2
Effects of Lime Content on Soil Acidity, Soil Nutrients and Crop Growth in Rice-Rape Rotation System
YAN ZhiHao1, HU ZhiHua2, WANG ShiChao1, HUAI ShengChang1, WU HongLiang1, WANG JinYu1, XING TingTing1, YU XiChu2, LI DaMing2, LU ChangAi,1通讯作者:
责任编辑: 李云霞
收稿日期:2019-06-6接受日期:2019-09-18网络出版日期:2019-12-01
基金资助: |
Received:2019-06-6Accepted:2019-09-18Online:2019-12-01
作者简介 About authors
闫志浩,Tel:17810264236;E-mail:zhyan1813@163.com
摘要
关键词:
Abstract
Keywords:
PDF (530KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
闫志浩, 胡志华, 王士超, 槐圣昌, 武红亮, 王瑾瑜, 邢婷婷, 余喜初, 李大明, 卢昌艾. 石灰用量对水稻油菜轮作区土壤酸度、土壤养分及作物生长的影响[J]. 中国农业科学, 2019, 52(23): 4285-4295 doi:10.3864/j.issn.0578-1752.2019.23.009
YAN ZhiHao, HU ZhiHua, WANG ShiChao, HUAI ShengChang, WU HongLiang, WANG JinYu, XING TingTing, YU XiChu, LI DaMing, LU ChangAi.
0 引言
【研究意义】土壤酸化是全世界面临的最大的农业环境问题之一[1]。我国南方部分水稻土已出现不同程度的酸化[2],30%以上的稻田土壤pH低于5.5,且酸化面积与强度仍在加剧[3]。水稻和油菜是耐酸性较强的作物,但是在土壤酸化程度逐渐加剧的情况下,水稻和油菜的生产也受到了明显的影响。因此,明确土壤速效养分、作物养分吸收量及产量对石灰用量的响应关系,对稻田土壤酸化改良具有重要意义。【前人研究进展】旱地土壤酸化对土壤养分含量变化和作物养分吸收的影响已有较多研究。一般认为,旱地土壤速效氮在中性、微酸及微碱条件下有效性最高,当土壤pH低于6.0时,硝化速率明显下降,土壤pH低于4.5时,硝化作用基本停止[4]。周娟等[5]的研究也表明,我国南方酸化土壤中可被作物吸收利用的有效态氮含量会随土壤pH的下降呈直线下降趋势。胡敏等[6]用室内盆栽试验,研究不同石灰用量对酸性土壤有效养分含量影响的试验中表明,熟石灰用量≤2.4 g·kg-1时,土壤硝态氮含量随熟石灰用量的增加而显著增加,土壤铵态氮随着熟石灰用量的增加而减少;当熟石灰用量>0. 9 g·kg-1时,速效钾含量随着石灰用量的增加而显著降低,土壤有效磷含量随着熟石灰用量的增加先升高后降低。也有研究表明[7],旱地酸性植烟土壤与不施石灰处理相比,施石灰处理土壤有效磷、速效钾含量均显著增加;胡向丹等[8]研究发现植烟土壤pH与速效磷之间不存在相关关系。前人研究结果有所差异,可能是因为成土母质、耕作方式等不同引起的。大量研究一致表明土壤酸度较低是作物产量和养分吸收量降低的主要原因之一[9,10,11,12];随着旱地和水田土壤pH增加,油菜和水稻产量和养分吸收量显著性增加,施用石灰提高土壤pH和交换性钙、交换性镁含量,降低交换性铝含量,是作物增产的主要原因[13,14,15,16]。【本研究切入点】近年来,长期施肥下旱地土壤酸化的趋势及其对作物产量影响的研究较多,稻油轮作区通过添加熟石灰调节不同土壤酸度对土壤养分含量、作物产量与作物养分吸收量的研究则较少。【拟解决的关键问题】本研究在江西进贤县开展稻油轮作试验,以水稻油菜为研究对象,分析石灰用量对土壤养分及作物养分吸收量影响,明确土壤速效养分、产量及作物养分吸收量对石灰用量的响应关系,为南方稻油轮作区土壤酸化改良和稻油高产提供理论依据。1 材料与方法
1.1 研究区域概况
试验于2015—2018年在江西省进贤县捉牛岗乡(116°27′E,28°37′N)稻油轮作定位试验田进行。试验地点属亚热带季风湿润气候,年平均气温17.7℃,无霜期为282 d,全年平均雨量1 587 mm,最高和最低月平均气温分别为7月(29.8℃)和1月(5.1℃)。供试土壤为第四纪红黏土发育的中度潴育型水稻土,耕层土壤基本理化性状见表1。Table 1
表1
表1初始土壤基本理化性状
Table 1
有机质 OM (g·kg-1) | 速效氮 Available N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 全氮 Total N (g·kg-1) | 交换性钙 Exchangeable Ca (mg·kg-1) | 交换性镁 Exchangeable Mg (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|
27.7 | 62.75 | 30.65 | 97.5 | 1.49 | 252.72 | 21.19 | 4.52 |
新窗口打开|下载CSV
1.2 试验设计
试验共设6个pH梯度,分别为pH 4.5、pH 5.0、pH 5.5、pH 6.0、pH 6.5和pH 7.0,每个处理设置3次重复,随机区组排列,小区面积20 m2。在原有土壤pH 4.5的基础上,通过实验室模拟,计算出获得不同土壤pH值情况下的熟石灰用量,如表2所示,并充分将熟石灰与表层(0—15 cm)土壤混匀,2014—2015年油菜季匀地试验后,测得各改良小区的土壤pH值分别为4.5、5.0、5.6、6.3、6.8、7.3。为保证各处理土壤pH保持稳定,于每年稻前用熟石灰进行定量调整。各小区间使用隔水板隔开,地下埋深40 cm,地上20 cm;田间各小区的水分植保等管理措施与当地农民习惯保持一致。Table 2
表2
表2设置不同土壤pH下的石灰添加量
Table 2
pH | ||||||
---|---|---|---|---|---|---|
4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | |
