Genetic Analysis of Panicle Related Traits in Wheat with Major Gene Plus Polygenes Mixed Model
XIE SongFeng1,2, JI WanQuan,1, WANG ChangYou1, HU WeiGuo3, LI Jun4, ZHANG YaoYuan1, SHI XiaoXi1, ZHANG JunJie1, ZHANG Hong1, CHEN ChunHuan11 College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas/Yangling Sub-centre, National Wheat Improvement Centre, Yangling 712100, Shaanxi 2 Key Laboratory of Se-enriched Food Development, Ankang R&D Center for Se-enriched Prducts, Ankang 725000, Shaanxi 3 Wheat Research Centre, Henan Academy of Agricultural Sciences, Zhengzhou 450002 4 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066
Abstract 【Objective】 Panicle traits are important yield traits of wheat, occupying an important position and role in wheat yield composition. Carrying out genetic research on wheat panicle traits and analyzing its genetic mechanism provide theoretical and practical guidance for formulating high-yield breeding strategies and improving breeding efficiency. 【Method】 Based on the length of the main stem, the number of spikelets, the number of grains per spike, and the number of spikelets, the main gene + polygene mixed genetic model of quantitative traits was used to obtain the parental product 34 and the male parent under different ecological conditions. BARRAN and its derived F7:8, F8:9 generation recombinant inbred line population (RIL) were used for genetic model analysis and genetic parameter estimation of panicle traits to determine the number of genes controlling various traits, and to estimate genetic effect values and heritability. 【Result】The best genetic model for panicle length and spikelet number were B-2-1 (PG-AI), which was consistent with two pairs of linked major genes + additive-epistasis polygene genetic model. The polygenic heritability of spike length was 90.64%, the polygenic heritability of spikelet number was 89.52%, the average of environmental variation of spike length accounted for 9.39% in phenotypic variation, and the average of environmental variation of spikelet number accounted for 10.50% in phenotypic variation; Major gene heritability was 69.39%, Polygenes heritability rate was 29.94%, and the average environmental variation accounted for 2.18% in phenotypic variation. Additive effect value of the first pair of main genes controlling the number of spikes and the additive effect value of the third pair of major genes are equal, and the same was 4.56, which has a positive effect. The additive effect value of the second pair of major genes was the same as the additive effect of the first pair of major genes × the second pair of major genes × the third pair of major genes, both of which were -1.44, and are negative effects. The additive and additive × additive epistasis interaction values were equal to the additive and the second pair of major gene additions × the third pair of major gene additive epistatic interactions, both of which were -6.02. Additive and the first pair of major gene additive × the third pair of main gene additive epistatic interaction effect value is 0.18, the multi-gene additive effect value is 0.15, showing a lower positive genetic effect; H-1(4MG-AI) was best-fitting genetic model for the spikelet number traits, which showed that their inheritance was controlled by incorporating four major genes additive-epistasis genetic model. The heritability of the main gene was 81.50%. The additive effect values of the main genes in the first to fourth pairs were 0.22, 0.18, -0.20, and 