删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

小麦穗部性状的主基因+多基因混合遗传模型分析

本站小编 Free考研考试/2021-12-26

解松峰1,2, 吉万全,1, 王长有1, 胡卫国3, 李俊4, 张耀元1, 师晓曦1, 张俊杰1, 张宏1, 陈春环11 西北农林科技大学农学院/旱区作物逆境生物学国家重点实验室/国家小麦改良中心杨陵分中心,陕西杨凌 712100
2 中国富硒产业研究院/ 农业部富硒产品开发与质量控制重点实验室/富硒食品开发国家地方联合工程实验室/安康市富硒产品研发中心,陕西安康 725000
3 河南省农业科学院小麦研究中心,郑州 450002
4 四川省农业科学院作物研究所,成都 610066

Genetic Analysis of Panicle Related Traits in Wheat with Major Gene Plus Polygenes Mixed Model

XIE SongFeng1,2, JI WanQuan,1, WANG ChangYou1, HU WeiGuo3, LI Jun4, ZHANG YaoYuan1, SHI XiaoXi1, ZHANG JunJie1, ZHANG Hong1, CHEN ChunHuan1 1 College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas/Yangling Sub-centre, National Wheat Improvement Centre, Yangling 712100, Shaanxi
2 Key Laboratory of Se-enriched Food Development, Ankang R&D Center for Se-enriched Prducts, Ankang 725000, Shaanxi
3 Wheat Research Centre, Henan Academy of Agricultural Sciences, Zhengzhou 450002
4 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066

通讯作者: 吉万全,E-mail:jiwanquan2003@126.com

责任编辑: 李莉
收稿日期:2019-06-19接受日期:2019-08-6网络出版日期:2019-12-16
基金资助:国家重点研发计划.2016YFD0102004
农业部作物基因资源与种质创制陕西科学观测实验站项目
农业部富硒产品开发与质量控制重点实验室(试运行)
陕西省农业科技创新转化项目.NYKJ-2015-037
陕西省创新能力支撑计划.2018TD-021
陕西省创新能力支撑计划.2018PT-31
富硒食品开发国家地方联合工程实验室(陕西)项目


Received:2019-06-19Accepted:2019-08-6Online:2019-12-16
作者简介 About authors
解松峰,E-mail:xiesongfengboheng@163.com。












摘要
【目的】穗部性状是小麦重要的产量性状,在小麦产量构成中占据重要地位和作用。开展小麦穗部性状遗传研究、分析其遗传机制,对制定高产育种策略、提高育种效率提供理论和实践指导。【方法】以主茎穗长、小穗数、穗粒数、小穗粒数为指标,采用数量性状的主基因+多基因混合遗传模型方法,对不同生态环境条件下来自母本品冬34与父本BARRAN及其衍生的F7:8、F8:9代重组自交系群体(RIL)进行穗部性状的遗传模型分析与遗传参数估计,以确定控制各性状的基因数目,估计遗传效应值及遗传率。【结果】穗长和小穗数的最佳遗传模型均是B-2-1(PG-AI),符合2对连锁主基因+加性-上位性多基因遗传模型。穗长的多基因遗传率是90.64%,小穗数的多基因遗传率是89.52%,穗长的环境变异平均值占表型变异的比例为9.39%,小穗数的环境变异平均值占表型变异的比例为10.50%;穗粒数的最佳遗传模型是G-1(MX3-AI-A),符合3对加性-上位性主基因加多基因+加性混合遗传模型,主基因遗传率是69.39%,多基因遗传率是29.94%,环境变异平均值占表型变异的比例为2.18%。控制穗粒数的第1对主基因的加性效应值和第3对主基因的加性效应值数值相等,同是4.56,具有正向效应。第2对主基因的加性效应值与加性效应和第1对主基因×第2对主基因×第3对主基因的加性效应值相同,均是-1.64,且为负向效应。加性和加性×加性上位性互作效应值与加性和第2对主基因加性×第3对主基因加性上位性互作效应值相等,均是-6.02。加性和第1对主基因加性×第3对主基因加性上位性互作效应值是0.18,多基因的加性效应值是0.15,表现为较低的正向遗传效应;小穗粒数的最佳遗传模型是H-1(4MG-AI),符合4个主基因+加性-上位性遗传模型,主基因遗传率是81.50%。第1至4对主基因加性效应值分别为0.22、0.18、-0.20和0.24,加性和第1对主基因×第1对主基因的加性上位性互作效应值是-0.170,加性和第1对主基因×第3对主基因的加性效应值是0.240,加性和第1对主基因×第4对主基因的加性效应值是-0.20,加性和第2对主基因×第3对主基因的加性效应值与加性和第2对主基因加性×第4对主基因加性上位性互作效应值绝对值相同,效应相反,前者值是0.03,后者值是-0.03。加性和第3对主基因×第4对主基因×的加性效应值是0.06。【结论】小麦穗部性状以多基因遗传效应为主,符合数量遗传特征,易受环境影响。小穗粒数存在着主基因遗传特性,主基因遗传力较高,受环境影响小,小穗粒数可作为有效改良穗部性状早期选择的直接指标,实现单株定向选择,提高育种效率。
关键词: 小麦;穗部性状;主基因+多基因;遗传效应

Abstract
【Objective】 Panicle traits are important yield traits of wheat, occupying an important position and role in wheat yield composition. Carrying out genetic research on wheat panicle traits and analyzing its genetic mechanism provide theoretical and practical guidance for formulating high-yield breeding strategies and improving breeding efficiency. 【Method】 Based on the length of the main stem, the number of spikelets, the number of grains per spike, and the number of spikelets, the main gene + polygene mixed genetic model of quantitative traits was used to obtain the parental product 34 and the male parent under different ecological conditions. BARRAN and its derived F7:8, F8:9 generation recombinant inbred line population (RIL) were used for genetic model analysis and genetic parameter estimation of panicle traits to determine the number of genes controlling various traits, and to estimate genetic effect values and heritability. 【Result】The best genetic model for panicle length and spikelet number were B-2-1 (PG-AI), which was consistent with two pairs of linked major genes + additive-epistasis polygene genetic model. The polygenic heritability of spike length was 90.64%, the polygenic heritability of spikelet number was 89.52%, the average of environmental variation of spike length accounted for 9.39% in phenotypic variation, and the average of environmental variation of spikelet number accounted for 10.50% in phenotypic variation; Major gene heritability was 69.39%, Polygenes heritability rate was 29.94%, and the average environmental variation accounted for 2.18% in phenotypic variation. Additive effect value of the first pair of main genes controlling the number of spikes and the additive effect value of the third pair of major genes are equal, and the same was 4.56, which has a positive effect. The additive effect value of the second pair of major genes was the same as the additive effect of the first pair of major genes × the second pair of major genes × the third pair of major genes, both of which were -1.44, and are negative effects. The additive and additive × additive epistasis interaction values were equal to the additive and the second pair of major gene additions × the third pair of major gene additive epistatic interactions, both of which were -6.02. Additive and the first pair of major gene additive × the third pair of main gene additive epistatic interaction effect value is 0.18, the multi-gene additive effect value is 0.15, showing a lower positive genetic effect; H-1(4MG-AI) was best-fitting genetic model for the spikelet number traits, which showed that their inheritance was controlled by incorporating four major genes additive-epistasis genetic model. The heritability of the main gene was 81.50%. The additive effect values of the main genes in the first to fourth pairs were 0.22, 0.18, -0.20, and 0.24, respectively, the additive and epistatic interactions of the first pair of major genes × the first pair of major genes were -0.170, the additive effect value of the additive and the first pair of major genes × the third pair of major genes was 0.240. the additive effect value of the additive and the first pair of major genes × the fourth pair of major genes was -0.200, additive and the second pair of major genes × the third pair of major genes × additive effect value and additive and the second pair of major gene additive × fourth pair of major gene additive epistatic interaction value absolute value, the effect in contrast, the former value was 0.030, and the latter value was -0.030. The additive effect value of the additive and the third pair of major genes × the fourth pair of major genes was 0.060. 【Conclusion】The panicle traits of wheat are mainly polygenic genetic effects, which are in line with quantitative genetic characteristics and are susceptible to environmental influences. The number of spikelet grains has the genetic characteristics of the main gene. The main gene has high heritability and is affected by the environment. The number of spikelets can be used as a direct indicator to effectively improve the early selection of panicle traits, achieving single plant directional selection and improving breeding efficiency.
Keywords:wheat;panicle traits;major gene + polygene;genetic effect


PDF (2804KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
解松峰, 吉万全, 王长有, 胡卫国, 李俊, 张耀元, 师晓曦, 张俊杰, 张宏, 陈春环. 小麦穗部性状的主基因+多基因混合遗传模型分析[J]. 中国农业科学, 2019, 52(24): 4437-4452 doi:10.3864/j.issn.0578-1752.2019.24.001
XIE SongFeng, JI WanQuan, WANG ChangYou, HU WeiGuo, LI Jun, ZHANG YaoYuan, SHI XiaoXi, ZHANG JunJie, ZHANG Hong, CHEN ChunHuan. Genetic Analysis of Panicle Related Traits in Wheat with Major Gene Plus Polygenes Mixed Model[J]. Scientia Acricultura Sinica, 2019, 52(24): 4437-4452 doi:10.3864/j.issn.0578-1752.2019.24.001


