删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

光照强度对樱桃谷肉鸭c-fos、生物钟基因表达 及褪黑激素的影响

本站小编 Free考研考试/2021-12-26

崔家杰, 谢强, 翟双双, 龚涛, 朱勇文, 杨琳,, 王文策,华南农业大学动物科学学院/广东省动物营养调控重点实验室,岭南现代农业科学与技术广东省实验室,广州510642

Effects of Light Intensity on c-fos, Biological Clock Gene Expression and Melatonin in Cherry Valley Meat Ducks

CUI JiaJie, XIE Qiang, ZHAI ShuangShuang, GONG Tao, ZHU YongWen, YANG Lin,, WANG WenCe,College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642

通讯作者: 王文策,E-mail: wangwence@scau.edu.cn 杨琳,E-mail: ylin@scau.edu.cn

责任编辑: 林鉴非
收稿日期:2019-01-24接受日期:2019-04-17网络出版日期:2020-02-16
基金资助:“十三五”重点研发计划.2016YFD0500509-07
国家水禽产业技术项目.CARS-42-15
促进与美大地区科研合作与高层次人才培养项目


Received:2019-01-24Accepted:2019-04-17Online:2020-02-16
作者简介 About authors
崔家杰,E-mail:1251872575@qq.com。









摘要
【目的】研究持续黑暗下给予樱桃谷肉鸭不同强度的瞬时光照,对下丘脑、间脑、垂体和中脑中c-fos基因及相关生物钟基因的表达及血浆和肝脏中褪黑激素含量的影响。【方法】选用144只健康且体重接近的1日龄樱桃谷肉鸭饲养至21日龄,22日龄时随机分为2组,每组6个重复,持续黑暗7 d,期间自由采食和饮水,分别采用10 Lx和80 Lx的LED白光刺激1.5 h,暗适应1.5 h后立即从每个重复选取1只接近平均体重的肉鸭,检测下丘脑、间脑、垂体和中脑c-fos和生物钟基因的表达量,检测血浆和肝脏褪黑激素含量。【结果】10 Lx组的下丘脑和中脑c-fos表达量显著高于80 Lx光照组(P<0.05),间脑中c-fos的表达量显著低于80 Lx光照组(P<0.05),两组垂体组织中c-fos表达无显著影响(P>0.05)。与80 Lx组相比,10 Lx组下丘脑生物钟基因Bmal1Bmal2ClockPer2表达量均显著提高(P<0.05),Cry1表达量也有提高的趋势。10 Lx组间脑Bmal1的表达量显著提高(P<0.05),Bmal2ClockPer2Cry1的表达量无显著差异(P>0.05)。10 Lx组中脑ClockPer2的表达量显著高于80 Lx组(P<0.05),两组Bmal1Bmal2Cry1表达无显著影响(P>0.05)。不同强度的瞬时光照对垂体中生物钟基因的表达无显著影响(P>0.05)。与80 Lx组相比,10 Lx组肉鸭血浆中褪黑激素含量显著降低(P<0.05),肝脏中褪黑激素含量显著升高(P<0.05)。【结论】持续黑暗下,短暂高光强刺激可抑制下丘脑和中脑c-fos的表达,而提高间脑c-fos基因的表达,同时减弱了肉鸭下丘脑和间脑生物钟基因表达的振幅。
关键词: 樱桃谷肉鸭;持续黑暗;光照强度;c-fos;生物钟

Abstract
【Objective】 The objective of this study was to investigate the effects of different intensities of light stimulation on c-fos and related clock genes in hypothalamus, diencephalon, pituitary and mesencephalon, as well as melatonin levels in plasma and liver of cherry valley meat duck under continuous darkness. 【Method】 A total of one hundred and forty four 1-day-old cherry valley meat ducks were raised to the age of 21 days. 22-day-old cherry valley meat ducks were randomly divided into 2 groups. Each group had 6 replicates, with 12 ducks per replicate, and kept dark for 7 days, the ducks were given ad libitum access to water and feed. After 7 days lasting darkness, 28-day-old ducks received a LED white light stimulation of different intensities for 1.5 h and then a dark adaptation for 1.5 h. One duck from each replicate was slaughted for sample collection, the expression levels of c-fos and circadian clock genes in the hypothalamus, diencephalon, pituitary and mesencephalon were measured, and plasma and liver melatonin levels were measured. 【Result】 The expression level of c-fos in hypothalamus and mesencephalon of the 10 Lx group was significantly higher than that in the 80 Lx group (P<0.05). The level of c-fos in the diencephalon was significantly lower than that in the 80 Lx group (P<0.05), and there was no significant difference of c-fos expression in pituitary in the two groups(P>0.05). Compared with the 80 Lx group, the expression of clock gene clock, Bmal1, Bmal2 and Per2 in the 10 Lx group in the hypothalamus was significantly increased (P<0.05), and the expression of Cry1 was little increased in the 10 Lx group (P=0.06) .The expression level of Bmal1 in the diencephalon was significantly higher in the 10 Lx group (P<0.05), while Bmal2, Clock, Per2 and Cry1 showed no significant difference (P>0.05) in two groups. The expression of Clock and Per2 in the mesencephalon was significantly higher in the 10 Lx group than that in the 80 Lx group (P<0.05). The expression of Bmal1, Bmal2 and Cry1 in the two groups had no significant difference (P>0.05). The expression of clock genes in pituitary was not significant affect by light intensity (P>0.05). Compared with the 80 Lx, the plasma level of melatonin in 10 Lx group was significantly lower (P<0.05), while the melatonin levels in the liver were significantly higher. 【Conclusion】 In the continuous darkness, transient high intensity light stimulation could inhibit the expression of c-fos in the hypothalamus and mesencephalon, and increase the expression of c-fos in the diencephalon, while the stimulation could attenuate the amplitude of gene expression in the hypothalamus and diencephalon of the meat duck.
Keywords:cherry valley meat duck;continuous darkness;light intensity;c-fos;biological clock