0.24, respectively, the additive and epistatic interactions of the first pair of major genes × the first pair of major genes were -0.170, the additive effect value of the additive and the first pair of major genes × the third pair of major genes was 0.240. the additive effect value of the additive and the first pair of major genes × the fourth pair of major genes was -0.200, additive and the second pair of major genes × the third pair of major genes × additive effect value and additive and the second pair of major gene additive × fourth pair of major gene additive epistatic interaction value absolute value, the effect in contrast, the former value was 0.030, and the latter value was -0.030. The additive effect value of the additive and the third pair of major genes × the fourth pair of major genes was 0.060. 【Conclusion】The panicle traits of wheat are mainly polygenic genetic effects, which are in line with quantitative genetic characteristics and are susceptible to environmental influences. The number of spikelet grains has the genetic characteristics of the main gene. The main gene has high heritability and is affected by the environment. The number of spikelets can be used as a direct indicator to effectively improve the early selection of panicle traits, achieving single plant directional selection and improving breeding efficiency. Keywords:wheat;panicle traits;major gene + polygene;genetic effect
PDF (2804KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 解松峰, 吉万全, 王长有, 胡卫国, 李俊, 张耀元, 师晓曦, 张俊杰, 张宏, 陈春环. 小麦穗部性状的主基因+多基因混合遗传模型分析[J]. 中国农业科学, 2019, 52(24): 4437-4452 doi:10.3864/j.issn.0578-1752.2019.24.001 XIE SongFeng, JI WanQuan, WANG ChangYou, HU WeiGuo, LI Jun, ZHANG YaoYuan, SHI XiaoXi, ZHANG JunJie, ZHANG Hong, CHEN ChunHuan. Genetic Analysis of Panicle Related Traits in Wheat with Major Gene Plus Polygenes Mixed Model[J]. Scientia Acricultura Sinica, 2019, 52(24): 4437-4452 doi:10.3864/j.issn.0578-1752.2019.24.001
穗部性状调查和测定参考李立会的方法[25],每个品系调查10株,如穗长(spike length,SL):主穗基部小穗节至穗顶端(不含芒)的长度;主穗小穗数(spikelets of main ear,SME):主穗小穗数总数包括不育小穗数,另计每穗有效(结实)小穗数;主穗粒数(grains of main ear,GME):全穗粒数或单穗实际粒数或单株每穗平均结实粒数;小穗最多粒数(grains of small ear,GSE):穗中部最多粒数的小穗。
1.3 数据分析
利用SPSS Statistics 17.0软件(SPSS,Chicago,IL,USA)进行表型数据、偏度及峰度系数估计值基本统计。RIL群体中各基因位点为纯合,其遗传方差等于加性方差,广义遗传力等于狭义遗传力,公式为:hB2=Va/(Va+Ve)(Va为加性方差,Ve为环境方差)。根据CHOO等[26]提出的基因间互作方式分析原理,由各性状偏度系数(g1)、峰度系数(g2)的正负号及其相对大小可以估计基因的上位性互作及其互作方式。利用R语言包绘制小麦重组自交系穗部性状的频率分布直方图;利用章元明教授团队最新开发的R软件包SEA[27,28]进行主基因+多基因混合遗传分析。其遗传模型原理是根据盖钧镒等[6]和ZHANG等[29]提出的植物数量性状“主基因+多基因混合遗传模型中P1、P2和RIL群体的联合世代分析方法”,获得7类38个遗传模型,进一步计算极大似然函数值(maximum likelihood method,MLV)并转换为AIC(Akaike’s information criterion,AIC)值;选出最小或接近最小AIC值的备选遗传模型[30],进行样本分布与模型理论分布的适合性检验,包括均匀性检验(U12、U22、U32)、Smirnov检验(nW2)和Kolmogorov检验(Dn)。根据适合性检验的结果及AIC值最小原则选出最优遗传模型[31]。通过SEA软件包中最小二乘法原理计算出最优遗传模型的遗传效应等一阶遗传参数[32]、遗传方差和遗传率等二阶遗传参数[6,29],其中σ2p、σ2mg和σ2pg分别是群体表型方差、主基因和多基因遗传方差;h2mg和h2pg分别是主基因和多基因遗传率。
Table 1 表1 表1重组自交系及其亲本穗部性状最佳线性无偏预测描述性分析 Table 1Description analysis of panicle traits of the RILs and its parents best linear unbiased prediction (BLUP) among different populations
环境Environment
性状 Trait
亲本Parent
重组自交系群体 RIL
品冬34 Pin- Dong34
Warran
最小值 Minimum
最大值 Maximum
平均数 Average
标准差 SD
变异系数 Coefficient of variation/CV (%)
遗传力 Heritability
偏度系数 Skewness
峰度系数 Kurtosis
2016SY
穗长 SL (cm)
9.00
5.00
4.00
14.00
8.44
1.92
0.23
0.92
0.08
-0.53
2017SY
9.00
5.25
4.00
26.20
8.45
1.92
0.23
0.91
1.58**
14.10**
2017HY
9.78
6.13
4.88
14.90
9.43
1.80
0.19
0.90
0.02
-0.45
2017SG
10.67
5.17
3.77