石灰用量 Addition content of lime (kg·hm-2) | 0 | 1492 | 3154 | 4815 | 6477 | 8139 |
新窗口打开|下载CSV
种植制度为稻油轮作。油菜品种为丰油730,于每年的11月初移栽,施用肥料分别为尿素、钙镁磷肥、氯化钾、硼砂,试验施肥量为:N 180 kg·hm-2、P2O5 54 kg·hm-2、K2O 81 kg·hm-2、硼肥15 kg·hm-2;70% 氮肥、80% 钾肥、100% 磷肥、100% 硼砂作基肥施用,10% 氮肥作冬前苗期追施,20%氮肥、20%钾肥作油菜苔、花肥分期追施;株行距:40 cm×30 cm。水稻品种为隆两优1988,于每年的6月初移栽,施用肥料分别为尿素、钙镁磷肥、氯化钾,施肥量分别为:N 180 kg·hm-2、P2O5 120 kg·hm-2、K2O150 kg·hm-2;50%氮肥、100%磷肥、50%钾肥作基肥施用,20%氮肥作蘖肥施用,30%氮肥、50%钾肥作穗肥施用。株行距:20 cm×20 cm。
1.3 样品采集与测定
1.3.1 植物样品采集与测定 油菜收获前采集植株地上部,每个小区取5株植物样,105℃杀青30 min,70℃烘干至恒重,得到干物质重;水稻收获前采集植株地上部,每个小区取10株植物样,并将植株分为籽粒、茎、叶,于105℃杀青30 min,70℃烘干至恒重。植物样品磨碎过0.5 mm筛,采用 H2SO4-H2O2消煮法制备氮磷钾待测液,凯氏定氮法测全氮,钼锑抗比色法测全磷,火焰光度法测全钾[17]。1.3.2 土壤样品采集与测定 采用5点法取样。在作物移栽后7、14、21和30 d采集0—15 cm土层的土壤样品,并于4℃保存,用于测定土壤速效氮含量(铵氮与硝氮含量);在作物收获前,采集 0—15 cm土层的土壤样品,土壤风干后过2 mm和0.25 mm筛备用。土壤pH采用玻璃电极法(水土比为2.5﹕1)测定;速效氮采用1 mol·L-1 KCl浸提,连续流动分析仪测定;有效磷采用pH 8.5 0.5 mol·L-1的NaHCO3浸提,钼锑抗比色法测定;速效钾采用1 mol·L-1 NH4OAc浸提,火焰光度法测定;土壤交换性钙镁采用1 mol·L-1 NH4OAc浸提,ICP—MS法测定[17]。
油菜季小区处理土壤pH实测值分别为pH 4.5、5.0、5.6、6.3、6.8、7.3;水稻季小区处理土壤pH实测值分别为pH 4.5、5.0、5.5、6.0、6.8、7.3。
1.4 土壤pH阈值
利用土壤pH与作物产量之间的定量关系,确定作物最高产时的pH值为适宜值,作物最高产量下降一半(50%)时的pH值为酸害阈值。1.5 数据处理与分析
作物养分吸收量(kg·hm-2)=籽粒产量(kg·hm-2)×籽粒养分含量(%)+秸秆产量(kg·hm-2)×秸秆养分含量(%)。数据分析采用Microsoft Excel 2003和SPSS 22软件进行数据统计分析,采用Duncan分析进行显著性检验,采用 Excel 2003制作图表。
2 结果
2.1 土壤酸度对土壤速效养分含量的影响
2.1.1 土壤速效氮含量 由图1可知,随着石灰用量的增加与土壤pH的升高,油菜季土壤速效氮含量呈显著增加的趋势,与不施石灰处理相比,施石灰处理速效氮含量增幅为6.3%—61.3%;随着油菜生育时期的延长土壤速效氮含量整体呈降低的趋势。随着石灰用量的增加与土壤pH升高,水稻季土壤速效氮含量呈先增加后降低的趋势,与不施石灰处理相比,施石灰处理速效氮含量增幅为0.4%—27.8%,在pH 6.8左右速效氮含量达到最高,且随着水稻生育时期的延长土壤速效氮含量呈降低的趋势。图1
新窗口打开|下载原图ZIP|生成PPT图1土壤pH与土壤速效氮含量的关系
Fig. 1Relationship between soil pH and soil available nitrogen content
2.1.2 土壤速效钾、有效磷含量 由图2可知,随着土壤pH升高,油菜季和水稻季土壤速效钾、有效磷含量均显著降低(P<0.01)。油菜季土壤有效磷、速效钾含量较pH 4.5降幅分别为11.6%— 136.6%、10.1%—45.9%;随着土壤pH升高,水稻季土壤有效磷、速效钾含量均呈现降低的趋势,较pH 4.5降幅分别为20.6%—72.7%、3.3%—31.8%。在相同pH水平下,油菜季有效磷、速效钾含量略高于水稻季。
图2
新窗口打开|下载原图ZIP|生成PPT图2土壤pH与土壤有效磷、速效钾含量的关系
Fig. 2Relationship between soil pH and available P, available K content
2.2 土壤交换性钙镁含量
随着石灰用量的增加与土壤pH升高,水稻季与油菜季土壤交换性钙、交换性镁含量均呈极显著增加的趋势。油菜季土壤交换性钙、交换性镁含量较pH 4.5增幅分别为14.5%—414.7%、19.7%—93.6%;水稻季土壤交换性钙、交换性镁含量增幅分别为9.8%— 181.2%、1.4%—62.3%(图3)。图3
新窗口打开|下载原图ZIP|生成PPT图3土壤pH与土壤交换性钙镁含量的关系
Fig. 3Relationship between soil pH and exchangeable Ca2+ and Mg2+ content
2.3 作物产量
土壤pH与作物产量极显著正相关(P<0.01,图4)。随pH升高油菜产量呈先增加后降低的趋势,土壤pH 6.4时油菜产量达到最高,增幅为1.9%—202.2%。与最高产量相比,pH 5.5时产量降低20.12%,pH 5.0时产量降低34.08%,pH 4.5时产量降低64.31%。根据油菜产量与土壤pH的函数关系可得,产量下降50%的酸害阈值为pH 4.7。随pH上升水稻产量呈先增加后降低的趋势,土壤pH为6.8时水稻产量达到最高,增幅为3.8%—61.2%。与最高产量相比,pH 6.0时产量降低9.12%;pH 5.5时产量降低16.38%,pH 5.0时产量降低30.11%,pH 4.5时产量降低38.82%。根据水稻产量与土壤pH的函数关系可得,产量下降50%的酸害阈值为pH 4.2。由此可知,不同的作物对土壤酸度的敏感程度不同,最高产量降低50%时的酸害阈值也不同。图4
新窗口打开|下载原图ZIP|生成PPT图4土壤pH与作物产量的关系
Fig. 4Relationship between soil pH and crop yield
2.4 作物养分吸收量
