配早熟矮秆杂交种的关键,而研究高粱早熟矮秆性状遗传规律对早熟矮秆不育系的选育具有重要的指导意义。【前人研究进展】作物的农艺经济性状多属于数量性状,早期人们认为数量性状均由微效多基因控制,后来研究表明数量性状也可能由主基因和多基因共同作用。目前,国内外对高粱农艺性状遗传分析多基于杂交F1配合力分析[1,2,3,4,5,6,7],这些研究将控制某一性状的多基因作为整体估计总体效应。盖钧镒等[8]、ZHANG等[9]、WANG等[10]提出的主基因与多基因的遗传分析方法,把控制数量性状效应大的基因作为主基因,效应小的基因作为多基因,不仅可以鉴别主基因,而且可以检测多基因效应,并估计相应的遗传参数,更精确有效地分析遗传效应。该方法在小麦[11]、棉花[12]、水稻[13]、玉米[14]、大豆[15]等主要作物中已应用。利用主基因与多基因的遗传分析方法在高粱锤度[16,17]、光合作用[18,19]、株型[20]、穗型[21,22]、叶角[23]等数量性状遗传方面已有研究。【本研究切入点】与大作物相比,中国高粱遗传研究相对滞后,遗传改良程度相对较低。早熟矮秆耐密高粱雄性不育系P03A,是在广泛引进、收集各类资源基础上,应用高粱保持系群体改良技术,经多年选育而成的早熟矮秆高粱不育系。以其为母本所选育高粱新品种辽杂37、辽夏粱1号和辽杂54已在生产上推广应用。这些杂交种具有生育期短、植株矮、株型清秀、耐密植和适应性强等特性。但利用主基因与多基因的遗传分析方法对早熟矮秆高粱的生育期与株高的研究仍鲜见报道。【拟解决的关键问题】本研究通过配合力分析,筛选一般配合力差异大的亲本,构建组合及分离群体,对早熟矮秆P03A生育期和株高的遗传效应和遗传力进行分析。明确早熟矮秆不育系P03A生育期和株高遗传效应问题及遗传规律,为不育系P03A在高粱早熟矮秆育种中的利用及早熟矮秆性状遗传改良提供理论依据。

1 材料与方法

1.1 试验材料

试验材料为辽宁省农业科学院高粱研究所自主选育的农艺性状稳定高粱试材,包括5份早熟矮秆雄性不育系:P03A、L025A、L080A、L081和P02A;6份中晚熟中高秆恢复系:L242、L2381、LNK1、L280、L237和L298。2016年在辽宁省农业科学院试验田(沈阳)以P03A、L025A、L080A、L081和P02A为母本,分别与恢复系L242、L2381、LNK1、L280、L237和L298采用不完全双列杂交(North Carolina II–incomplete diallel cross,NCII)方法进行杂交组配,获得F1杂交种子,并于2016年冬天在海南加代种植,套袋自交获得F2种子。

1.2 试验设计

2017年,在辽宁省农业科学院试验田(沈阳)种植试验亲本及其F1,将组配成的30个杂交组合按照随机区组设计种植,3次重复。经过2017年筛选分析,于2018年种植P03A和L237亲本及其杂交组合后代F1和F2群体。亲本和F1每小区种植6行,F2种植20行,行长5 m,行距0.6 m。密度为13.5万株/hm2。试验于辽宁省农业科学院试验田(沈阳)进行,田间管理同大田生产。该地区气候类型为温带半湿润大陆性气候,雨热同季,光照充足,春季风大多干旱。常年平均气温为7.2℃,全年无霜期145—160 d。试验土壤类型为壤土,前茬为大豆。0—20 cm耕层土壤有机质含量为18.63 g·kg-1、全氮0.07 g·kg-1、速效钾0.12 g·kg-1、有效磷0.03 g·kg-1,pH6.2。

1.3 性状测定与统计分析

统计出苗期、成熟期,并于成熟期测量株高,统计标准参照中国高粱区域试验:出苗期指幼苗出土“露锥”(即子叶展开前)达75%的日期;成熟期指75%以上植株的穗背阴面下部第一枝梗籽粒达蜡状硬度的日期;生育期指从出苗期到成熟期的日数。每个亲本各测量10株,F1测量10株,F2测量385株。采用EXCEL和DPS及植物数量性状混合遗传模型主基因+多基因多世代联合分析软件进行模型分析和遗传参数估计[8]

利用ZHANG等[9]联合世代主基因多基因混合遗传模型,对P1、P2、F1、F2高粱4个世代的生育期和株高进行联合世代遗传模型分析,通过比较0、1和2对主基因的C(无主基因)、A(1对主基因)、D(1对主基因+多基因)、B(2对主基因)、E(2对主基因+多基因)共24个遗传模型的AIC(Akaike’s Information-Criterion)值以选最优模型,并且进行遗传模型的适合性检验(均匀性检验、Smirnov检验和Kolmogorov检验),共有5个统计量:U21U22U23(均匀性检验)、nW2(Smirnov检验)和Dn(Kolmogorov检验)。在选择遗传模型时,综合考虑极大对数似然函数值、AIC值和适合性检验,并根据模型估计主基因和多基因的效应值及其方差等遗传参数。计算公式为:表型方差=家系平均数的方差;主基因方差=表型方差–分布方差(σ2mg=σ2pσ2);多基因方差=表型方差–主基因方差–平均数的误差方差(σ2pg=σ2pσ2mgσ2e)=分布方差–平均数的误差方差(σ2pg=σ2σ2e);主基因遗传率=主基因方差/表型方差(h2mg=σ2mg/σ2p);多基因遗传率=多基因方差/表型方差(h2pg=σ2pg/σ2p)。遗传参数包括一阶参数和二阶参数两类。根据入选模型的全部一阶、二阶分布参数极大似然估计值,估计出一阶遗传参数,即主基因的加性效应值,显性效应值和上位性效应值。通过对群体表型方差的部分估计二阶遗传参数,即性状主基因遗传力及多基因遗传力[8,9]

2 结果

2.1 生育期和株高性状的配合力方差分析

表1可见,生育期和株高2个性状组合间差异均达极显著水平,说明各组合间存在真实的遗传差异。母本中生育期和株高性状的配合力方差均达到显著水平,父本中生育期和株高2个性状的配合力方差均达极显著水平,母本×父本的2个性状特殊配合力方差也达极显著水平,说明母本间配合力差异显著,母本间在配合力上差异小,父本间配合力极显著,父本间在配合力上差异大。据此可进一步分析其一般配合力和特殊配合力大小。

Table 1
表1
表1各性状的方差和配合力方差分析
Table 1Variance analysis of variance and combining ability of various character
变异来源
Source of variation
自由度
Degree of freedom
株高
PH
生育期
GP
区组Block20.980.66
组合Combination2929.55**49.34**
母本Female417.42*4.99*
父本Male542.16**7.01**
母本×父本
Female×male
205.99**6.72**
误差Error587.300.39
PH: Plant height; GP: Growth period; **and *indicating significant differences (1%) and significant (5%) levels, respectively. The same as below
PH:株高;GP:生育期;**与*分别表示差异达极显著(1%)和显著(5%)水平。下同

新窗口打开|下载CSV

2.2 各亲本生育期和株高特性的一般配合力比较

通过比较各亲本生育期和株高的一般配合力(表2),5个早熟矮秆不育系,株高和生育期一般配合力效应值趋向负向,P03A的株高与生育期一般配合力分别为-5.82和-2.61,小于其他4个不育系,P03A在株高和生育期的一般配合力效应值均为负向最大,说明其具有较好地降低株高和缩短生育期的作用。以其为母本的杂交组合,可降低F1的株高并缩短其生育期。6个父本的株高和生育期一般配合力效应值趋向正向,其中,L237株高和生育期的一般配合力效应值均为正向最大,与P03A的加性效应恰恰相反,以L237组配的F1生育期会延长,株高升高。

Table 2
表2
表2各亲本的一般配合力的效应值
Table 2Effect values of general combination capacity of parents
亲本Parent株高PH生育期GP
P03A-5.82-2.61
L025A1.090.33
L080A-0.07-0.75
L081A2.39-0.71
P02A-2.29-1.70
L2425.923.40
L2381-1.090.33
LNK1-3.03-0.75
L2800.470.71
L2376.145.70
L2982.662.42

新窗口打开|下载CSV

2.3 组合的生育期和株高特性特殊配合力分析

通过30个组合的特殊配合力分析得出P03A/L237在生育期和株高性状上均表现出最小的特殊配合力(表3)。由此可知,P03A/L237通过相互作用表现出了较短的生育期和较矮的株高,与一般配合力较强的L237杂交组配,P03A表现出了缩短生育期和降低株高的能力。

Table 3
表3
表3特殊配合力极值及其组合名称
Table 3Extremum of special combining ability and its combination name
性状Traits极大值Maximum value组合Combination极小值Minimum value组合Combination
株高PH7.87L025A/23810.06P03A/L237
生育期GP5.49L081A/NK1-1.12P03A/L237

新窗口打开|下载CSV

2.4 P03A为母本组配的F1组合生育期及株高杂种优势分析

表4可知,与其他4个不育系相比,P03A与6个恢复系组配不同F1组合生育期和株高的超高亲值均是最小,即,另4个不育系与6个恢复系组配的F1生育期更长,株高更高,进一步验证了P03A具有缩短生育期和降低株高的遗传力。通过对以P03A为母本的6个杂交组合进行杂种优势分析(表5),各组合F1的生育期均比中亲值(midparent,MP)早,最少早0.5 d,最多早4 d。结果表明,由P03A组配的杂种一代生育期的表现倾向于早熟亲本,不育系P03A的生育期早熟表现为部分显性,而且其早熟显性程度受到不同遗传背景的恢复系的影响。

Table 4
表4
表4不同不育系与恢复系组配F1生育期和株高性状超高亲优势值
Table 4Over high-parent value on growth period and plant height traits of F1with different sterile line and restorer line (%)
不育系Sterile恢复系Restorer生育期GP株高PH
P03AL242-5.3121.19
L2381-7.0211.51
LNK1-6.0920.16
L280-8.6214.08
L237-10.171.88
L298-10.005.52
L025AL2421.2635.65
L2381-2.2333.45
LNK1-3.5424.36
L280-1.3229.53
L237-2.2015.33
L298-4.5620.95
L080AL2420.8429.81
L2381-1.2239.21
LNK1-2.4629.43
L280-1.5619.66
L237-3.6918.75
L298-3.2524.65
L081AL242-3.1528.05
L2381-2.0215.64
LNK12.0920.66
L280-2.6224.08
L237-3.1731.80
L298-2.0025.99
P02AL242-0.7826.78
L2381-1.2230.25
LNK1-1.5414.36
L280-0.3219.57
L237-2.2025.33
L298-3.5610.82
Since the restorer lines used in the test are longer than the growth period of the sterile line and the plant height was higher, the F1 was compared with the restorer line
由于试验所用恢复系的生育期、株高均比不育系长、高,故超高亲以F1与恢复系比较计算