PDF (452KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
崔家杰, 谢强, 翟双双, 龚涛, 朱勇文, 杨琳, 王文策. 光照强度对樱桃谷肉鸭c-fos、生物钟基因表达 及褪黑激素的影响[J]. 中国农业科学, 2020, 53(4): 848-856 doi:10.3864/j.issn.0578-1752.2020.04.016
CUI JiaJie, XIE Qiang, ZHAI ShuangShuang, GONG Tao, ZHU YongWen, YANG Lin, WANG WenCe. Effects of Light Intensity on c-fos, Biological Clock Gene Expression and Melatonin in Cherry Valley Meat Ducks[J]. Scientia Acricultura Sinica, 2020, 53(4): 848-856 doi:10.3864/j.issn.0578-1752.2020.04.016


0 引言

【研究意义】家禽生产受多种环境因素的影响,光照强度是影响家禽生产的重要环境因素之一,光照强度过高或过低均不利于家禽生产[1]。家禽的生物钟系统受光信息影响[2,3],光刺激也会引起中枢系统相关调控基因的表达变化。探究不同强度的光刺激下家禽脑部区域调节基因和生物钟基因的表达变化对阐明光照强度在生物钟系统发挥的作用有着重要的理论指导意义。【前人研究进展】从蓝藻到哺乳动物,其昼夜节律均受到光照的影响[4]。哺乳动物昼夜节律的主钟在下丘脑的视交叉上核[5],只有视网膜可以接收光信息;禽类视网膜、松果体和深脑部均可接收光信息[6],因此其昼夜节律的主钟更为复杂,包括视交叉上核、视网膜和松果体[7]。禽类生物钟的功能渗透机体的多项生理学过程,包括:繁殖[8]、睡眠、活动[9]、免疫[10]等。光照周期、光照强度和光波长的改变均影响家禽行为和生物钟基因的表达:与12L﹕12D相比,24L白光光照降低了肉鸡间脑、肝脏和骨骼肌生物钟基因Bmal1Per3的表达[11];在鹌鹑上的研究发现,光照刺激可以诱导松果体Per2水平的提高[12];也有研究表明,绿光提高肉鸡下丘脑生物钟基因Bmal1ClockCry1表达,红光降低生物钟基因表达[13]c-fos是一种原癌基因,又是即早表达基因,c-fos和其编码的蛋白在正常情况下参与神经细胞的生长、发育、分化等过程[14]c-fos作为中枢神经系统的标志物,正常情况下表达水平较低,应激时可快速短暂表达,具有信号传递的特征。光照刺激也引起c-fos基因的表达,对鼹鼠光照刺激后,在视网膜和脑中检测到有c-fos的表达[15],下丘脑中c-fos只有在光刺激引起动物行为节律发生相移时表达才会增加,说明c-fos在光照引起昼夜节律的相移中发挥重要作用[16,17]。【本研究切入点】家禽的生物钟机制更加复杂,鸭对光信息环境的反应可能较母鸡更敏感[18]。由于c-fos在正常情况下,表达水平较低,只有在受到信号刺激的情况下才会迅速短暂表达[19];同时,生物钟基因在家禽昼夜节律以及各种光照条件下研究较多,但瞬时光刺激如何影响其表达鲜有研究。【拟解决的关键问题】以樱桃谷肉鸭为研究对象,采用持续7 d黑暗条件下短暂光信号刺激模式,以便更好地使光信号形成较强刺激,激发c-fos的瞬时表达,从而研究瞬时光刺激对下丘脑、垂体、间脑和中脑的c-fos基因及生物钟基因表达的影响,探究不同强度的瞬时光刺激下家禽脑部区域调节基因和生物钟基因的表达变化,为进一步阐明肉鸭对光信号响应的变化规律提供数据支持。