土壤pH显著影响油菜和水稻氮磷钾吸收量(P<0.05,图5)。在pH梯度范围内,随着土壤pH升高油菜氮磷钾吸收量呈先增加后降低的趋势。2016—2018年油菜氮磷钾平均吸收量与不施石灰处理相比,施石灰处理增幅分别为59.5%—181.4%、36.2%—188.8%、65.7%—198.9%。在pH梯度范围内,随着土壤pH升高水稻氮磷钾吸收量呈先增加后降低的趋势,在pH 6.8左右水稻氮磷钾吸收量最大。2016—2018年水稻氮磷钾平均吸收量与不施石灰处理相比,施石灰处理增幅分别为11.1%—88.6%、13.5%—68.5%、9.7%—66.1%。水稻季氮磷钾吸收量高于油菜季,但水稻季施石灰处理与不施石灰处理相比,养分吸收量增加幅度小于油菜季。图5
新窗口打开|下载原图ZIP|生成PPT图5土壤pH与作物养分吸收量的关系
Fig. 5Relationship between soil pH and crop nutrient uptake content
2.5 土壤pH、土壤养分、作物养分吸收量和产量等指标间相关性分析
由表3可知,油菜产量与氮钾吸收量、速效氮含量、交换性钙含量、土壤pH呈显著或极显著正相关,与有效磷、速效钾呈显著负相关;油菜氮磷钾吸收量与交换性钙镁呈显著或极显著正相关;油菜吸钾量与土壤速效钾含量呈显著负相关、油菜吸磷量与土壤有效磷含量呈显著负相关。水稻产量与氮磷钾吸收量、土壤速效养分之间的相关性与油菜类似(表4)。Table 3
表3
表3油菜季土壤pH、土壤养分、养分吸收量和产量等指标间相关性分析
Table 3
产量 Yield | 吸氮量 N uptake content | 吸磷量 P uptake content | 吸钾量 K uptake content | 速效氮 Available N | 有效磷 Available P | 速效钾 Available K | 交换性钙 Exchangeable Ca2+ | 交换性镁 Exchangeable Mg2+ | |
---|---|---|---|---|---|---|---|---|---|
吸氮量 N uptake content | 0.923** | 1 | |||||||
吸磷量 P uptake content | 0.699 | 0.863* | 1 | ||||||
吸钾量 K uptake content | 0.929** | 0.946** | 0.818* | 1 | |||||
速效氮 Available N | 0.881* | 0.8 | 0.803 | 0.861* | 1 | ||||
有效磷 Available P | -0.913* | -0.549 | -0.920** | -0.660 | -0.634 | 1 | |||
速效钾 Available K | -0.897* | -0.697 | -0.673 | -0.969** | -0.737 | 0.863* | 1 | ||
交换性钙 Exchangeable Ca2+ | 0.857* | 0.888* | 0.994** | 0.837* | 0.847* | -0.944** | -0.691 | 1 | |
交换性镁 Exchangeable Mg2+ | 0.741 | 0.879* | 0.973** | 0.786 | 0.811 | -0.910* | -0.639 | 0.988** | 1 |
pH | 0.874* | 0.931** | 0.950** | 0.927** | 0.929** | -0.992** | -0.812* | 0.971** | 0.948** |
新窗口打开|下载CSV
Table 4
表4
表4水稻季土壤pH、土壤养分、养分吸收量和产量等指标间相关性分析
Table 4
产量 Yield | 吸氮量 N uptake content | 吸磷量 P uptake content | 吸钾量 K uptake content | 速效氮 Available N | 有效磷 Available P | 速效钾 Available K | 交换性钙 Exchangeable Ca2+ | 交换性镁 Exchangeable Mg2+ | |
---|---|---|---|---|---|---|---|---|---|
吸氮量 N uptake content | 0.914* | 1 | |||||||
吸磷量 P uptake content | 0.791 | 0.858* | 1 | ||||||
吸钾量 K uptake content | 0.858* | 0.972** | 0.870* | 1 | |||||
速效氮 Available N | 0.857* | 0.966** | 0.909* | 0.920** | 1 | ||||
有效磷 Available P | -0.784 | -0.79 | -0.574 | -0.776 | -0.641 | 1 | |||
速效钾 Available K | -0.781 | -0.819* | -0.466 | -0.819 | -0.649 | 0.910* | 1 | ||
交换性钙 Exchangeable Ca2+ | 0.894* | 0.853* | 0.532 | 0.817* | 0.714 | -0.824* | -0.950** | 1 | |
交换性镁 Exchangeable Mg2+ | 0.896* | 0.811 | 0.476 | 0.728 | 0.694 | -0.768 | -0.0891* | 0.976** | 1 |
pH | 0.932** | 0.836* | 0.576 | 0.798 | 0.694 | -0.878* | -0.923** | 0.976** | 0.959** |
新窗口打开|下载CSV
3 讨论
3.1 石灰用量对水稻油菜产量的影响