14.17
9.00
2.48
0.27
0.97
-0.16
-0.98
平均 Average
9.61
5.39
4.16
17.32
8.83
2.03
0.23
0.92
0.38**
3.03**
2016SY
小穗数SME
19.00
14.00
11.00
27.00
18.39
2.34
0.13
0.88
0.27**
0.58**
2017SY
19.00
15.75
12.60
22.33
17.19
1.59
0.09
0.34
0.21*
0.14*
2017HY
17.25
15.00
9.25
39.50
17.48
2.37
0.14
0.62
1.66**
5.36**
2017SG
21.00
21.00
13.33
59.00
20.58
3.11
0.15
0.95
1.77**
3.71**
平均值 Average
19.06
16.44
11.55
36.96
18.41
2.35
0.13
0.70
0.98**
2.45**
2016SY
单穗 粒数 GME
50.00
39.00
27.00
104.00
56.32
10.92
0.19
0.92
0.92**
2.31**
2017SY
44.25
39.25
26.00
69.60
43.01
5.86
0.14
0.40
0.48**
1.05**
2017HY
33.75
35.75
15.25
55.50
37.11
5.35
0.14
0.80
0.15*
0.68**
2017SG
48.33
52.00
8.33
94.00
45.14
12.70
0.28
0.92
-0.35
0.36**
平均 Average
44.08
41.50
19.15
80.78
45.39
8.71
0.19
0.76
0.30**
1.10**
2016SY
小穗 粒数 GSE
2.63
2.79
2.00
9.00
3.07
0.44
0.14
0.85
5.67**
12.24**
2017SY
2.32
2.53
1.73
8.78
2.62
0.77
0.29
0.81
5.72**
17.04**
2017HY
1.95
2.38
1.62
31.25
2.21
1.35
0.61
0.90
2.03**
5.58**
2017SG
2.30
2.48
0.20
3.71
2.15
0.62
0.29
0.97
-0.92
0.95**
平均 Average
2.30
2.54
1.39
13.18
2.51
0.80
0.32
0.88
3.13**
8.95**
SL:穗长;SME:小穗数;GME:单穗粒数;GSE:小穗粒数。*:差异达到显著水平(P>0.05);**:差异达到极显著水平(P<0.01)。下同 SL: Spike length; SME: Spikelets of main ear; GME: Grains of main ear; GSE: Grains of small ear. *: Difference at the 0.05 probability level; **: Significant difference at the 0.01 level. The same as below
Table 2 表2 表2小麦重组自交系品冬34×Barran F8、F9群体穗部性状最佳遗传模型分离分析的极大似然函数MLV值和Akaike信息准则AIC值 Table 2Akaike information criterion(AIC) and Maximum likelihood values (MLV) of thirty-eight genetic models for panicle traits in joint segregation analysis on the F8, F9 population between Pindong34 and Barran
环境Environment
a模型代码Model Code
b模型含义Implication of model
AIC值AIC value
极大似然函数值log_Max_likelihood_value
穗长 SL(cm)
小穗数 SME
单穗粒数GME
小穗粒数GSE
穗长 SL(cm)
小穗数 SME
单穗粒数GME
小穗粒数GSE
2016SY
B-1-9
2MG-IE
2008.766
2202.984
3630.920
568.647
-1001.383
-1098.492
-1812.460
-281.323
2017SY
2042.412
1871.954
3892.716
836.451
-1018.206
-932.977
-1943.358
-415.226
2017HY
2005.506
2264.683
3068.409
-151.936
-999.753
-1129.341
-1531.204
78.968
2017SG
2280.090
2518.826
3905.365
831.225
-1137.045
-1256.413
-1949.683
-412.612
平均值Average
2084.194
2214.612
3624.353
521.097
-1039.097
-1104.306
-1809.176
-257.548
2016SY
B-2-1
PG-AI
1991.08
2184.541
3649.384
554.133
-990.540
-1087.271
-1819.692
-272.066
2017SY
2016.217
1855.786
3899.482
920.279
-1003.108
-922.893
-1944.741
-455.140
2017HY
1965.160
2256.652
3074.416
-88.404
-977.58
-1123.326
-1532.208
49.202
2017SG
2260.751
2507.815
3890.493
905.074
-1125.375
-1248.908
-1940.246
-447.537
平均值Average
2058.302
2201.199
3628.444
572.771
-1024.151
-1095.599
-1809.222
-281.385
2016SY
E-2-5
MX2-ER-A
1993.659
2204.400
3631.760
557.823
-990.83
-1096.200
-1809.880
-272.911
2017SY
2037.382
1872.533
3888.241
841.737
-1012.691
-930.267
-1938.120
-414.868
2017HY
1975.250
2264.573
3074.295
-155.919
-981.625
-1126.287
-1531.147
83.960
2017SG
2179.590
2509.166
3879.773
825.033
-1083.795
-1248.583
-1933.887
-406.517
平均值Average
2046.470
2212.668
3618.517
517.168
-1017.235
-1100.334
-1803.259
-252.584
2016SY
E-2-6
MX2-AE-A
1984.375
2205.064
3681.667
558.402
-986.188
-1096.532
-1834.834
-273.201
2017SY
2035.499
1870.327
3888.148
924.373
-1011.749
-929.163
-1938.074
-456.187
2017HY
1964.365
2264.534
3076.497
-156.411
-976.183
-1126.267
-1532.248
84.206
2017SG
2190.648
2510.324
3892.530
907.513
-1089.324
-1249.162
-1940.265
-447.756
平均值Average
2043.722
2212.562
3634.711
558.469
-1015.861
-1100.281