新窗口打开|下载CSV

Table 5
表5
表5P03A、不同类型(中晚熟、中高秆)恢复系及其杂交种F1的生育期和株高统计
Table 5Growth period and plant height of P03A, different restorer lines and hybrids F1
F1组合
Combination of F1
生育期GP (d)株高PH (cm)
不育系
MSL
恢复系
RS
F1中亲值
MP
超中亲
OMP (%)
不育系
MSL
恢复系
RS
F1中亲值
MP
超中亲OMP (%)
P03A/L242102113107107.5-0.4795118143106.534.27
P03A/L2381102114106108.0-1.8595139155117.032.48
P03A/LNK1102115108108.5-0.4695124149109.536.07
P03A/L280102116106109.0-2.7595142162118.536.71
P03A/L237102118106110.0-3.6495160163127.527.84
P03A/L298102120108111.0-2.7095163172129.033.33
MSL: Male sterile line; RS: Restorer line; MP: Mid-parent value; OMP: Over mid-parent value
MSL:不育系;RS:恢复系;MP:中亲值;OMP:超中亲

新窗口打开|下载CSV

2.5 株高和生育期性状遗传分析

选取在株高和生育期上一般配合力负效应强的P03A与一般配合力正效应强的L237进行杂交,再利用4个世代遗传体系(P1、P2、F1和F2)应用主基因+多基因混合遗传模型对生育期和株高性状进行遗传分析。

2.5.1 P1、P2、F1和F2 4个世代生育期和株高频率分布 由分离世代性状统计分析与正态性检验结果(表6)可知,F2中生育期和株高性状偏度值>0,峰度值<0,偏度和峰度绝对值均<1.0,F2中生育期正态性检验P<0.05,为偏正态分布,株高性状正态性检验P≈0.05,为近似正态分布;生育期和株高性状表现连续的双峰和单峰分布(图1图2),具有植物数量性状遗传的分布特征。推测可能有主基因或主基因+多基因混合遗传方式控制其生育期和株高性状。

Table 6
表6
表6F2植株生育期和株高性状统计分布和正态性检验
Table 6Statistic analysis and normal distribution test for growth period and plant high traits in F2
性状Traits标准差Standard deviation偏度Kurtosis峰度Skewness正态性检验Normality test概率P
生育期GP4.080.32-0.810.840.001
株高PH21.750.21-0.650.970.046

新窗口打开|下载CSV

图1

新窗口打开|下载原图ZIP|生成PPT
图1P03A/L237的F2生育期株数频次分布图

Fig. 1Frequency distribution map of plant number of the P03A/L237 in growth period



图2

新窗口打开|下载原图ZIP|生成PPT
图2P03A/L237的F2株高株数频次分布图

Fig. 2Frequency distribution map of plant number of the P03A/L237 in plant height



表7可见,P03A平均生育期天数为102 d,L237的平均生育期天数为118 d,F1平均生育期天数为106 d,F2平均生育期天数为106 d。亲本中亲值为110 d,因此,F1和F2均偏向于生育期早熟不育系。F2生育期出现5株超低亲遗传,没有超高亲遗传现象。P03A平均株高为95 cm,L237的平均株高为160 cm,F1平均株高为163 cm,F2平均株高为142 cm。亲本中亲值为128 cm,因此,F1和F2均偏向于高株恢复系。F2株高出现了60株超高亲遗传,6株超低亲遗传现象。

Table 7
表7
表7P03A/L237组合P1、P2、F1和F2群体生育期与株高频次分布
Table 7Population growth period and plant high frequency distribution
4个世代群体
Four generations
P1P2F1F24个世代群体
Four generations
P1P2F1F2
生育期性状的频次分布FDGT (d)100株高性状的频次分布FGHT(cm)85—9011
1012591—9585
1027996—100110
103119101—10515
10426106—11018
105133111—11522
106442116—12025
107535121—12529
10836126—13035
10929131—13540
11030136—14033
11120141—14530
11218146—15024
11315151—15518
11420156—1602320
11526161—1656518
11611166—1702215
11728171—17512
11863176—1809
1192181—1855
120186—1901
总株数Total number of plants101010385总株数Total number of plants101010385
均值Average (d)102118106106均值Average (cm)95160163142
FDGT: Frequency distribution of growth traits; FDHT: Frequency distribution of plant height traits
FDGT:生育期性状的频次分布;FDHT:株高性状的频次分布

新窗口打开|下载CSV

2.5.2 最适遗传模型的确定 利用4个世代联合分析方法对组合P03A/L237生育期和株高进行分析,获得5类24种遗传模型的极大似然函数值和AIC值(表8)。E-1模型的AIC值最低,为2 156.72,其次是E-2和E-0。根据盖钧镒世代模型分析方法,生育期性状选取AIC值较小的E0、E1和E2作为备选模型;同理,株高性状选取AIC值较小的E1、E3和E0作为备选模型。根据主基因+多基因遗传模型分析法可知,E0、E1、E2和E3属于2对主基因+多基因调控时,最适模型不一定是最小AIC值,应根据其适合性检验结果来综合考虑利用,利用U21U22U23(均匀性检验)、nW2(Smirnov检验)和Dn(Kolmogorov检验)对以上较小值模型的F2世代进行适合性检验(表9),最终选择统计量达到显著水平个数最少的模型作为最优模型。由表9得知,显著水平最少的均为E-1(MX2-ADI-AD)模型(显著水平个数均为0个),即2对加性-显性-上位性主基因+加性-显性多基因混合遗传模型。该遗传模型可解释为性状表现受2对主基因和多基因混合遗传控制,主基因的基因作用方式表现为加性、显性、上位性作用,多基因表现为加性、显性作用。

Table 8
表8
表8P03A/L237 4个世代联合分析在不同遗传模型下的极大似然函数AIC
Table 8AIC values of maximum likelihood f in different genetic models on joint analysis of function in four generations of P03A/ L237
模型
Model
生育期性状GP株高性状PH
极大似然函数值MFVAIC极大似然函数值MFVAIC
A-11MG-AD-1099.252210.50-1790.953593.89
A-21MG-A-1114.602239.20-1791.543593.08
A-31MG-EAD-1107.172224.34-1802.793615.59
A-41MG-AEND-1137.212284.42-1801.533613.05
B-12MG-ADI-1081.632185.27-1774.023570.04
B-22MG-AD-1080.282174.57-1781.033576.05
B-32MG-A-1098.302206.59-1790.013590.03
B-42MG-EA-1104.672217.35-1793.003594.01
B-52MG-AED-1109.252228.51-1823.653657.29
B-62MG-EEAD-1110.472228.94-1804.003616.00
C-0PG-ADI-1097.702207.39-1751.403514.79
C-1PG-AD-1104.202218.39-1787.053584.10
D-0MX1-AD-ADI-1073.092163.98-1739.873495.73
D-1MX1-AD-AD-1148.732311.46-2093.864201.72
D-2MX1-A-AD-1097.062206.12-1754.133520.26
D-3MX1-EAD-AD-1104.192220.38-1795.613603.23
D-4MX1-AEND-AD-1104.192220.38-1795.613603.23
E-0MX2-ADI-ADI-1069.352162.69-1735.483494.97
E-1MX2-ADI-AD-1069.362156.72-1734.893487.78
E-2MX2-AD-AD-1073.992157.98-1743.753497.50
E-3MX2-A-AD-1081.682169.35-1742.013490.02
E-4MX2-EAED-AD-1089.152182.30-1746.913497.81
E-5MX2-AED-AD-1078.742163.47-1759.963525.92
E-6MX2-EEAD-AD-1088.832181.65-1754.883513.75
MFV: Maximum likelihood function value; MG: Major gene model; MX: Mixed major gene and polygene model; PG: Polygene model; A: Additive effect; I: Interaction (epistasis); E: Equal; C: Completely; P: Partly. Example: MX2-ADI-ADI represents 2 pairs of additive-dominant-epitope major gene + additive-dominant- epistatic multi- gene mixed genetic model. The model with a smaller AIC value is underlined
MFV极大似然函数值;MG:主基因模型;MX:主基因+多基因混合模型;PG:多基因模型;A:加性效应;I:上位性效应;E:等位;C:完全;P:部分。例如:E-0模型MX2-ADI-ADI,表示2对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模型。下划线为AIC值较小的模型

新窗口打开|下载CSV

Table 9
表9
表9生育期和株高性状遗传模型的适合性检验
Table 9Suitability test of genetic model for growth period and plant height traits
性状Traits模型
Model
世代
Generation
U21U22U23nW2Dn
生育期
GP
MX2-ADI-ADIP10.0003(0.9872)0.1456(0.7028)2.5227(0.0322)*0.0846(0.6775)0.2568(0.8234)
F10.0014(0.6200)0.0407(0.8402)0.9067(0.3410)0.0576(0.8305)0.1739(0.9905)
P20.0185(0.8918)0.3031(0.5820)2.8068(0.0339)*0.1164(0.5172)0.1480(0.9985)
F20.0001(0.9925)0.0000(0.9914)0.0000(0.9949)0.1832(0.3036)0.0028(1.0000)
MX2-ADI-ADP10.0006(0.9804)0.1392(0.7091)2.521(0.1123)0.0846(0.6773)0.2558(0.8268)
F10.0028(0.9575)0.0346(0.8525)0.9028(0.3420)0.0579(0.8292)0.1723(0.9913)
P20.0198(0.8882)0.3077(0.5791)2.8028(0.0941)0.1163(0.5176)0.1491(0.9984)
F20.0002(0.9901)0.0002(0.9892)0.0003(0.9953)0.1832(0.3035)0.0028(1.0000)
MX2-AD-ADP11.1440(0.2848)1.8932(0.1688)1.8532(0.1734)0.2231(0.2305)0.4346(0.2242)
F13.6457(0.0362)3.3947(0.0454)*0.0006(0.9799)0.4232(0.0650)0.4916(0.1227)
P20.2916(0.5892)0.0518(0.8199)1.3947(0.2376)0.1235(0.4867)0.1617(0.9957)
F20.0560(0.8129)0.0850(0.7707)0.0622(0.8031)0.1987(0.2718)0.0046(1.0000)
株高
PH
MX2-ADI-ADIP10.0039(0.9504)0.0001(0.9946)0.0720(0.7884)0.0572(0.8329)0.1901(0.9777)
F10.0139(0.9061)6.1245(0.0242)*3.4916(0.0417)*0.1253(0.4794)0.1403(0.9994)
P20.0039(0.9504)0.0001(0.9946)0.0720(0.7884)0.0572(0.8329)0.1901(0.9777)
F20.0003(0.9863)0.0001(0.9937)0.0012(0.972)0.1012(0.5899)0.0029(1.0000)
MX2-ADI-ADP10.0018(0.9660)0.0007(0.9787)0.0739(0.7857)0.0570(0.8342)0.1925(0.9752)
F10.0205(0.8860)0.1100(0.7402)0.5402(0.8399)0.1269(0.4728)0.1383(0.9995)
P20.0018(0.9660)0.0007(0.9787)0.0739(0.7857)0.0570(0.8342)0.1925(0.9752)
F20.0002(0.9901)0.0002(0.9894)0.0000(0.9957)0.0980(0.6060)0.0029(1.0000)
MX2-A-ADP11.0327(0.3095)0.7879(0.3747)0.1484(0.7001)0.1566(0.3714)0.1306(0.9998)
F13.0112(0.0361)*2.3971(0.0316)*0.4907(0.4836)0.2178(0.2387)0.1814(0.9855)
P21.0327(0.3095)0.7879(0.3747)0.1484(0.7001)0.1566(0.3714)0.1306(0.9998)
F20.3888(0.5329)0.4205(0.5167)0.0320(0.8581)0.1520(0.3852)0.0099(1.0000)
The data outside the parentheses in the table is the fitness test value, and the data in parentheses indicates the significant level
括号外数据是适合性检验值,括号内数据表示显著水平