本研究表明,随着石灰用量的增加,土壤pH升高,油菜、水稻产量呈先增加后降低的趋势,该研究结果与曾勇军、陈平平等[18,19]的研究结果类似,但水稻产量增加幅度高于曾勇军等研究中双季稻产量增加幅度,这可能与本试验pH梯度较大有关;作物产量呈先增加的趋势,一方面可能是因为添加石灰提高交换性钙含量,降低交换性铝含量,减轻铝的毒害,改善作物生长环境,利于作物生长[20];另一方面,土壤pH>6时,土壤氮素矿化速率增加、硝化速率增大,土壤速效氮含量增加,进而增加产量[21,22,23,24];作物产量后呈现出降低的趋势,可能是因当石灰添加量>7 500 kg·hm-2时会造成铵态氮挥发,磷酸钙盐沉淀,土壤中钾、钙、镁等营养元素平衡失调,抑制作物对养分的吸收,导致作物减产[25],因此,适宜的石灰用量对作物生长至关重要。本研究表明,油菜的适宜的pH为6.4,水稻适宜pH为6.8,其石灰施用范围是4 000—7 500 kg·hm-2,本研究结果与前人研究结果[10]一致,在施氮条件下,pH 6.5处理水稻产量较高,水稻和油菜对中性偏碱环境的适应较强,适宜的环境pH范围为6.0—7.4。不同作物对土壤酸度的敏感程度不同,且酸害对作物产量降低幅度也有所不同[5,26]。本研究结果显示,油菜产量下降50% 时的酸害阈值为pH 4.7;水稻产量下降50% 时的酸害阈值为pH 4.2。水稻油菜酸害阈值出现这种差异的原因可能是:(1)当pH<5时,难溶性铝转变为交换性铝,植物会出现铝毒害症状,进而抑制植物生长,降低产量[11,12];(2)在淹水条件下水稻土还原能力较强,水稻根系表面形成一层铁膜,受铝毒害作用较弱,旱地土壤还原性较水田弱,因此作为中等耐铝毒植物的油菜,其酸害阈值较水稻更高一些[27]。
3.2 石灰性土壤改良剂对土壤速效养分与养分吸收量的影响
本研究表明,土壤pH与有效磷呈显著负相关关系(P<0.05),与王光火等[28]的研究结果相似,这可能是因为强酸性土壤加入石灰性调理剂导致土壤pH升高,交换性铝水解和羟基铝聚合物生成,增加对磷的吸持,降低了土壤有效磷含量。土壤pH与土壤速效钾呈显著负相关关系(P<0.05),本研究结果与前人研究结果类似,有研究表明[7],低量石灰(≤0.9 g·kg-1)对土壤速效钾影响不大,但当熟石灰用量>0.9 g·kg-1时,其含量随着熟石灰用量的增加而显著降低,可能是由于低 pH 促进了土壤缓效钾释放[29,30],石灰性土壤调理剂的施用,造成土壤交换性钙增加,导致土壤速效钾固定增加[31,32],其机理还需进一步研究。在研究中发现,在相同pH水平下,油菜季有效磷、速效钾含量略高于水稻季,这可能是因为水田条件下造成养分的流失。速效钾、有效磷与作物养分吸收量相关性分析显示,两两之间存在显著负相关关系(P<0.05),这表明强酸性土壤添加石灰性调理剂提高土壤pH过程中,速效钾和有效磷对作物养分吸收量的贡献较小。土壤pH与土壤交换性钙、交换性镁的相关分析发现,土壤pH与交换性钙、交换性镁存在显著正相关关系(P<0.05),这是因为石灰的施入直接引入钙镁离子。随石灰用量的增加土壤速效氮含量呈先增加后降低的趋势,这可能是因为土壤pH较低时,氮素矿化作用基本停止,有机态氮难转化为无机态氮[33]、速效氮含量较低,随石灰用量增加氮素矿化作用加速,速效氮含量增加,但当石灰过量时,可能会导致铵态氮的挥发,速效氮总量又会呈现降低的趋势;土壤中交换性铝含量较高,对植物产生了毒害,限制了作物生物量,降低作物养分吸收量。随石灰用量增加作物养分吸收量呈现先增加的趋势,可能是因为加入石灰性调理剂后,土壤盐基离子增加,作物次生根发育,硝化作用加速,速效氮含量增加,提高作物生物量,增加作物养分吸收量[16],这一过程说明土壤pH、交换性钙、速效氮含量对作物养分吸收量的贡献较大;同时,当熟石灰用量超过一定量时,作物养分吸收量有降低的趋势,这可能是因为原本严重酸化的土壤因石灰施用导致土壤pH>7或接近7时,高pH会抑制植物组织和器官的分化,降低作物生物量,从而作物养分吸收量降低[34],其机理还有待进一步研究。
4 结论
随着石灰用量的增加,能显著提高土壤pH,增加土壤速效氮、交换性钙、交换性镁等含量,提高作物产量,从而增加作物养分吸收量。不同作物对土壤酸度的敏感程度不同,土壤pH较低会对作物产生酸害,油菜、水稻产量降低50%时的酸害阈值分别为pH 4.7、4.2。随着石灰用量的增加,不同作物的产量和养分吸收量提高幅度有所不同,在pH为6.4(相当于6 145 kg·hm-2熟石灰用量)和6.8(相当于7 474 kg·hm-2熟石灰用量)时,油菜、水稻的产量及养分吸收量达到最高。在本试验条件下,水稻与油菜轮作区酸性土壤(pH 4.5)施用熟石灰的最佳用量为6 477 kg·hm-2,改良土壤pH的目标约为6.5(6 477 kg·hm-2),可实现我国南方水稻油菜轮作区作物达到稳定高产的目标。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
DOI:10.1126/science.1182570URLPMID:20150447 [本文引用: 1]
Soil acidification is a major problem in soils of intensive Chinese agricultural systems. We used two nationwide surveys, paired comparisons in numerous individual sites, and several long-term monitoring-field data sets to evaluate changes in soil acidity. Soil pH declined significantly (P &lt; 0.001) from the 1980s to the 2000s in the major Chinese crop-production areas. Processes related to nitrogen cycling released 20 to 221 kilomoles of hydrogen ion (H+) per hectare per year, and base cations uptake contributed a further 15 to 20 kilomoles of H+ per hectare per year to soil acidification in four widespread cropping systems. In comparison, acid deposition (0.4 to 2.0 kilomoles of H+ per hectare per year) made a small contribution to the acidification of agricultural soils across China.