-1811.355
-273.235
2016SY
E-2-7
MX2-CE-A
2008.310
2206.715
3681.548
558.968
-999.155
-1098.357
-1835.774
-274.484
2017SY
2038.900
1871.419
3886.283
925.424
-1014.450
-930.710
-1938.141
-457.712
2017HY
1992.014
2265.186
3074.897
-157.747
-991.007
-1127.593
-1532.449
83.874
2017SG
2212.174
2508.126
3891.372
908.553
-1101.087
-1249.063
-1940.686
-449.276
平均值Average
2062.850
2212.862
3633.525
558.799
-1026.425
-1101.431
-1811.763
-274.400
2016SY
F-1
3MG-AI
1985.792
2203.003
3578.592
500.386
-983.896
-1092.501
-1780.296
-241.193
2017SY
2050.987
1865.838
3896.524
837.993
-1016.493
-923.919
-1939.262
-409.997
2017HY
1967.168
2268.794
3076.632
-170.353
-974.584
-1125.397
-1529.316
94.177
2017SG
2164.521
2523.808
3889.178
812.895
-1073.26
-1252.904
-1935.589
-397.447
平均值Average
2042.117
2215.361
3610.232
495.230
-1012.058
-1098.68
-1796.116
-238.615
2016SY
F-2
3MG-A
2061.739
2303.912
3654.398
428.251
-1025.870
-1146.956
-1822.199
-209.126
2017SY
2115.129
1856.02
3931.771
838.167
-1052.565
-923.01
-1960.885
-414.084
2017HY
2116.900
2370.007
3175.847
-166.145
-1053.45
-1180.003
-1582.924
88.073
2017SG
2263.549
2451.369
3917.213
822.204
-1126.775
-1220.685
-1953.606
-406.102
平均值Average
2139.329
2245.327
3669.807
480.619
-1064.665
-1117.663
-1829.904
-235.310
2016SY
G-1
MX3-AI-A
1985.729
2203.538
3562.874
487.927
-981.865
-1090.769
-1770.437
-232.963
2017SY
2034.889
1869.268
3892.910
841.503
-1006.444
-923.634
-1935.455
-409.751
2017HY
1963.325
2267.739
3081.815
-178.949
-970.663
-1122.870
-1529.907
100.474
2017SG
2172.129
2518.193
3883.909
826.033
-1075.064
-1248.096
-1930.954
-402.017
平均值Average
2039.018
2214.685
3605.377
494.128
-1008.509
-1096.342
-1791.688
-236.064
2016SY
H-1
4MG-AI
1804.726
2198.415
3572.438
572.548
-891.363
-1088.207
-1775.219
-275.274
2017SY
2048.989
1873.771
3893.070
822.622
-1013.495
-925.885
-1935.535
-400.311
2017HY
1960.836
2268.425
3079.402
-244.665
-969.418
-1123.212
-1528.701
133.332
2017SG
2164.815
2518.811
3885.512
805.103
-1071.407
-1248.406
-1931.756
-391.552
平均值Average
1994.842
2214.856
3607.606
488.902
-986.421
-1096.428
-1792.803
-233.451
a:A模型表示1对主基因,无多基因遗传模型;B模型表示2对主基因,无多基因遗传模型;D模型表示1对主基因+多基因混合遗传模型;E模型表示2对主基因+多基因混合遗传模型;F模型表示3对主基因,无多基因遗传模型;G模型表示3对主基因+多基因混合遗传模型;H模型表示4对主基因+多基因遗传模型。b:MG:主基因模型;PG:多基因遗传模型;MX:主基因+多基因混合模型;A:加性效应;D:显性效应;I:互作;N:负向;E:相等;AI:加性上位性效应;EA:等加性;ED:显性上位;ER:隐性上位;AE:累加作用;CE:互补作用;DE:重叠作用;IE:抑制作用;CEA:全等加性;PEA:部分等加性;EEA:2个主基因等加性;EEEA:3个主基因等加性。例如: E-1模型MX2-ADI-AD,表示2对加性-显性-上位性主基因+加性-显性多基因混合遗传模型。MX3-CEA-A则表示3对等加性主基因+加性多基因混合遗传模型;粗体表示备选模型的AIC值(具有最低的2个AIC值)。下同 a: A: One major gene without polygene; B: Two major genes without polygene; D: One major gene plus polygene mixed model; E: Two major genes plus polygene mixed model; F: Three major genes without polygene; G: Three major genes plus polygene mixed model; H: Four major genes plus polygene mixed model. b: MG: Major gene model; PG: Polygene model; MX: Mixed major gene and polygene model; A: Additive effect; D: Dominance effect; I: Interaction; N: Negative; E: Equal; AI: Additive+epistasis effect; EA: Equal additive effect; ED: Epistasis dominance; ER: Epistasis recessively; AE: Accumulative effect; CE: complementary effect; DE: duplicate effect; IE: inhibition effect; CEA: congruent equal additive; PEA: partial equal additive; EEA: 2 major genes with equal additive effect; EEEA: 3 major genes with equal additive effect. Model E-1=MX2-ADI-AD, means mixed model with two major genes of additive-dominance-epistasis effects plus additive-dominance polygene. MX3-CEA-A: 3 major-genes with congruent equal additive effects plus polygenes mixed model. Bond latter are AIC for the selected optimal models. The same as below