新窗口打开|下载CSV

2.5.3 遗传参数的估计 生育期性状:在控制生育期的2对主效基因中,第1对主基因的加性效应(da)、显性效应(ha)和显性度(ha/da)分别为4.5649、-0.76和-0.1682,第2对主基因的加性效应(db)、显性效应(hb)和显性度(hb/db)分别为-0.0286、0.6971和24.3741(表10)。其中|da|>|db|,说明第1对主基因的加性作用大于第2对主基因的加性作用;|ha|>|hb|,说明第1对主基因的显性作用大于第2对主基因的显性作用;二者的显性度分别小于1和大于1,第1对主基因的显性度为不完全显性,第2对主基因的显性度为超显性,说明控制生育期性状的2对主基因既有加性效应又有显性效应。从主基因间的互作分析结果来看,2对主基因加性×加性和显性×显性的互作效应绝对值均大于主基因显性效应,加性×加性的互作效应大于显性×显性的互作效应,说明加性互作效应对生育期性状的影响比较大。多基因加性效应值[d]为-12.1463,多基因显性效应值[h]为-4.0979。从生育期性状的二阶参数分析结果可知,主基因遗传率为81.13%,多基因遗传率为10.36%。环境方差占表型方差的比例为8.51%。

Table 1
表10
表10生育期和株高性状E-1模型遗传参数的估计
Table 10 Estimation of genetic parameters of E-1 model for growth period and plant height traits
一阶遗传参数生育期GP株高PH二阶遗传参数生育期GP株高PH
da4.564913.8071σ2mg14.6803439.7595
db-0.0286-1.2563σ2pg1.724132.6096
ha-0.7681-14.6771h2mg(%)0.81130.8480
hb0.6971-13.1362h2pg(%)0.10360.0689
i-1.403617.9810σ2p426.62821039.4318
jab0.742216.3419σ2e36.315186.4122
jba2.352913.0074σ2e/σ2p(%)8.51008.3100
l-0.786311.2103
[d]-12.1463-46.5507
[h]-4.097968.7717
da: Additive effect of major gene A; db: Additive effect of major gene B; ha: Dominant effect of major gene A; hb: Dominant effect of major gene B; i: Additive plus effect of two major genes; l: Significant effect of two major genes; jab: Additive(a) ×dominant(b); jba: Additive(b) ×dominant(a); [d]: Additive effect of multi-gene; [h]: Dominant effect of multi-gene; σ2mg: Variance of major gene; σ2pg: Variance of multi-gene; h2mg(%): Heritability of major gene; h2pg(%): Heritability of multi-gene; σ2p: Variance of phenotype; σ2e: Variance of environment
da:主基因A的加性效应;db:主基因B的加性效应;ha:主基因A的显性效应;hb:主基因B的显性效应;i:2个主基因的加×加效应;l:2个主基因的显×显效应;jab:加性(a)显性(b)效应;jba:加性(b)×显性(a)效应;[d]:多基因加性效应;[h]:多基因显性效应;σ2mg:主基因方差;σ2pg:多基因方差;h2mg(%):主基因遗传率;h2pg(%):多基因遗传率;σ2p:表型方差;σ2e:环境方差

新窗口打开|下载CSV

株高性状:在控制株高的2对主效基因中,第1对主基因的加性效应(da)、显性效应(ha)和显性度(ha/da)分别为13.8071、-14.6771和-1.0630,第2对主基因的加性效应(db)、显性效应(hb)和显性度(hb/db)分别为-1.2563、-13.136和10.4562(表10)。其中|da|>|db|,说明第1对主基因的加性作用大于第2对主基因的加性作用;|ha|>|hb|,说明第1对主基因的显性作用大于第2对主基因的显性作用;二者的显性度均大于1,说明控制株高性状的2对主基因以显性效应为主。从主基因间的互作分析结果来看,2对主基因加性×加性及显性×显性的互作效应绝对值均大于主基因加性效应和显性效应;加性×加性的互作效应大于显性×显性的互作效应,说明加性互作效应对株高性状的影响比较大。多基因加性效应值[d]为-46.5507,多基因显性效应值[h]为68.7717。从株高性状的二阶参数分析结果可知,主基因遗传率为84.80%,多基因遗传率为6.89%。主基因遗传率远大于多基因遗传率。环境方差占表型方差的比例为8.31%。

3 讨论

本研究发现各组合F1株高均表现出较强的超中亲优势,结果表明,P03A组配的高粱杂交组合株高的遗传存在着杂种优势现象,在杂种一代中高秆对矮秆表现为显性或部分显性作用,因遗传背景不同而略有差异。利用最佳杂交亲本是杂交种组配成功的关键和基础[24],相比较而言,在生育期和株高方面,P03A/L237杂交组合表现出最小的超中亲优势,该组合是本试验需选择的最佳组合。

本研究利用P03A和L237构建P1、P2、F1和F2 4个世代群体,应用植物数量性状主基因+多基因混合遗传模型,对P03A生育期和株高进行了遗传分析研究,明确了基于早熟矮秆高粱P03A/L237杂交F2生育期和株高的最适遗传模型均为E-1模型,即2对加性-显性-上位性主基因+加性-显性多基因遗传模型。本试验在配合力分析的基础上选取了配合力差异大的P03A和L237,并连续世代分析遗传效应,克服了纯粹单个分离世代分析的局限性,分解出多基因的变异,并将单个分离世代及亲本、F1和F2纳入了统一的似然函数,从而综合地估计出遗传参数,减小了环境对试验结果的误差影响。

3.1 生育期性状的遗传效应

本研究表明,杂交F2生育期多数单株倾向早熟亲本,控制生育期的2对主效基因中,第1对主基因的加性作用大于第2对主基因的加性作用,第1对主基因的显性作用大于第2对主基因的显性作用。加性×加性的互作效应大于显性×显性的互作效应,说明加性互作效应对生育期性状的影响较大,通过上位性效应及多基因效应数值分析,上位性效应和多基因效应真实存在。主基因遗传率远大于多基因遗传率,主基因+多基因决定了生育期表型变异的91.49%,环境因素决定了生育期表型变异8.51%,生育期性状遗传表现主要受遗传因素的影响,受环境影响较小。这与杨伟光[25,26]和李振武[27]结果相近,虽然此研究较早,分析的世代亦有所不同(有F1、F2和F3),但研究结果表明高粱生育期遗传均存在加性效应、显性效应和上位性效应。F2生育期存在超低亲遗传现象,育种者可利用高粱早熟基因遗传力高的特点,可在杂交后代中进行早期选择偏早熟的后代。

3.2 植株性状的遗传效应

本研究表明,在控制株高的2对主效基因中,第1对主基因的加性作用大于第2对主基因的加性作用,第1对主基因的显性作用大于第2对主基因的显性作用,控制株高性状的2对主基因以显性效应为主,加性互作效应对株高性状的影响较大,通过上位性效应分析,上位性效应也真实存在。主基因遗传率远大于多基因遗传率,说明株高性状主要受2对主基因的作用。环境方差占表型方差的比例为8.31%,株高性状遗传表现主要受遗传因素的影响,受环境影响较小。这与杨伟光等[28,29]结果一致,与管延安等[17](株高F2遗传符合全显性主基因+加性-显性多基因混合遗传模型)和白晓倩等[30](株高F2遗传符合加性-显性-上位性的混合遗传模型)相近,但不一致,或许与试验材料的选取有关。

分析研究早熟矮秆高粱的遗传对于高粱亲本选育和品种改良具有重要意义。在原有优质高产的品种基础上,提早生育期可满足不同生态条件和生产季节的需要,有助于解决早熟与丰产难以兼顾的矛盾;目前在中国高粱生产中应用的A2型雄性不育系多是印度高粱或偏印度高粱。印度高粱与中国高粱杂交优势较强,株高优势也强,这不利于抗倒和机械收割。所以,在培育不育系时还要注意株高优势弱的材料选拔[31]。矮秆材料普遍存在抗倒伏能力强,适宜机械化栽培管理的优势,所以要重视矮秆性状的遗传研究。

4 结论

明确了P03A生育期和株高的遗传力较高、受环境因素影响较小、在后代中遗传比较稳定的特性。在今后的亲本创造和新品种选育过程中,可充分利用P03A遗传效应和特点挖掘早熟矮秆基因,创制适宜机械化新材料和新品种,适应未来机械化轻简栽培要求。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

张晓娟, 张一中, 周福平. 高粱新选不育系主要农艺经济性状的配合力分析
中国农学通报, 2012,28(18):71-75.

[本文引用: 1]

ZHANG X J, ZHANG Y Z, ZHOU F P. Analysis on the combining ability of main agronomic and economic traits for new sorghum male sterility lines
Chinese Agricultural Science Bulletin, 2012,28(18):71-75. (in Chinese)

[本文引用: 1]

尹学伟, 王培华, 张晓春. 14个糯高粱亲本主要农艺性状配合力及遗传力分析
西南农业学报, 2014,27(4):1363-1367.

[本文引用: 1]

YIN X W, WANG P H, ZHANG X C. Analysis of 14 parents glutinous sorghum’s main agronomic characteristics combining ability and heritability
Southwest China Journal of Agricultural Sciences, 2014,27(4):1363-1367. (in Chinese)

[本文引用: 1]

吕鑫, 平俊爱, 张福耀, 杜志宏, 李慧明, 杨婷婷, 牛皓, 姚琳. 新选饲草高粱恢复系农艺性状配合力效应分析
草业科学, 2016,33(7):1361-1366.

[本文引用: 1]

X, PING J A, ZHANG F Y, DU Z H, LI H M, YANG T T, NIU H, YAO L. Effect analysis on the combining ability of main agronomic traits for new breeding restorer lines derived from forage sorghum
Pratacultural Science, 2016,33(7):1361-1366. (in Chinese)

[本文引用: 1]

李金梅, 赵威军, 张福耀. 甜高粱抗倒伏性相关性状的配合力和遗传参数分析
作物杂志, 2014(2):56-60.

[本文引用: 1]

LI J M, ZHAO W J, ZHANG F Y. Analysis on combining ability and genetic parameters of traits related to lodging resistance in sweet sorghum
Crops, 2014(2):56-60. (in Chinese)

[本文引用: 1]

高海燕, 程庆军, 田承华. 新选高粱亲本系的配合力及遗传力分析
农学学报, 2016,6(5):6-10.