,
DOI:10.11674/zwyf.2015.0629URL [本文引用: 1]
目的 阐明长期施肥下我国南方典型农田土壤的酸化特征,为合理施肥缓解农田土壤酸化提供科学依据。方法 对湖南省典型农田土壤—水稻土和红壤上设置的32个长期监测点10年间的土壤pH及相关数据进行统计分析。结果 从整体上看,水稻土在长期施肥下未呈现明显酸化; 在水旱轮作模式下的水稻土出现显著酸化,其pH平均下降速率为每年0.076,是持续种稻模式的10倍。化学氮肥施用量的增加是水旱轮作下土壤酸化的重要因素之一,有机肥的施用对水稻土酸化无显著影响。红壤在常规施肥10 a期间pH呈明显的阶段性变化特征,施肥4~6 a与1~3 a相比土壤pH下降了0.19个单位,显著酸化; 持续施肥至7~10 a,红壤pH保持相对稳定。起始pH相对较高(pH>6)的红壤长期施肥下出现极显著酸化,pH平均下降速率为每年0.075,与化肥氮施用量呈显著正相关; pH相对较低(pH 4-5)的红壤长期施肥下未显著酸化。结论 我国南方地区长期施肥下,与持续种稻模式相比水旱轮作模式加速了水稻土的酸化,化学氮肥施用量的增加是导致其酸化的重要原因; 起始pH相对较高(pH>6)的红壤显著酸化,化学氮肥用量增加导致其显著酸化。因此,控制和减少化学氮肥的用量是防止水旱轮作模式下土壤及红壤旱地进一步酸化的重要措施。
DOI:10.11674/zwyf.2015.0629URL [本文引用: 1]
目的 阐明长期施肥下我国南方典型农田土壤的酸化特征,为合理施肥缓解农田土壤酸化提供科学依据。方法 对湖南省典型农田土壤—水稻土和红壤上设置的32个长期监测点10年间的土壤pH及相关数据进行统计分析。结果 从整体上看,水稻土在长期施肥下未呈现明显酸化; 在水旱轮作模式下的水稻土出现显著酸化,其pH平均下降速率为每年0.076,是持续种稻模式的10倍。化学氮肥施用量的增加是水旱轮作下土壤酸化的重要因素之一,有机肥的施用对水稻土酸化无显著影响。红壤在常规施肥10 a期间pH呈明显的阶段性变化特征,施肥4~6 a与1~3 a相比土壤pH下降了0.19个单位,显著酸化; 持续施肥至7~10 a,红壤pH保持相对稳定。起始pH相对较高(pH>6)的红壤长期施肥下出现极显著酸化,pH平均下降速率为每年0.075,与化肥氮施用量呈显著正相关; pH相对较低(pH 4-5)的红壤长期施肥下未显著酸化。结论 我国南方地区长期施肥下,与持续种稻模式相比水旱轮作模式加速了水稻土的酸化,化学氮肥施用量的增加是导致其酸化的重要原因; 起始pH相对较高(pH>6)的红壤显著酸化,化学氮肥用量增加导致其显著酸化。因此,控制和减少化学氮肥的用量是防止水旱轮作模式下土壤及红壤旱地进一步酸化的重要措施。
,
URL [本文引用: 1]
At present, there exists a large area of soil acidification with wide distribution and high degree of acidification in China. Acidified soil with poor structure, low fertility and high toxic heavy metal contents generally affects crop growth, and thus poses a serious threat to food security and sustainable agricultural development. In this paper, the causes and hazards of soil acidification, acidresistant crop varieties screening and acidresistant mechanisms were discussed, and the acidification prevention measures were proposed. The potential areas and priorities on soil acidification study in China were: (1) to further study the desulfurization technology and aerobic composting technology for reducing emissions of SOx and NOx; (2) to develop and popularize neutral or alkaline fertilizers with low cost, long effectiveness and low environmental harmfulness for improving fertilizer use efficiency and reducing acidification caused by applying acidreleasing fertilizers excessively; (3) to strengthen the research of rhizosphereinduced acidity and screen crop varieties with high acid tolerance and low rhizosphereinduced acidity; (4) to investigate the effects of legumes and cereal crop rotation patterns and crop rotation age on soil acidity, explore simplified intercropping cultivation patterns of legumes and cereal crops to alleviate the problems of soil acidification caused by monoculture legumes.
URL [本文引用: 1]
At present, there exists a large area of soil acidification with wide distribution and high degree of acidification in China. Acidified soil with poor structure, low fertility and high toxic heavy metal contents generally affects crop growth, and thus poses a serious threat to food security and sustainable agricultural development. In this paper, the causes and hazards of soil acidification, acidresistant crop varieties screening and acidresistant mechanisms were discussed, and the acidification prevention measures were proposed. The potential areas and priorities on soil acidification study in China were: (1) to further study the desulfurization technology and aerobic composting technology for reducing emissions of SOx and NOx; (2) to develop and popularize neutral or alkaline fertilizers with low cost, long effectiveness and low environmental harmfulness for improving fertilizer use efficiency and reducing acidification caused by applying acidreleasing fertilizers excessively; (3) to strengthen the research of rhizosphereinduced acidity and screen crop varieties with high acid tolerance and low rhizosphereinduced acidity; (4) to investigate the effects of legumes and cereal crop rotation patterns and crop rotation age on soil acidity, explore simplified intercropping cultivation patterns of legumes and cereal crops to alleviate the problems of soil acidification caused by monoculture legumes.
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/j.eja.2019.02.016URLPMID:31007524 [本文引用: 1]
The management of optimal soil pH is fundamental to sustainable crop production. Understanding the lime requirement for arable crops has developed gradually over the last several decades. The aim of this study was to examine the yield-pH relationship for a range of arable crops to understand their response to liming, based on the Long-Term Liming experiments established in 1962 at Rothamsted Research, UK. The main treatments of four different rates of lime and, therefore, four distinctly different soil pH levels were maintained for 35 years at two sites (Rothamsted and Woburn). The pH ranged from 4.4 to 8.0. The lime response was tested on the following crops: spring barley, spring oats, spring beans, spring lupins, winter lupins, potatoes, linseed, winter oilseed rape, winter triticale and winter wheat. Relative yield (RY) was used for non-linear regression analysis to detect site, year and phosphorus (P) fertiliser effects on the relationship with pH. Liming had a highly significant positive effect on soil pH, but overall there was no consistent increase or decrease in soil extractable P (Olsen) or exchangeable K. There were significant site effects detected for RY for most crops which reflect differences in the two soil types. Spring oats and potatoes had very weak responses to lime within the pH range tested. For spring barley, winter triticale, winter wheat and winter oilseed rape significant effects of P fertiliser on the yield-pH relationship were found, although the nature of effects differed between crops and sites. Findings from the Long-Term Liming experiment are invaluable in improving the fundamental understanding on the yield-pH relationship for important arable crops and this has significant implications on selecting crops for rotations. The pH at 90% RY was calculated for selected crops and the beneficial effect of fertiliser P was detected in significantly reducing the critical pH value.
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
DOI:10.1146/annurev.arplant.55.031903.141655URLPMID:15377228 [本文引用: 2]
Acid soils significantly limit crop production worldwide because approximately 50% of the world's potentially arable soils are acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring tolerance to acid soil stress has been a focus of intense research interest over the past decade. The primary limitations on acid soils are toxic levels of aluminum (Al) and manganese (Mn), as well as suboptimal levels of phosphorous (P). This review examines our current understanding of the physiological, genetic, and molecular basis for crop Al tolerance, as well as reviews the emerging area of P efficiency, which involves the genetically based ability of some crop genotypes to tolerate P deficiency stress on acid soils. These are interesting times for this field because researchers are on the verge of identifying some of the genes that confer Al tolerance in crop plants; these discoveries will open up new avenues of molecular/physiological inquiry that should greatly advance our understanding of these tolerance mechanisms. Additionally, these breakthroughs will provide new molecular resources for improving crop Al tolerance via both molecular-assisted breeding and biotechnology.