0 引言

【研究意义】普通小麦(Triticum aestivum L.,AABBDD,2n=6x=42)是世界上三大主粮作物之一,在中国,小麦总产量位于世界前列,小麦的持续增产、稳产对中国乃至世界粮食安全有着重要的影响[1]。随着国内外****对影响小麦产量因素地不断研究,穗部性状的改善越来越成为提高小麦产量的关键因素[2,3]。因此,研究小麦穗部性状的遗传规律,对提高小麦育种效率及高产稳产具有重要的指导意义。【前人研究进展】自20世纪20年代以来,数量性状在数量遗传学的建立之后得到了广泛研究,与小麦产量高低有关的大多数性状属于数量性状。因此,数量遗传学与植物育种相结合,应用数理统计方法和遗传模型分析群体数量性状遗传规律具有重要的意义,也为现代植物育种提供了科学的依据[4,5]。同时,植物数量性状的基因分为主基因和微效多基因,它们共同存在并影响植物的表型[6]。对于数量性状遗传系统,建立了“主基因多基因遗传模型分离与分析方法”[7,8],用于鉴定主要基因、多基因效应、基因互作[9]、上位性以及基因与环境的相互作用[9,10]。近年来,植物数量性状的主基因加多基因混合遗传模型在大豆[9]、花生[11]、水稻[12]、油菜[13]、紫薇[14]、黄瓜[15]、甜瓜[16]、菊花[17]、小麦[18]、卷心菜[19]等植物育种中得到了广泛的应用,该遗传模型在小麦穗部性状研究中也得到应用,有的研究表明穗长受加性-显性-上位性多基因混合遗传模型控制[20,21]或主基因+多基因遗传模型控制[22,23,24],有研究认为小穗数符合主基因+多基因模型[20,21,22,23],也有研究发现穗粒数由主基因多基因混合遗传模型控制[20,21,22,23],研究者采用的材料不同,得到的遗传规律也不完全一样。已有的研究通常在一个环境下研究穗部性状遗传特点,然后进行遗传学统计分析。【本研究切入点】迄今为止,对于多个环境下小麦穗部性状的数量遗传分析的研究鲜见报道。西北农林科技大学农学院吉万全教授课题组前期以品冬34为母本和BARRAN为父本配置杂交组合,用8年时间构建了高代重组自交系。【拟解决的关键问题】本研究在2年4个环境下,F7:8和F8:9重组自交系(共476份衍生的家系),通过主基因+多基因混合遗传模型在小麦穗部性状的应用,确定小麦群体穗部性状的遗传模型和基因作用方式,对是否存在有效的加性基因进行分离分析,以期揭示穗部性状的主要遗传成分及其表现,为小麦遗传基础研究及优良品系的选择提供理论依据。

1 材料与方法

1.1 试验材料

以品冬34为母本和BARRAN为父本配置杂交组合,采用单籽粒传递方法,构建高代重组自交系。品冬34具有矮杆、千粒重高、籽粒大等特点,是由中国农业科学院作物品种资源研究所选育。BARRAN是引进国外小粒种质、粒小、千粒重较低。亲本间以穗部性状为代表的田间农艺性状表型差异较大。2007年得到F0代,2009—2016年用7年的时间,直到2016年得到F7:8重组自交系(共476份衍生的家系)。在3个地点(陕西杨凌、河南原阳和四川广汉)、4个环境(即2016SY(环境E1)、2017SY(环境E2)、2017HY(环境E3)、2017SG(环境E4))种植,设置2个年度重复,即2015—2016年和2016—2017年。环境E1、环境E2为陕西杨凌西北农林科技大学干旱半干旱地区节水农业实验农场(34°17′30″N,108°3′53″E)。环境E3为河南省农业科学院现代农业示范试验基地,地点在新乡原阳县(35°0′27″N,113°4′42″E),环境E4为四川省农业科学院在德阳广汉(31°0′29″N,104°23′43″E)的育种试验基地。田间常规管理,每个生长季节在10月份播种,并在6月初收获,每个环境采用随机区组设计,2次重复,行长2 m,行距24 cm,株距10 cm,每行播种20粒。

1.2 性状测定

穗部性状调查和测定参考李立会的方法[25],每个品系调查10株,如穗长(spike length,SL):主穗基部小穗节至穗顶端(不含芒)的长度;主穗小穗数(spikelets of main ear,SME):主穗小穗数总数包括不育小穗数,另计每穗有效(结实)小穗数;主穗粒数(grains of main ear,GME):全穗粒数或单穗实际粒数或单株每穗平均结实粒数;小穗最多粒数(grains of small ear,GSE):穗中部最多粒数的小穗。

1.3 数据分析

利用SPSS Statistics 17.0软件(SPSS,Chicago,IL,USA)进行表型数据、偏度及峰度系数估计值基本统计。RIL群体中各基因位点为纯合,其遗传方差等于加性方差,广义遗传力等于狭义遗传力,公式为:hB2=Va/(Va+Ve)(Va为加性方差,Ve为环境方差)。根据CHOO等[26]提出的基因间互作方式分析原理,由各性状偏度系数(g1)、峰度系数(g2)的正负号及其相对大小可以估计基因的上位性互作及其互作方式。利用R语言包绘制小麦重组自交系穗部性状的频率分布直方图;利用章元明教授团队最新开发的R软件包SEA[27,28]进行主基因+多基因混合遗传分析。其遗传模型原理是根据盖钧镒等[6]和ZHANG等[29]提出的植物数量性状“主基因+多基因混合遗传模型中P1、P2和RIL群体的联合世代分析方法”,获得7类38个遗传模型,进一步计算极大似然函数值(maximum likelihood method,MLV)并转换为AIC(Akaike’s information criterion,AIC)值;选出最小或接近最小AIC值的备选遗传模型[30],进行样本分布与模型理论分布的适合性检验,包括均匀性检验(U12U22U32)、Smirnov检验(nW2)和Kolmogorov检验(Dn)。根据适合性检验的结果及AIC值最小原则选出最优遗传模型[31]。通过SEA软件包中最小二乘法原理计算出最优遗传模型的遗传效应等一阶遗传参数[32]、遗传方差和遗传率等二阶遗传参数[6,29],其中σ2pσ2mgσ2pg分别是群体表型方差、主基因和多基因遗传方差;h2mgh2pg分别是主基因和多基因遗传率。

2 结果

2.1 穗部性状的表型特征及次数分布

对群体单株产量相关的穗部性状进行了测定,并分析了该群体的主茎穗长、小穗数、小穗粒数、穗粒数在4个环境中的表现。由表1可知,亲本各性状在4个环境下平均极差变化为:穗长介于5.00—10.67,小穗数介于14.00—21.00,穗粒数介于33.75—50.00,小穗粒数介于1.95—2.79。群体各性状在4个环境下极差变化为9.25%—61.01%,平均极差分别为:穗长介于4.16—17.32,小穗数介于11.55—36.96,穗粒数介于19.15—80.78,小穗粒数介于1.39—3.45。同时,各性状平均变异系数从高到低依次为:小穗数(0.13%)、单穗粒数(0.19%)、穗长(0.23%)、小穗粒数(0.32%)。

Table 1
表1
表1重组自交系及其亲本穗部性状最佳线性无偏预测描述性分析
Table 1Description analysis of panicle traits of the RILs and its parents best linear unbiased prediction (BLUP) among different populations
环境Environment性状
Trait
亲本Parent重组自交系群体 RIL
品冬34
Pin-
Dong34
Warran最小值
Minimum
最大值
Maximum
平均数
Average
标准差
SD
变异系数
Coefficient of variation/CV (%)
遗传力 Heritability偏度系数
Skewness
峰度系数
Kurtosis
2016SY穗长
SL
(cm)
9.005.004.0014.008.441.920.230.920.08-0.53
2017SY9.005.254.0026.208.451.920.230.911.58**14.10**
2017HY9.786.134.8814.909.431.800.190.900.02-0.45
2017SG10.675.173.7714.179.002.480.270.97-0.16-0.98
平均
Average
9.615.394.1617.328.832.030.230.920.38**3.03**
2016SY小穗数SME19.0014.0011.0027.0018.392.340.130.880.27**0.58**
2017SY19.0015.7512.6022.3317.191.590.090.340.21*0.14*
2017HY17.2515.009.2539.5017.482.370.140.621.66**5.36**
2017SG21.0021.0013.3359.0020.583.110.150.951.77**3.71**
平均值
Average
19.0616.4411.5536.9618.412.350.130.700.98**2.45**
2016SY单穗
粒数
GME
50.0039.0027.00104.0056.3210.920.190.920.92**2.31**
2017SY44.2539.2526.0069.6043.015.860.140.400.48**1.05**
2017HY33.7535.7515.2555.5037.115.350.140.800.15*0.68**
2017SG48.3352.008.3394.0045.1412.700.280.92-0.350.36**
平均
Average
44.0841.5019.1580.7845.398.710.190.760.30**1.10**
2016SY小穗
粒数
GSE
2.632.792.009.003.070.440.140.855.67**12.24**
2017SY2.322.531.738.782.620.770.290.815.72**17.04**
2017HY1.952.381.6231.252.211.350.610.902.03**5.58**
2017SG2.302.480.203.712.150.620.290.97-0.920.95**
平均
Average
2.302.541.3913.182.510.800.320.883.13**8.95**
SL:穗长;SME:小穗数;GME:单穗粒数;GSE:小穗粒数。*:差异达到显著水平(P>0.05);**:差异达到极显著水平(P<0.01)。下同
SL: Spike length; SME: Spikelets of main ear; GME: Grains of main ear; GSE: Grains of small ear. *: Difference at the 0.05 probability level; **: Significant difference at the 0.01 level. The same as below

