Response Characteristics of Green Onion (Allium fistulosum L.) to LED Light Quality Under Artificial Climate Chamber
GAO Song,, LIU XueNa, LIU Ying, CAO BiLi, CHEN ZiJing, XU Kun,1 College of Horticulture Science and Engineering, Shandong Agricultural University/Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong通讯作者:
责任编辑: 赵伶俐
收稿日期:2019-12-19接受日期:2020-02-2网络出版日期:2020-07-16
基金资助: |
Received:2019-12-19Accepted:2020-02-2Online:2020-07-16
作者简介 About authors
高松,E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (991KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
高松, 刘学娜, 刘颖, 曹逼力, 陈子敬, 徐坤. 人工气候室控制条件下青葱对LED光质的响应特性[J]. 中国农业科学, 2020, 53(14): 2919-2928 doi:10.3864/j.issn.0578-1752.2020.14.015
GAO Song, LIU XueNa, LIU Ying, CAO BiLi, CHEN ZiJing, XU Kun.
0 引言
【研究意义】光既是植物进行光合作用的能量来源,也是植物生长发育过程中的重要信号源[1],光强、光质和光周期等都能调节植物的生长发育[2,3,4]。近年来,全人工光源的植物工厂已成为在设施农业特别是设施蔬菜生产中的智能化新装备,其主要原理是根据作物的需光特性,为作物生长提供最佳的光照条件,具有生产环境高度可控、周年连续稳定生产及产品质量安全可靠等诸多优势。随近年消费市场的变化,大葱(Allium fistulosum L.)由传统的一年一茬的长葱白栽培逐渐向一年多茬的鲜嫩绿叶(青葱)栽培转变。目前,生产上的青葱栽培多在设施内进行,一年四季可随栽随收,因不需培土,栽植密度是传统大葱的3倍,形成产品时间不足3个月,采取割收方式一年可生产四茬,亩产量高达15 000 kg,这仅仅只是控制了设施温度,若再调节良好的光照条件,有望进一步提高生产效率,但也因此对人工光源植物工厂生产提出了新要求。【前人研究进展】有研究表明,与白光相比,蓝光可提高生菜叶片的光合色素含量[5],促进黄瓜叶片的气孔开放[6],还能通过诱导次生代谢增加甜瓜对白粉病的抗性[7];而红光可提高叶用莴苣的光合色素含量和光合速率[8]。在品质方面,蓝光处理的茄子果肉中游离氨基酸、可溶性蛋白和茄皮中花青素含量显著高于红光处理[9]。白光处理的芥蓝可食部分Vc含量显著高于蓝光和红光处理,蓝光处理则提高了芥蓝可食部分的总酚和花青素含量[10];但草莓果实中可溶性固形物和Vc含量均以红光处理较高,蓝光处理则可提高果实可滴定酸和可溶性蛋白含量[11]。以上结果表明,不同作物的品质及营养分配对光质的响应存在显著差异。【本研究切入点】青葱生产作为大葱的新型栽培模式,其栽培管理措施显著不同于传统生产,特别是青葱的工厂化生产,只有依赖于科学的环境调控,才能保证产品的优质高产。但目前关于青葱生长、产量品质形成对光环境的响应还未见报道。【拟解决的关键问题】本研究以两个不同品种大葱为材料,研究不同光质条件下青葱生长、品质及光合特性的变化,旨在揭示光质对青葱光能利用及产量品质形成的影响,为LED植物工厂中青葱生产光环境调控提供理论依据。1 材料与方法
试验于2018—2019年在山东农业大学园艺科学与工程学院光质培养室进行。1.1 植物材料和培养条件
供试品种为‘章丘’大葱和‘天光’大葱,试验设计了一种青葱工厂化生产小型装置,包括栽培架、LED光源、光强调节器、中央空调和新风系统、微电脑自动控时开关等,该装置可实现光强、光质及温度、湿度等的自动控制(图1)。图1
新窗口打开|下载原图ZIP|生成PPT图1可调式LED光源试验装置
1:中央空调和新风系统:增加空气流动,控制室内温度;2:空气室;3:加湿管道,湿空气在空气室内经充分混合由新风系统送至栽培架各层;4:散流罩,起过滤作用;5:灯管;6:栽培架放置层;7:光强调节器;8:电源;9:微电脑自动控时开关
Fig. 1Adjustable LED light source culture frame
1: Central air conditioning and fresh air system: increase air flow, control indoor temperature; 2: Air chamber; 3: Humidification pipeline: humid air is thoroughly mixed in the air chamber and sent to the various layers of the cultivation rack by the fresh air system; 4: Shutter: filter; 5: Light tube; 6: Cultivation rack placement layer; 7: Light intensity adjuster; 8: Power supply; 9: Microcomputer automatic time switch
光强调节器与安装微电脑自动控时开关的电路相接,根据设定时间开关LED灯管,控制光周期。在室内安装中央空调和新风系统以及加湿管道(图1),其电源与安装微电脑自动控时开关的电路相接,根据大葱生长习性设置昼/夜温度与湿度,微电脑根据设定时间自动调节,新风系统确保每层栽培架空气循环。
1.2 试验设计
采用裂区设计,主区为大葱品种,分别为‘章丘’大葱和‘天光’大葱;副区为培养室光质,分别为白光(W)、蓝光(B)、绿光(G)、黄光(Y)和红光(R),光谱特征详见图2。采用72孔穴盘育苗,栽培基质为草炭﹕珍珠岩﹕蛭石(6﹕3﹕1)。播种后每3 d浇灌一次1/2 Hoagland营养液,苗高5 cm左右时每穴留苗1株,苗高15 cm左右、具2—3片真叶时置于不同光质LED调光植物灯(惠州可道科技股份有限公司生产)下培养。不同处理之间以黑白双面遮光布隔离。图2