[本文引用: 1]

GAO H Y, CHENG Q J, TIAN C H. Combining ability and heritability of new sorghum parental lines
Journal of Agriculture, 2016,6(5):6-10. (in Chinese)

[本文引用: 1]

NI X L, ZHAO G L, LIU T P. Analysis on the combining ability and heritability of main agronomic traits of hybrid glutinous sorghum
Agricultural Science & Technology, 2012,13(10):2104-2109.

[本文引用: 1]

GELETA N, MOHAMMED H, ZELLEKE H. Genetic variability, heritability and genetic advance in sorghum [Sorghum bicolor(L.) Moench] germplasm
Crop Research, 2005,30(3):439-445.

[本文引用: 1]

盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003.
[本文引用: 3]

GAI J Y, ZHANG Y M, WANG J K. Genetic System of Plant Quantitative Traits. Beijing: Science Press, 2003. (in Chinese)
[本文引用: 3]

ZHANG Y M, GAI J Y, YANG Y. The ElM algorithm in the joint segregation analysis of quantitative traits
Genetical Research, 2003,81(2):157-163.

URLPMID:12872917 [本文引用: 3]

WANG J, FODLIEH D W, COOPER M, DELACY I H. Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits
Theoretical and Applied Genetics, 2001,103:804-816.

DOI:10.1007/s001220100628URL [本文引用: 1]
Understanding the genetic architecture of quantitative traits can greatly assist the design of strategies for their manipulation in plant-breeding programs. For a number of traits, genetic variation can be the result of segregation of a few major genes and many polygenes (minor genes). The joint segregation analysis (JSA) is a maximum-likelihood approach for fitting segregation models through the simultaneous use of phenotypic information from multiple generations. Our objective in this paper was to use computer simulation to quantify the power of the JSA method for testing the mixed-inheritance model for quantitative traits when it was applied to the six basic generations: both parents (P1 and P2), F1, F2, and both backcross generations (B1 and B2) derived from crossing the F1 to each parent. A total of 1968 genetic model-experiment scenarios were considered in the simulation study to quantify the power of the method. Factors that interacted to influence the power of the JSA method to correctly detect genetic models were: (1) whether there were one or two major genes in combination with polygenes, (2) the heritability of the major genes and polygenes, (3) the level of dispersion of the major genes and polygenes between the two parents, and (4) the number of individuals examined in each generation (population size). The greatest levels of power were observed for the genetic models defined with simple inheritance; e.g., the power was greater than 90% for the one major gene model, regardless of the population size and major-gene heritability. Lower levels of power were observed for the genetic models with complex inheritance (major genes and polygenes), low heritability, small population sizes and a large dispersion of favourable genes among the two parents; e.g., the power was less than 5% for the two major-gene model with a heritability value of 0.3 and population sizes of 100 individuals. The JSA methodology was then applied to a previously studied sorghum data-set to investigate the genetic control of the putative drought resistance-trait osmotic adjustment in three crosses. The previous study concluded that there were two major genes segregating for osmotic adjustment in the three crosses. Application of the JSA method resulted in a change in the proposed genetic model. The presence of the two major genes was confirmed with the addition of an unspecified number of polygenes.

温明星, 李东升, 胡芳芳. 宁麦9号×镇麦168小麦F2群体产量相关性状的遗传模型分析
麦类作物学报, 2018,38(4):386-394.

[本文引用: 1]

WEN M X, LI D S, HU F F. Genetic model analysis on yield-related traits in wheat F2 population of Ningmai 9×Zhenmai 168
Journal of Triticeae Crops, 2018,38(4):386-394. (in Chinese)

[本文引用: 1]

赵树琪, 庞朝友, 魏恒玲, 王寒涛, 李黎贝, 宿俊吉, 范术丽, 喻树迅. 陆地棉早熟性状多世代联合遗传分析
棉花学报, 2017,29(2):119-127.

DOI:10.11963/issn.1002-7807.201702001URL [本文引用: 1]
[Objective] This study aimed to research patterns of inheritance of earliness-related traits in continuous generations of upland cotton. [Method] The inheritance of six earliness traits was analyzed by joint segregation analysis under a mixed genetic model comprising a major gene plus polygenes in five generations (P1, P2, F1, F2 and F2:3) derived from a Zhong 751213×Lumianyan 28 cross. [Result] Plant height and the node of the first fruiting branch were fitted by a model involving a pair of additive-dominant major genes plus additive-dominant-epistatic polygenes (D). Time from sowing to flowering was fitted by a model corresponding to a pair of completely dominant main genes plus additive-dominant polygenes (D-3). The entire growing period was fitted by a model representing a pair of additive-dominant-epistatic major genes plus additive-dominant-epistatic polygenes (E). The flowering and boll-setting period and the height of the node of the first fruiting branch were fitted by a model consisting of a pair of negatively completely dominant main genes plus additive-dominant polygenes. [Conclusion] The results of this genetic analysis of earliness traits using a major gene plus polygene mixed inheritance model should aid the elucidation of genetic mechanisms underlying earliness characteristics of upland cotton.
ZHAO S Q, PANG C Y, WEI H L, WANG H T, LI L B, SU J J, FAN S L, YU S X. Genetic inheritance of earliness traits in upland cotton (Gossypium hirsutum L.) inferredby joint analysis of multiple generations
Cotton Science, 2017,29(2):119-127. (in Chinese)

DOI:10.11963/issn.1002-7807.201702001URL [本文引用: 1]
[Objective] This study aimed to research patterns of inheritance of earliness-related traits in continuous generations of upland cotton. [Method] The inheritance of six earliness traits was analyzed by joint segregation analysis under a mixed genetic model comprising a major gene plus polygenes in five generations (P1, P2, F1, F2 and F2:3) derived from a Zhong 751213×Lumianyan 28 cross. [Result] Plant height and the node of the first fruiting branch were fitted by a model involving a pair of additive-dominant major genes plus additive-dominant-epistatic polygenes (D). Time from sowing to flowering was fitted by a model corresponding to a pair of completely dominant main genes plus additive-dominant polygenes (D-3). The entire growing period was fitted by a model representing a pair of additive-dominant-epistatic major genes plus additive-dominant-epistatic polygenes (E). The flowering and boll-setting period and the height of the node of the first fruiting branch were fitted by a model consisting of a pair of negatively completely dominant main genes plus additive-dominant polygenes. [Conclusion] The results of this genetic analysis of earliness traits using a major gene plus polygene mixed inheritance model should aid the elucidation of genetic mechanisms underlying earliness characteristics of upland cotton.

刘金波, 徐波, 李建红, 李健, 刘艳, 周振玲, 杨波, 迟铭, 宋兆强, 卢百关, 方兆伟. 水稻株高和每穗颖花数的6个世代联合遗传分析
华北农学报, 2017,32(S1):88-94.

[本文引用: 1]

LIU J B, XU B, LI J H, LI J, LIU Y, ZHOU Z L, YANG B, CHI M, SONG Z Q, LU B G, FANG Z W. Joint genetic analysis on plant height and spikelets per panicle by using six generations of two crosses in indica rice
Acta Agriculturae Boreali-Sinica, 2017,32(S1):88-94. (in Chinese)

[本文引用: 1]

进茜宁, 张怀胜, 王铁固, 吴向远, 陈士林. 玉米单穗粒质量的遗传模型分析
河南科技学院学报(自然科学版), 2018,46(5):17-21.

[本文引用: 1]

JIN Q N, ZHANG H S, WANG T G, WU X Y, CHEN S L. Genetic model analysis of maize single spike kernel weight
Journal of Henan Institute of Science and Technology (Natural Science Edition), 2018,46(5):17-21. (in Chinese)

[本文引用: 1]

赵桂云, 王继安, 李文滨, 滕卫丽, 韩英鹏. 大豆抗食心虫主基因+多基因混合遗传模型的五世代联合分析
大豆科学, 2014,33(3):301-304.

[本文引用: 1]

ZHAO G Y, WANG J A, LI W B, TENG W L, HAN Y P. Genetic analysis on resistance to soybean pod borer by using five generations joint analysis of mixed inheritance model of major gene and polygene
Soybean Science, 2014,33(3):301-304. (in Chinese)

[本文引用: 1]

卢峰, 邹剑秋, 段有厚. 甜高粱茎秆含糖量相关性状的遗传分析
中国农业大学学报, 2012,17(6):111-116.

[本文引用: 1]

LU F, ZOU J Q, DUAN Y H. Genetic analysis of stalk sugar content related traits in sweet sorghum (Sorghum bicolor L. Moench)
Journal of China Agricultural University, 2012,17(6):111-116. (in Chinese)

[本文引用: 1]

管延安, 张华文, 樊庆琪, 杨延兵. 普通高粱与甜高粱杂交组合株高、糖度的主基因多基因模型遗传效应分析
核农学报, 2012,26(1):36-42.

URL [本文引用: 2]
对普通高粱与甜高粱杂交组合(石红137&times;L-甜)的株高与糖度进行主基因多基因遗传模型分析,以期研究株高、糖度的遗传效应。获得了2个性状的最适遗传模型,株高的最适遗传模型为2对完全显性主基因+加性-显性多基因混合遗传模型,主基因遗传率为74.4%,多基因遗传率为22.1%;糖锤度的最适遗传模型为1对加性-显性主基因+加性-显性-上位性多基因混合遗传模型,主基因遗传率为65.72%,多基因遗传率为20.43%。主基因个数和基因效应的预测与分子检测的主效QTL个数和基因效应基本相符。
GUAN Y A, ZHANG H W, FAN Q Q, YANG Y B. Genetic analysis of plant height and brix value by using major gene and polygene inheritance model in across between common sorghum and sweet sorghum
Journal of Nuclear Agricultural Sciences, 2012,26(1):36-42. (in Chinese)

URL [本文引用: 2]
对普通高粱与甜高粱杂交组合(石红137&times;L-甜)的株高与糖度进行主基因多基因遗传模型分析,以期研究株高、糖度的遗传效应。获得了2个性状的最适遗传模型,株高的最适遗传模型为2对完全显性主基因+加性-显性多基因混合遗传模型,主基因遗传率为74.4%,多基因遗传率为22.1%;糖锤度的最适遗传模型为1对加性-显性主基因+加性-显性-上位性多基因混合遗传模型,主基因遗传率为65.72%,多基因遗传率为20.43%。主基因个数和基因效应的预测与分子检测的主效QTL个数和基因效应基本相符。

卢华雨, 李延玲, 罗峰. 粒用高粱4个主要光合性状数量遗传分析
江苏农业科学, 2018,46(17):68-72.

[本文引用: 1]

LU H Y, LI Y L, LUO F. Quantitative genetic analysis of four main photosynthetic traits in grain sorghum
Jiangsu Agricultural Science, 2018,46(17):68-72. (in Chinese)

[本文引用: 1]

FERNANDEZ M G S, STRAND K, HAMBLIN M T, MARK W, EMILY H, STEPHEN K. Genetic analysis and phenotypic characterization of leaf photosynthetic capacity in a sorghum (Sorghum spp.) diversity panel
Genetic Resources & Crop Evolution, 2015,62(6):939-950.