1 材料与方法

1.1 试验动物与试验设计

选用144只健康且体重接近的1日龄樱桃谷肉鸭在同一饲养管理下饲养至21日龄,22日龄时随机分为2个处理,每个处理6个重复,每个重复12只鸭。光照制度方法参照文献[20,21]中c-fos研究方法。持续黑暗(1 Lx)条件下饲养[22],黑暗时肉鸭的饲养设施及料槽水槽的摆放与1—21d时一致,黑暗7 d后,采用10和80 Lx白光刺激1.5 h,LED灯为光源,刺激后暗适应1.5 h。

1.2 饲养管理

鸭舍为全封闭、面积一致的2个独立房间,每个房间6栏,网上饲养。舍内温度最后控制在26℃左右,湿度50%—70%。水线统一喂水,人工喂料,试验期间鸭子自由采食和饮水,饲粮组成为玉米59.50%,去皮豆粕28.70%,低筋面粉4.00%,米糠粕2.00%,石粉1.30%,大豆油0.50%,预混料4.00%,营养水平为代谢能12.14 MJ·kg-1,粗蛋白质20.00%。本试验于2017年8月至2017年9月在华南农业大学动物科学学院伟南楼环控舱进行。

1.3 样品采集及指标测定

1.3.1 样品采集 肉鸭暗适应1.5 h后,每个重复选取1只接近平均体重的肉鸭:颈静脉采血,每只肉鸭采血约10 mL,置肝素钠抗凝管中,斜面静置30 min,3 000 r/min离心10 min吸取上清分装,-80℃冰箱保存待测。采集肝脏迅速放入液氮,-80℃冰箱保存,测定激素含量。采集下丘脑、垂体、间脑和中脑迅速放入液氮,-80℃冰箱保存,测定c-fos及生物钟相关基因表达。

1.3.2 肝脏和血浆中褪黑激素测定 剪取适量肝脏组织,4℃生理盐水中漂洗后,滤纸吸干,称重,加入9倍体积的4℃生理盐水,匀浆,2 500 r/min离心,取上清分装。血浆和肝脏匀浆中褪黑激素的含量采用ELISA试剂盒(南京建成生物科技有限公司)测定,具体方法按照说明书测定。

1.3.3 RNA提取和反转录 采用Magen HiPure Universal RNA Mini Kit(美基,广州)试剂盒提取不同脑组织的总RNA。再用Prime Script RT reagent Kit(takara,日本)制备cDNA 样品,按照说明书操作,cDNA样品置-20℃冰箱中保存备用。

1.3.4 引物合成和荧光定量PCR 根据GenBank公布的绿头鸭基因的mRNA序列设计引物序列(表1),由上海生工生物合成。采用SYBR Green (TOYOBO,日本)染料法在ABI7500(Applied Bio-systems, Foster City,美国)上进行RT-qPCR,PCR反应条件为95℃预变性30 s ,然后95℃变性5 s ,退火温度60℃ 34 s共40个循环。用β-actin作为内参,采用2-ΔΔCT法对荧光定量PCR结果进行数据处理。

Table 1
表1
表1引物信息
Table 1Primer information
基因 Gene序列号 Accession No.引物序列(5'-3') Primer sequence (5′-3′)大小 Product (bp)
c-fosNM_205508.1F: CAGCCCACCCTCATCTCCTC144
R: CCTTCGTCCGATGCTCTGC
ClockXM_005012718.3F: GCACTCCTCCAAGGCAAAG169
R: AACACTGGCTGGGACACG
Cry1XM_005011518.2F: GGCTGTTTGTCTTGTCGT145
R: ACCGTGGATTGTTAGTCG
Bmal1XM_013106919.2F: TGTTTCCACCAGCGTTCT133
R: AATGCCAGGGACAGTAGG
Bmal2NM-204133.1F: CGGCGTTCCTTCTTCTGTC165
R: TTCCTCTTCCACTCCCACC
Per2XM_005028592.3F: AAGCGTTGTATCACTCAC106
R: ACTCGGACCATCTTCTAT
β-actinNM_001310421.1F: TACGCCAACACGGTGCTG215
R: GATTCATCATACTCCTGCTTG

新窗口打开|下载CSV

1.4 数据统计分析

本研究中涉及光照和性别两种因素。首先按照双因素采用SAS 9.2软件来统计分析,发现性别对基因表达无显著影响,且光照和性别之间无交互作用,因此我们进一步采用单因素方差分析(one-way ANOVA)的方法统计分析,P<0.05为差异显著,P<0.01为差异极显著。

2 结果

2.1 不同强度光照对樱桃谷肉鸭脑组织c-fos mRNA相对表达量的影响

图1所示,与80 Lx组相比,10 Lx组肉鸭下丘脑中c-fos mRNA的相对表达量极显著提高(P<0.01),中脑c-fos表达量显著提高(P<0.05)。而间脑中10 Lx组c-fos的表达量极显著降低(P<0.01),两组垂体中c-fos mRNA相对表达量无显著差异(P>0.05)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1不同光照强度处理对肉鸭c-fos mRNA 相对表达量的影响

**表示差异极显著,P<0.01, *表示差异显著,P<0.05
Fig. 1Effects of different light intensity treatments on the relative expression of c-fos mRNA in meat ducks