新窗口打开|下载原图ZIP|生成PPT图2不同处理的光谱特征
W:白光;B:蓝光;G:绿光;Y:黄光;R:红光。下同
Fig. 2Characteristics of representative irradiance spectrum under different treatments
W:White light;B:Blue light;G:Green light;Y:Yellow light;R: Red light。The same as below
通过调整LED光源光强,使各处理植物冠层的光强维持在(301.6±12.7)μmol·m-2·s-1,昼/夜温度分别控制在25℃/18℃,空气相对湿度为(65.2±4.5)%,光照时间为12 h/d。试验设3次重复,每20株为一个重复,每处理60株。试验结果为两次独立试验的平均值。
1.3 测试指标及方法
用英国PP-SYSTEMS公司生产UNISPECDCTM光谱分析仪测定LED光源光谱特征,测定波段为300—1 100 nm,扫描波长间隔为3.3 nm。分别在试验处理0、10、20、30和40 d时取样,用英国PP-SYSTEMS公司产的CIRAS-3型光合仪测定植株上数第2片功能叶的光合参数,并通过控制内光源和CO2浓度测定Pn-PFD响应曲线和Pn-CO2响应曲线。用95%乙醇浸提法[12]测定叶片色素含量。培养40 d时每盘随机选取5株,测定植株生长量及可食部分品质,蒽酮法[13]测定可溶性糖含量,浓硫酸水解定糖法[14]测定纤维素含量,2,4-二硝基苯肼显色法[15]测定丙酮酸含量,考马斯亮蓝法[13]测定可溶性蛋白含量,茚三酮溶液显色法[13]测定游离氨基酸含量。
1.4 数据处理
试验数据用Excel 2016、DPS软件和光合光反应机理模型[16]进行处理、绘图和统计分析,运用Duncan’s新复极差法进行差异(P<0.05)显著性检验。2 结果
2.1 不同光质处理对青葱植株生长量的影响
不同品种大葱在不同光质下的生长量见表1,通过对其数据进行统计分析可以看出(表2),不同光质条件下培养40 d时,青葱的株高、假茎粗、叶片鲜重、假茎鲜重、根系鲜重和单株重均以白光处理较高,其次是蓝光,但假茎长则以蓝光处理较高,二者叶片数无显著差异。白光处理的青葱株高较蓝光增加了4.99%,而红光、绿光和黄光处理的株高则分别较蓝光减少了7.70%、14.33%和25.57%,白光处理的青葱单株重为25.21 g,蓝光、红光、绿光和黄光分别较白光减少了7.26%、16.86%、26.30%和37.80%。两品种青葱假茎长和叶片鲜重无显著差异,而假茎粗、假茎鲜重、根系鲜重和单株重均表现为‘章丘’优于‘天光’大葱。Table 1
表1
表1不同光质对青葱生长量的影响
Table 1
处理 Treatment | 叶片数 Leaf number | 株高 Plant height (cm) | 假茎长 Cauloid length (cm) | 假茎粗 Cauloid diameter (mm) | 叶片鲜重 Leaf FW (g) | 假茎鲜重 Cauloid FW (g) | 根系鲜重 Root FW (g) | 单株鲜重 Per plant FW (g) | |
---|---|---|---|---|---|---|---|---|---|
ZQ | W | 6.40±0.55a | 47.24±1.44a | 9.90±0.65a | 9.88±0.38a | 14.70±0.70a | 9.34±0.52a | 1.61±0.07a | 25.64±1.14a |
B | 6.00±0.71ab | 45.20±0.91b | 10.00±0.61a | 9.25±0.28b | 14.10±0.53a | 8.52±0.68b | 1.33±0.06b | 23.95±1.03b | |
G | 5.00±0.71cd | 37.28±1.57d | 8.68±0.31b | 7.75±0.08c | 11.04±0.46c | 6.93±0.68c | 1.22±0.12b | 19.18±0.72d | |
Y | 4.60±0.55d | 33.84±1.16e | 7.98±0.31c | 7.37±0.32d | 9.54±0.43d | 5.33±0.55d | 1.05±0.08c | 15.92±0.33e | |
R | 5.40±0.55bc | 40.30±1.35c | 9.40±0.42a | 9.17±0.12b | 13.03±0.39b | 8.61±0.27b | 1.24±0.06b | 22.87±0.62c | |
TG | W | 5.60±0.55a | 47.10±1.24a | 9.76±0.43ab | 8.82±0.32a | 14.84±0.44a | 8.83±0.41a | 1.11±0.07a | 24.78±0.47a |
B | 5.40±0.55ab | 44.66±1.27b | 10.14±0.72a | 8.70±0.25a | 13.92±0.33b | 7.92±0.39b | 0.97±0.08b | 22.81±0.46b | |
G | 4.60±0.55cd | 39.70±0.76d | 9.30±0.45b | 8.20±0.20b | 11.47±0.69c | 5.78±0.44c | 0.73±0.03d | 17.98±0.52c | |
Y | 4.00±0.00d | 33.04±1.02e | 7.00±0.35d | 7.31±0.16c | 9.71±0.30d | 4.90±0.44d | 0.83±0.24cd | 15.43±0.71d | |
R | 4.80±0.45bc | 42.64±2.17c | 8.66±0.55c | 7.62±0.17c | 11.99±0.29c | 6.10±0.21c | 0.95±0.06bc | 19.04±0.36c |
新窗口打开|下载CSV
Table 2
表2
表2不同光质下青葱生长量的多重比较
Table 2