新窗口打开|下载CSV

由此可以看出,穗部表型变异范围较大,有超亲分离现象,有一定程度的分散,适合做遗传分析。此外,各性状的偏度系数介于-0.92—5.72,峰度系数介于-0.99—17.04。性状的偏度及峰度介于0—1,表现近似正态分布的有:E1和E2环境下的小穗数,E2和E3环境下的单穗粒数;各性状的遗传力介于0.34—0.97,4个环境下平均遗传力由高到低依次是,穗长的遗传力最高,为0.92,其次是小穗粒数的遗传力是0.88,穗粒数的遗传力是0.76,小穗数的遗传力是0.70。从表1可以看出,E1、E3和E4环境下,穗长的偏度和峰度系数无显著差异,表明基因间无互作。E2环境下的穗长,E1、E2、E3和E4环境下的小穗数,E1、E2和E3环境下的单穗粒数,E1、E2和E3环境下的小穗粒数,这些性状的偏度和峰度系数都显著大于0,表明基因间存在互作作用。

图1显示了4种环境,分别是环境E1:2016SY、环境E2:2017SY、环境E3:2017HY和环境E4:2017SG下的穗部性状的的频率(柱),理论(实线)和组分(虚线)产量相关性状。具有单峰分布特点的有E2环境下穗长,E2、E3和E4环境下的小穗数,E3环境下的穗粒数,E1、E2、E3和E4环境下的小穗粒数,表明这些性状可能为多基因控制。E1、E2和E3环境下的穗长,E1环境下的小穗数,E1、E2和E4环境下的穗粒数,这些性状分布呈现连续变异,具有连续双峰或多峰分布特点,符合主基因加多基因的特征,表明可能存在主基因。

图1

新窗口打开|下载原图ZIP|生成PPT
图1RIL群体产量相关性状的次数(柱形)、理论(实线)与成分(虚线)分布

SL:穗长;SME:小穗数;GME:单穗粒数;GSE:小穗粒数;Frequency:频数;Density:密度
Fig. 1Frequent (column), mixed (solid line, theoretical) and component (dotted line) distributions for wheat panicle-related traits in RILs

SL: Spike length; SME: Spikelets of main ear; GME: Grains of main ear; GSE: Grains of small ear


2.2 穗部性状遗传模型的适合性检测

根据遗传模型选取的AIC值最小准则,选取AIC值最小的一组遗传模型作为备选模型(表2),穗部性状备选模型的极大似然值和AIC值见表2。在4个环境下分别比较,B-2-1(PG-AI)、F-1(3MG-AI)、H-1(4MG-AI)和H-1(4MG-AI)的AIC值最低,分别为2016.217、2164.521、1804.726和1960.836,B-2-1(PG-AI)、F-1(3MG-AI)和H-1(4MG-AI)为穗长遗传的备选模型;B-2-1(PG-AI)和F-2(3MG-A)的AIC值较低,分别为2184.5、1855.7、2256.652和2451.369。B-2-1(PG-AI)和F-2(3MG-A)为小穗数遗传的备选模型;B-1-9(2MG-IE)、E-2-5(MX2-ER-A)、E-2-7(MX2-CE-A)和G-1(MX3-AI-A)的AIC值较低,分别为3068.409、3879.773、3886.283和3562.874,B-1-9(2MG-IE)、E-2-5(MX2-ER-A)、E-2-7(MX2-CE-A)和G-1(MX3-AI-A)为穗粒数的备选模型是。同理,F-2(3MG-A)和H-1(4MG-AI)为小穗粒数的备选模型。

Table 2
表2
表2小麦重组自交系品冬34×Barran F8、F9群体穗部性状最佳遗传模型分离分析的极大似然函数MLV值和Akaike信息准则AIC值
Table 2Akaike information criterion(AIC) and Maximum likelihood values (MLV) of thirty-eight genetic models for panicle traits in joint segregation analysis on the F8, F9 population between Pindong34 and Barran
环境Environmenta模型代码Model Codeb模型含义Implication of modelAIC值AIC value极大似然函数值log_Max_likelihood_value
穗长
SL(cm)
小穗数
SME
单穗粒数GME小穗粒数GSE穗长
SL(cm)
小穗数
SME
单穗粒数GME小穗粒数GSE
2016SYB-1-92MG-IE2008.7662202.9843630.920568.647-1001.383-1098.492-1812.460-281.323
2017SY2042.4121871.9543892.716836.451-1018.206-932.977-1943.358-415.226
2017HY2005.5062264.6833068.409-151.936-999.753-1129.341-1531.20478.968
2017SG2280.0902518.8263905.365831.225-1137.045-1256.413-1949.683-412.612
平均值Average2084.1942214.6123624.353521.097-1039.097-1104.306-1809.176-257.548
2016SYB-2-1PG-AI1991.082184.5413649.384554.133-990.540-1087.271-1819.692-272.066
2017SY2016.2171855.7863899.482920.279-1003.108-922.893-1944.741-455.140
2017HY1965.1602256.6523074.416-88.404-977.58-1123.326-1532.20849.202
2017SG2260.7512507.8153890.493905.074-1125.375-1248.908-1940.246-447.537
平均值Average2058.3022201.1993628.444572.771-1024.151-1095.599-1809.222-281.385
2016SYE-2-5MX2-ER-A1993.6592204.4003631.760557.823-990.83-1096.200-1809.880-272.911
2017SY2037.3821872.5333888.241841.737-1012.691-930.267-1938.120-414.868
2017HY1975.2502264.5733074.295-155.919-981.625-1126.287-1531.14783.960
2017SG2179.5902509.1663879.773825.033-1083.795-1248.583-1933.887-406.517
平均值Average2046.4702212.6683618.517517.168-1017.235-1100.334-1803.259-252.584
2016SYE-2-6MX2-AE-A1984.3752205.0643681.667558.402-986.188-1096.532-1834.834-273.201
2017SY2035.4991870.3273888.148924.373-1011.749-929.163-1938.074-456.187
2017HY1964.3652264.5343076.497-156.411-976.183-1126.267-1532.24884.206
2017SG2190.6482510.3243892.530907.513-1089.324-1249.162-1940.265-447.756
平均值Average2043.7222212.5623634.711558.469-1015.861-1100.281-1811.355-273.235
2016SYE-2-7MX2-CE-A2008.3102206.7153681.548558.968-999.155-1098.357-1835.774-274.484
2017SY2038.9001871.4193886.283925.424-1014.450-930.710-1938.141-457.712
2017HY1992.0142265.1863074.897-157.747-991.007-1127.593-1532.44983.874
2017SG2212.1742508.1263891.372908.553-1101.087-1249.063-1940.686-449.276
平均值Average2062.8502212.8623633.525558.799-1026.425-1101.431-1811.763-274.400
2016SYF-13MG-AI1985.7922203.0033578.592500.386-983.896-1092.501-1780.296-241.193
2017SY2050.9871865.8383896.524837.993-1016.493-923.919-1939.262-409.997
2017HY1967.1682268.7943076.632-170.353-974.584-1125.397-1529.31694.177
2017SG2164.5212523.8083889.178812.895-1073.26-1252.904-1935.589-397.447
平均值Average2042.1172215.3613610.232495.230-1012.058-1098.68-1796.116-238.615
2016SYF-23MG-A2061.7392303.9123654.398428.251-1025.870-1146.956-1822.199-209.126
2017SY2115.1291856.023931.771838.167-1052.565-923.01-1960.885-414.084
2017HY2116.9002370.0073175.847-166.145-1053.45-1180.003-1582.92488.073
2017SG2263.5492451.3693917.213822.204-1126.775-1220.685-1953.606-406.102
平均值Average2139.3292245.3273669.807480.619-1064.665-1117.663-1829.904-235.310
2016SYG-1MX3-AI-A1985.7292203.5383562.874487.927-981.865-1090.769-1770.437-232.963
2017SY2034.8891869.2683892.910841.503-1006.444-923.634-1935.455-409.751
2017HY1963.3252267.7393081.815-178.949-970.663-1122.870-1529.907100.474
2017SG2172.1292518.1933883.909826.033-1075.064-1248.096-1930.954-402.017
平均值Average2039.0182214.6853605.377494.128-1008.509-1096.342-1791.688-236.064
2016SYH-14MG-AI1804.7262198.4153572.438572.548-891.363-1088.207-1775.219-275.274
2017SY2048.9891873.7713893.070822.622-1013.495-925.885-1935.535-400.311
2017HY1960.8362268.4253079.402-244.665-969.418-1123.212-1528.701133.332
2017SG2164.8152518.8113885.512805.103-1071.407-1248.406-1931.756-391.552
平均值Average1994.8422214.8563607.606488.902-986.421-1096.428-1792.803-233.451
a:A模型表示1对主基因,无多基因遗传模型;B模型表示2对主基因,无多基因遗传模型;D模型表示1对主基因+多基因混合遗传模型;E模型表示2对主基因+多基因混合遗传模型;F模型表示3对主基因,无多基因遗传模型;G模型表示3对主基因+多基因混合遗传模型;H模型表示4对主基因+多基因遗传模型。b:MG:主基因模型;PG:多基因遗传模型;MX:主基因+多基因混合模型;A:加性效应;D:显性效应;I:互作;N:负向;E:相等;AI:加性上位性效应;EA:等加性;ED:显性上位;ER:隐性上位;AE:累加作用;CE:互补作用;DE:重叠作用;IE:抑制作用;CEA:全等加性;PEA:部分等加性;EEA:2个主基因等加性;EEEA:3个主基因等加性。例如: E-1模型MX2-ADI-AD,表示2对加性-显性-上位性主基因+加性-显性多基因混合遗传模型。MX3-CEA-A则表示3对等加性主基因+加性多基因混合遗传模型;粗体表示备选模型的AIC值(具有最低的2个AIC值)。下同
a: A: One major gene without polygene; B: Two major genes without polygene; D: One major gene plus polygene mixed model; E: Two major genes plus polygene mixed model; F: Three major genes without polygene; G: Three major genes plus polygene mixed model; H: Four major genes plus polygene mixed model. b: MG: Major gene model; PG: Polygene model; MX: Mixed major gene and polygene model; A: Additive effect; D: Dominance effect; I: Interaction; N: Negative; E: Equal; AI: Additive+epistasis effect; EA: Equal additive effect; ED: Epistasis dominance; ER: Epistasis recessively; AE: Accumulative effect; CE: complementary effect; DE: duplicate effect; IE: inhibition effect; CEA: congruent equal additive; PEA: partial equal additive; EEA: 2 major genes with equal additive effect; EEEA: 3 major genes with equal additive effect. Model E-1=MX2-ADI-AD, means mixed model with two major genes of additive-dominance-epistasis effects plus additive-dominance polygene. MX3-CEA-A: 3 major-genes with congruent equal additive effects plus polygenes mixed model. Bond latter are AIC for the selected optimal models. The same as below