Columns with ** mean extremely significant difference(P<0.01), Columns with * mean significant difference(P<0.05). The same as below


2.2 不同强度光照对樱桃谷肉鸭不同脑组织生物钟基因mRNA相对表达量的影响

表2所示,不同光照强度处理极显著影响了下丘脑和间脑中Bmal1 mRNA相对表达量,10 Lx组的Bmal1 mRNA的表达量极显著的高于80 Lx组(P<0.01)。两组垂体和中脑中的Bmal1 mRNA表达量无显著差异(P>0.05)。

Table 2
表2
表2不同光照强度处理对肉鸭Bmal1 mRNA相对表达量的影响
Table 2Effects of different light intensity treatments on the relative expression of Bmal1 mRNA in meat ducks
10 Lx80 Lx标准误 SemPP value
下丘脑Hypothalamus1.15A0.87B0.05<0.01
间脑Diencephalon1.43A0.76B0.08<0.01
垂体Pituitary1.201.040.190.60
中脑Mesencephalon1.261.200.200.87
同行数据标有不同大写字母者表示差异极显著(P<0.01),标有不同小写字母者表示差异显著(P<0.05),未标字母者差异不显著(P>0.05)。下同
In the same row, values with different capital letter mean extremely significant difference (P<0.01), values with different small letter mean significant difference(P<0.05), with no letter mean no significant difference(P>0.05).The same as below

新窗口打开|下载CSV

不同光照强度对肉鸭生物钟基因Bmal2 mRNA相对表达量的影响如表3所示,10 Lx组下丘脑中Bmal2的 mRNA相对表达量极显著高于80 Lx组(P<0.01),间脑中10 Lx组Bmal2 的表达有高于80 Lx组的趋势(P=0.08)。垂体和中脑组织中两组的Bmal2表达量差异不显著(P>0.05)。

Table 3
表3
表3不同光照强度处理对肉鸭Bmal2 mRNA相对表达量的影响
Table 3Effects of different light intensity treatments on the relative expression of Bmal2 mRNA in meat ducks
10 Lx80 Lx标准误 SemPP value
下丘脑Hypothalamus1.03A0.51B0.09<0.01
间脑Diencephalon1.030.720.120.08
垂体Pituitary1.050.980.120.74
中脑Mesencephalon0.890.760.120.45

新窗口打开|下载CSV

不同光照强度对肉鸭生物钟基因Clock mRNA相对表达量的影响如表5所示,10 Lx组的肉鸭下丘脑和中脑Clock 基因表达量显著高于80 Lx组(P<0.05)。两组垂体和间脑中Clock表达量差异不显著(P>0.05)。

Table 4
表4
表4不同光照强度处理对肉鸭Clock mRNA相对表达量的影响
Table 4Effects of different light intensity treatments on the relative expression of Clock mRNA in meat ducks
10 Lx80 Lx标准误 SemPP value
下丘脑Hypothalamus0.96a0.44b0.130.02
间脑Diencephalon1.090.650.350.19
垂体Pituitary0.780.540.100.14
中脑Mesencephalon0.81a0.50b0.070.02

新窗口打开|下载CSV

不同光照强度对肉鸭生物钟基因Cry1 mRNA相对表达量的影响如表5所示,10 Lx 组下丘脑中Cry1 mRNA相对表达量有高于80 Lx组的趋势(P=0.06),两组肉鸭间脑、垂体和中脑中Cry1 mRNA的相对表达量差异不显著(P>0.05)。

Table 5
表5
表5不同光照强度处理对肉鸭Cry1 mRNA相对表达量的影响
Table 5Effects of different light intensity treatments on the relative expression of Cry1 mRNA in meat ducks
10 Lx80 Lx标准误 SemPP value
下丘脑Hypothalamus0.930.480.140.06
间脑Diencephalon0.900.620.100.09
垂体Pituitary1.000.760.120.23
中脑Mesencephalon1.010.860.080.18

新窗口打开|下载CSV

不同光照强度对肉鸭生物钟基因Per2 mRNA相对表达量的影响如表6所示,10 Lx 组下丘脑中Per2表达量极显著高于80 Lx组(P<0.01),中脑的Per2表达显著高于80 Lx组(P<0.05)。垂体和间脑中两组的Per2表达量差异不显著(P>0.05)。

Table 6
表6
表6不同光照强度处理对肉鸭Per2 mRNA相对表达量的影响
Table 6Effects of different light intensity treatments on the relative expression of Per2 mRNA in meat ducks
10 Lx80 Lx标准误 SemPP Value
下丘脑Hypothalamus0.84A0.41B0.05<0.01
间脑Diencephalon0.930.780.360.11
垂体Pituitary1.080.970.090.43
中脑Mesencephalon0.82a0.59b0.060.04