处理 Treatment | 叶片数 Leaf number (No.) | 株高 Plant height (cm) | 假茎长 Cauloid length (cm) | 假茎粗 Cauloid diameter (mm) | 叶片鲜重 Leaf FW (g) | 假茎鲜重 Cauloid FW (g) | 根系鲜重 Root FW (g) | 单株鲜重 Per plant FW (g) | |
---|---|---|---|---|---|---|---|---|---|
品种 Variety | ZQ | 5.48±0.87a | 40.77±5.18a | 9.19±0.90a | 8.69±1.01a | 12.48±2.02a | 7.75±1.56a | 1.29±0.20a | 21.51±3.66a |
TG | 4.88±0.73b | 41.43±5.10a | 8.97±1.22a | 8.13±0.64b | 12.38±1.90a | 6.71±1.52b | 0.92±0.17b | 20.01±3.47b | |
光质 Light quality | W | 6.00±0.67a | 47.17±1.27a | 9.83±0.53a | 9.35±0.65a | 14.77±0.56a | 9.08±0.51a | 1.36±0.27a | 25.21±0.94a |
B | 5.70±0.67a | 44.93±1.08b | 10.07±0.64a | 8.98±0.38b | 14.01±0.43b | 8.22±0.61b | 1.15±0.20b | 23.38±0.96b | |
G | 4.80±0.63b | 38.49±1.72d | 8.99±0.49b | 7.97±0.27d | 11.25±0.60d | 6.35±0.81d | 0.97±0.27c | 18.58±0.87d | |
Y | 4.30±0.48c | 33.44±1.11e | 7.49±0.60c | 7.34±0.24e | 9.62±0.36e | 5.12±0.52e | 0.94±0.20c | 15.68±0.58e | |
R | 5.10±0.57b | 41.47±2.11c | 9.03±0.60b | 8.40±0.83c | 12.51±0.64c | 7.36±1.34c | 1.09±0.16b | 20.96±2.08c | |
P值 P-value | |||||||||
品种 Var. | 0.0004 | 0.0918 | 0.1275 | 0.0000 | 0.4799 | 0.0000 | 0.0000 | 0.0000 | |
光质 LQ | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
品种×光质Var.×LQ | 0.9541 | 0.0150 | 0.0060 | 0.0000 | 0.0136 | 0.0001 | 0.0155 | 0.0000 |
新窗口打开|下载CSV
2.2 不同光质处理对青葱品质的影响
不同品种大葱在不同光质下生长的青葱品质见表3,通过对其数据进行统计分析可以看出(表4),培养40 d时,白光处理青葱品质各测试指标均显著高于其他单色光,蓝光、红光、绿光、黄光处理青葱可溶性糖含量依次降低,分别较白光处理降低了11.67%、24.44%、36.67%和58.33%,而蓝光、红光、绿光、黄光处理青葱丙酮酸含量则分别比白光处理降低了8.65%、20.19%、56.73%和44.23%。两个大葱品种除可溶性蛋白外,其他品质指标均有显著差异,可溶性糖含量以‘天光’显著高于‘章丘’大葱,其他指标则均以‘章丘’大葱较高。Table 3
表3
表3不同光质对青葱品质的影响
Table 3
处理 Treatment | 可溶性糖 Soluble sugar (%) | 粗纤维 Crude cellulose (mg?g-1) | 丙酮酸 Pyruvate (mg?g-1) | 可溶性蛋白 Soluble protein (mg?g-1) | 游离氨基酸 Free amino acid (mg?g-1) | 干物质 Dry matter (%) | |
---|---|---|---|---|---|---|---|
ZQ | W | 1.46±0.04a | 0.24±0.00a | 1.03±0.02a | 1.43±0.01a | 0.93±0.05a | 8.42±0.08a |
B | 1.36±0.12a | 0.19±0.00b | 0.95±0.02b | 1.16±0.02b | 0.90±0.04a | 8.22±0.10b | |
G | 0.93±0.03c | 0.11±0.01d | 0.48±0.03e | 1.00±0.02d | 0.78±0.04b | 7.60±0.17d | |
Y | 0.70±0.06d | 0.08±0.00e | 0.64±0.05d | 0.92±0.01e | 0.69±0.05c | 7.24±0.11e | |
R | 1.15±0.03b | 0.14±0.01c | 0.83±0.02c | 1.07±0.02c | 0.89±0.05a | 7.97±0.09c | |
TG | W | 2.14±0.10a | 0.14±0.00a | 1.04±0.02a | 1.51±0.04b | 0.89±0.04a | 7.96±0.09a |
B | 1.82±0.05b | 0.10±0.00b | 0.95±0.02b | 1.60±0.05a | 0.76±0.04b | 7.74±0.11b | |
G | 1.36±0.12d | 0.09±0.00c | 0.42±0.01e | 0.78±0.05d | 0.60±0.03c | 7.00±0.18d | |
Y | 0.80±0.05e | 0.06±0.01d | 0.52±0.02d | 0.67±0.02e | 0.59±0.04c | 6.83±0.18e | |
R | 1.58±0.03c | 0.10±0.01b | 0.83±0.03c | 1.00±0.02c | 0.70±0.04b | 7.43±0.13c |
新窗口打开|下载CSV
Table 4
表4
表4不同光质下青葱品质的多重比较
Table 4