,
DOI:10.11674/zwyf.2011.0110URL [本文引用: 1]
The effects of long-term (18 years) fertilization on pH of red soil, crop yields and uptakes of nitrogen, phosphorus and potassium were investigated in a wheat-maize experiment located in Qiyang, Hunan province. The results indicate that pH values of the red soil are significantly decreased under the applications of chemical nitrogen fertilizers, single application of chemical nitrogen fertilizer, mixed-application of chemical nitrogen and phosphorus fertilizers and mixed-application of chemical nitrogen, phosphorus and potassium fertilizers. The greatest decrease of 1.5 units of soil pH under the single chemical nitrogen fertilizer treatment is observed after 18 years fertilization compared with its initial pH value. The soil pH values under the chemical nitrogen fertilizer treatments are decreased significantly and then become stable after 8-10 years when soil pH≤4.5, while the application of manure or manure combined with chemical fertilizers could maintain or increase soil pH compared with their initial pH values of the experiment, in which the highest increase value of 1.0 unit is found in the manure treatment. Compared with the corresponding initial yields of the experiment, the yields for the no fertilizer and chemical nitrogen fertilizer treatments show decline trends of 11 to 104 kg/(ha·a) for wheat and 24 to 210 kg/(ha·a) for maize, respectively. However, in the manure combined with chemical fertilizers treatment, the yield of wheat has no remarkable change, and the yield of maize is increased 101 kg/(ha·a). The yields and uptakes of nitrogen, phosphorus and potassium for wheat and maize have significant positive correlations with soil pH under the chemical nitrogen fertilizer treatments (except yield and uptake in the treatment of mixed-application of nitrogen, phosphorus and potassium fertilizers). Soil acidification is one of the main factors limiting nutrient uptakes and crop yields. Application of manure could increase soil pH value, decrease soil acidity. Addition of manure combined with chemical fertilizers could maintain high yields of wheat and maize in the long run and is the best fertilization mode.
DOI:10.11674/zwyf.2011.0110URL [本文引用: 1]
The effects of long-term (18 years) fertilization on pH of red soil, crop yields and uptakes of nitrogen, phosphorus and potassium were investigated in a wheat-maize experiment located in Qiyang, Hunan province. The results indicate that pH values of the red soil are significantly decreased under the applications of chemical nitrogen fertilizers, single application of chemical nitrogen fertilizer, mixed-application of chemical nitrogen and phosphorus fertilizers and mixed-application of chemical nitrogen, phosphorus and potassium fertilizers. The greatest decrease of 1.5 units of soil pH under the single chemical nitrogen fertilizer treatment is observed after 18 years fertilization compared with its initial pH value. The soil pH values under the chemical nitrogen fertilizer treatments are decreased significantly and then become stable after 8-10 years when soil pH≤4.5, while the application of manure or manure combined with chemical fertilizers could maintain or increase soil pH compared with their initial pH values of the experiment, in which the highest increase value of 1.0 unit is found in the manure treatment. Compared with the corresponding initial yields of the experiment, the yields for the no fertilizer and chemical nitrogen fertilizer treatments show decline trends of 11 to 104 kg/(ha·a) for wheat and 24 to 210 kg/(ha·a) for maize, respectively. However, in the manure combined with chemical fertilizers treatment, the yield of wheat has no remarkable change, and the yield of maize is increased 101 kg/(ha·a). The yields and uptakes of nitrogen, phosphorus and potassium for wheat and maize have significant positive correlations with soil pH under the chemical nitrogen fertilizer treatments (except yield and uptake in the treatment of mixed-application of nitrogen, phosphorus and potassium fertilizers). Soil acidification is one of the main factors limiting nutrient uptakes and crop yields. Application of manure could increase soil pH value, decrease soil acidity. Addition of manure combined with chemical fertilizers could maintain high yields of wheat and maize in the long run and is the best fertilization mode.
,
URL [本文引用: 1]
田间试验结果表明,酸性黄红壤上施用白云石粉显著降低了土壤交互性铝含量和提高了土壤pH值,其
降酸作用与白云石粉用量呈正相关。适当施用白云石粉能够极显著提高油菜产量。白云石粉用量在1 600kg/hm2
时,油菜达到最高产量2 518kg/hm2。此外,施用白云石粉改善了土壤的养分状况,提高了油菜植株的养分含量和
养分吸收量。
URL [本文引用: 1]
田间试验结果表明,酸性黄红壤上施用白云石粉显著降低了土壤交互性铝含量和提高了土壤pH值,其
降酸作用与白云石粉用量呈正相关。适当施用白云石粉能够极显著提高油菜产量。白云石粉用量在1 600kg/hm2
时,油菜达到最高产量2 518kg/hm2。此外,施用白云石粉改善了土壤的养分状况,提高了油菜植株的养分含量和
养分吸收量。
,
DOI:10.3864/j.issn.0578-1752.2017.13.011URL [本文引用: 1]
【目的】施用石灰是改良土壤酸度获得作物增产的传统而有效的方法之一,整合分析石灰增加作物产量的效应和原因,对科学合理施用石灰维持作物高产提供指导。【方法】收集已公开发表有关石灰改良酸性土壤的文献数据,建立土壤pH和作物产量/生物量数据库。分析土壤初始pH(3.1—6.6)、作物类型(粮食作物、经济作物)、石灰施入量(<750、750—1 500、1 500—3 000、3 000—6 000、>6 000 kg·hm-2)和石灰类型(生石灰、熟石灰、石灰石粉)下,作物的增产率。【结果】与不施石灰相比,酸性土壤上施用石灰可提高作物产量,增产幅度为2%—255%,粮食类作物和经济类作物增产率分别为42%和47%,其中粮食类作物增产率大小排序:玉米(149%)>高粱(142%)>麦类(55%)>豆类(32%)>水稻(4%)>薯类(2%),经济类作物增产率排序:蔬菜(255%)>牧草(89%)>油菜(26%)>水果(23%)>烟草(7%)。施用石灰作物增产率随土壤初始pH的升高呈先升高后降低趋势:当pH为4.3时,增产效果最好,达99%;pH 5.8以上出现减产。在常见土壤酸性范围(pH 4.5—5.5),石灰用量以3 000—6 000 kg·hm-2最佳,增产率达55%—173%。熟石灰的增产效果(100%)要优于生石灰(32%)和石灰石粉(64%)。施用石灰提高土壤pH和交换性钙含量、降低交换性铝含量,是作物增产的主要原因,且当交换性钙为6.2 cmol·kg-1时增产率最大,也证实改良土壤酸度时需要中等石灰用量。【结论】酸性土壤添加石灰对蔬菜和玉米的增产效果最好,并优先选用熟石灰。石灰用量以3 000—6 000 kg·hm-2为宜,在pH大于5.8时不宜施用,即酸性土壤改良目标值为pH 5.8。
DOI:10.3864/j.issn.0578-1752.2017.13.011URL [本文引用: 1]
【目的】施用石灰是改良土壤酸度获得作物增产的传统而有效的方法之一,整合分析石灰增加作物产量的效应和原因,对科学合理施用石灰维持作物高产提供指导。【方法】收集已公开发表有关石灰改良酸性土壤的文献数据,建立土壤pH和作物产量/生物量数据库。分析土壤初始pH(3.1—6.6)、作物类型(粮食作物、经济作物)、石灰施入量(<750、750—1 500、1 500—3 000、3 000—6 000、>6 000 kg·hm-2)和石灰类型(生石灰、熟石灰、石灰石粉)下,作物的增产率。【结果】与不施石灰相比,酸性土壤上施用石灰可提高作物产量,增产幅度为2%—255%,粮食类作物和经济类作物增产率分别为42%和47%,其中粮食类作物增产率大小排序:玉米(149%)>高粱(142%)>麦类(55%)>豆类(32%)>水稻(4%)>薯类(2%),经济类作物增产率排序:蔬菜(255%)>牧草(89%)>油菜(26%)>水果(23%)>烟草(7%)。施用石灰作物增产率随土壤初始pH的升高呈先升高后降低趋势:当pH为4.3时,增产效果最好,达99%;pH 5.8以上出现减产。在常见土壤酸性范围(pH 4.5—5.5),石灰用量以3 000—6 000 kg·hm-2最佳,增产率达55%—173%。熟石灰的增产效果(100%)要优于生石灰(32%)和石灰石粉(64%)。施用石灰提高土壤pH和交换性钙含量、降低交换性铝含量,是作物增产的主要原因,且当交换性钙为6.2 cmol·kg-1时增产率最大,也证实改良土壤酸度时需要中等石灰用量。【结论】酸性土壤添加石灰对蔬菜和玉米的增产效果最好,并优先选用熟石灰。石灰用量以3 000—6 000 kg·hm-2为宜,在pH大于5.8时不宜施用,即酸性土壤改良目标值为pH 5.8。