新窗口打开|下载CSV

2.3 不同强度光照对樱桃谷肉鸭血浆和肝脏褪黑激素含量的影响

图2-A和B可知,80 Lx血浆中褪黑激素含量显著高于10Lx组(P<0.05),而肝脏中褪黑激素含量显著低于10Lx组(P<0.05)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2不同光照强度处理对肉鸭血浆和肝脏褪黑激素含量的影响

Fig. 2Effects of different light intensity treatments on plasma and liver melatonin content in meat ducks



3 讨论

光照强度是家禽生产中重要环境因素之一,c-fos在应对外界环境的变化调控基因表达方面也发挥着重要的作用,在哺乳动物的中枢生物钟下丘脑视交叉上核中,光照环境的变化引起c-fos表达的改变,同时也会引起机体昼夜节律的改变。c-fos是脑对各种刺激包括光照在内引起反应的标志物[23]。研究表明,给予光刺激的火鸡,其下丘脑的c-fos mRNA表达量显著高于未受到光刺激时的表达[24]。在本研究中,采用持续7 d黑暗条件后给予1.5 h光照,这种模式有助于形成对肉鸭的强烈光刺激,从而激发脑部c-fos的迅速表达。本试验中下丘脑和中脑10 Lx光照组的c-fos mRNA的相对表达量显著高于80 Lx光照组,而间脑10 Lx光照组的c-fos mRNA表达量极显著低于80 Lx光照组,说明高光强刺激可抑制下丘脑和中脑c-fos的表达,而提高间脑c-fos的表达。对母鸡间脑神经核团c-fos表达的研究也表明,间脑中的圆核和外侧膝状腹侧核c-fos在20和30 Lx表达最强,10 Lx组最低,但中脑的c-fos表达与肉鸭不同,随着光照强度的增加,中脑c-fos表达也加强[20]。对大鼠的研究发现,在下丘脑视交叉上核,随着光照强度的增加,Fos免疫阳性细胞的数量也增加[25]。这表明光信号可能通过调控神经细胞中c-fos的表达传递光信息,且脑组织不同部位对于光刺激的感应也不相同[26],不同种类动物脑部对于光信息感应的模式并不完全相同。c-fos的表达还会影响昼夜节律的相位,研究发现,c-fos是哺乳动物生物钟正常夹带所需要的[27],光照诱导的大鼠自发性活动的昼夜节律的改变与c-fos的表达有关,c-fos被阻断后抑制了光照诱导的相移[28]

昼夜节律被生物钟基因所调控,包括正调控原件ClockBmal1/2,负调控原件Per1/2/3Cry1/2。与哺乳动物不同,禽类不表达Per1,只表达Per2Per3[29]ClockBmal在细胞质中以二聚体形式结合,并进入细胞核结合在负调控原件启动子的E-box上,激活PersCrys基因的表达,细胞质中的Per和Cry蛋白形成复合物进入细胞核会干扰Clock/Bmal1二聚体的活性,抑制PersCrys的表达。ReverbαRorα分别通过激活和抑制Bmal1进而调控生物钟基因的表达[9]。本试验中,与10 Lx组相比,80 Lx瞬时光照显著降低了下丘脑中生物钟正调控基因Bmal1Bmal2Clock和负调控基因Cry1Per2的表达量;间脑中Bmal1Bmal2的表达在80 Lx光照刺激下也低于10 Lx组。不同光照强度对垂体中上述生物钟基因表达均无显著差异。这表明,瞬时高强度光刺激减弱了肉鸭下丘脑和间脑生物钟基因表达的振幅。研究发现,夜晚时间采用低光照强度处理的小鼠生物钟节律发生了改变,per1的振幅降低;仓鼠的研究也发现,急剧的光刺激消除了中枢神经系统生物钟基因的节律,且表达量降低了18%—40%[30,31]。下丘脑是家禽的主钟之一,本研究结果也表明瞬时光刺激对下丘脑的影响最大。另一方面,生物钟基因及表达节律也受到光照制度的影响:持续光照下肉鸡间脑的生物钟基因Bmal1Cry1Per3与12L:12D相比发生了显著改变,振幅降低[11]。与12L:12D的光照周期相比,23L:1D破坏了鸡生物钟基因ClockBmal1和Per2的昼夜节律[32]。肉鸡的松果体细胞在持续黑暗下提高了正调控生物钟基因ClockBmal2的表达,而12L:12D 提高了负调控基因Per2Per3的表达[33]。研究表明光照强度会对山雀的行为节律产生影响,与夜间弱光相比,强光下山雀活跃开始时间提前,活跃结束时间推迟[34]

