Phosphorus Adsorption and Desorption Characteristics and Its Response to Soil Properties of Black Soil Under Long-Term Different Fertilization
WANG Qiong1,2, ZHAN XiaoYing1,3, ZHANG ShuXiang,1, PENG Chang4, GAO HongJun4, ZHANG XiuZhi4, ZHU Ping4, GILLES Colinet2通讯作者:
收稿日期:2019-07-1接受日期:2019-08-21网络出版日期:2019-11-08
基金资助: |
Received:2019-07-1Accepted:2019-08-21Online:2019-11-08
作者简介 About authors
王琼,E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (761KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
王琼, 展晓莹, 张淑香, 彭畅, 高洪军, 张秀芝, 朱平, GILLES Colinet. 长期不同施肥处理黑土磷的吸附-解吸特征及 对土壤性质的响应[J]. 中国农业科学, 2019, 52(21): 3866-3877 doi:10.3864/j.issn.0578-1752.2019.21.015
WANG Qiong, ZHAN XiaoYing, ZHANG ShuXiang, PENG Chang, GAO HongJun, ZHANG XiuZhi, ZHU Ping, GILLES Colinet.
0 引言
【研究意义】磷作为植物生长的必需营养元素之一,是限制作物生长与农业生产的重要养分[1,2]。在我国农田土壤中,由于土壤对磷的吸附和固定能力较强,土壤磷有效性低,作物对磷肥的利用率较低,当季利用率仅为10%—25%[3,4],需要向土壤中大量施入磷肥。而长期过量施用磷肥和其他磷矿资源造成磷素在土壤中累积[5,6,7],增加了磷素流失和水体富营养化的风险[8]。因此,如何降低土壤对磷的吸附固定,提高磷的有效性和磷肥利用率一直是土壤磷素研究领域的热点问题[9]。【前人研究进展】磷等温吸附解吸曲线是描述磷吸附解吸特征常用的手段[9],一般常用Langmuir方程描述土壤磷的吸附行为,从而描述土壤的固磷情况[10,11]。评价参数包括磷的最大吸附量(Qmax)、磷吸附常数(K)、磷最大缓冲容量(MBC)和磷吸附饱和度(DPS)[12,13],磷解吸是一个相对于吸附的相反过程,对评估土壤磷有效性有重要意义,与土壤吸附的磷再利用有关[14]。土壤组分是影响磷吸附解吸的主要因素[3,15],从20世纪50年代开始,国内外****已从多方面对土壤磷的吸附解吸特征开展了研究,例如ZHANG 等[16]通过研究长期施肥后5种不同质地的潮土磷吸附解吸特征,发现黏粒、粉粒、有机质和游离的铁氧化物是影响磷吸附的主要因素,砂粒是影响磷解吸的主要因素。DEBICKA等[17]也证明了在砂质土壤中有机质是影响磷吸附解吸的最重要因素,土壤pH、钙等也都是影响磷吸附解吸的主要因素[18,19]。但前期研究大多只是通过简单相关分析比较了吸附解吸特征参数与土壤性质之间的关系[20,21]。而不同施肥处理也同样改变土壤对磷的吸附解析特征,从而影响磷的有效性[10,22]。赵庆雷、JIAO、杨芳等[23,24,25]在不同土壤中发现,和单施化肥相比,长期单施有机肥可显著降低红壤0—20 cm土层的Qmax、K和MBC值,提高该土层的磷累积解吸量和累积解吸率,有机无机配施后,这种效果更为突出;但也有相反结果,长期在水稻土上施用有机肥比单施化肥增加了非晶态Fe和Al的含量,增加了磷的Qmax值[26],目前关于长期不同施肥处理对磷吸附解吸影响的研究大多只单纯比较了不同施磷肥用量后各处理磷吸附解吸特征参数的差异[9,12],对产生这种结果的原因研究较少。