[本文引用: 1]

李延玲, 白晓倩, 于澎湃, 高建明, 裴忠有, 罗峰, 孙守钧. 高粱株型性状数量遗传分析
华北农学报, 2018,33(1):143-149.

[本文引用: 1]

LI Y L, BAI X Q, YU P P, GAO J M, PEI Z Y, LUO F, SUN S J. Quantitative genetic analysis of sorghum plant type characters
Acta Agriculturae Boreali-Sinica, 2018,33(1):143-149. (in Chinese)

[本文引用: 1]

卢华雨, 白晓倩, 于澎湃, 罗峰. 饲用高粱4个主要株型性状的遗传分析
贵州农业科学, 2019,47(1):5-9, 13.

[本文引用: 1]

LU H Y, BAI X Q, YU P P, LUO F. Genetic analysis of four main plant type traits in forage sorghum
Guizhou Agricultural Sciences, 2019,47(1):5-9, 13. (in Chinese)

[本文引用: 1]

邵健丰, 翟国伟, 王华. 高粱穗型相关性状的遗传研究
科技通报, 2019,35(2):46-48.

[本文引用: 1]

SHAO J F, ZHAI G W, WANG H. Study on genetic feature of sorghum panicle type traits
Bulletin of Science and Technology, 2019,35(2):46-48. (in Chinese)

[本文引用: 1]

周紫阳, 赵雪梅, 李光华, 石贵山, 王江红, 马英慧. 高粱叶角遗传研究
杂粮作物, 2006(6):392-394.

URL [本文引用: 1]

ZHOU Z Y, ZHAO X M, LI G H, SHI G S, WANG J H, MA Y H. Studies on the leaf angle of sorghum
Rain Fed Crops, 2006(6):392-394. (in Chinese)

URL [本文引用: 1]

卢庆善. 高粱杂交种亲本遗传多样性及其改良
园艺与种苗, 2012(1):1-4, 27.

[本文引用: 1]

LU Q S. Genetic diversity and improvement of hybrid parents in sorghum
Horticulture and Seedling, 2012(1):1-4, 27. (in Chinese)

[本文引用: 1]

杨伟光. 高粱生育期的遗传分析
中国农业科学, 1989(5):19-24.

URL [本文引用: 1]
采用世代平均数分析的多元回归法对中国高粱生育期进行了遗传分析,同时研讨了杂种F#-1代生育期的表现及其原因。结果表明,中国高粱相互杂交,杂种F#-1代生育期略倾向早熟亲本,但基本上没有超亲现象。双亲生育期的表现制约着F#-1代的表现。中国高粱生育期加性效应占绝对优势,是杂种后代决定于双亲的主要因素。同时生育期减效基因略占优势,具有负的显性效应,使杂种F#-1代表现为早熟。这是长期驯化选择保留了早熟性基因的结果。显性效应及上位性效应在某些组合显著存在,不可忽略;上位性效应显得更加重要些。
YANG W G. Genetic Analysis of Growth period of Sorghum
Scientia Agricultura Sinica, 1989(5):19-24. (in Chinese)

URL [本文引用: 1]
采用世代平均数分析的多元回归法对中国高粱生育期进行了遗传分析,同时研讨了杂种F#-1代生育期的表现及其原因。结果表明,中国高粱相互杂交,杂种F#-1代生育期略倾向早熟亲本,但基本上没有超亲现象。双亲生育期的表现制约着F#-1代的表现。中国高粱生育期加性效应占绝对优势,是杂种后代决定于双亲的主要因素。同时生育期减效基因略占优势,具有负的显性效应,使杂种F#-1代表现为早熟。这是长期驯化选择保留了早熟性基因的结果。显性效应及上位性效应在某些组合显著存在,不可忽略;上位性效应显得更加重要些。

杨伟光. 高粱杂交二代生育期遗传特性的研究
吉林农业科学, 1989(4):39-43.

[本文引用: 1]

YANG W G. Study on the hereditary character of growth period in sorghum F2 generation the second of hybrid
Jilin Agricultural Science, 1989(4):39-43. (in Chinese)

[本文引用: 1]

李振武. 高粱F3生育期遗传表现
辽宁农业科学, 1984(4):1-4.

[本文引用: 1]

LI Z W. Reproductive genetic performance of sorghum F3
Liaoning Agricultural Sciences, 1984(4):1-4. (in Chinese)

[本文引用: 1]

杨伟光. 高粱主要农艺性状基因效应的研究
中国农业科学, 1991(4):26-31.

URL [本文引用: 1]
采用世代均值的多元回归法对中国高粱主要农艺性状基因效应进行了研究。结果表明,株高、地上节数及穗柄长主要以加性效应为主;这3个性状上位性效应亦重要。穗粒数、穗粒重及茎粗的显性效应占优势。它们的上位性效应似乎比加性效应更加重要。500粒重的加性效应、显性效应并重,但其上位性效应在某些组合仍起一定作用。株高的加性效应值为负值,说明中国高粱株高隐性基因较多,有利于中矮秆杂交种的培育。单株产量的显性效应值为正值,便于提高杂交种单产。
YANG W G. Study on gene effect of major agronomic characters in sorghum
Scientia Agricultura Sinica, 1991(4):26-31. (in Chinese)

URL [本文引用: 1]
采用世代均值的多元回归法对中国高粱主要农艺性状基因效应进行了研究。结果表明,株高、地上节数及穗柄长主要以加性效应为主;这3个性状上位性效应亦重要。穗粒数、穗粒重及茎粗的显性效应占优势。它们的上位性效应似乎比加性效应更加重要。500粒重的加性效应、显性效应并重,但其上位性效应在某些组合仍起一定作用。株高的加性效应值为负值,说明中国高粱株高隐性基因较多,有利于中矮秆杂交种的培育。单株产量的显性效应值为正值,便于提高杂交种单产。

杨伟光, 顾德峰, 牟金明. 中国高粱地方品种株高的遗传研究
吉林农业大学学报, 1993(4): 28-31,105-106.

[本文引用: 1]

YANG W G, GU D F, MU J M. Genetic study on plant height of local variety of chinese sorghum
Journal of Jilin Agricultural University, 1993(4):28-31,105-106. (in Chinese)

[本文引用: 1]

白晓倩, 于澎湃, 李延玲, 高建明, 裴忠有, 罗峰, 孙守钧. 粒用高粱F2群体农艺性状数量遗传分析
华北农学报, 2019,34(1):107-114.

[本文引用: 1]

BAI X Q, YU P P, LI Y L, GAO J M, PEI Z Y, LUO F, SUN S Y. Genetic analysis of agronomic characters in F2 population of sorghum bicolor
Acta Agriculture Boreali-Sinica, 2019,34(1):107-114. (in Chinese)

[本文引用: 1]

高士杰, 陈冰嬬, 李继洪, 贾俊英, 侯玉波. 中国高粱春播早熟区雄性不育系存在的问题探讨
吉林农业科学, 2012,37(5):9-11.

[本文引用: 1]

GAO S J, CHEN B X, LI J H, JIA J Y, HOU Y B. Discussions on problems in male sterile line of sorghum in spring seeding early-maturing region in China
Journal of Jilin Agricultural Sciences, 2012,37(5):9-11. (in Chinese)

[本文引用: 1]