Table 3 表3 表3重组自交系群体(品冬34×Barran)穗部相关性状的最佳遗传模型适合性检验 Table 3Tests of eleven panicle traits for goodness-of-fit in some models
性状 Traits
环境 Environment
模型代码 Modelcode
模型含义 Implication of model
世代 Generation
统计量Statistic
U12
U22
U32
nW2
Dn
穗长 SL(cm)
2017SY
B-2-1
PG-AI
P1
0.5511(0.4579)
0.3309(0.5651)
0.3297(0.5659)
0.5036(0.0397)
0.4948(0.0088)
P2
0.0268(0.8701)
0.0993(0.7527)
0.3929(0.5308)
0.151(0.3881)
0.4143(0.3929)
RIL
0.0577(0.8102)
0.3641(0.5463)
2.1999(0.1380)
0.0854(0.6733)
0.0354(0.5748)
小穗数 SME
2016SY
B-2-1
PG-AI
P1
0(0.9998)
0(0.9968)
0.0003(0.9865)
0.0541(0.8519)
0.25(0.9062)
P2
0(1)
0.0245(0.8756)
0.392(0.5312)
0.0385(0.9405)
0.24(0.9810)
RIL
0.1318(0.7166)
0.2995(0.5842)
0.6132(0.4336)
1.8464(2.98E-05)
0.154(2.51E-10)
穗粒数 GME
2016SY
G-1
MX3-AI-A
P1
0.4341(0.5100)
0.3268(0.5676)
0.0704(0.7908)
0.0678(0.771)
0.3233(0.8155)
P2
0.4341(0.5100)
0.3268(0.5676)
0.0704(0.7908)
0.0678(0.771)
0.3233(0.8155)
RIL
0.0455(0.8311)
0.0049(0.9440)
1.2258(0.2682)
1.428(2.52E-04)
0.1279(3.00E-07)
小穗粒数 GSE
2017SY
H-1
4MG-AI
P1
0.1133(0.7364)
0.5279(0.4675)
2.5687(0.1090)
0.1469(0.4011)
0.3086(0.2420)
P2
0.0564(0.8122)
0.0075(0.9312)
1.6016(0.2057)
0.0937(0.6285)
0.3291(0.7942)
RIL
0.0036(0.9519)
0.0086(0.9261)
0.0188(0.8908)
0.0394(0.9364)
0.0315(0.7159)
2017HY
H-1
4MG-AI
P1
1.9215(0.1657)
0.1336(0.7148)
15.2622(9.36E-05)
0.5132(0.0375)
0.457(0.0199)
P2
0.0427(0.8363)
0.0469(0.8286)
2.7766(0.0957)
0.1411(0.4202)
0.2822(0.4653)
RIL
0.0016(0.9677)
0.2173(0.6411)
4.0874(0.0432)
0.1458(0.4046)
0.0501(0.1760)
2017SG
H-1
4MG-AI
P1
0.2727(0.6015)
0.1454(0.7029)
0.247(0.6192)
0.1503(0.3902)
0.2221(0.4761)
P2
0.0023(0.9615)
0.0588(0.8083)
1.3396(0.2471)
0.0813(0.6955)
0.346(0.7437)
RIL
0(0.9954)
0.0001(0.9917)
0.0004(0.9844)
0.0344(0.9596)
0.0275(0.8516)
U12、U22、U32为均匀性检验统计量;nW2为Smirnov检验统计量;Dn为Kolmogorov检验统计量;U12、U22、U32检测统计量中括号内为相应的概率P;P1、P2:亲本;RILs:重组自交系 U12, U22, U32 are the statistic of Uniformity test, the numbers in brackets are the distribution values in theory; nW2 is the statistic of Smirnov test; Dn is the statistic of Kolmogorov test1; P1, P2: Parents; RILs: Recombinant inbred lines. SL: Spike length; SME: Spikelets of main ear; GME: Grains of main ear; GSE: Grains of small ear
Table 4 表4 表4品冬34×Barran群体产量相关性状的部分模型的遗传参数 Table 4The estimates of genetic parameters of eleven yield-related traits of population from Pindong34 × Barran populations
性状Traits
穗长SL(cm)
小穗数SME
穗粒数GME
小穗粒数GSE
环境Environment
2017SY
2016SY
2016SY
2017SY
2017HY
2017SG
模型含义Implication of model
PG-AI
PG-AI
MX3-AI-A
4MG-AI
4MG-AI
4MG-AI
一阶参数估计值1st order parameter Estimate (%)
m(m1)
8.70
17.00
56.22
2.16
2.19
2.18
m2
5.25
13.00
—
—
—
—
m3
8.45
18.40
—
—
—
—
d(da)
—
—
4.56
0.22
-0.12
-0.33
db
—
—
-1.64
0.18
-0.12
0.16
dc
—
—
4.56
-0.20
-0.07
0.06
dd
—
—
—
0.24
-0.09
0.24
iab (i*)
—
—
-6.02
-0.17
0.08
0.01
iac
—
—
0.18
0.24
0.06
0.11
iad
—
—
—
-0.20
0.08
0.19
ibc
—
—
-6.02
0.03
0.06
-0.09
ibd
—
—
—
-0.03
0.08
-0.03
icd
—
—
—
0.06
0.03
-0.17
iabc
—
—
-1.64
—
—
—
[d]
—
—
0.15
—
—
—
二阶参数估计值2nd order parameter Estimate (%)
σ2e
0.35
0.57
0.80
0.07
0.01
0.06
σ2p
3.70
5.46
36.44
0.07
0.01
0.06
σ2mg
—
—
82.59
0.31
0.04
0.33
h2mg (%)
—
—
69.39
81.50
71.36
85.49
σ2pg
3.36
4.90
35.64
—
—
—
h2pg(%)
90.64
89.52
29.94
—
—
—