处理 Treatment | 可溶性糖 Soluble sugar (%) | 粗纤维 Crude cellulose (mg?g-1) | 丙酮酸 Pyruvate (mg?g-1) | 可溶性蛋白 Soluble protein (mg?g-1) | 游离氨基酸 Free amino acid (mg?g-1) | 干物质 Dry matter (%) | |
---|---|---|---|---|---|---|---|
品种 Variety | ZQ | 1.12±0.29b | 0.15±0.06a | 0.79±0.21a | 1.11±0.18a | 0.84±0.10a | 7.89±0.44a |
TG | 1.54±0.47a | 0.10±0.03b | 0.75±0.25b | 1.11±0.39a | 0.71±0.12b | 7.39±0.46b | |
光质 Light quality | W | 1.80±0.38a | 0.19±0.06a | 1.04±0.02a | 1.47±0.05a | 0.91±0.05a | 8.19±0.25a |
B | 1.59±0.26b | 0.15±0.05b | 0.95±0.02b | 1.38±0.24b | 0.83±0.08b | 7.98±0.27b | |
G | 1.14±0.25d | 0.10±0.01d | 0.45±0.04e | 0.89±0.13d | 0.69±0.10c | 7.30±0.36d | |
Y | 0.75±0.07e | 0.07±0.01e | 0.58±0.07d | 0.79±0.13e | 0.64±0.07c | 7.03±0.26e | |
R | 1.36±0.24c | 0.12±0.02c | 0.83±0.02c | 1.03±0.04c | 0.80±0.11b | 7.70±0.31c | |
P值 P-value | |||||||
品种Var. 光质LQ 品种×光质Var.×LQ | 0.0000 | 0.0000 | 0.0031 | 0.8627 | 0.0000 | 0.0000 | |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||
0.0000 | 0.0000 | 0.0020 | 0.0000 | 0.0485 | 0.5240 |
新窗口打开|下载CSV
2.3 不同光质处理对青葱叶片色素含量的影响
由图3可知,在处理40 d时,‘章丘’大葱叶片叶绿素含量显著高于‘天光’大葱。且叶绿素含量均以白光处理较高,蓝光、红光、绿光、黄光依次降低,处理40 d时,白光处理叶片叶绿素含量达1.58 mg?g-1,而蓝光、红光、绿光和黄光处理分别比白光处理降低了9.49%、14.56%、22.78%和30.38%。类胡萝卜素含量的变化趋势与叶绿素基本一致。图3
新窗口打开|下载原图ZIP|生成PPT图3不同光质对青葱叶片色素含量的影响
不同小写字母表示差异显著(P<0.05)。下同
Fig. 3Effects of different light qualities on pigment content in green onion leaves
Different lowercase letters indicate significant differences (P<0.05). The same as below
2.4 不同光质处理对青葱叶片光合参数的影响
+++图4显示,青葱叶片光合速率随处理时间的延长呈上升趋势,以白光处理较高,蓝光、红光、绿光、黄光依次降低。处理40 d时,白光处理的叶片净光合速率为7.63 μmol·m-2·s-1,蓝光、红光、绿光和黄光处理分别较白光处理降低了10.22%、19.40%和28.18%和37.35%。两个大葱品种相比,以‘章丘’叶片Pn显著高于‘天光’大葱,但二者的Gs则无显著差异。不同光质处理青葱叶片的Gs则存在显著差异,以白光处理较高,蓝光、红光、绿光和黄光处理依次降低,处理40 d时,白光处理的叶片气孔导度为441.50 mmol·m-2·s-1,蓝光、绿光、黄光和红光处理分别较白光降低了2.76%、7.29%、10.19%和5.02%。图4
新窗口打开|下载原图ZIP|生成PPT图4不同光质对青葱叶片光合速率和气孔导度动态变化的影响
Fig. 4Effects of different light qualities on dynamic changes of Pn and Gs in green onion leaves
2.5 不同光质对青葱叶片Pn-PFD和Pn-CO2响应特性的影响
由图5可知,两品种青葱叶片的Pn-PFD和Pn-CO2响应曲线变化趋势基本一致,且二者差异较小;而不同光质处理间则存在显著差异,均以白光处理Pn较高,蓝光、红光、绿光、黄光依次降低。图5
新窗口打开|下载原图ZIP|生成PPT图5不同光质对青葱叶片Pn-PFD(A、C)和Pn-CO2(B、D)的影响
Fig. 5Effects of different light qualities on Pn-PFD and Pn-CO2 in green onion leaves
通过光合光反应机理模型分析得光合参数见表5,可以看出,白光处理下青葱叶片AQY较高,为0.0542,蓝光、红光、绿光和黄光依次降低,表明青葱在单色光下以蓝光处理AQY较高,红光、绿光次之,黄光较低;其光饱和光合速率(Pmax)也以白光处理较高,达13.29 μmol·m-2·s-1,蓝光、红光、绿光和黄光处理分别较白光降低了5.12%、8.65%、13.47%和17.68%。青葱LSP以白光较高,其他单色光处理无显著差异,LCP则以黄光较高,绿光、红光次之,蓝光、白光较低,反映青葱对白光、蓝光光能利用能力较强。两个大葱品种除AQY外,其他参数均存在显著差异,Pmax以‘章丘’大葱显著高于‘天光’大葱,LSP和LCP则均以‘天光’大葱较高。
Table 5
表5
表5不同光质处理对青葱叶片光合生理特征参数的影响
Table 5
处理 Treatment | 表观光合 量子效率 AQY | 光饱和点 LSP (μmol·m-2·s-1) | 光饱和光合 速率 Pmax (μmol·m-2·s-1) | 光补偿点 LCP (μmol·m-2·s-1) | 羧化效率 CE | CO2饱和点CSP (μl·L-1) | CO2补偿点CCP (μl·L-1) | RuBP最大再生速率 Maximum RuBP regeneration rate (μmol·m-2·s-1) | |