相关话题/基因 遗传 生育 检验 控制

婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄С閸楁娊寮婚悢铏圭<闁靛繒濮甸悘鍫㈢磼閻愵剙鍔ゆい顓犲厴瀵鎮㈤悡搴n槶閻熸粌绻掗弫顔尖槈閵忥紕鍘介梺瑙勫劤椤曨參鍩ユ径瀣ㄤ簻妞ゆ挾鍋為崑銉╂煙閾忣偆鐭婃い鏇樺劚铻栧┑鐘辩窔閸嬫姊虹拠鈥虫灍闁挎洏鍨介獮鍐煛閸愵亞锛滃┑鈽嗗灣閸樠呮暜妤e啯鈷掑ù锝嚽归ˉ蹇涙煕鐎n亝鍣介柟骞垮灲瀹曠喖顢涘顓熜氶梻浣瑰缁诲倿藝娴煎瓨鍋傛繛鍡樺灍閸嬫挾鎲撮崟顒傤槬濠电偛鐪伴崐婵嬪春閵忋倕閱囬柍鍨涙櫅娴滈箖鎮峰▎蹇擃仾缂佲偓閸愵亞纾兼い鏃囧亹鏁堝Δ鐘靛仜缁绘ê鐣烽妸鈺佺骇闁瑰鍋涚粊鑸典繆閻愵亜鈧牠骞愭ィ鍐ㄧ獥闁逛即鍋婇弫濠囩叓閸ャ劎鈯曢柍閿嬪浮閺屾稓浠﹂幑鎰棟闂侀€炲苯澧柛銏$叀濠€渚€姊洪幖鐐插姶闁诲繑绋戦埥澶愬閻樻妲规俊鐐€栭崝鎴﹀磹閺嵮€鏋旈柟顖嗗本瀵岄梺闈涚墕濡宕告繝鍥ㄧ厱閻庯綆鍋呯亸浼存煏閸パ冾伃妞ゃ垺娲熼弫鎰板炊閳哄啯婢栨繝鐢靛Х椤d粙宕滃┑瀣畺闁稿瞼鍋涢弰銉╂煃閳轰礁鏆炲┑顖涙尦閺屟嗙疀閺囩喎娈屽Δ鐘靛亹閸嬫挸鈹戦悩娈挎殰缂佽鲸娲熷畷鎴﹀箣閿曗偓绾惧綊鏌″搴″箺闁稿顑嗘穱濠囧Χ閸涱喖娅ら梺绋款儜缁绘繈寮婚弴銏犻唶婵犻潧娲ㄩ埞娑欑節濞堝灝鏋熷┑鐐诧躬瀵鍩勯崘銊х獮婵犵數濮寸€氼參鎯冮幋婵冩斀闁斥晛鍟徊濠氭煟濡や焦宕岀€殿喖顭烽弫鎾绘偐閼碱剦妲伴梻浣瑰缁诲倿骞婂鍡欑彾闁哄洨鍠撶弧鈧梺姹囧灲濞佳嗏叿闂備焦鎮堕崝宥咁渻娴犲鏋侀柛鎰靛枛椤懘鏌eΟ铏逛粵婵炲牓绠栧娲川婵犲嫮鐣甸柣搴㈠嚬閸o絽顕i幎钘夊耿婵炴垶鐟ч崢閬嶆⒑閸濆嫭鍌ㄩ柛鏂挎湰閺呭爼顢欓悾宀€顔曢梺鍓插亝缁诲嫰鎮為崨濠冨弿濠电姴鍟妵婵堚偓瑙勬磸閸斿秶鎹㈠┑瀣<婵絾瀵уú妯兼崲濞戞埃鍋撳☉娆嬬細闁活厼鐭傞弻娑氣偓锝冨妼閳ь剚娲熼幃鎯х暋閹冲﹥妞介、鏃堝礋椤撴繄绀堥梻鍌欑閹碱偊宕愰崼鏇炵?闁哄被鍎荤紞鏍偓骞垮劚椤︿即鍩涢幋锔藉仭婵炲棗绻愰鈺呮煕閺傝鈧繈寮婚敐鍡楃疇闂佸憡鏌ㄧ€涒晝绮嬪澶婄濞撴艾娲﹂弲婵嬫⒑闂堟稓澧曟繛灞傚姂閺佸秴饪伴崘锝嗘杸闁圭儤濞婂畷鎰板即閵忕姷鏌堝銈嗗姧缁犳垿宕欓悩缁樼厸闁告劑鍔庢晶娑㈡煟閹惧鎳冩い顏勫暟閳ь剨缍嗘禍顏堫敁濡ゅ懏鐓冮悹鍥皺婢ф稒銇勯妸锝呭姦闁诡喗鐟╁鍫曞箣閻樿京绀夊┑掳鍊楁慨鐑藉磻濞戞◤娲敇閳ь兘鍋撴担绯曟瀻闁规儳鍘栫槐鍫曟⒑閸涘﹥澶勫ù婊愮秮瀹曟椽宕ㄧ€涙ǚ鎷婚梺绋挎湰閼归箖鍩€椤掑嫷妫戠紒顔肩墛缁楃喖鍩€椤掑嫮宓侀柡宥庡弾閺佸啴鏌ㄩ弴妤€浜剧紒鐐劤濠€閬嶅箟閹间焦鍋嬮柛顐g箘閻熸煡姊虹粙娆惧劀缂佺粯绻傞锝夊醇閺囩偤鍞跺┑顔斤供閸樹粙鎮甸弴鐑嗘富闁靛牆楠告禍婵囩箾閼碱剙鏋涚€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹
2婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У婢瑰棛妲愰幒鏂哄亾閿濆骸浜剧紒鎵佹櫆缁绘稑顔忛鑽ょ泿闁诡垳鍠栧娲礃閸欏鍎撳銈嗗灥濞层劎鍒掑▎鎺旂杸婵炴垶鐟㈤幏娲⒑闂堚晛鐦滈柛妯恒偢瀹曟繄鈧綆鍋佹禍婊堟煏婵炲灝鍔滄い銉e灮閳ь剝顫夊ú婊堝极婵犳艾鏄ラ柍褜鍓氶妵鍕箳閹存繍浠鹃梺鎶芥敱閸ㄥ潡寮诲☉妯锋婵鐗嗘导鎰節濞堝灝娅欑紒鐘冲灴濠€浣糕攽閻樿宸ラ柟鍐插缁傛帗娼忛埞鎯т壕閻熸瑥瀚粈鍐╀繆閻愭壆鐭欑€殿噮鍋婇獮妯肩磼濡桨姹楅柣搴ゎ潐濞叉牕煤閵堝宓佹俊銈呮噺閳锋帒銆掑锝呬壕濠电偘鍖犻崨顔煎簥闂佸壊鍋侀崕杈╁瑜版帗鐓涚€规搩鍠掗崑鎾翠繆閹绘帞澧㈤柟鍙夋倐瀵噣宕煎┑濠冩啺闂備焦瀵х换鍌炈囬鐐村€挎繛宸簼閻撴洟鏌熼弶鍨倎缂併劌銈搁弻娑㈡晲鎼粹€崇缂備浇椴搁幐濠氬箯閸涙潙绀堥柟缁樺笒婢瑰牓姊绘担鐟邦嚋婵炶闄勭粋宥夘敂閸曢潧娈ㄥ銈嗗姧缁犳垹澹曟總鍛婄厽闁归偊鍘界紞鎴炵箾閸喎濮嶆慨濠冩そ瀹曟﹢宕f径瀣壍闂備礁鎽滄慨鐢告嚌閹冪カ闂備礁鎲¢〃鍫ュ磻閹版澘缁╁ù鐘差儐閻撳啴鏌﹀Ο渚Ч妞ゃ儲绮岄湁婵犲﹤鎳庢禒婊勩亜椤撯€冲姷妞わ箒娅曢妵鍕Ω閵夘垵鍚悗娈垮櫘閸嬪棝鍩€椤掑﹦绉甸柛鎾寸〒婢规洟鎸婃竟婵嗙秺閺佹劖寰勭€n偊鏁┑鐘愁問閸犳牠宕愰幖浣圭畳婵犵數濮撮敃銈呂涘Δ鍛亗闁归偊鍎惔銊ョ倞鐟滄繈宕濋悢鍏肩厓鐟滄粓宕滃杈╃煓闁圭儤娲橀幊灞解攽閻樻剚鍟忛柛銊ゅ嵆椤㈡岸顢橀悩鎰佹綗闂佸湱鍎ら崹鐔肺i崼鐔稿弿婵°倐鍋撴俊顐n殜瀹曟粍娼忛埡鍐紳闂佺ǹ鏈銊ョ摥闂備焦瀵уú蹇涘磿閼碱剛鐭氶弶鍫涘妿缁♀偓闂佹悶鍎撮崺鏍疾濠靛鈷戦梻鍫熺〒婢ф洟鏌熷畡閭﹀剶鐎殿喗濞婇、姗€濮€閳锯偓閹锋椽姊洪崨濠冨磩閻忓繑鐟╁畷銏犫槈閵忥紕鍘遍梺闈浨归崕鎶藉春閿濆洠鍋撶憴鍕婵$偘绮欏畷娲焵椤掍降浜滈柟鍝勭Ч濡惧嘲霉濠婂嫮鐭掗柡宀€鍠愬ḿ蹇涘礈瑜忚摫缂備胶铏庨崣鈧柛鈺傜墵婵$敻宕熼娑欐珕闂佸吋绁撮弲婵嬪汲閵堝鈷戦柛婵嗗濠€鎵磼鐎n偄鐏撮柛鈹垮灪閹棃濡堕崶鈺傛緫闂備礁鎼ú銊﹀垔椤撱垹鑸归柛锔诲幘绾句粙鏌涚仦鍓ф噮缂佹劖姊荤槐鎾诲磼濞戞粌顥濋柧鑽ゅ仱閺屾盯寮撮妸銉︾亾婵炲瓨绮嶉悷鈺侇潖缂佹ɑ濯撮柛娑橈工閺嗗牆鈹戦悙棰濆殝缂佺姵鎸搁悾鐑藉閿濆啩姹楅梺鍦劋閸ㄥ綊鏁嶅☉銏♀拺闁革富鍘奸崝瀣亜閵娿儲顥㈤柛鈺傜洴楠炲鏁傞悾灞藉箞婵犵數濞€濞佳兾涘Δ鍜佹晜闁冲搫鎳忛悡鍐喐濠婂牆绀堟繛鍡樺灩缁€濠傗攽閻樺弶鎼愮紒鐘崇墵濮婃椽宕归鍛壉缂傚倸绉村ú顓㈠蓟瀹ュ浼犻柛鏇ㄥ亗缁ㄨ棄鈹戦悙璺轰汗闁哥姴閰i崺鐐哄箣閿旂粯鏅╅柣鐔哥懄鐢偤骞婇幘璇茬厺闁哄倸绨卞Σ鍫ユ煏韫囧ň鍋撻崘鎻掝棗濠电姴鐥夐弶搴撳亾閹版澘纾婚柟鍓х帛閻撳啴鎮峰▎蹇擃仼闁诲繑鎸抽弻鐔碱敊鐟欏嫭鐝氬Δ鐘靛仦閹瑰洭鐛幒妤€骞㈡俊鐐村劤椤ユ岸姊绘担鍝ョШ婵☆偉娉曠划鍫熺瑹閳ь剟寮婚妸鈺佄ч柛娑变簼閺傗偓闂備胶绮摫鐟滄澘鍟村鎼佸Χ閸℃瑧顔曢梺鍓插亝缁酣鎯屽▎鎾寸厸鐎光偓鐎n剛袦濡ょ姷鍋涘ú顓€€佸Δ浣瑰闁告瑥顦辨禍鐐烘⒒閸屾瑧鍔嶉柟顔肩埣瀹曟劕螖閸涱厾鐛ラ梺褰掑亰閸犳鐣烽崣澶岀瘈闂傚牊渚楅崕蹇涙煟閹烘垹浠涢柕鍥у楠炴帡骞嬪┑鎰偅闂備胶绮敮妤€顪冩禒瀣摕婵炴垯鍨圭粻娑欍亜閺嶃劎銆掗柕鍡楋躬濮婂搫煤鐠囨彃绠哄銈冨妼閹虫﹢宕洪悙鍝勭闁挎梻绮弲鈺冪磽