新窗口打开|下载CSV

对备选模型进行一组适合性检验见表3,包括均匀性检验、Smirnov检验和Kolmogorov检验的5个统计量U12U22U32nW2Dn,选择具有最小AIC值和统计显著性水平个数最少的模型作为最优模型(表3)。由表3可知,穗长和小穗数的最佳遗传模型均B-2-1(PG-AI)模型,即2对连锁主基因+加性-上位多基因遗传模型。2对主基因连锁,具有明显的上位性作用,表示2对增效主基因在一起时,穗长有较大幅度的提高。表1中穗长最大的株系长于最长亲本5 cm,推测是2对增效主基因的聚合体。依次类推,G-1(MX3-AI-A)是穗粒数的最佳遗传模型,即3对加性-上位性主基因+加性多基因混合遗传模型。小穗粒数的最佳遗传模型是H-1(4MG-AI)模型,即4对主基因+加性上位性遗传模型。

Table 3
表3
表3重组自交系群体(品冬34×Barran)穗部相关性状的最佳遗传模型适合性检验
Table 3Tests of eleven panicle traits for goodness-of-fit in some models
性状
Traits
环境
Environment
模型代码
Modelcode
模型含义
Implication of model
世代
Generation
统计量Statistic
U12U22U32nW2Dn
穗长
SL(cm)
2017SYB-2-1PG-AIP10.5511(0.4579)0.3309(0.5651)0.3297(0.5659)0.5036(0.0397)0.4948(0.0088)
P20.0268(0.8701)0.0993(0.7527)0.3929(0.5308)0.151(0.3881)0.4143(0.3929)
RIL0.0577(0.8102)0.3641(0.5463)2.1999(0.1380)0.0854(0.6733)0.0354(0.5748)
小穗数
SME
2016SYB-2-1PG-AIP10(0.9998)0(0.9968)0.0003(0.9865)0.0541(0.8519)0.25(0.9062)
P20(1)0.0245(0.8756)0.392(0.5312)0.0385(0.9405)0.24(0.9810)
RIL0.1318(0.7166)0.2995(0.5842)0.6132(0.4336)1.8464(2.98E-05)0.154(2.51E-10)
穗粒数
GME
2016SYG-1MX3-AI-AP10.4341(0.5100)0.3268(0.5676)0.0704(0.7908)0.0678(0.771)0.3233(0.8155)
P20.4341(0.5100)0.3268(0.5676)0.0704(0.7908)0.0678(0.771)0.3233(0.8155)
RIL0.0455(0.8311)0.0049(0.9440)1.2258(0.2682)1.428(2.52E-04)0.1279(3.00E-07)
小穗粒数
GSE
2017SYH-14MG-AIP10.1133(0.7364)0.5279(0.4675)2.5687(0.1090)0.1469(0.4011)0.3086(0.2420)
P20.0564(0.8122)0.0075(0.9312)1.6016(0.2057)0.0937(0.6285)0.3291(0.7942)
RIL0.0036(0.9519)0.0086(0.9261)0.0188(0.8908)0.0394(0.9364)0.0315(0.7159)
2017HYH-14MG-AIP11.9215(0.1657)0.1336(0.7148)15.2622(9.36E-05)0.5132(0.0375)0.457(0.0199)
P20.0427(0.8363)0.0469(0.8286)2.7766(0.0957)0.1411(0.4202)0.2822(0.4653)
RIL0.0016(0.9677)0.2173(0.6411)4.0874(0.0432)0.1458(0.4046)0.0501(0.1760)
2017SGH-14MG-AIP10.2727(0.6015)0.1454(0.7029)0.247(0.6192)0.1503(0.3902)0.2221(0.4761)
P20.0023(0.9615)0.0588(0.8083)1.3396(0.2471)0.0813(0.6955)0.346(0.7437)
RIL0(0.9954)0.0001(0.9917)0.0004(0.9844)0.0344(0.9596)0.0275(0.8516)
U12U22U32为均匀性检验统计量;nW2为Smirnov检验统计量;Dn为Kolmogorov检验统计量;U12U22U32检测统计量中括号内为相应的概率P;P1、P2:亲本;RILs:重组自交系
U12, U22, U32 are the statistic of Uniformity test, the numbers in brackets are the distribution values in theory; nW2 is the statistic of Smirnov test; Dn is the statistic of Kolmogorov test1; P1, P2: Parents; RILs: Recombinant inbred lines. SL: Spike length; SME: Spikelets of main ear; GME: Grains of main ear; GSE: Grains of small ear

新窗口打开|下载CSV

2.3 穗部性状最适遗传模型的遗传参数估计

利用R软件包SEA对穗部性状的最适遗传模型估计其一阶参数和二阶参数(表4)。由表4中的一阶、二阶遗传参数可知:穗长的多基因遗传率是90.64%,小穗数的多基因遗传率是89.52%,穗长的环境变异平均值占表型变异的比例为9.39%,小穗数的环境变异平均值占表型变异的比例为10.50%;同样,穗粒数的主基因遗传率是69.39%,多基因遗传率是29.94%,环境变异平均值占表型变异的比例为2.18%。控制穗粒数的第1对主基因的加性效应值(da)和第3对主基因的加性效应值(dc)数值相等,同是4.56,具有正向效应。第2对主基因的加性效应值(db)与加性效应和第1对主基因×第2对主基因×第3对主基因的加性效应值(iabc)相同,均是-1.64,为负向效应。加性和加性×加性上位性互作效应值(iab)与加性和第2对主基因加性×第3对主基因加性上位性互作效应值(ibc)相等,均是-6.02,呈现较大的负向效应。加性和第1对主基因加性×第3对主基因加性上位性互作效应值(iac)值是0.18,多基因的加性效应值(d)是0.15,表现为较低的正向遗传效应;小穗粒数的主基因遗传率是81.50%,环境变异平均值占表型变异的比例为100.00%。第1至4对主基因加性效应值(da、db、dc和dd)分别为0.22、0.18、-0.20和0.24,加性和第1对主基因×第1对主基因的加性上位性互作效应值(iab)是-0.17,加性和第1对主基因×第3对主基因的加性效应值(iac)是0.24,加性和第1对主基因×第4对主基因的加性效应值(iad)是-0.20,加性和第2对主基因×第3对主基因×的加性效应值(ibc)与加性和第2对主基因加性×第4对主基因加性上位性互作效应值(ibd)绝对值相同,效应相反,前者值是0.03,后者值是-0.03。加性和第3对主基因×第4对主基因×的加性效应值(icd)是0.06。穗部性状的遗传参数见表4