,
[本文引用: 2]
[本文引用: 2]
[本文引用: 2]
[本文引用: 2]
,
DOI:10.3724/SP.J.1006.2014.00899URL [本文引用: 1]
Soil pH is one of the important factors affecting rice growth and development, but little is known about the impact of soil acidification on the yield of double season rice. In the pot experiment, sulfuric acid was added to the soil and low pH water was used for irrigation after transplanting. The results showed that with the decrease of soil pH the plant growth duration extended, the dry mass accumulation and the grain yield decreased in double season rice. When the pH of irrigated water lowered than 4.5 and soil pH lowered than 5.0, the yield of double season rice decreased significantly, by 7.82% for early season rice and by 8.06% for late season rice. When the pH of irrigated water lowered than 3.5 and the soil pH lowered than 4.5, the yieldof double season rice decreased even more sharply. Under the condition of soilacidification, the early tillering for double season rice was suppressed, leading to decrease of number of spikelets per panicle, seed setting rate and 1000-grain weight.
DOI:10.3724/SP.J.1006.2014.00899URL [本文引用: 1]
Soil pH is one of the important factors affecting rice growth and development, but little is known about the impact of soil acidification on the yield of double season rice. In the pot experiment, sulfuric acid was added to the soil and low pH water was used for irrigation after transplanting. The results showed that with the decrease of soil pH the plant growth duration extended, the dry mass accumulation and the grain yield decreased in double season rice. When the pH of irrigated water lowered than 4.5 and soil pH lowered than 5.0, the yield of double season rice decreased significantly, by 7.82% for early season rice and by 8.06% for late season rice. When the pH of irrigated water lowered than 3.5 and the soil pH lowered than 4.5, the yieldof double season rice decreased even more sharply. Under the condition of soilacidification, the early tillering for double season rice was suppressed, leading to decrease of number of spikelets per panicle, seed setting rate and 1000-grain weight.
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
,
URL [本文引用: 1]
It’s a serious issue that acid soils are widely distributed in the world. Liming is an traditional and effective method to amend acid soils. It enhances the physical, chemical and biological properties of soil through its direct effect on the amelioration of soil acidity and its indirect effect on the mobilization of some soil nutrients, reduces Al and other heavy metals toxic to crop growth, and improves crop yield and quality. Some recent progress on liming was briefly reviewed and some suggestions were provided at the end of the article.
URL [本文引用: 1]
It’s a serious issue that acid soils are widely distributed in the world. Liming is an traditional and effective method to amend acid soils. It enhances the physical, chemical and biological properties of soil through its direct effect on the amelioration of soil acidity and its indirect effect on the mobilization of some soil nutrients, reduces Al and other heavy metals toxic to crop growth, and improves crop yield and quality. Some recent progress on liming was briefly reviewed and some suggestions were provided at the end of the article.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
DOI:10.1093/aob/mcq134URLPMID:20570831 [本文引用: 1]
DOI:10.1111/jec.2013.101.issue-5URL [本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1016/j.eja.2007.05.002URL [本文引用: 1]
Abstract
No-till management has rapidly increased the cultivated area in Brazil. To control soil acidity in no-till systems, lime is broadcast on the surface without incorporation. The effectiveness of surface application of lime to soils under a no-till system, particularly with regard to subsoil acidity, is uncertain. Crop root growth and grain yield can be affected by chemical modifications in the soil profile due to surface lime application. A 3-year field trial examined the effect of newly and previously surface-applied lime in a long-term no-till system on the root growth and crop yield of corn (Zea mays L.), soybean (Glycine max L. Merrill), and wheat (Triticum aestivum L.) on a loamy, kaolinitic, thermic Typic Hapludox in Paraná State, Brazil. The experiment consisted of four lime treatments: (i) no lime (control); (ii) liming at 3 t ha−1 in 2000; (iii) liming at 6 t ha−1 in 1993; (iv) liming in 1993 and re-liming in 2000. Corn was grown in 2000–2001 and soybeans were grown in 2001–2002 and 2002–2003 without rainfall limitation. Wheat was grown in 2003 with a water deficit during the vegetative stage and soon after flowering.Liming in 2000 increased pH and the content of exchangeable Ca2+, and decreased the exchangeable Al3+ level mainly in the surface layer of the soil (0–5 cm). Compared with the no lime control, liming in 1993 ameliorated soil acidity and decreased aluminum toxicity to a 60 cm depth. Liming in 2000 on the previously limed plots compared with the liming in 1993 increased pH to a 10 cm depth about 1 year after application and to a 60 cm depth 3 years after application, indicating that the surface-applied lime in 2000 moved deeper when the topsoil was only slightly acidic. Root length density and grain yields of corn and soybean were not influenced by surface liming treatments. Liming in 2000 on the previously limed plots provided increases ≥100% in length density of wheat roots at 0–10 and 10–20 cm depths, and increased the wheat grain yield by over 210%. A soil exchangeable Al3+ level of 3 mmol(+) dm−3 was considered critical for wheat root growth. Wheat grain yield was well correlated with root length per soil surface area. The results suggest that aluminum toxicity is low in no-till systems during cropping seasons that have adequate and well-distributed rainfall, but in unfavorable rainfall conditions, the toxicity of aluminum severely compromises root growth and yield.