---|---|---|---|---|---|---|---|---|---|
品种 Variety | ZQ | 0.0479a | 1157.59b | 12.54a | 56.25b | 0.0698a | 1376.92b | 71.05b | 36.64a |
TG | 0.0489a | 1303.91a | 11.65b | 71.97a | 0.0674b | 1418.73a | 75.69a | 35.56b | |
光质 Light quality | W | 0.0542a | 1297.13a | 13.29a | 45.61e | 0.0780a | 1386.15b | 57.35e | 38.98a |
B | 0.0504b | 1193.44b | 12.61b | 48.30d | 0.0720b | 1388.97b | 66.21d | 37.23b | |
G | 0.0454d | 1216.30b | 11.50d | 77.12b | 0.0640d | 1401.43a | 80.28b | 34.89d | |
Y | 0.0439d | 1195.32b | 10.94e | 85.62a | 0.0607e | 1404.76a | 88.09a | 32.98e | |
R | 0.0481c | 1251.55ab | 12.14c | 63.90c | 0.0683c | 1407.81a | 74.90c | 36.41c | |
P值 P-value | |||||||||
品种Var. | 0.1426 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0002 | 0.0000 | |
光质LQ | 0.0000 | 0.0135 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | |
品种×光Var.×LQ | 0.3187 | 0.0445 | 0.0000 | 0.0000 | 0.0003 | 0.0416 | 0.0499 | 0.0000 |
新窗口打开|下载CSV
另外,青葱叶片CE以白光处理较高,达0.0780,而蓝光、红光、绿光和黄光处理分别较白光处理降低了7.69%、12.44%、17.95%和22.18%。青葱的CCP以白光处理较低,为57.35 μl·L-1,蓝光、红光、绿光和黄光分别比白光增加了13.38%、30.60%、39.98%和53.60%;青葱的CSP以白光、蓝光显著低于其他单色光,而红光、绿光和黄光处理则无显著差异。RuBP最大再生速率以白光、蓝光较高,分别为38.98和37.23 μmol·m-2·s-1,表明蓝光处理下青葱叶片固定CO2的能力较强。两个大葱品种相关光合参数也存在显著差异,CE和RuBP最大再生速率以‘章丘’大葱显著高于‘天光’大葱,CSP和CCP则以‘天光’大葱较高。
3 讨论
光环境是影响农作物生长发育的重要环境因素之一,光强和光质是植物发育过程中的信号因子,植物可以通过其光感受器感知周围环境的光信号[17],直接影响植物的形态[18]。本研究中,在不同波长的LED光处理之间,青葱的生长和发育存在显著差异。全光谱白光处理的青葱生长最好,这与黄瓜的相关研究结论一致[19]。在所有单色光处理中,蓝光处理的青葱生长最优,而绿光和黄光生长最差,可能是由于青葱对不同光信号的响应不同所致,这与生菜[20]的研究结果一致。光合色素能够吸收和传递光能,是植物进行光合作用的物质基础,光质影响光合色素的合成,进而影响植物的光合作用[21],并在调控植物生长发育和形态建成中发挥重要作用[22]。TAIZ等[23]认为,叶绿素与类胡萝卜素对400—500 nm的蓝紫光有强烈的吸收,本研究中蓝光处理的青葱叶片叶绿素、类胡萝卜素含量和净光合速率显著高于其他单色光处理,这与前人在黄瓜[24]和紫背天葵[25]上的研究结果一致,但在生姜[26]等作物上也有不同的报道,可能是因为不同物种对光质的响应存在差异所致。本研究中,青葱光合速率以白光显著高于单色光,与其他单色光相比,蓝光下青葱的光合速率显著提高,可能与蓝光促进了气孔发育有关[27]。
光合作用响应曲线是判定植物光合效率的重要方法,通过解析曲线方程可以获得植物光合作用的相关生理参数[28]。本研究结果表明,除白光外,两品种大葱均表现为蓝光处理下的AQY、Pmax较大,LCP较低,表明蓝光处理增强了青葱叶片对弱光的利用能力,而蓝光处理青葱的CE和RuBP最大再生速率较高,说明蓝光处理青葱叶片Rubisco活性较高,加上其CCP较低,表明对CO2的固定能力较强。
前人研究表明,光质对不同作物品质的影响不尽一致,LIN等[29]研究表明,水培莴苣红/蓝/白(1/1/1)光处理的植株可溶性糖显著高于红/蓝(1/1)光处理。红光处理可显著提高番茄果实可溶性糖含量,蓝光下可溶性糖含量较低,但维生素C含量明显升高[30]。本研究发现,白光对青葱品质的形成优于各单色光,而蓝光处理青葱干物质积累量以及蛋白质、游离氨基酸、可溶性糖含量均高于其他单色光,说明蓝光既有利于青葱蛋白质的积累,也促进了碳水化合物的合成。葱属的主要风味物质是有机硫化物[31],作为葱属植物营养品质的重要指标,有机硫化物可用其分解产物—丙酮酸含量来表示[32]。本研究两个品种青葱丙酮酸含量均以蓝光处理较高,而孔灵君等[33]研究认为,氮、硫供应水平与青葱辛辣物质含量呈显著正相关,因此,下一步可以开展光质是否调节青葱体内矿质元素代谢的研究。
4 结论
光质可显著影响植物形态发生和光合特性。在光强(301.6±12.7)μmol·m-2·s-1条件下,全光谱的白光最有利于青葱的生长,光合效率较高,产量较高,品质最优;单色光条件下,蓝光处理较有利于青葱叶片色素、光合效率、气孔导度以及光能利用率的增加,红光次之,黄光和绿光下生长的青葱光合速率较低,植株矮小;蓝光有利于促进青葱碳水化合物和氨基酸含量的增加以及干物质和营养物质的积累。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
DOI:10.1038/nrg2049URLPMID:17304247 [本文引用: 1]