m:群体均方;d:主基因效应值;da:第一对主基因的加性效应;db:第二对主基因的加性效应值;dc:第三对主基因的加性效应值;dd:第四对主基因的加性效应值;iab(i*):第1对主基因的加性×第2对主基因的加性上位性互作效应;iac:第1对主基因的加性×第3对主基因的加性效应;iad:第1对主基因的加性×第4对主基因的加性效;ibc:第2对主基因的加性×第3对主基因的加性效应;ibd:第2对主基因的加性×第4对主基因的加性效应;icd:第3对主基因的加性×第4对主基因的加性效应;iabc:3对主基因加性效应的互作值;[d]:多基因加性效应;σ2p:表型方差(群体方差);σ2pg:多基因遗传方差;σ2mg:主基因遗传方差;σ2e:环境方差(误差方差);h2mg(%):主基因遗传率;h2pg(%):多基因遗传率;—表示空缺 m: The mean value of P1 generation; d: Main gene effect value; da: Addictive effect of the first pair major gene; db: Addictive effect of the second pair major gene; dc: Addictive effect of the third pair major gene; dd: Addictive effect of the fourth pair major gene; iab(i*): Addictive effect plus addictive effect of the 1st pair major genes×the 2nd pair major gene; iac: Additive effect plus additive effect of the 1st pair major gene × the third pair major gene; iad: Additive effect plus additive effect of the 1st pair major gene × the fourth pair major gene; ibc: Additive effect plus additive effect of the 2nd pair major gene × the third pair major gene; ibd: Additive effect plus additive effect of the 2nd pair major gene × the fourth pair major gene: icd: Additive effect plus additive effect of the third pair major gene × the fourth pair major gene; iabc: Additive effect plus additive effect of the 1st pair major gene × the 2nd pair major gene × the third pair major gene; [d]: The additive effects of polygenes; σ2e: environmental variance; σ2p: Phenotypic variance; σ2pg: Polygene variance; σ2mg: Major gene variance; σ2e: Environmental variance; h2mg (%): Heritability of major gene; h2pg (%): Heritability of polygene-Var;“—”in the cells mean the value is absent
HAWKESFORD MJ, ARAUS JL, PARKR, CALDERINID, MIRALLESD, SHENT, ZHANGJ, PARRY M AJ . Prospects of doubling global wheat yields , 2013,2(1):34-48. [本文引用: 1]
KU MS, AGARIE S. NOMURAM, FUKAYAMAH, TSUCHIDAH, ONOK, HIROSES, TOKIS, MIYALM, MATSUOKAM . High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants , 1999,17(1):76-80. [本文引用: 1]
FICHER RA, RESSD, SARRE KD, LU ZM, CONDON AG, LARQUE SA . Wheat yield associated with high stomatal conductance and photosynthetic rete and cooler canopies , 1998,278(6):1467-1475. [本文引用: 1]
BECHEE, BENING, SILVA CL, MUNARO LB, MARCHESE JA . Genetic gain in yield and changes associated with physiological traits in Brazilian wheat during the 20th century , 2014,61:49-59. [本文引用: 1]
GAI JY, ZHANG YM, WANG JK . A joint analysis of multiple generations for QTL models extended to mixed two major genes plus polygene Acta Agronomica Sinica, 2000,26(4):385-391. (in Chinese) [本文引用: 1]
WANG JK, PODLICH DW, COOPERM, DELACY IH . Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits , 2001,103:804-816. [本文引用: 1]
WANG JK, GAI JY . Mixed inheritance model for resistance to agromyzid beanfly ( , 2001,122(1):9-18. [本文引用: 3]
GAI JY . Segregation analysis on genetic system of quantitative traits in plants , 2006,1(1):85-92. [本文引用: 1]
WANG WX, HUQ, MEI DS, LI YC, ZHOU RJ, WANG HC, HONGT, FUL, LIUJ . Genetic effects of branch angle using mixture model of major gene plus polygene in Brassica napus L. Acta Agronomica Sinica, 2016,42(8):1103-1111. (in Chinese) [本文引用: 1]
YE YJ, WU JY, FENGL, JU YQ, CAIM, CHENG TR, PAN HT, ZHANG QX . Heritability and gene effects for plant architecture traits of crape myrtle using major gene plus polygene inheritance analysis , 2017,225:335-342. [本文引用: 1]
CAO QW, ZHANG YN, WANG YQ, YANG GL, SUN XL, LI LB . Genetic analysis of internode length using mixed major- gene plus polygene inheritance model inCucumis sativus. Journal of Agricultural Biotechnology, 2018,26(2):205-212. (in Chinese) [本文引用: 2]