土壤组分的变化受长期施肥的影响,不同耕层土壤,长期有机无机配施处理后的土壤较单施化肥处理的土壤pH高0.30—0.53个单位,减缓土壤酸化速率[27],更显著增加土壤有效磷和全磷含量[28]。长期单施化肥可缓慢降低黑土有机质含量,而有机无机配施显著增加土壤有机质含量,不同地区年上升幅度为24%—68%[29],而长期不同施肥改变了土壤性质,从而影响了土壤磷吸附解析特征参数。此外,应用冗余分析等统计方法定量化研究土壤性质对特征参数的影响目前还较少。【本研究切入点】东北黑土区是我国的主要粮食产区,在国家粮食安全战略中发挥着重大作用[30]。目前关于长期不同施肥后对黑土磷吸附-解吸的演变过程尚不清楚,定量化分析土壤性质影响磷吸附解吸特征的主要因素和机理探讨研究较少。【拟解决的关键问题】长期施肥试验为评估农业可持续管理体系提供了很好的平台[30]。本研究选取公主岭市长期定位试验(1990年开始),研究了长期试验不同施肥处理和典型试验年份耕层土壤的磷吸附解吸的演变特征,采用相关分析和冗余分析探讨土壤性质对黑土磷吸附解吸特征的影响,以期为优化黑土施肥模式,提高磷有效性和磷肥利用率提供科学依据。1 材料与方法
1.1 试验区概况
长期试验在中层黑土土壤肥力和肥料效益长期监测站实施,该监测站位于吉林省公主岭市(124°48′34″E,43°30′23″N,建于1989年)。土壤类型是中层典型黑土,成土母质为第四纪黄土状沉积物。试验区基础土壤耕层(0—20 cm)的基本性质为:有机质、全氮、全磷和全钾含量分别为:22.80、1.40、0.61和18.42 g·kg-1,有效磷和速效钾含量分别为11.79 和158 mg·kg-1,容重为1.19 g·cm-3,pH 7.60。该监测站属于温带大陆性季风气候区,四季分明,试验期间年均降水量为 590.7 mm,主要集中在 4—9 月作物生长季,年均温为 4—5℃,年积温 2 800℃。1.2 试验设计
选取3个典型历史年份(1990、2000和2010年),4个施肥处理:不施肥对照(CK);施氮、钾肥处理(NK);平衡施氮、磷、钾肥处理(NPK);氮磷钾+有机肥处理(NPKM)。每个试验小区面积为400 m2,随机排列,不设重复,采用多点取样法采集土壤样品。供试作物为玉米,一年一季。玉米品种在1990—1993年为丹育13,1994—1996年为吉单222,1997—2005年为吉单209,2005—2010年为郑单958,于4月末播种,9月末收获。化肥氮、磷、钾肥分别为尿素、过磷酸钙和硫酸钾,所有施氮处理的氮肥用量相同,氮磷钾和有机肥处理中有机肥为猪粪,其中C、N、P和K养分的含量状况根据中国有机肥养分志(1999)计算,年施用量约为23 t·hm-2(磷含量约为0.18%),各处理具体数量见表1。Table 1
表1
表1不同处理无机、有机肥用量(N-P2O5-K2O,kg·hm-2)
Table 1
处理 Treatment | 无机肥 Inorganic N-P2O5-K2O (kg·hm-2) | 猪粪 Pig manure | |
---|---|---|---|
用量 Dosage (t·hm-2) | N-P2O5-K2O (kg·hm-2) | ||
CK | 0-0-0 | - | - |
NK | 165-0-68 | - | - |
NPK | 165-36-68 | - | - |
NPKM | 50-36-68 | 23-30 | 115-39-77 |
新窗口打开|下载CSV
1.3 土壤样品采集与分析
玉米收获后的3—10 d,采用“S”形布点采集0—20 cm土层5—7点土壤样品,充分混匀,风干后进行分析和测定。采用重铬酸钾外加热法测定土壤有机质含量,用Olsen法测定有效磷含量,土壤pH采用电位法(1﹕2.5土﹕水),用二硫酸钠-柠檬酸钠-碳酸氢钠(DCB)浸提,并用ICP-AES测定游离铁铝氧化物,CaCO3含量采用容量滴定法[31],土壤比表面积采用氮气吸附法[32]。1.4 磷等温吸附试验