Table 4
表4
表4品冬34×Barran群体产量相关性状的部分模型的遗传参数
Table 4The estimates of genetic parameters of eleven yield-related traits of population from Pindong34 × Barran populations
性状Traits穗长SL(cm)小穗数SME穗粒数GME小穗粒数GSE

环境Environment2017SY2016SY2016SY2017SY2017HY2017SG
模型含义Implication of modelPG-AIPG-AIMX3-AI-A4MG-AI4MG-AI4MG-AI
一阶参数估计值1st order parameter Estimate (%)m(m1)8.7017.0056.222.162.192.18
m25.2513.00
m38.4518.40
d(da)4.560.22-0.12-0.33
db-1.640.18-0.120.16
dc4.56-0.20-0.070.06
dd0.24-0.090.24
iab (i*)-6.02-0.170.080.01
iac0.180.240.060.11
iad-0.200.080.19
ibc-6.020.030.06-0.09
ibd-0.030.08-0.03
icd0.060.03-0.17
iabc-1.64
[d]0.15
二阶参数估计值2nd order parameter Estimate (%)σ2e0.350.570.800.070.010.06
σ2p3.705.4636.440.070.010.06
σ2mg82.590.310.040.33
h2mg (%)69.3981.5071.3685.49
σ2pg3.364.9035.64
h2pg(%)90.6489.5229.94
m:群体均方;d:主基因效应值;da:第一对主基因的加性效应;db:第二对主基因的加性效应值;dc:第三对主基因的加性效应值;dd:第四对主基因的加性效应值;iab(i*):第1对主基因的加性×第2对主基因的加性上位性互作效应;iac:第1对主基因的加性×第3对主基因的加性效应;iad:第1对主基因的加性×第4对主基因的加性效;ibc:第2对主基因的加性×第3对主基因的加性效应;ibd:第2对主基因的加性×第4对主基因的加性效应;icd:第3对主基因的加性×第4对主基因的加性效应;iabc:3对主基因加性效应的互作值;[d]:多基因加性效应;σ2p:表型方差(群体方差);σ2pg:多基因遗传方差;σ2mg:主基因遗传方差;σ2e:环境方差(误差方差);h2mg(%):主基因遗传率;h2pg(%):多基因遗传率;—表示空缺
m: The mean value of P1 generation; d: Main gene effect value; da: Addictive effect of the first pair major gene; db: Addictive effect of the second pair major gene; dc: Addictive effect of the third pair major gene; dd: Addictive effect of the fourth pair major gene; iab(i*): Addictive effect plus addictive effect of the 1st pair major genes×the 2nd pair major gene; iac: Additive effect plus additive effect of the 1st pair major gene × the third pair major gene; iad: Additive effect plus additive effect of the 1st pair major gene × the fourth pair major gene; ibc: Additive effect plus additive effect of the 2nd pair major gene × the third pair major gene; ibd: Additive effect plus additive effect of the 2nd pair major gene × the fourth pair major gene: icd: Additive effect plus additive effect of the third pair major gene × the fourth pair major gene; iabc: Additive effect plus additive effect of the 1st pair major gene × the 2nd pair major gene × the third pair major gene; [d]: The additive effects of polygenes; σ2e: environmental variance; σ2p: Phenotypic variance; σ2pg: Polygene variance; σ2mg: Major gene variance; σ2e: Environmental variance; h2mg (%): Heritability of major gene; h2pg (%): Heritability of polygene-Var;“—”in the cells mean the value is absent

新窗口打开|下载CSV

3 讨论

3.1 穗部性状的遗传模型

近年来,数量性状主基因+多基因混合遗传模型在不同群体、不同类型植物中应用广泛[15,17,33-41],以穗部为代表的农艺性状研究开始受到大家重视[41,20-24,42-52],多数性状表现连续性较好,作为数量性状进行遗传分析,但随着遗传学的发展,研究发现部分农艺性状也呈现不连续的变异,如穗粒数中的多粒特性表现为主基因控制的遗传[53,44-46]

本研究中在环境E1、E2、E3和E4环境下,穗长的最佳遗传模型分别是H-1(4MG-AI)、B-2-1(PG-AI)、H-1(4MG-AI)、F-1(3MG-AI),在环境E1和E3环境下均有相同的遗传模型。其中E1和E3环境下的遗传模型H-1(4MG-AI)表示4对主基因-加性上位性遗传模型,这与程洁等[46]的穗长符合2对主基因遗传模型结构相似,与毕晓静等[21]的多基因遗传模型不同,与李法计等[22]和魏艳丽等[24]的主基因+多基因遗传模型不同。E4环境下的遗传模型F-1(3MG-AI)3对主基因(等比例),加性-上位性主基因遗传模型。以各环境下的最佳模型作为候选模型进行适合性检验发现,E2环境下的遗传模型也就是穗长的最佳遗传模型:B-2-1(PG-AI)即2对连锁主基因+加性-上位多基因遗传模型,主要受多基因模型控制的遗传,这与前人的研究观点相似[20-21,54-56],但也有通过模型研究表明穗长主基因控制存在[20,21,22,23,24],这可能因为研究选育群体类型、环境条件、多环境胁迫条件不一样有关。主茎小穗数在4个环境下,前3个环境E1、E2和E3的最佳遗传模型相同,都是模型B-2-1(PG-AI),表示2对连锁主基因(等比例),加性-上位性多基因遗传模型。环境E4下最佳遗传模型是F-2(3MG-A),表示3对主基因(等比例),加性(无显性)主基因遗传模型。经过适合性检验表明小穗数的最佳遗传模型是B-2-1(PG-AI),这与程洁的主基因遗传模型结构相似,与魏艳丽等[24]、李法计等[22]的主基因+多基因遗传模型不同。与房敬业等[57]研究认为多小穗性主要受2对主效基因控制结果差异较大,与卢翔等[55]的2对主基因+多基因模型以及杜希朋的微效多基因模型也不相同。本研究中穗长和小穗数在不同环境下的最佳遗传模型相同,这或许和基因的连锁性以及一因多效等有关,揭示出相关性状的遗传具有相似或相同性。表明在相近或相同的染色体区域或QTL位点含有控制有关表型的基因[58]。穗粒数在E1、E2、E3和E4每个环境下最佳的遗传模型依次是G-1(MX3-AI-A)、E-2-7(MX2-CE-A)、B-1-9(2MG-IE)和E-2-5(MX2-ER-A)。其中,E1环境下的G-1(MX3-AI-A)模型含义是3对加性-上位性主基因+加性多基因混合遗传模型,E2环境下的E-2-7(MX2-CE-A)模型含义是2对互补作用主基因(2对连锁主基因,等比例)加性多基因混合遗传模型,E3环境下的B-1-9(2MG-IE)模型的含义是2对抑制作用主基因(抑制B等位基因对基因座Aa的影响)模型,E4环境下的E-2-5(MX2-ER-A)模型的含义是2对隐性上位主基因(等比例)加性多基因混合遗传模型。穗粒数在4个环境下的最佳遗传模型是G-1(MX3-AI-A)即3对加性-上位性主基因加多基因+加性多基因混合遗传模型,本研究下的最佳多基因混合遗传模型结果与李法计等[22]、卢翔等[55]、杜希朋等[56]相似,与程洁等[46]和王健胜等[53]等的主基因遗传模型不同;小穗粒数在E1、E2、E3和E4每个环境下最佳的遗传模型依次是F-2(3MG-A)、H-1(4MG-AI)、H-1(4MG-AI)和H-1(4MG-AI),E2、E3和E4环境下模型均相同。E1环境下的模型是F-2(3MG-A),表示3对主基因(等比例)+加性(无显性)主基因遗传模型,E2、E3和E4环境下的模型均是H-1(4MG-AI)表示4对主基因+加性上位性遗传模型。小穗粒数在4个环境下的最佳遗传模型是H-1(4MG-AI)即4对主基因+加性-上位性遗传模型,这与程洁等[46]的主基因研究结果相似。