QI ZY, LI JX, RAZA MA, ZOU XX, CAO LW, RAO LL, CHEN LP . Inheritance of fruit cracking resistance of melon (Cucumis melo L.) fitting E-0 genetic model using major gene plus polygene inheritance analysis. , 2015,189:168-174. [本文引用: 1]
ZHAO QR, ZHONG XH, ZHANGF, FANG WM, CHEN FD, TENG NJ . Heterosis and mixed genetic analysis of green-center trait of spray cut chrysanthemum Scientia Agricultura Sinica, 2018,51(5):964-976. (in Chinese) [本文引用: 2]
KHAN MI, KHATTAK G SS, KHAN AJ, KHAN AJ, SUBHANF, MOHAMMADT, ALIA . Genetic control of flag leaf area in wheat (Triticum aestivum) crosses. , 2012,7(27):3978-3990. [本文引用: 1]
CAO XW, CUI HM, LIJ, XIONG AS, HOU XL, LIY . Heritability and gene effects for tiller number and leaf number in non-heading Chinese cabbage using joint segregation analysis , 2016,203:199-206. [本文引用: 1]
LI SH, ZHANG WJ, BAI HB, Lü XL, DONG JL, HUIJ, WEI YQ, KANG XB . Genetic analysis of major gene plus polygene of spike traits of spring wheat Chinese Agricultural Science Bulletin.2017,33(6):20-26. (in Chinese) [本文引用: 6]
BI XJ, SHI XX, MA SC, HANF, QI JJ, LI QF, WANG ZJ, ZHANG GS, NIUN . Genetic analysis of agronomic traits related to yield based on majou gene plus polygene model in wheat Journal of Triticeae Crops, 2013,33(4):630-634. (in Chinese) [本文引用: 6]
LI FJ, CHANGX, WANG YJ, SONG QH, TIAN FH, SUN DJ . Genetics analysis of nine important agronomic traits in wheat population of recombinant inbred lines Journal of Triticeae Crops, 2013,33(1):23-28. (in Chinese) [本文引用: 7]
ZHU XG, WAN HS, LIJ, ZHENG JM, TANG ZX, YANG WY . Mixed major-genes plus polygenes inheritance analysis for breeding superiority in synthetic hexaploid wheat Journal of Nanjing Agricultural University, 2018,41(4):625-632. (in Chinese) [本文引用: 4]
WEI YL, WANG BL, LI RG, JIANG HL, ZHANG AJ . Genetic analysis on spike characteristics of wheat variety with large spike Journal of Triticeae Crops, 2015,35(10):1366-1371. (in Chinese) [本文引用: 5]
ZHANG YM, GAI JY, WANG YJ . An expansion of joint segregation analysis of quantitative trait for using P1, P2 and DH or RIL populations Hereditas, 2001,23(5):467-470. (in Chinese) [本文引用: 1]
CAO XW, LIUB, ZHANG YM . SEA: A software package of segregation analysis of quantitative traits in plants Journal of Nanjing Agricultural University, 2013,36:1-6. (in Chinese) [本文引用: 1]
ZHANG YM, GAI JY, YANG YH . The EIM algorithm in the joint segregation analysis of quantitative traits , 2003,81:157-163. [本文引用: 2]
AKAIKEH. On entropy maximization principle. Application of Statistics. , 1977: 27-41. [本文引用: 1]
CAI CC, TU JX, FU TD . The genetic basis of flowering time and photoperiod sensitivity in rapeseed (Brassica napus L.). , 2008,44:326-333. [本文引用: 1]
GAMBLE EE . Gene effects in corn (Zea may L.): I. Separation and relative importance of gene effects for yield , 1962,42:339-348. [本文引用: 1]
LI YS, HUD, NIEJ, HUANG KH, ZHANG YK, ZHANG YL, SHE HZ, FANG XM, RUAN RW, YI ZL . Genetic analysis of plant height and stem diameter in common buckwheat Acta Agnomica Sinica, 2018,44(8):1185-1195. (in Chinese) [本文引用: 1]
ZHANG BL, ZHANG WD, GAO QR, WANG MT, LI NN, ZHANG YY, WANG HN, GAO JH, ZHAO LF, RU ZG . Genetic analysis on male sterility of thermo-photo-sensitive male sterile line BNS in wheat Scientia Agricultura Sinica, 2013,46(8):1533-1542. (in Chinese)
WANG JS, LI HW, ZHAO TJ, GAI JY . Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in recombinant inbred lines population Acta Agronomica Sinica, 2010,36(2):191-201. (in Chinese)
张晓芬, 陈晓慧, 陈斌, 韩华丽, 耿三省 . , 2013,21(4):407-412.