Plants have evolved complex and sophisticated transcriptional networks that mediate developmental changes in response to light. These light-regulated processes include seedling photomorphogenesis, seed germination and the shade-avoidance and photoperiod responses. Understanding the components and hierarchical structure of the transcriptional networks that are activated during these processes has long been of great interest to plant scientists. Traditional genetic and molecular approaches have proved powerful in identifying key regulatory factors and their positions within these networks. Recent genomic studies have further revealed that light induces massive reprogramming of the plant transcriptome, and that the early light-responsive genes are enriched in transcription factors. These combined approaches provide new insights into light-regulated transcriptional networks.
,
URLPMID:20532628 [本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1093/jxb/erq132URLPMID:20504875 [本文引用: 1]
The blue part of the light spectrum has been associated with leaf characteristics which also develop under high irradiances. In this study blue light dose-response curves were made for the photosynthetic properties and related developmental characteristics of cucumber leaves that were grown at an equal irradiance under seven different combinations of red and blue light provided by light-emitting diodes. Only the leaves developed under red light alone (0% blue) displayed dysfunctional photosynthetic operation, characterized by a suboptimal and heterogeneously distributed dark-adapted F(v)/F(m), a stomatal conductance unresponsive to irradiance, and a relatively low light-limited quantum yield for CO(2) fixation. Only 7% blue light was sufficient to prevent any overt dysfunctional photosynthesis, which can be considered a qualitatively blue light effect. The photosynthetic capacity (A(max)) was twice as high for leaves grown at 7% blue compared with 0% blue, and continued to increase with increasing blue percentage during growth measured up to 50% blue. At 100% blue, A(max) was lower but photosynthetic functioning was normal. The increase in A(max) with blue percentage (0-50%) was associated with an increase in leaf mass per unit leaf area (LMA), nitrogen (N) content per area, chlorophyll (Chl) content per area, and stomatal conductance. Above 15% blue, the parameters A(max), LMA, Chl content, photosynthetic N use efficiency, and the Chl:N ratio had a comparable relationship as reported for leaf responses to irradiance intensity. It is concluded that blue light during growth is qualitatively required for normal photosynthetic functioning and quantitatively mediates leaf responses resembling those to irradiance intensity.