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
[D]. ,
[本文引用: 1]
[D].
[本文引用: 1]
,
DOI:10.1007/BF02378848URL [本文引用: 1]
,
DOI:10.17221/PSEURL [本文引用: 1]
,
DOI:10.1016/j.envexpbot.2015.06.010URL [本文引用: 1]
,
DOI:10.1016/S0038-0717(03)00213-XURL [本文引用: 1]
,
DOI:10.3864/j.issn.0578-1752.2016.20.004URL [本文引用: 1]
【Objective】The aim of this study was to assess the effects of lime on soil acidity and barley seedling growth in an acidic soil (pH 3.9), and to determine the suitable dosage of lime and thus providing scientific proof for acidic soil improvement and reasonable application rate. 【Method】 The trial was conducted at the experimental base of Huazhong Agricultural University. Soil incubation and pot experiments were used. The Ca(OH)2 titration method was employed to estimate the lime requirement, and six treatments were designed: no lime, 0.3 g·kg-1, 0.9 g·kg-1, 1.8 g·kg-1, 2.4 g·kg-1 and 4.8 g·kg-1 lime application rates. Samples were collected on 10, 20, 30, 40, 50, 60, 70 and 90 days after incubation to monitor the dynamic changes of soil pH, soil exchangeable acidity, exchangeable H+ and exchangeable Al3+. Barley was sowed on the 90th day and harvested after 2 weeks to assess the effects of liming rates on barley biomass, morphological parameters, and root activity. 【Result】 Soil incubation results demonstrated that lime application significantly improved soil pH, however the content of exchangeable acidity and exchangeable Al3+ were decreased significantly during the first 30 days. The content of potential acid decreased gradually with the increasing dosage of lime, therefore the content of soil exchangeable acid, exchangeable H+ and exchangeable Al3+ were zero in the treatment of 4.8 g·kg-1. From then on, due to the influences of soil buffer, low lime dosages (< 1.8 g·kg-1) showed no obvious effects on improving soil pH but significantly reduced soil potential acidity. The results of pot experiment showed that application of lime significantly enhanced barley growth through improving plant height, biomass and root development. Barely seedlings plant height, dry mass, total root length and surface area, and root activity improved with the lime application rate from 0 to 1.8 g·kg-1. Whereas, lime input decreased root average diameter. Barley growth was inhibited significantly when lime application rate was above 1.8 g·kg-1. The root activity in the treatment of 4.8 g·kg-1 was lower than that of 0.9 g·kg-1, the excess of lime application retarded the root growth. Thus, the optimum liming rate was 1.8 g·kg-1, which agreed with the lime requirement calculated using the Ca(OH)2 titration method. 【Conclusion】 Lime application is capable of neutralizing soil acidity and promoting barley seedling growth. Under the conditions of this study (soil pH 3.9), the appropriate liming rate was 1.8 g·kg-1 (4 t·hm-2). This rate was consistent with that from the Ca (OH)2 titration method, confirming that the approach adopted in this study is appropriate for determining the lime application rate.
DOI:10.3864/j.issn.0578-1752.2016.20.004URL [本文引用: 1]
【Objective】The aim of this study was to assess the effects of lime on soil acidity and barley seedling growth in an acidic soil (pH 3.9), and to determine the suitable dosage of lime and thus providing scientific proof for acidic soil improvement and reasonable application rate. 【Method】 The trial was conducted at the experimental base of Huazhong Agricultural University. Soil incubation and pot experiments were used. The Ca(OH)2 titration method was employed to estimate the lime requirement, and six treatments were designed: no lime, 0.3 g·kg-1, 0.9 g·kg-1, 1.8 g·kg-1, 2.4 g·kg-1 and 4.8 g·kg-1 lime application rates. Samples were collected on 10, 20, 30, 40, 50, 60, 70 and 90 days after incubation to monitor the dynamic changes of soil pH, soil exchangeable acidity, exchangeable H+ and exchangeable Al3+. Barley was sowed on the 90th day and harvested after 2 weeks to assess the effects of liming rates on barley biomass, morphological parameters, and root activity. 【Result】 Soil incubation results demonstrated that lime application significantly improved soil pH, however the content of exchangeable acidity and exchangeable Al3+ were decreased significantly during the first 30 days. The content of potential acid decreased gradually with the increasing dosage of lime, therefore the content of soil exchangeable acid, exchangeable H+ and exchangeable Al3+ were zero in the treatment of 4.8 g·kg-1. From then on, due to the influences of soil buffer, low lime dosages (< 1.8 g·kg-1) showed no obvious effects on improving soil pH but significantly reduced soil potential acidity. The results of pot experiment showed that application of lime significantly enhanced barley growth through improving plant height, biomass and root development. Barely seedlings plant height, dry mass, total root length and surface area, and root activity improved with the lime application rate from 0 to 1.8 g·kg-1. Whereas, lime input decreased root average diameter. Barley growth was inhibited significantly when lime application rate was above 1.8 g·kg-1. The root activity in the treatment of 4.8 g·kg-1 was lower than that of 0.9 g·kg-1, the excess of lime application retarded the root growth. Thus, the optimum liming rate was 1.8 g·kg-1, which agreed with the lime requirement calculated using the Ca(OH)2 titration method. 【Conclusion】 Lime application is capable of neutralizing soil acidity and promoting barley seedling growth. Under the conditions of this study (soil pH 3.9), the appropriate liming rate was 1.8 g·kg-1 (4 t·hm-2). This rate was consistent with that from the Ca (OH)2 titration method, confirming that the approach adopted in this study is appropriate for determining the lime application rate.