褪黑激素主要来自松果体合成和释放,在视网膜和肠道嗜铬细胞也可以合成,褪黑激素具有抗氧化和调节免疫等生理功能。AANAT是褪黑激素合成过程中的限速酶之一[35],生物钟基因Bmal1/Clock二聚体可通过结合在AANAT的E-box上来调控AANAT的表达,进而调节褪黑激素的表达[36]。血液中褪黑激素主要来源于松果体,光照可通过“视网膜-下丘脑视交叉上核(SCN)-松果体神经传导途径”以及“视网膜外光感受体途径”来调节松果体褪黑激素的分泌[37,38]。正常光照条件下,血液中褪黑激素主要受松果体分泌的调节,呈光抑制现象。研究表明,5、10和50 Lx光照强度下北京油鸡血清中的褪黑激素含量显著低于1 Lx组[39]。但本研究中80 Lx组血清褪黑激素水平显著高于10 Lx组,同时80 Lx组间脑c-fos基因的表达也显著高于10 Lx组,说明在持续黑暗后瞬时光刺激下,松果体褪黑激素的分泌调节模式可能会发生改变:一方面,瞬时光照通过刺激间脑的视交叉神经,激活了间脑部位c-fos的高表达,进而提高松果体褪黑激素的分泌;另一方面,持续黑暗后短暂瞬时的强光照对肉鸭也可能是一种应激,而应激条件会导致动物体内褪黑激素的释放和升高[40]。研究表明,对大鼠进行慢性束缚应激,其血浆褪黑激素的含量显著升高[41]。同时,处于应激条件下的动物机体肾上腺素的分泌也会增加[42],有研究发现,肾上腺素的提高促进了鸡松果体细胞褪黑激素的分泌[43]。因此,两方面的作用可能会导致高瞬时光刺激下血清褪黑激素水平升高。组织中的褪黑激素水平受到血液和自身分泌的影响,而且自身分泌的调控方式和松果体是有区别的,肝脏是褪黑激素的主要代谢器官[35, 44],应激增强的情况下,肝脏对褪黑激素分解代谢的增加可能导致其组织褪黑激素水平的降低。以往研究主要集中于常规条件下光照强度对机体的影响,在后续研究中,不同光照模式,如瞬时光刺激模式,对于调节机体生长发育、褪黑激素分泌以及生物钟节律的作用机制还有待进一步深入研究。

4 结论

持续黑暗下给予樱桃谷肉鸭不同强度(10 Lx:80 Lx)的光刺激,对肉鸭多个脑部区域的c-fos、生物钟基因及血浆和肝脏的褪黑素水平均有显著影响。瞬时强光刺激可下调下丘脑及中脑的c-fos表达,促进间脑c-fos表达。在4个脑部区域中,光强对下丘脑的影响最大。同时,瞬时强光刺激减弱了肉鸭下丘脑和间脑生物钟基因表达的振幅。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

DEEP A, RAGINSKI C, SCHWEAN-LARDNER K, FANCHER B I, CLASSEN H L . Minimum light intensity threshold to prevent negative effects on broiler production and welfare
British Poultry Science, 2013,54(6):686-694.

[本文引用: 1]

JIANG N, WANG Z, CAO J, DONG Y, CHEN Y . Role of monochromatic light on daily variation of clock gene expression in the pineal gland of chick
Journal of Photochemistry and Photobiology B: Biology, 2016, (164):57-64.

[本文引用: 1]

DAWSON A, KING V M, BENTLEY G E, BALL G F . Photoperiodic control of seasonality in birds
Journal of Biological Rhythms, 2001,16(4):365-380.

[本文引用: 1]

EDGAR R S, GREEN E W, YUWEI Z, GERBEN V O, MARIA O, XIMING Q, YAO X, MIN P, VALEKUNJA U K, FEENEY K A . Peroxiredoxins are conserved markers of circadian rhythms
Nature, 2012,485(7399):301-312.

[本文引用: 1]

BUHR E D, TAKAHASHI J S . Molecular components of the mammalian circadian clock
Handbook of Experimental Pharmacology, 2013(217):3-27.

[本文引用: 1]

石雷, 李云雷, 孙研研, 陈继兰 . 光照节律调控鸡繁殖性能机制研究进展
中国农业科学, 2018,51(16):3191-3200.

URL [本文引用: 1]

SHI L, LI Y L, SUN Y Y, CHEN J L . Research progress on the regulatory mechanism of lighting schedule affecting the reproduction performance of chickens.
Scientia Agricultura Sinica, 2018, 51(16):3191-3200. (in Chinese)

URL [本文引用: 1]

GWINNER E, BRANDST TTER R . Complex bird clocks
Philosophical Transactions of the Royal Society of London, 2001,356(1415):1801-1810.

[本文引用: 1]

王晓鹃, 刘磊, 焦洪超, 赵景鹏, 林海 . 生物钟在蛋鸡排卵-产蛋过程中的调控作用
中国农业科学, 2018,51(16):3181-3190.

URL [本文引用: 1]

WANG X J, LIU L, JIAO H C, ZHAO J P, LIN H . Regulation of biological clock in ovulation-laying of laying hens
Scientia Agricultura Sinica, 2018,51(16):3181-3190. (in Chinese)

URL [本文引用: 1]

CASSONE V M . Avian circadian organization: A chorus of clocks
Frontiers in Neuroendocrinology, 2014,35(1):76-88.