娴e湱鈽夋い鎴濇閹箖宕奸弴鐔叉嫼缂傚倷鐒﹂敃鈺佲枔閺冨倻纾肩紓浣姑粭褔鏌涢幒鎾虫诞鐎规洖銈搁幃銏☆槹鎼达絿宓侀梻浣筋嚙閸戠晫绱為崱娑樼婵炴垯鍩勯弫濠囨煛閸ャ儱鐏柍閿嬪灴閺岋綁鎮㈤悡搴濆枈闂佹悶鍊楅崰搴ㄥ煘閹达富鏁婇柣鎰靛墯濮e牓鎮楀▓鍨灍濠电偛锕畷娲晸閻樿尙锛滃┑鐘诧工閹峰宕惔銊︹拺闁煎鍊曞瓭濠电偛锛忛崶褏顦板銈嗗姦閸嬪倻妲愰敓锟�547闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆浜ら柤鏉挎健濮婃椽顢楅埀顒傜矓閺屻儱鐒垫い鎺嗗亾闁稿﹤婀辩划瀣箳閺傚搫浜鹃柨婵嗙凹缁ㄤ粙鏌ㄥ☉娆戞创婵﹥妞介幃鐑藉级鎼存挻瀵栫紓鍌欑贰閸n噣宕归崼鏇炴槬婵炴垯鍨圭粻铏繆閵堝嫯鍏岄柛姗€浜跺娲传閸曨剙顦╁銈冨妼濡鍩㈠澶婂窛閻庢稒岣块崢浠嬫椤愩垺绁紒鎻掋偢閺屽洭顢涢悙瀵稿幐閻庡厜鍋撻悗锝庡墮閸╁矂鏌х紒妯煎⒌闁诡喗顨婇弫鎰償閳ヨ尙鐩庢俊鐐€曟蹇涘箯閿燂拷4婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У婢瑰棛妲愰幒鏂哄亾閿濆骸浜剧紒鎵佹櫆缁绘稑顔忛鑽ゅ嚬闂佸搫鎳忛悡锟犲蓟濞戙垹唯闁靛繆鍓濋悵鏍ь渻閵堝繐鐦滈柛銊ㄦ硾椤繐煤椤忓懎浠梻渚囧弿缁犳垵鈻撻崼鏇熲拺缂佸顑欓崕鎴︽煕閻樺磭澧电€规洘妞芥慨鈧柕鍫濇噽閻嫰姊洪柅鐐茶嫰婢ф潙鈹戦敍鍕毈鐎规洜鍠栭、娆撳礈瑜庡鎴︽⒒娴g瓔娼愰柛搴㈠▕椤㈡岸顢橀埗鍝勬喘閺屽棗顓奸崱蹇斿缂傚倷绀侀鍡涱敄濞嗘挸纾块柟鎵閻撴瑩鏌i悢鍝勵暭闁瑰吋鍔欓弻锝夋晲閸涱厽些濡炪値鍋呯划鎾诲春閳ь剚銇勯幒鎴濐仴闁逞屽厸缁舵艾顕i鈧畷鐓庘攽閸℃埃鍋撻崹顔规斀閹烘娊宕愰弴銏犵柈妞ゆ劧濡囧畵渚€鏌熼幍顔碱暭闁抽攱甯¢弻娑氫沪閸撗勫櫘濡炪倧璁g粻鎾诲蓟濞戞﹩娼╂い鎺戭槸閸撴澘顪冮妶搴″箹闁诲繑绻堥敐鐐测堪閸繄鍔﹀銈嗗坊閸嬫捇鏌i敐鍥у幋妞ゃ垺鐩幃婊堝幢濡粯鐝栭梻鍌欑窔濞佳呮崲閸儱鍨傞柛婵嗗閺嬫柨螖閿濆懎鏆為柍閿嬪灴濮婂宕奸悢鍓佺箒濠碉紕瀚忛崘锝嗘杸闂佺偨鍎村▍鏇㈠窗濮椻偓閺屾盯鍩為崹顔句紙閻庢鍣崳锝呯暦婵傚憡鍋勯柛婵嗗缁犮儵姊婚崒娆掑厡妞ゃ垹锕敐鐐村緞閹邦剛顦梺鍝勬储閸ㄦ椽宕曞鍡欑鐎瑰壊鍠曠花濂告煟閹捐泛鏋涢柡宀嬬秮瀵噣宕奸悢鍛婃闂佽崵濮甸崝褏妲愰弴鐘愁潟闁圭儤鎸荤紞鍥煏婵炲灝鍔ら柣鐔哥叀閹宕归锝囧嚒闁诲孩鍑归崳锝夊春閳ь剚銇勯幒鎴姛缂佸娼ч湁婵犲﹤鎳庢禒锔剧磼閸屾稑娴柟顔瑰墲閹柨螣缂佹ɑ婢戦梻鍌欒兌缁垶宕濆Ο琛℃灃婵炴垶纰嶉~鏇㈡煥閺囩偛鈧綊鎮¢弴鐔剁箚闁靛牆鎳庨顏堟煟濠垫劒绨婚懣鎰版煕閵夋垵绉存慨娑㈡⒑闁偛鑻晶顖滅磼鐎n偄绗╅柟绛嬪亝缁绘繂鈻撻崹顔句画闂佺懓鎲℃繛濠囩嵁閸愩劎鏆嬮柟浣冩珪閻庤鈹戦悙鍙夘棡闁搞劎鏁诲畷铏逛沪閸撗咁啎闁诲孩绋掑玻鍧楁儗閹烘梻纾奸柣妯虹-婢х數鈧鍠涢褔鍩ユ径鎰潊闁绘ḿ鏁搁弶鎼佹⒒娴e懙鍦崲閹版澘绠烘繝濠傜墕閺嬩線鏌″搴″箺闁抽攱鍨圭槐鎺楊敍濞戞瑧顦ㄥ┑鐐叉噺濮婅崵妲愰幒鏃傜<婵☆垵鍋愰悿鍕倵濞堝灝鏋︽い鏇嗗洤鐓″璺号堥崼顏堟煕濞戝崬鐏℃繝銏″灴濮婄粯鎷呴悷閭﹀殝缂備浇顕ч崐鍧楃嵁婵犲啯鍎熸い顓熷笧缁嬪繘姊洪崘鍙夋儓闁瑰啿绻橀崺娑㈠箣閿旂晫鍘卞┑鐐村灦閿曨偊宕濋悢鍏肩厵闁惧浚鍋呯粈鍫㈢磼鏉堛劌绗氭繛鐓庣箻婵℃悂鏁傜紒銏⌒у┑掳鍊楁慨鐑藉磻濞戞碍宕叉慨妞诲亾妤犵偛鍟撮崺锟犲礃閳轰胶褰撮梻浣藉亹閳峰牓宕滈敃鍌氱柈閻庯綆鍠楅埛鎺懨归敐鍛暈闁哥喓鍋涢妴鎺戭潩椤撗勭杹閻庤娲栫紞濠囩嵁鎼淬劌绀堥柛顭戝枟閸犳﹢鏌涢埡瀣瘈鐎规洏鍔戦、娆戞喆閸曨偒浼栭梻鍌欐祰瀹曠敻宕戦悙鐢电煓闁割偁鍎遍悞鍨亜閹哄棗浜鹃梺鍛娚戦悧妤冪博閻旂厧鍗抽柕蹇婃閹风粯绻涙潏鍓у埌闁硅绱曢幏褰掓晸閻樻彃鍤戝銈呯箰濡稓澹曟總鍛婄厪濠电偛鐏濇俊鐓幟瑰⿰鍐╄础缂佽鲸甯¢、姘跺川椤撶偟顔戦柣搴$仛濠㈡ḿ鈧矮鍗抽悰顕€宕堕澶嬫櫍闂佺粯蓱瑜板啰绮绘繝姘拻闁稿本鐟чˇ锕傛煙绾板崬浜為柍褜鍓氶崙褰掑礈濞戙垹绠查柕蹇嬪€曠粻鎶芥煛閸愩劍鎼愮亸蹇涙⒒娴e憡璐¢弸顏嗙磼閵娧冨妺缂佸倸绉撮オ浼村醇閻斿搫骞愰梻浣规偠閸庢椽鎮℃笟鈧、鏃堝醇閻斿皝鍋撻崼鏇熺厾缁炬澘宕崢鎾煕鐎n偅灏柍缁樻崌瀹曞綊顢欓悾灞借拫闂傚倷鑳舵灙妞ゆ垵鎳橀弫鍐Χ婢舵ɑ鏅梺鎸庣箓濞诧箑鐣锋径鎰仩婵炴垶甯掓晶鏌ユ煟鎼粹槅鐓兼慨濠呮閹风娀鍨惧畷鍥e亾婵犳碍鐓曢煫鍥ч鐎氬酣鏌涙繝鍐畵妞ゎ偄绻掔槐鎺懳熺拠宸偓鎾绘⒑閼姐倕鏋涢柛瀣躬瀹曠數鈧綆鍓涚壕钘壝归敐鍛棌闁稿孩鍔欓弻娑㈠Ω閵娿儱濮峰┑鈽嗗亞閸犲酣鈥旈崘顔嘉ч柛鈩兠拕濂告⒑閹肩偛濡肩紓宥咃躬楠炲啴鎮欓崫鍕€銈嗗姉婵磭鑺辨繝姘拺闁革富鍘奸崝瀣煕閳轰緤韬€殿喓鍔嶇换婵嗩潩椤撶偐鍋撻崹顐e弿婵☆垳鍘ф禍楣冩倵濮樼偓瀚�40缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箰妤e啫鐒垫い鎺戝枤濞兼劖绻涢崣澶屽ⅹ閻撱倝鏌曟繛褍鎳嶇粭澶愭⒑閸濆嫬鏆欓柣妤€锕幃鈥斥枎閹惧鍘靛銈嗙墪濡鎳熼姘f灁闁割偅娲橀埛鎴犫偓瑙勬礀濞层劎鏁☉娆愬弿濠电姴鍊荤粔鐑橆殽閻愯尙澧﹀┑鈩冩倐婵$兘顢欓挊澶岀处闂傚倷绶氶埀顒傚仜閼活垱鏅堕悧鍫㈢闁瑰濮甸弳顒侇殽閻愬澧柟宄版嚇瀹曘劍绻濋崟銊ヤ壕妞ゆ帒瀚悡鐔煎箹閹碱厼鐏g紒澶愭涧闇夋繝濠傚暟閸╋綁鏌熼鍝勭伈鐎规洖宕埥澶娾枎韫囧骸瀵查梻鍌欑劍閹爼宕曢懡銈呯筏婵炲樊浜滅壕濠氭煙閹规劦鍤欑紒鈧崒鐐寸厱婵炴垵宕鐐繆椤愶絿鐭岀紒杈ㄦ崌瀹曟帒顫濋钘変壕鐎瑰嫭鍣磋ぐ鎺戠倞闁靛⿵绲肩划鎾绘⒑瑜版帗锛熼柣鎺炵畵瀹曟垿鏁撻悩宕囧帗闂佸憡绻傜€氼參宕宠ぐ鎺撶參闁告劦浜滈弸鏃堟煃瑜滈崜娆撳储濠婂牆纾婚柟鍓х帛閻撴洟鏌¢崶銉ュ濞存粎鍋為妵鍕箻鐎涙ǜ浠㈠┑顔硷攻濡炰粙鐛幇顓熷劅闁挎繂娲ㄩ弳銈嗙節閻㈤潧浠╅悘蹇旂懄缁绘盯鍩€椤掑倵鍋撶憴鍕闁搞劌娼¢悰顔嘉熼懖鈺冿紲濠碘槅鍨甸褔宕濋幒妤佲拺闁煎鍊曢弸鎴︽煟閻旀潙鍔ら柍褜鍓氶崙褰掑礈閻旈鏆﹂柕蹇ョ祷娴滃綊鏌熼悜妯诲皑闁归攱妞藉娲川婵犲嫮鐣甸柣搴㈠嚬閸樺ジ顢欒箛鎾斀閻庯綆鍋嗛崢閬嶆煙閸忚偐鏆橀柛銊ョ秺閹﹢鍩¢崒娆戠畾闂佸憡鐟ラˇ顖涙叏閸ヮ煈娈版い蹇撳暙瀹撳棛鈧娲栭妶鎼佸箖閵忋倕浼犻柛鏇ㄥ亜椤╊剟姊婚崒姘偓鐑芥嚄閸撲焦鍏滈柛顐f礀缁€鍫熺節闂堟稒鐏╂繛宸簻閸愨偓濡炪倖鍔戦崕鍗炵毈缂傚倸鍊风欢锟犲磻閸曨厸鍋撳▓鍨⒋婵﹤顭峰畷鎺戭潩椤戣棄浜惧瀣椤愯姤鎱ㄥ鍡楀幊缂傚倹姘ㄩ幉绋款吋閸澀缃曢梻鍌欑閹碱偊宕锕€纾瑰┑鐘崇閸庢鏌涢埄鍐炬▍鐟滅増甯楅弲鏌ユ煕椤愵偄浜滄繛鍫熺懇濮婃椽鎳¢妶鍛€鹃柣搴㈣壘閻楁挸顕i鈧畷鐓庘攽閸℃瑧宕哄┑锛勫亼閸婃牕螞娓氣偓閿濈偞寰勭仦绋夸壕闁割煈鍋嗘晶鍨叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭婵犵數鍋為幐鑽ゅ枈瀹ュ鈧啯绻濋崒婊勬闂侀潧绻堥崐鏍偓鐢靛Т椤法鎹勯悜姗嗘!