3.2 遗传模式对小麦穗部育种的指导意义

本研究对小麦穗部性状的育种实践具有重要指导意义。一方面,由于分析群体样本足够大,从而提高了分析结果的准确性。另一方面,从遗传率的大小来看,各性状的遗传率介于29.94—90.64,这与广义遗传率大小范围一致,同为穗长的遗传力最高。穗长的环境变异平均值占表型变异的比例为9.39%,小穗数的环境变异平均值占表型变异的比例为10.50%,穗粒数环境变异平均值占表型变异的比例为2.18%。说明穗部各性状的遗传贡献率较大,主要受到遗传因素影响,同样也受环境效应的影响。因此,小麦育种实践中要充分考虑主基因和微效多基因的影响,及时开展早期有效的单株选择,重点关注高代单株性状的后期稳定表现,排除环境影响,并通过适当的田间管理进行调节。穗部性状的穗长、主茎小穗数、穗粒数和小穗粒数等小麦产量形成的重要因素,也是提高小麦产量的重要途径[59]。通常,数量性状表现出个体间的表型差异,并且具有复杂的遗传基础,这涉及到整个基因组中的许多基因,对整体表型的贡献是可变的[60],环境被定义为所有影响表型的非遗传变量的综合影响,增加了数量性状的复杂性[61],主基因+多基因混合遗传模型方法与QTL模型检测结果连续性好[62]。只是前者应用更为方便、快捷、实用,并且只需要表型数据,研究结果还需要从分子机理上进一步通过QTL验证分析,最终为小麦分子标记辅助选择和图位克隆提高理论基础。为了满足不断增长的人口和不断增加的粮食消费的需求,需要不断增加小麦产量。高产小麦及其衍生品种在小麦新品种选育中发挥了重要作用。课题组自主构建的大重组自交系遗传分析群体虽然花费了大量时间,但其高代群体可以多年多点重复使用,其亲本农艺性状差别明显,含高产、抗病、优质等基因,遗传分析群体中表型优异的高代单株可以作为优良品系培育新品种使用。下一步将穗部性状结合高通量测序进行遗传定位分析,从基因序列等分子水平上进一步挖掘候选基因,对基因位点Meta及关联分析等,阐述其遗传调控网络,为小麦高产稳产的分子标记辅助育种提供理论依据。

4 结论

明确了穗长和小穗数的最佳遗传模型,发现了2对主基因连锁,具有明显的上位性作用。穗粒数由3对加性上位性主基因+加性多基因混合遗传模型。小穗粒数性状通过4对主基因+加性上位性遗传模型来控制它们的遗传。穗长和小穗数在不同环境下的最佳遗传模型相同,或许与基因的连锁性以及一因多效等有关。表明在相近或相同的染色体区域或QTL位点可能含有控制有关表型的基因。小麦穗部性状以多基因遗传效应为主,易受环境影响,表现为正向遗传,符合数量遗传特征。小穗粒数存在着主基因遗传特性,受正值的影响,主基因遗传力较高,受环境影响小,小穗粒数可作为有效改良穗部性状早期选择的直接指标,实现单株定向选择,提高育种效率。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

HAWKESFORD M J, ARAUS J L, PARK R, CALDERINI D, MIRALLES D, SHEN T, ZHANG J, PARRY M A J . Prospects of doubling global wheat yields
Food and Energy Security, 2013,2(1):34-48.

[本文引用: 1]

KU M S, AGARIE S. NOMURA M, FUKAYAMA H, TSUCHIDA H, ONO K, HIROSE S, TOKI S, MIYAL M, MATSUOKA M . High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants
Nature Biotechnology, 1999,17(1):76-80.

[本文引用: 1]

FICHER R A, RESS D, SARRE K D, LU Z M, CONDON A G, LARQUE S A . Wheat yield associated with high stomatal conductance and photosynthetic rete and cooler canopies
Crop Science, 1998,278(6):1467-1475.

[本文引用: 1]

KUMAR S . Quantitative genetics, molecular markers, and plant improvement
Scholarly Journal of Agricultural Science, 2014,4(10):502-511.

[本文引用: 1]

BECHE E, BENIN G, SILVA C L, MUNARO L B, MARCHESE J A . Genetic gain in yield and changes associated with physiological traits in Brazilian wheat during the 20th century
European Journal of Agronomy, 2014,61:49-59.

[本文引用: 1]

盖钧镒, 章元明, 王建康 . 植物数量性状遗传体系
北京: 科学出版社, 2003: 96-102.

[本文引用: 3]

GAI J Y, ZHANG Y M, WANG J K. Genetic System of Quantitative Traits in Plants.
Beijing: Science Press, 2003: 96-102. (in Chinese)

[本文引用: 3]

盖钧镒, 章元明, 王建康 . QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析
作物学报, 2000,26(4):385-391.

[本文引用: 1]

GAI J Y, ZHANG Y M, WANG J K . A joint analysis of multiple generations for QTL models extended to mixed two major genes plus polygene
Acta Agronomica Sinica, 2000,26(4):385-391. (in Chinese)

[本文引用: 1]

WANG J K, PODLICH D W, COOPER M, DELACY I H . Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits
Theoretical and Applied Genetics, 2001,103:804-816.

[本文引用: 1]

WANG J K, GAI J Y . Mixed inheritance model for resistance to agromyzid beanfly (
Melanagromyza sojae Zehntner) in soybean. Euphytica, 2001,122(1):9-18.

[本文引用: 3]

GAI J Y . Segregation analysis on genetic system of quantitative traits in plants
Frontiers of Biology, 2006,1(1):85-92.

[本文引用: 1]

黄冰艳, 张新友, 苗利娟, 刘华, 秦利, 徐静, 张忠信, 汤丰收, 董文召, 韩锁义, 刘志勇 . 花生油酸和亚油酸含量的遗传模式分析
中国农业科学, 2012,45(4):617-624.

[本文引用: 1]

HUANG B Y, ZHANG X Y, MIAO L J, LIU H, QIN L, XU J, ZHANG Z X, TANG F S, DONG W Z, HAN S Y, LIU Z Y . Inheritance analysis of oleic acid and linoleic acid content of Arachis hypogaea L.
Scientia Agricultura Sinica, 2012,45(4):617-624. (in Chinese)

[本文引用: 1]

LI H, RIBAUT J M . Inclusive composite interval mapping(ICIM) for digenic epistasis of quantitative traits in biparental populations
Theoretical and Applied Genetics, 2008,116:243-260.

[本文引用: 1]

汪文祥, 胡琼, 梅德圣, 李云昌, 周日金, 王会成, 洪涛, 付丽, 刘佳 . 甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应
作物学报, 2016,42(8):1103-1111.

[本文引用: 1]

WANG W X, HU Q, MEI D S, LI Y C, ZHOU R J, WANG H C, HONG T, FU L, LIU J . Genetic effects of branch angle using mixture model of major gene plus polygene in Brassica napus L.
Acta Agronomica Sinica, 2016,42(8):1103-1111. (in Chinese)

[本文引用: 1]

YE Y J, WU J Y, FENG L, JU Y Q, CAI M, CHENG T R, PAN H T, ZHANG Q X . Heritability and gene effects for plant architecture traits of crape myrtle using major gene plus polygene inheritance analysis
Scientia Horticulturae, 2017,225:335-342.

[本文引用: 1]

曹齐卫, 张允楠, 王永强, 杨桂兰, 孙小镭, 李利斌 . 黄瓜节间长的主基因+多基因混合遗传模型分析
农业生物技术学报, 2018,26(2):205-212.

[本文引用: 2]

CAO Q W, ZHANG Y N, WANG Y Q, YANG G L, SUN X L, LI L B . Genetic analysis of internode length using mixed major- gene plus polygene inheritance model inCucumis sativus.
Journal of Agricultural Biotechnology, 2018,26(2):205-212. (in Chinese)

[本文引用: 2]

QI Z Y, LI J X, RAZA M A, ZOU X X, CAO L W, RAO L L, CHEN L P . Inheritance of fruit cracking resistance of melon (Cucumis melo L.) fitting E-0 genetic model using major gene plus polygene inheritance analysis.
Scientia Horticulturae, 2015,189:168-174.

[本文引用: 1]

赵倩茹, 钟兴华, 张飞, 房伟民, 陈发棣, 滕年军 . 切花小菊绿心性状杂种优势与混合遗传分析
中国农业科学, 2018,51(5):964-976.

[本文引用: 2]

ZHAO Q R, ZHONG X H, ZHANG F, FANG W M, CHEN F D, TENG N J . Heterosis and mixed genetic analysis of green-center trait of spray cut chrysanthemum
Scientia Agricultura Sinica, 2018,51(5):964-976. (in Chinese)

[本文引用: 2]

KHAN M I, KHATTAK G S S, KHAN A J, KHAN A J, SUBHAN F, MOHAMMAD T, ALI A . Genetic control of flag leaf area in wheat (Triticum aestivum) crosses.
African Journal of Agricultural Research, 2012,7(27):3978-3990.

[本文引用: 1]

CAO X W, CUI H M, LI J, XIONG A S, HOU X L, LI Y . Heritability and gene effects for tiller number and leaf number in non-heading Chinese cabbage using joint segregation analysis
Scientia Horticulturae, 2016,203:199-206.

[本文引用: 1]

李树华, 张文杰, 白海波, 吕学莲, 董建力, 惠建, 魏亦勤, 康学兵 . 春小麦穗部性状的主基因+多基因遗传分析
中国农学通报, 2017,33(6):20-26.