[本文引用: 2]

TURKOWSKA E, PIETRUSZKA D, SKWARLO-SONTA K . Thymic E4bp4 gene transcription is up-regulated in the chicken during experimental peritonitis modified by the season-related lighting conditions
Developmental & Comparative Immunology, 2016,65:309-313.

[本文引用: 1]

HONDA K, KONDO M, HIRAMOTO D, SANEYASU T, KAMISOYAMA H . Effects of continuous white light and 12 h white-12 h blue light-cycles on the expression of clock genes in diencephalon, liver, and skeletal muscle in chicks
Comparative Biochemistry & Physiology Part a Molecular & Integrative Physiology, 2017,207:73-78.

[本文引用: 2]

YOSHIMURA T, SUZUKI Y, MAKINO E, SUZUKI T, KUROIWA A, MATSUDA Y, NAMIKAWA T, EBIHARA S . Molecular analysis of avian circadian clock genes
Molecular Brain Research, 2000,78(1):207-215.

[本文引用: 1]

JIANG N, WANG Z, CAO J, DONG Y, CHEN Y . Effect of monochromatic light on circadian rhythmic expression of clock genes in the hypothalamus of chick
Journal of Photochemistry & Photobiology B Biology, 2017,173:476.

[本文引用: 1]

LUKSCH H, COX K, KARTEN H J . Bottlebrush dendritic endings and large dendritic fields: motion-detecting neurons in the tectofugal pathway
Journal of Comparative Neurology, 2015,423(2):243-260.

[本文引用: 1]

ARONIN N, SAGAR S M, SHARP F R, SCHWARTZ WJ . Light regulates expression of a Fos-related protein in rat suprachiasmatic nuclei
Proceedings of the National Academy of Sciences of the United States of America, 1990,87(15):5959-5962.

[本文引用: 1]

GINTY D D, KORNHAUSER J M, THOMPSON M A, BADING H, MAYO K E, TAKAHASHI J S, GREENBERG M E . Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock
Science, 1993,260(5105):238-241.

[本文引用: 1]

REA M A . Different populations of cells in the suprachiasmatic nuclei express c- fos in association with light-induced phase delays and advances of the free-running activity rhythm in hamsters
Brain Research, 1992,579(1):107-112.

[本文引用: 1]

PORTER L, PORTER A, POTTER H, ALENCIKS E, FRALEY S M, FRALEY G S . Low light intensity in Pekin duck breeder barns has a greater impact on the fertility of drakes than hens
Poultry Science, 2018, 2018-12-01, 97(12):4262-4271.

[本文引用: 1]

HUNT S P, PINI A, EVAN G . Induction of c-fos protein in spinal cord neurones following sensory stimulation
Nature, 1987,328(6131):632-634.

[本文引用: 1]

兰晓宇, 胡满, 程金金, 张毅, 胥佳利 . 不同强度光照对母鸡中脑和间脑c-fos基因表达的影响
中国农学通报, 2010,26(3):11-14.

[本文引用: 2]

LAN X Y, HU M, CHENG J J, ZHANG Y, XU J L . Influence on the expression of c-fos gene by different intensity light stimulation in hen mesencephalon and diencephalon
Chinese Agricultural Science Bulletin, 2010,26(3):11-14. (in Chinese)

[本文引用: 2]

程金金, 胡满, 张毅, 郭洁 . 光诱导c-fos基因在不同日龄母鸡中脑和间脑的表达
河北农业大学学报, 2009,32(3):85-88.

[本文引用: 1]

CHENG J J, HU M, ZHANG Y, GUO J . Expression of c-fos gene induced by light stimulation in hen mesencephalon and diencephalons at different day -age
Journal of Agricultural University of Hebei, 2009,32(3):85-88. (in Chinese)

[本文引用: 1]

DEEP A, RAGINSKI C, SCHWEAN-LARDNER K, FANCHER B I, CLASSEN H L . Minimum light intensity threshold to prevent negative effects on broiler production and welfare
British Poultry Science, 2013,54(6):686-694.

[本文引用: 1]

OELSCHL GER H H, NAKAMURA M, HERZOG M, BURDA H . Visual system labeled by c-Fos immunohistochemistry after light exposure in the 'blind' subterranean Zambian mole-rat (Cryptomys anselli)
Brain Behavior & Evolution, 2000,55(4):209-220.

[本文引用: 1]

THAYANANUPHAT A, KANG ST, MILLAM J, EL-HALAWANI M . Rhythm-dependent light induction of the c-fos gene in the turkey hypothalamus
Journal of Neuroendocrinology, 2010,19(6):407-417.

[本文引用: 1]

OOSTHUIZEN M K, BENNETT N C, COOPER H M . Photic induction of Fos in the suprachiasmatic nucleus of African mole-rats: Responses to increasing irradiance
Chronobiology International, 2010,27(8):1532-1545.

[本文引用: 1]

EARNEST D J, IADAROLA M, YEH H H, OLSCHOWKA J A . Photic regulation of c- fos expression in neural components governing the entrainment of circadian rhythms
Experimental Neurology, 1990,109(3):353-361.