闂佽瀛╁浠嬪箖濡ゅ懎绀傚璺猴梗婢规洟姊绘担鍛婂暈婵炶绠撳畷婊冣槈閵忕姴鍋嶉梻渚囧墮缁夌敻鍩涢幋锔界厱婵犻潧妫楅鈺呮煛閸℃瑥浠遍柡宀€鍠撶划娆撳垂椤旇瀵栧┑鐘灱椤煤閻旇偐宓侀柟閭﹀幗閸庣喐绻涢幋鐑嗘畼闁烩晛閰e缁樼瑹閳ь剙岣胯椤ㄣ儴绠涢弴鐕佹綗闂佸搫娲犻崑鎾诲焵椤掆偓閸婂潡骞婇悩娲绘晢闁稿本绮g槐鏌ユ⒒娴e憡鎯堥柛鐕佸亰瀹曟劙骞栨担绋垮殤濠电偞鍨堕悷锝嗙濠婂牊鐓忛煫鍥э工婢ц尙绱掗埀顒傗偓锝庡枟閻撴瑦銇勯弮鍥舵綈婵炲懎锕ラ妵鍕閳╁啰顦伴梺鎸庣箘閸嬨倝銆佸鈧幃婊堝幢濮楀棙锛呭┑鐘垫暩婵兘寮幖浣哥;闁绘ǹ顕х粻鍨亜韫囨挻顥犵紒鈧繝鍥ㄧ厓鐟滄粓宕滃璺何﹂柛鏇ㄥ灱閺佸啴鏌曡箛濠冩珕闁宠鐗撳铏规嫚閳ヨ櫕鐝紓浣虹帛缁诲牆鐣峰ú顏勭劦妞ゆ帊闄嶆禍婊堟煙閻戞ê鐏ユい蹇d邯閺屽秹鏌ㄧ€n亝璇為梺鍝勬湰缁嬫挻绂掗敃鍌氱闁归偊鍓﹀Λ鐔兼⒒娓氣偓閳ь剛鍋涢懟顖炲储閸濄儳纾兼い鏃傛櫕閹冲洭鏌曢崱鏇狀槮闁宠閰i獮鍥敊閸撗勵潓闂傚倷绀侀幉鈥趁洪敃鍌氱闁挎洍鍋撳畝锝呮健閹垽宕楃亸鏍ㄥ闂備礁鎲¢幐鏄忋亹閸愨晝顩叉繝闈涙川缁犻箖鏌涘▎蹇fШ濠⒀嗕含缁辨帡顢欓崹顔兼優缂備浇椴哥敮鎺曠亽闂傚倵鍋撻柟閭﹀枤濞夊潡姊婚崒娆愮グ妞ゎ偄顦悾宄拔熺悰鈩冪亙濠电偞鍨崺鍕极娴h 鍋撻崗澶婁壕闂佸憡娲﹂崜娑㈠储閸涘﹦绠鹃弶鍫濆⒔閸掓澘顭块悷甯含鐎规洘娲濈粻娑㈠棘鐠佸磭鐩庢俊鐐€栭幐鎾礈濠靛牊鍏滈柛顐f礃閻撴瑥顪冪€n亪顎楅柍璇茬墦閺屾盯濡搁埡鍐毇閻庤娲橀〃濠傜暦閵娾晩鏁嶆繛鎴炨缚濡棝姊婚崒姘偓鎼佸磹妞嬪孩顐芥慨妯挎硾閻掑灚銇勯幒鎴濃偓鍛婄濠婂牊鐓犳繛鑼额嚙閻忥妇鈧娲忛崹浠嬬嵁閺嶃劍濯撮柛锔诲幖楠炴﹢姊绘担鍛婂暈闁告梹岣挎禍绋库枎閹捐櫕妲梺鎸庣箓閹冲寮ㄦ禒瀣叆婵炴垶锚椤忣亪鏌¢崱鈺佸⒋闁哄瞼鍠栭、娆撴偩鐏炴儳娅氶柣搴㈩問閸犳牠鎮ユ總鍝ュ祦閻庯綆鍣弫鍥煟閹邦厽鍎楅柛鐔锋湰缁绘繈鎮介棃娴讹絾銇勯弮鈧悧鐘茬暦閺夎鏃堝川椤旇姤鐝栭梻浣稿暱閹碱偊骞婃惔锝囩焼闁稿本绋撶粻楣冩煙鐎电ǹ浠фい锝呭级閵囧嫰顢曢敐鍡欘槹闂佸搫琚崝宀勫煘閹达箑骞㈡俊顖濇〃閻ヮ亪鏌i悢鍝ョ煂濠⒀勵殘閺侇喖螖閸涱厾鏌ч梺鍝勮閸庢煡鎮¢弴銏$厓闁宠桨绀侀弳鐔兼煙閸愬弶鍤囬柡宀嬬秮楠炴﹢宕樺ù瀣壕闁归棿璁查埀顒佹瀹曟﹢顢欓崲澹洦鐓曢柟鎵虫櫅婵″灝霉閻樻彃鈷旂紒杈ㄥ浮閹瑩顢楁担鍝勫殥缂傚倷绀侀ˇ顖涙櫠鎼淬劌绀嗛柟鐑橆殔閻撴盯鏌涘☉鍗炴灈濞存粍绮庣槐鎺楁倷椤掆偓椤庢粌顪冪€涙ɑ鍊愮€殿喗褰冮埞鎴犫偓锝庡亐閹锋椽姊婚崒姘卞缂佸鎸婚弲鍫曞即閻旇櫣顔曢柣鐘叉厂閸涱垱娈兼俊銈囧Х閸嬫稑螞濠靛鏋侀柟閭﹀幖缁剁偤鎮楅敍鍗炲椤忓綊姊婚崒娆戭槮婵犫偓鏉堛劎浠氭繝鐢靛仜椤曨參宕楀鈧畷娲Ψ閿曗偓缁剁偤鎮楅敐鍐ㄥ缂併劌顭峰娲箰鎼淬埄姊垮銈嗘肠閸愭儳娈ㄥ銈嗘磵閸嬫捇鏌$仦鍓ф创闁糕晝鍋ら獮鍡氼槺濠㈣娲栭埞鎴︽晬閸曨偂鏉梺绋匡攻閻楁粓寮鈧獮鎺懳旀担瑙勭彇闂備線娼ч敍蹇涘焵椤掑嫬纾婚柟鐐墯濞尖晠鏌i幇闈涘妞ゅ骏鎷�28缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亜顒㈡い鎰矙閺屻劑鎮㈤崫鍕戙垻鐥幑鎰靛殭妞ゎ厼娼¢幊婊堟濞戞鏇㈡⒑鏉炴壆顦︽い鎴濇喘楠炲骞栨担鍝ョ潉闂佸壊鍋侀崹鍦矈閿曞倹鈷戦柛娑橈工婵箓鏌涢悩宕囧⒈缂侇喚绮换婵嗩潩椤撶姴骞堥梻浣筋潐瀹曟ḿ浜稿▎鎴犵幓闁哄啫鐗婇悡鍐煟閻旂ǹ顥嬬紒鐘哄皺缁辨帞绱掑Ο鑲╃杽婵犳鍠掗崑鎾绘⒑閹稿海绠撴俊顐g洴婵℃挳骞囬鈺傛煥铻栧┑鐘辫兌閸戝綊姊洪崷顓€褰掑疮閸ф鍋╃€瑰嫭澹嬮弨浠嬫倵閿濆簼绨荤紒鎰洴閺岋絾鎯旈姀鈶╁鐎光偓閿濆懏鍋ョ€规洏鍨介弻鍡楊吋閸″繑瀚奸梻浣告啞缁诲倻鈧凹鍓熷铏節閸ャ劎鍘遍柣搴秵閸嬪懐浜搁悽鐢电<閺夊牄鍔岀粭褔鏌嶈閸撱劎绱為崱娑樼;闁告侗鍘鹃弳锔锯偓鍏夊亾闁逞屽墴閸┾偓妞ゆ帊绶¢崯蹇涙煕閿濆骸娅嶇€规洘鍨剁换婵嬪炊瑜忛悾鐑樼箾鐎电ǹ孝妞ゆ垵鎳樺畷褰掑磼濞戞牔绨婚梺瑙勫閺呮盯鎮橀埡鍌ゆ闁绘劖娼欓悘瀛樻叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崘銊ュ濠电姷鏁搁崑鐘活敋濠婂懐涓嶉柟杈捐缂嶆牗绻濋棃娑卞剰閹喖姊洪崘鍙夋儓闁稿﹤鎲$粋鎺楊敇閵忊檧鎷洪柣搴℃贡婵敻濡撮崘顔藉仯濞达絿鎳撶徊濠氬础闁秵鐓曟い鎰Т閸旀粓鏌i幘瀵告噰闁哄矉缍侀獮鍥濞戞﹩娼界紓鍌氬€哥粔鐢稿垂閸ф钃熼柣鏃傚帶缁€鍌炴煕韫囨洖甯堕柍褜鍓氶崝娆撳蓟閿涘嫪娌柣锝呯潡閵夛负浜滅憸宀€娆㈠璺鸿摕婵炴垯鍨圭粻濠氭煕濡ゅ啫浠滄い顐㈡搐铻栭柣姗€娼ф禒婊呯磼缂佹﹫鑰跨€殿噮鍋婇獮妯肩磼濡粯顏熼梻浣芥硶閸o箓骞忛敓锟�1130缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箲閸ヮ剙钃熸繛鎴欏灩缁犲鏌ょ喊鍗炲⒒婵″樊鍣e娲箹閻愭彃顬夌紓浣筋嚙閻楁挸顕f繝姘╅柍鍝勫€告禍婊堟⒑閸涘﹦绠撻悗姘嚇婵偓闁靛繈鍨婚敍婊堟⒑闁偛鑻晶瀵糕偓瑙勬礃鐢繝骞冨▎鎴斿亾閻㈢櫥褰掔嵁閸喓绡€闁汇垽娼ф禒锕傛煕閵娿儳鍩i柡浣稿暣椤㈡洟鏁冮埀顒傜磼閳哄啰纾藉ù锝堢柈缂傛氨绱掗悩鑽ょ暫闁哄本鐩、鏇㈡晲閸モ晝鏆梻浣虹帛鐢骞冮崒鐐茶摕闁挎稑瀚▽顏嗙磼鐎n亞浠㈤柍宄邦樀閹宕归锝囧嚒闁诲孩鍑归崳锝夊春閳ь剚銇勯幒鎴姛缂佸娼ч湁婵犲﹤瀚惌鎺楁煥濠靛牆浠辩€规洖鐖奸、妤佹媴閸欏顏归梻鍌氬€风欢锟犲磻閸℃稑纾绘繛鎴欏灪閸ゆ劖銇勯弽銊р姇婵炲懐濮磋灃闁挎繂鎳庨弳鐐烘煟閹惧鎳囬柡灞剧洴楠炲鈻庤箛濠備壕闁哄稁鍋€閸嬫挸顫濋悙顒€顏