ZHANG XF, CHEN XH, CHENB, HAN HL, GENG SS . Genetic analysis of trichome density on the main stem and leaves in a recombinant inbred lines population derived from wild pepper (Capsicum annuum L.). Journal of Agricultural Biotechnology, 2013,21(4):407-412. (in Chinese)
JIANG JH, HONG DL, GUOY, ZHANG QW . Correlation between panicle angle and grain traits, and genetic analysis of grain traits in Japonica rice (Oryza sativa) Chinese Bulletin of Botany, 2009,44(2):167-177. (in Chinese)
JIANG JH, ZHANG QW, HONG DL . Genetic analysis of panicle traits in Oryza sativa ssp. japonica Chinese Bulletin of Botany, 2010,45(2):182-188. (in Chinese) [本文引用: 2]
KUANGY, LUO LH, ZHOU QQ, HE YL, FAN XL, XIAO YH . Genetic and correlation analysis of the panicle traits of Recombinant Inbred Lines derived from an Indica/Japonica rice cross Acta Agriculturae Boreali-Sinica, 2011,26(3):72-78. (in Chinese) [本文引用: 1]
ZHENG JM, PU ZJ, LI SZ, LI JY . Genetic analysis of pre-harvest sprouting resistance in synthetic wheat CI-LD Journal of Triticeae Crops, 2015,35(4):464-470. (in Chinese)
YANG XS, LIANG ZY, LIH, SHEN WN, LI MX, XI YJ, WANG ZL, LIU SD . Analysis on genetic model of grain characteristics in common wheat by mixed inheritance model of major genes plus polygenes Journal of Triticeae Crops, 2013,33(6):1119-1127. (in Chinese) [本文引用: 1]
ZHANG AJ, ZHANG JZ, LIU FQ, LUO HX, WANG BL, ZHAO HL . The genetics law on the main stem ear length of long spike wheat lines using maximum likelihood methods Chinese Agricultural Science Bulletin, 2006,22(9):182-185. (in Chinese)
CHENGJ, ZHOU RQ, WU YC, SONG XY, LINQ, MUP . Genetic analysis of spike traits in wheat cultivated in contrasted water conditions in wheat Acta Agriculturae Boreali-Sinica, 2015,30(Suppl.):146-151. (in Chinese) [本文引用: 4]
CUIF, LIJ, DINGA . Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat , 2011,122(8):1517-1536.
CUIF, DING AM, LIJ . QTL detection of seven spike related traits and their genetic correlations in wheat using two related RIL populations, , 2012,186(1):177-192.
REN XB, LAN XJ, WANG JL . Genetic analysis on special character in spike of synthetic hexaploid wheat Journal of Sichuan Agricultural University, 2006,24(4):375-380. (in Chinese)
WANG XN, DU XY, LIB, WANG ZL, HE MR, LI AF, JIA JZ, KONG LR . Genetic analysis of main agronomic traits in recombinant inbred lines of chayazheda 29×Yanzhan Shandong Agricultural Sciences, 2010,7:17-19. (in Chinese)
LIN ZQ, ZHENGY, CAI YJ, HUANGS, LI ZR, SHEN WW, ZHENG XJ, LIANG KJ . Genetic analysis on yield,panicle and grain traits in rice RIL population of long panicle and big grain Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2011,40(5):449-454. (in Chinese)
XIANG DQ, HUANG LJ, CAO YG, DAI JR . A preliminary study on genetic effect of maize yield component traits based on major gene and polygene mixed inheritance Acta Agriculturae Boreali-Sinica, 2001,16(3):1-5. (in Chinese) [本文引用: 1]
WANG JS, WANGH, LIU WH, WUJ, LI LH . The large kernel number in the novel wheat-agropyron germplasm 3228 and its inheritance analysis Scientia Agricultura Sinica, 2009,42(6):1889-1895. (in Chinese) [本文引用: 2]
YANL . Genetic analysis of main traits and research on traits improvement for big ears wheat Xinong 9814 [D]. Yangling: Northwest A &F University, 2009. (in Chinese) [本文引用: 1]
LUX, ZHANG JP, WANG HJ, YANG XM, LI XQ, LI LH . Genetic analysis and QTL mapping of wheat spike traits in a derivative line 3558-2 from wheat agropyron cristatum Offspring Journal of Plant Genetic Resources, 2011,12(1):86-91. (in Chinese) [本文引用: 2]
DU XP, YAN YY, LIU WH, GAO AN, ZHANG JP, LI XQ, YANG XM, CHE YH, GUO XM . Genetic analysis on several important agronomic traits in F2 generation of mazhamai ×quality Journal of Triticeae Crops, 2011,31(4):624-629. (in Chinese) [本文引用: 2]
FANG JY, SUN DF . Inheritance of supernumerary spikelets and its relations with flag leaf characters of supernumerary spikelets line 51885 in wheat Journal of Huazhong Agricultural University, 2004,34:61-67. (in Chinese) [本文引用: 1]
FANP, ZHAN KH, SUN JY, WANG SF, ZHAO GS . Analysis on the genetic models for main characters in wheat Acta Agriculturae Universitatis Henanensis, 1999,33(3):231-234. (in Chinese) [本文引用: 1]
XU WG, HUL, WU ZS, GAI JY . Studies on genetic improvement of yield and yield components of wheat cultivars in Mid-Shaanxi area Acta Agronomica Sinica, 2000,26(3):352-358. (in Chinese) [本文引用: 1]
HOLLAND JB . Genetic architecture of complex traits in plants , 2007,10:156-161. [本文引用: 1]
XUH, ZHUJ . Statistical approaches in QTL mapping and molecular breeding for complex traits , 2012,57:2637-2644. [本文引用: 1]
WANG CE, GAI JY, FU SX, YU DY, CHEN SY . Inheritance and QTL mapping of tofu and soymilk output in soybean Scientia Agricultura Sinica, 2008,41:1274-1282. (in Chinese) [本文引用: 1]