[本文引用: 6]

LI S H, ZHANG W J, BAI H B, Lü X L, DONG J L, HUI J, WEI Y Q, KANG X B . Genetic analysis of major gene plus polygene of spike traits of spring wheat
Chinese Agricultural Science Bulletin. 2017,33(6):20-26. (in Chinese)

[本文引用: 6]

毕晓静, 史秀秀, 马守才, 韩芳, 亓佳佳, 李清峰, 王志军, 张改生, 牛娜 . 小麦农艺性状的主基因+多基因遗传分析
麦类作物学报, 2013,33(4):630-634.

[本文引用: 6]

BI X J, SHI X X, MA S C, HAN F, QI J J, LI Q F, WANG Z J, ZHANG G S, NIU N . Genetic analysis of agronomic traits related to yield based on majou gene plus polygene model in wheat
Journal of Triticeae Crops, 2013,33(4):630-634. (in Chinese)

[本文引用: 6]

李法计, 常鑫, 王宇娟, 宋全昊, 田芳慧, 孙道杰 . 小麦重组自交系群体9个重要农艺性状的遗传分析
麦类作物学报, 2013,33(1):23-28.

[本文引用: 7]

LI F J, CHANG X, WANG Y J, SONG Q H, TIAN F H, SUN D J . Genetics analysis of nine important agronomic traits in wheat population of recombinant inbred lines
Journal of Triticeae Crops, 2013,33(1):23-28. (in Chinese)

[本文引用: 7]

朱欣果, 万洪深, 李俊, 郑建敏, 唐宗祥, 杨武云 . 人工合成小麦育种优势的主基因+多基因混合遗传分析
南京农业大学学报, 2018,41(4):625-632.

[本文引用: 4]

ZHU X G, WAN H S, LI J, ZHENG J M, TANG Z X, YANG W Y . Mixed major-genes plus polygenes inheritance analysis for breeding superiority in synthetic hexaploid wheat
Journal of Nanjing Agricultural University, 2018,41(4):625-632. (in Chinese)

[本文引用: 4]

魏艳丽, 王彬龙, 李瑞国, 蒋会利, 张安静 . 大穗小麦穗部性状的遗传分析
麦类作物报, 2015,35(10):1366-1371.

[本文引用: 5]

WEI Y L, WANG B L, LI R G, JIANG H L, ZHANG A J . Genetic analysis on spike characteristics of wheat variety with large spike
Journal of Triticeae Crops, 2015,35(10):1366-1371. (in Chinese)

[本文引用: 5]

李立会, 李秀全 . 小麦种质资源描述规程和数据标准
北京:中国农业出版社, 2006.

[本文引用: 1]

LI L H, LI X Q. Descriptors and Date Standard for Wheat.
Beijing:China Agriculture Press, 2006. (in Chinese)

[本文引用: 1]

CHOO T M, REINBERGS E . Estimation of the number of genes in doubled haploid populations of barley(Hordeum vulgare).
Canadian Journal of Genetics and Cytology, 1982,24(3):337-341.

[本文引用: 1]

章元明, 盖钧镒, 王永军 . 利用P1、P2和DH或RIL群体联合分离分析的拓展
遗传, 2001,23(5):467-470.

[本文引用: 1]

ZHANG Y M, GAI J Y, WANG Y J . An expansion of joint segregation analysis of quantitative trait for using P1, P2 and DH or RIL populations
Hereditas, 2001,23(5):467-470. (in Chinese)

[本文引用: 1]

曹锡文, 刘兵, 章元明 . 植物数量性状分离分析windows软件包SEA的研制
南京农业大学学报, 2013,36:1-6.

[本文引用: 1]

CAO X W, LIU B, ZHANG Y M . SEA: A software package of segregation analysis of quantitative traits in plants
Journal of Nanjing Agricultural University, 2013,36:1-6. (in Chinese)

[本文引用: 1]

ZHANG Y M, GAI J Y, YANG Y H . The EIM algorithm in the joint segregation analysis of quantitative traits
Genetics Research, 2003,81:157-163.

[本文引用: 2]

AKAIKE H. On entropy maximization principle. Application of Statistics.
The Netherlands: Amsterdam Press, 1977: 27-41.

[本文引用: 1]

CAI C C, TU J X, FU T D . The genetic basis of flowering time and photoperiod sensitivity in rapeseed (Brassica napus L.).
Russian Journal of Genetics, 2008,44:326-333.

[本文引用: 1]

GAMBLE E E . Gene effects in corn (Zea may L.): I. Separation and relative importance of gene effects for yield
Plant Science, 1962,42:339-348.

[本文引用: 1]

李英双, 胡丹, 聂蛟, 黄科慧, 张玉珂, 张园莉, 佘恒志, 方小梅, 阮仁武, 易泽林 . 甜荞株高和茎粗的遗传分析
作物学报, 2018,44(8):1185-1195.

[本文引用: 1]

LI Y S, HU D, NIE J, HUANG K H, ZHANG Y K, ZHANG Y L, SHE H Z, FANG X M, RUAN R W, YI Z L . Genetic analysis of plant height and stem diameter in common buckwheat
Acta Agnomica Sinica, 2018,44(8):1185-1195. (in Chinese)

[本文引用: 1]

郝贤伟, 徐秀红, 许家来, 崔胜利, 王传义, 张兴伟, 任夏, 朱佩, 张忠锋 . 烤烟耐烤性的遗传效应
中国农业科学, 2012,45(23):4939-4946.



HAO X W, XU X H, XU J L, CUI S L, WANG C Y, ZHANG X W, REN X, ZHU P, ZHANG Z F . Genetic effects of holding curing potential in flue-cured tobacco
Scientia Agricultura Sinica, 2012,45(23):4939-4946. (in Chinese)



张保雷, 张卫东, 高庆荣, 王茂婷, 李楠楠, 张艳玉, 王慧娜, 高建华, 赵兰飞, 茹振刚 . 温光敏雄性不育小麦BNS育性的遗传效应分析
中国农业科学, 2013,46(8):1533-1542.



ZHANG B L, ZHANG W D, GAO Q R, WANG M T, LI N N, ZHANG Y Y, WANG H N, GAO J H, ZHAO L F, RU Z G . Genetic analysis on male sterility of thermo-photo-sensitive male sterile line BNS in wheat
Scientia Agricultura Sinica, 2013,46(8):1533-1542. (in Chinese)



王金社, 李海旺, 赵团结, 盖钧镒 . 重组自交家系群体4对主基因加多基因混合遗传模型分离分析方法的建立
作物学报, 2010,36(2):191-201.



WANG J S, LI H W, ZHAO T J, GAI J Y . Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in recombinant inbred lines population
Acta Agronomica Sinica, 2010,36(2):191-201. (in Chinese)



张晓芬, 陈晓慧, 陈斌, 韩华丽, 耿三省 . 农业生物技术学报, 2013,21(4):407-412.


ZHANG X F, CHEN X H, CHEN B, HAN H L, GENG S S . Genetic analysis of trichome density on the main stem and leaves in a recombinant inbred lines population derived from wild pepper (Capsicum annuum L.).
Journal of Agricultural Biotechnology, 2013,21(4):407-412. (in Chinese)



吴浪, 刘婧仪, 梁燕 . 番茄绿果与红果颜色性状遗传的研究
园艺学报, 2016,43(4):674-682.



WU L, LIU J Y, LIANG Y . Inheritance on fruit color character between green and red of Tomato
Acta Horticulturae Sinica, 2016,43(4):674-682. (in Chinese)



彭辉, 陈发棣, 房伟民, 蒋甲福, 陈素梅, 管志勇, 廖园 . 切花小菊分枝性状杂种优势表现与遗传分析,
园艺学报, 2013,40(7):1327-1336.



PENG H, CHEN F D, FANG W M, JIANG J F, CHEN S M, GUAN Z Y, LIAO Y . Heterosis and mixed genetic analysis of branch traits of cut chrysanthemum
Acta Horticulturae Sinica, 2013,40(7):1327-1336. (in Chinese)



江建华, 洪德林, 郭媛, 张启武 . 粳稻穗角与谷粒性状的相关性及谷粒性状遗传分析
植物学报, 2009,44(2):167-177.



JIANG J H, HONG D L, GUO Y, ZHANG Q W . Correlation between panicle angle and grain traits, and genetic analysis of grain traits in Japonica rice (Oryza sativa)
Chinese Bulletin of Botany, 2009,44(2):167-177. (in Chinese)



江建华, 张启武, 洪德林 . 粳稻穗部性状遗传分析
植物学报, 2010,45(2):182-188.

[本文引用: 2]

JIANG J H, ZHANG Q W, HONG D L . Genetic analysis of panicle traits in Oryza sativa ssp. japonica
Chinese Bulletin of Botany, 2010,45(2):182-188. (in Chinese)

[本文引用: 2]

匡勇, 罗丽华, 周倩倩, 何云礼, 范西林, 肖颖慧 . 水稻籼粳交重组自交系群体穗部性状的相关和遗传分析
华北农学报, 2011,26(3):72-78.