[本文引用: 1]

HONRADO G I, JOHNSON R S, GOLOMBEK D A, SPIEGELMAN B M, PAPAIOANNOU V E, RALPH M R . The circadian system of c- fos deficient mice
Journal of Comparative Physiology A, 1996,178(4):563-570.

[本文引用: 1]

WOLLNIK F, BRYSCH W, UHLMANN E, GILLARDON F, BRAVO R, ZIMMERMANN M, SCHLINGENSIEPEN KH, HERDEGEN T . Block of c-fos and junb expression by antisense oligonucleotides inhibits light-induced-phase shifts of the mammalian circadian clock
European Journal of Neuroscience, 2010,7(3):388-393.

[本文引用: 1]

YASUO S, EBIHARA S, YOSHIMURA T . Circadian expression of clock gene in the optic tectum of Japanese quail
Brain Research, 2004,1005(1):193-196.

[本文引用: 1]

SHUBONI D, YAN L . Nighttime dim light exposure alters the responses of the circadian system
Neuroscience, 2010,170(4):1172-1178.

[本文引用: 1]

GRONE B P, CHANG D, BOURGIN P, CAO V, FERNALD R D, HELLER H C, RUBY N F . Acute light exposure suppresses circadian rhythms in clock gene expression
Journal of Biological Rhythms, 2011,26(1):78.

[本文引用: 1]

HIEKE A S C, HUBERT S M, ATHREY G . Circadian disruption and divergent microbiota acquisition under extended photoperiod regimens in chicken
2018.

[本文引用: 1]

MA S, WANG Z, CAO J, DONG Y, CHEN Y . Effect of Monochromatic Light on Circadian Rhythm of Clock Genes in Chick Pinealocytes
Photochemistry & Photobiology, 2018.

[本文引用: 1]

DE J M, JENINGA L, OUYANG J Q, VAN O K, SPOELSTRA K, VISSER M E . Dose-dependent responses of avian daily rhythms to artificial light at night
Physiology & Behavior, 2016,155(3):172-179.

[本文引用: 1]

PANDI-PERUMAL S R, SRINIVASAN V, MAESTRONI G, CARDINALI D P, POEGGELER B, HARDELAND R . Melatonin - Nature's most versatile biological signal?
FEBS Journal, 2010,273(13):2813-2838.

[本文引用: 2]

CHONG N W, BERNARD M, KLEIN D C . Characterization of the chicken serotonin N-acetyltransferase gene
Journal of Biological Chemistry, 2000,275(42):32991-32998.

[本文引用: 1]

LARSEN P J . Tracing autonomic innervation of the rat pineal gland using viral transneuronal tracing
Microscopy Research & Technique, 1999,46(4‐5):296-304.

[本文引用: 1]

T N, T Y . Molecular basis for regulating seasonal reproduction in vertebrates
Journal of Endocrinology, 2016,229(3):R117.

[本文引用: 1]

华登科, 贺海军, 贾亚雄, 李冬立, 唐诗, 白皓, 刘念, 秦宁, 孙研研, 陈余 . 光照强度对北京油鸡生长激素和褪黑激素含量的影响
中国家禽, 2014,36(19):30-32.

[本文引用: 1]

HUA D K, HE H J, JIA Y X, LI L D, TANG S, BAI H, LIU N, QIN N, SUN Y Y, CHEN Y . Effect of light intensity on growth hormone and melatonin secretion of Beijing You Chicken
China Poultry, 2014,36(19):30-32. (in Chinese)

[本文引用: 1]

LYNCH H J, HO M, WURTMAN R J . The adrenal medulla may mediate the increase in pineal melatonin synthesis induced by stress, but not that caused by exposure to darkness
Journal of Neural Transmission, 1977,40(2):87.

[本文引用: 1]

ALEXIES D S, ORELLANA J A, CARLOS CF, JUAN M, GABRIELA DV, MARíA S F, URSULA W, CONCHA M L, FRANCISCO A, . Chronic stress decreases the expression of sympathetic markers in the pineal gland and increases plasma melatonin concentration in rats
Journal of Neurochemistry, 2010,97(5):1279-1287.

[本文引用: 1]

JACOBO W . Role of epinephrine in acute stress
Endocrinology & Metabolism Clinics of North America, 2002,31(1):79-106.

[本文引用: 1]

WANG Y, ZHANG Z, HONGWEI, GUOPENG, LI Y, LI J, XI L, LIU Q . Stimulation role of epinephrine in transcription of the melatonin synthesis key enzyme AANAT in the pineal gland of broilers
Molecular and Cellular Biochemistry, 2019,453(1):111-119.

[本文引用: 1]

TORDJMAN S, CHOKRON S, DELORME R, CHARRIER A, BELLISSANT E, JAAFARI N, FOUGEROU C . Melatonin: pharmacology, functions and therapeutic benefits
Current Neuropharmacology, 2017,15(3):434-443.

[本文引用: 1]

相关话题/基因 家禽 组织 动物 信息