,
DOI:10.1016/j.plaphy.2017.12.039URLPMID:29353685 [本文引用: 1]
We evaluated the effect of different light combinations on powdery mildew resistance and growth of melon seedlings. Light-emitting diodes were used as the light source and there were five light combinations: white light (420-680nm); blue light (460nm); red light (635nm); RB31 (ratio of red and blue light, 3: 1); and RB71 (ratio of red and blue light, 7: 1). Compared with other treatments, blue light significantly decreased the incidence of powdery mildew in leaves of melon seedlings. Under blue light, H2O2 showed higher accumulation, and the content of phenolics, flavonoid and tannins, as well as expression of the genes involved in synthesis of these substances, significantly increased compared with other treatments before and after infection. Lignin content and expression of the genes related to its synthesis were also induced by blue light before infection. Melon irradiated with RB31 light showed the best growth parameters. Compared with white light, red light and RB71, RB31 showed higher accumulation of lignin and lower incidence of powdery mildew. We conclude that blue light increases melon resistance to powdery mildew, which is dependent on the induction of secondary metabolism that may be related to H2O2 accumulation before infection. Induction of tolerance of melon seeds to powdery mildew by RB31 is due to higher levels of sucrose metabolism and accumulation of lignin.
,
[本文引用: 1]
[本文引用: 1]
,
URLPMID:26785555 [本文引用: 1]
URLPMID:26785555 [本文引用: 1]
,
DOI:10.1016/j.foodchem.2015.10.055URLPMID:26593611 [本文引用: 1]
The effects of different light qualities, including white, red and blue lights, on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts were investigated using light-emitting diodes (LEDs) as a light source. Our results showed that blue light treatment significantly decreased the content of gluconapin, the primary compound for bitter flavor in shoots, while increased the glucoraphanin content in roots. Moreover, the maximum content of vitamin C was detected in the white-light grown sprouts and the highest levels of total phenolic and anthocyanins, as well as the strongest antioxidant capacity were observed in blue-light grown sprouts. Taken together, the application of a colorful light source is a good practice for improvement of the consumers' acceptance and the nutritional phtyochemicals of Chinese kale sprouts.
,
URLPMID:26572027 [本文引用: 1]
Taking 'Miaoxiang No.7' strawberry as material, full red light, full blue light, full yellow light, full white light, red/blue/yellow (7/2/1), red/blue (7/2) light generated by light emitting diode (LED) was applied to accurately modulate with white light generated as control. The indicators of photosynthetic and fluorescence parameters, pigment content, fruit production and quality, root activity were investigated. The effects of light quality under the light intensity (500 micromol . m(-2) . s(-1)) on the photosynthetic characteristic, fruit production and quality of strawberry were studied. The results showed that the red light could increase photosynthetic parameters (Pn, Tr), while blue light had inhibitory effect. Intercellular CO2 concentration (Ci) and conductance (g(s)) were the highest under blue light. The fluorescence parameters were significantly affected by light quality, Fo, Fm and Phi PS II the highest under red light, but values of the maximal photochemical of PS II (Fv/Fm), Fv/Fo and Fm/Fo highest under red/blue/yellow (7/2/1). In addition, the soluble solids content and vitamin C were highest under red light, the blue light could increase protein and titratable acid, sugar-acid ratio was the highest under red/blue/yellow (7/2/1). Comprehensive analysis indicated that red/blue/yellow (7/2/1) was more beneficial to the increase of pigment contents of leaves, fruit production and some qualities of strawberry.
URLPMID:26572027 [本文引用: 1]
Taking 'Miaoxiang No.7' strawberry as material, full red light, full blue light, full yellow light, full white light, red/blue/yellow (7/2/1), red/blue (7/2) light generated by light emitting diode (LED) was applied to accurately modulate with white light generated as control. The indicators of photosynthetic and fluorescence parameters, pigment content, fruit production and quality, root activity were investigated. The effects of light quality under the light intensity (500 micromol . m(-2) . s(-1)) on the photosynthetic characteristic, fruit production and quality of strawberry were studied. The results showed that the red light could increase photosynthetic parameters (Pn, Tr), while blue light had inhibitory effect. Intercellular CO2 concentration (Ci) and conductance (g(s)) were the highest under blue light. The fluorescence parameters were significantly affected by light quality, Fo, Fm and Phi PS II the highest under red light, but values of the maximal photochemical of PS II (Fv/Fm), Fv/Fo and Fm/Fo highest under red/blue/yellow (7/2/1). In addition, the soluble solids content and vitamin C were highest under red light, the blue light could increase protein and titratable acid, sugar-acid ratio was the highest under red/blue/yellow (7/2/1). Comprehensive analysis indicated that red/blue/yellow (7/2/1) was more beneficial to the increase of pigment contents of leaves, fruit production and some qualities of strawberry.