[本文引用: 1]

KUANG Y, LUO L H, ZHOU Q Q, HE Y L, FAN X L, XIAO Y H . Genetic and correlation analysis of the panicle traits of Recombinant Inbred Lines derived from an Indica/Japonica rice cross
Acta Agriculturae Boreali-Sinica, 2011,26(3):72-78. (in Chinese)

[本文引用: 1]

郑建敏, 蒲宗君, 李式昭, 李俊杨 . 人工合成小麦CI-LD抗穗发芽遗传特性分析
麦类作物学报, 2015,35(4):464-470.



ZHENG J M, PU Z J, LI S Z, LI J Y . Genetic analysis of pre-harvest sprouting resistance in synthetic wheat CI-LD
Journal of Triticeae Crops, 2015,35(4):464-470. (in Chinese)



杨兴圣, 梁子英, 李华, 沈玮囡, 李美霞, 奚亚军, 王竹林, 刘曙东 . 普通小麦籽粒性状的主基因+多基因遗传模型分析
麦类作物学报, 2013,33(6):1119-1127.

[本文引用: 1]

YANG X S, LIANG Z Y, LI H, SHEN W N, LI M X, XI Y J, WANG Z L, LIU S D . Analysis on genetic model of grain characteristics in common wheat by mixed inheritance model of major genes plus polygenes
Journal of Triticeae Crops, 2013,33(6):1119-1127. (in Chinese)

[本文引用: 1]

张安静, 张俊祖, 刘凤琴, 罗洪溪, 王彬龙, 赵会利 . 应用极大似然法分析小麦穗长的遗传
中国农学通报, 2006,9:182-185.



ZHANG A J, ZHANG J Z, LIU F Q, LUO H X, WANG B L, ZHAO H L . The genetics law on the main stem ear length of long spike wheat lines using maximum likelihood methods
Chinese Agricultural Science Bulletin, 2006,22(9):182-185. (in Chinese)



程洁, 周荣全, 吴玉川, 宋新颖, 林琪, 穆平 . 不同水分条件下小麦穗部性状的遗传分析
华北农学报, 2015,30(增刊):146-151.

[本文引用: 4]

CHENG J, ZHOU R Q, WU Y C, SONG X Y, LIN Q, MU P . Genetic analysis of spike traits in wheat cultivated in contrasted water conditions in wheat
Acta Agriculturae Boreali-Sinica, 2015,30(Suppl.):146-151. (in Chinese)

[本文引用: 4]

CUI F, LI J, DING A . Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat
Theoretical and Applied Genetics, 2011,122(8):1517-1536.



CUI F, DING A M, LI J . QTL detection of seven spike related traits and their genetic correlations in wheat using two related RIL populations,
Euphytica, 2012,186(1):177-192.



任哓波, 兰秀锦, 汪加丽 . 人工合成小麦穗部特异性状的遗传分析
四川农业大学学报, 2006,24(4):375-380.



REN X B, LAN X J, WANG J L . Genetic analysis on special character in spike of synthetic hexaploid wheat
Journal of Sichuan Agricultural University, 2006,24(4):375-380. (in Chinese)



王新宁, 杜旭烨, 李斌, 王振林, 贺明荣, 李安飞, 贾继增, 孔令让 . 察雅折达29×偃展 1号重组自交系群体主要农艺性状遗传分析
山东农业科学, 2010,7:17-19.



WANG X N, DU X Y, LI B, WANG Z L, HE M R, LI A F, JIA J Z, KONG L R . Genetic analysis of main agronomic traits in recombinant inbred lines of chayazheda 29×Yanzhan
Shandong Agricultural Sciences, 2010,7:17-19. (in Chinese)



林志强, 郑燕, 蔡英杰, 黄姗, 李志勇, 沈伟伟, 郑秀娟, 梁康迳 . 水稻长穗大粒 RIL 群体产量、穗部和谷粒性状的遗传分析
福建农林大学学报(自然科学版), 2011,40(5):449-454.



LIN Z Q, ZHENG Y, CAI Y J, HUANG S, LI Z R, SHEN W W, ZHENG X J, LIANG K J . Genetic analysis on yield,panicle and grain traits in rice RIL population of long panicle and big grain
Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2011,40(5):449-454. (in Chinese)



向道权, 黄烈健, 曹永国, 戴景瑞 . 玉米产量性状主基因-多基因遗传效应的初步研究
华北农学报, 2001,16(3):1-5.

[本文引用: 1]

XIANG D Q, HUANG L J, CAO Y G, DAI J R . A preliminary study on genetic effect of maize yield component traits based on major gene and polygene mixed inheritance
Acta Agriculturae Boreali-Sinica, 2001,16(3):1-5. (in Chinese)

[本文引用: 1]

王健胜, 王辉, 刘伟华, 武军, 李立会 . 小麦-冰草多粒新种质及其多粒性遗传分析
中国农业科学, 2009,42(6):1889-1895.

[本文引用: 2]

WANG J S, WANG H, LIU W H, WU J, LI L H . The large kernel number in the novel wheat-agropyron germplasm 3228 and its inheritance analysis
Scientia Agricultura Sinica, 2009,42(6):1889-1895. (in Chinese)

[本文引用: 2]

闫林 . 大穗小麦西农9814主要性状遗传分析及性状改良研究
[D]. 杨凌: 西北农林科技大学, 2009.

[本文引用: 1]

YAN L . Genetic analysis of main traits and research on traits improvement for big ears wheat Xinong 9814
[D]. Yangling: Northwest A &F University, 2009. (in Chinese)

[本文引用: 1]

卢翔, 张锦鹏, 王化俊, 杨欣明, 李秀全, 李立会 . 小麦-冰草衍生后代3558-2穗部相关性状的遗传分析和QTL定位
植物遗传资源学报, 2011,12(1):86-91.

[本文引用: 2]

LU X, ZHANG J P, WANG H J, YANG X M, LI X Q, LI L H . Genetic analysis and QTL mapping of wheat spike traits in a derivative line 3558-2 from wheat agropyron cristatum Offspring
Journal of Plant Genetic Resources, 2011,12(1):86-91. (in Chinese)

[本文引用: 2]

杜希朋, 闫媛媛, 刘伟华, 高爱农, 张锦鹏, 李秀全, 杨欣明, 车永和, 郭小敏 . 蚂蚱麦×碧玉麦杂交F2代部分农艺性状的遗传分析
麦类作物学报, 2011,31(4):624-629.

[本文引用: 2]

DU X P, YAN Y Y, LIU W H, GAO A N, ZHANG J P, LI X Q, YANG X M, CHE Y H, GUO X M . Genetic analysis on several important agronomic traits in F2 generation of mazhamai ×quality
Journal of Triticeae Crops, 2011,31(4):624-629. (in Chinese)

[本文引用: 2]

房敬业, 孙东发 . 多小穗小麦51885的多小穗性遗传及与剑叶关系的初步研究
华中农业大学学报, 2004,34:61-67.

[本文引用: 1]

FANG J Y, SUN D F . Inheritance of supernumerary spikelets and its relations with flag leaf characters of supernumerary spikelets line 51885 in wheat
Journal of Huazhong Agricultural University, 2004,34:61-67. (in Chinese)

[本文引用: 1]

范平, 詹克慧, 孙建英, 王淑凤, 赵国山 . 小麦主要性状的遗传模型分析
河南农业大学学报, 1999,33(3):231-234.

[本文引用: 1]

FAN P, ZHAN K H, SUN J Y, WANG S F, ZHAO G S . Analysis on the genetic models for main characters in wheat
Acta Agriculturae Universitatis Henanensis, 1999,33(3):231-234. (in Chinese)

[本文引用: 1]

许为刚, 胡琳, 吴兆苏, 盖钧镒 . 关中小麦品种产量与产量结构遗产改良的研究
作物学报, 2000,26(3):352-358.

[本文引用: 1]

XU W G, HU L, WU Z S, GAI J Y . Studies on genetic improvement of yield and yield components of wheat cultivars in Mid-Shaanxi area
Acta Agronomica Sinica, 2000,26(3):352-358. (in Chinese)

[本文引用: 1]

HOLLAND J B . Genetic architecture of complex traits in plants
Current Opinion in Plant Biology, 2007,10:156-161.

[本文引用: 1]

XU H, ZHU J . Statistical approaches in QTL mapping and molecular breeding for complex traits
Chinese Science Bulletin, 2012,57:2637-2644.

[本文引用: 1]

王春娥, 盖钧镒, 傅三雄, 喻德跃, 陈受宜 . 大豆豆腐和豆乳得率的遗传分析与 QTL 定位
中国农业科学, 2008,41:1274-1282.

[本文引用: 1]

WANG C E, GAI J Y, FU S X, YU D Y, CHEN S Y . Inheritance and QTL mapping of tofu and soymilk output in soybean
Scientia Agricultura Sinica, 2008,41:1274-1282. (in Chinese)

[本文引用: 1]

相关话题/基因 遗传 环境 作物 检验