,
[本文引用: 1]
[本文引用: 3]
[本文引用: 3]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1111/nph.12242URLPMID:23521402 [本文引用: 1]
A new mechanistic model of the photosynthesis-light response is developed based on photosynthetic electron transport via photosystem II (PSII) to specifically describe light-harvesting characteristics and associated biophysical parameters of photosynthetic pigment molecules. This model parameterizes 'core' characteristics not only of the light response but also of difficult to measure physical parameters of photosynthetic pigment molecules in plants. Application of the model to two C3 and two C4 species grown under the same conditions demonstrated that the model reproduced extremely well (r(2) > 0.992) the light response trends of both electron transport and CO2 uptake. In all cases, the effective absorption cross-section of photosynthetic pigment molecules decreased with increasing light intensity, demonstrating novel operation of a key mechanism for plants to avoid high light damage. In parameterizing these previously difficult to measure characteristics of light harvesting in higher plants, the model provides a new means to understand the mechanistic processes underpinning variability of CO2 uptake, for example, photosynthetic down-regulation or reversible photoinhibition induced by high light and photoprotection. However, an important next step is validating this parameterization, possibly through application to less structurally complex organisms such as single-celled algae.
,
DOI:10.1093/mp/sss007URLPMID:22311776 [本文引用: 1]
Arabidopsis cryptochrome 2 (CRY2) is a blue-light receptor mediating blue-light inhibition of hypocotyl elongation and photoperiodic promotion of floral initiation. CRY2 is a constitutive nuclear protein that undergoes blue-light-dependent phosphorylation, ubiquitination, photobody formation, and degradation in the nucleus, but the relationship between these blue-light-dependent events remains unclear. It has been proposed that CRY2 phosphorylation triggers a conformational change responsible for the subsequent ubiquitination and photobody formation, leading to CRY2 function and/or degradation. We tested this hypothesis by a structure-function study, using mutant CRY2-GFP fusion proteins expressed in transgenic Arabidopsis. We show that changes of lysine residues of the NLS (Nuclear Localization Signal) sequence of CRY2 to arginine residues partially impair the nuclear importation of the CRY2K541R and CRY2K554/5R mutant proteins, resulting in reduced phosphorylation, physiological activities, and degradation in response to blue light. In contrast to the wild-type CRY2 protein that forms photobodies exclusively in the nucleus, the CRY2K541R and CRY2K554/5R mutant proteins form protein bodies in both the nucleus and cytosol in response to blue light. These results suggest that photoexcited CRY2 molecules can aggregate to form photobody-like structure without the nucleus-dependent protein modifications or the association with the nuclear CRY2-interacting proteins. Taken together, the observation that CRY2 forms photobodies markedly faster than CRY2 phosphorylation in response to blue light, we hypothesize that the photoexcited cryptochromes form oligomers, preceding other biochemical changes of CRY2, to facilitate photobody formation, signal amplification, and propagation, as well as desensitization by degradation.
,
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.3389/fpls.2016.00250URLPMID:27014285 [本文引用: 1]
Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 mumolm(-2)s(-1) irradiance for a 16 hd(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation.
,
URLPMID:18839928 [本文引用: 1]
URLPMID:18839928 [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.13287/j.1001-9332.201611.039URLPMID:29696855 [本文引用: 1]
The effects of white light, red light, blue light, yellow light, red+blue light and red+blue+yellow light on the growth and quality of Gynura bicolor were investigated under the same light intensity (350+/-5 mumol.m(-2).s(-1)) by using light-emitting-diodes (LEDs) which could accurately regulate light quality and light intensity. The results indicated that compared with white light, red light could significantly promote the growth of G. bicolor and induce the accumulation of dry substance and soluble sugar content, but blue light inhibited the plant growth. The content of chlorophyll significantly decreased under the colored LEDs. Although the combination of red, blue and yellow light did not increase the dry substance accumulation, it resulted in significant elevation of total phenols, flavonoids and anthocyanins. The accumulation of these reduced substances could increase the tolerance to oxidative stress and the nutrient value in G. bicolor. This study provided a theoretical basis for G. bicolor diverse production regulated by light quality.
DOI:10.13287/j.1001-9332.201611.039URLPMID:29696855 [本文引用: 1]
The effects of white light, red light, blue light, yellow light, red+blue light and red+blue+yellow light on the growth and quality of Gynura bicolor were investigated under the same light intensity (350+/-5 mumol.m(-2).s(-1)) by using light-emitting-diodes (LEDs) which could accurately regulate light quality and light intensity. The results indicated that compared with white light, red light could significantly promote the growth of G. bicolor and induce the accumulation of dry substance and soluble sugar content, but blue light inhibited the plant growth. The content of chlorophyll significantly decreased under the colored LEDs. Although the combination of red, blue and yellow light did not increase the dry substance accumulation, it resulted in significant elevation of total phenols, flavonoids and anthocyanins. The accumulation of these reduced substances could increase the tolerance to oxidative stress and the nutrient value in G. bicolor. This study provided a theoretical basis for G. bicolor diverse production regulated by light quality.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URLPMID:11804540 [本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]