磷的等温吸附试验[9, 26]:称取过20目筛孔的风干土样1.00 g于50 mL离心管中,分别加入以0.01 mol·L-1 NaCl(pH=7)配制的不同磷含量梯度的溶液25 mL,其含磷(P)量分别为0、10、20、40、80、160 mg·kg-1,每管加入3滴甲苯(抑制微生物的活动),25℃恒温振荡1 h,振荡速率为150 r/min(25±2)℃,然后在24℃恒温培养箱中平衡24 h,在4 000 r/min离心10 min,用钼蓝比色法测定上清液中的磷含量即为平衡溶液中磷的浓度。土壤磷的吸附量为添加的溶液中的磷浓度与平衡液中磷的浓度之差。根据所得结果,以平衡液中的磷浓度为横坐标,土壤吸附的磷浓度为纵坐标画图,此为磷的等温吸附曲线,并用Langmuir方程进行拟合。1.5 磷等温解吸试验
吸附试验结束后应立即进行磷的解吸试验。吸取20 mL饱和NaCl溶液加入吸附试验后的保留有土样的离心管中,洗涤两次,以除去游离态磷,然后加入不含磷的0.01 mol·L-1 NaCl溶液25 mL,同时加入3滴甲苯以抑制微生物生长,25℃下振荡1 h,恒温箱中平衡24 h,于4 000 r/min下离心10 min,采用钼蓝比色法测定上清液中的磷即为解吸磷。1.6 计算方法
(1)Langmuir 方程:C/Q=1/(K×Qmax) +C/QmaxC为平衡溶液中的磷浓度(mg·L-1);Q为土壤磷的吸附量(mg·kg-1);Qmax为磷最大吸附量;K为吸附亲和力常数。根据Langmuir等温吸附方程得到的一系列参数,计算以下指标:
(2)土壤最大缓冲容量(MBC,mg·kg-1)是Qmax和K两个因子的综合参数,MBC = K×Qmax;
(3)磷吸附饱和度(DPS,%)[33]是土壤有效磷与最大吸附量之间的比例关系。DPS=Olsen-P/ Qmax×100%;
(4)磷解吸率=土壤解吸磷含量(mg·kg-1)/吸附磷含量(mg·kg-1)×100%。
1.7 数据分析
所有的数据均采用平均值。采用SPSS 20 对数据进行差异分析,采用单因素方差分析(ANOVA)和Duncan检验,比较不同施肥处理和不同年份磷吸附解吸特征参数和土壤性质的差异(P<0.05),并通过Pearson相关分析,确定了土壤磷吸附参数与土壤性质的关系,采用Canoco 5进行RDA分析。用Sigmaplot 12.0和Origin9.0进行绘图。2 结果
2.1 长期不同施肥处理对黑土磷吸附特征的影响
如图1所示,不同施肥处理磷等温吸附曲线较为一致,整体上土壤磷的吸附量随磷平衡浓度增加呈先快速上升再缓慢增加的趋势。当土壤平衡磷浓度小于20 mg·L-1,各条等温线的斜率最大,土壤对磷的吸附量表现出较快的增长速率,随着平衡液磷浓度的增加,磷吸附曲线变化平缓,各条等温线的斜率均有不同程度的下降。不同年限各处理土壤对磷的吸附量在添加相同的磷浓度下有很大的差异。1990年,土壤对磷的吸附量顺序为NK处理>NPKM处理>NPK处理>CK处理,但随年限的增加,CK和NK处理的吸附量呈增加的趋势,NPK处理吸附量变化不明显,NPKM处理吸附呈减少趋势。2000年和2010年,土壤对磷的吸附量顺序为NK处理>CK处理>NPK处理>NPKM处理。图1
新窗口打开|下载原图ZIP|生成PPT图1长期施肥下黑土不同施肥处理磷吸附等温线(a)1990年,(b)2000年,(c)2010年
Fig. 1Phosphate isothermal adsorption curves of different treatments in black soils under long-term fertilization. (a) 1990, (b) 2000, (c) 2010
为了更好地量化不同施肥处理土壤中吸附磷的变化,采用Langmuir吸附等温曲线模型拟合了3个年份不同处理土壤吸附磷和相应的平衡溶液磷浓度(表2)的关系,拟合度均达到了极显著水平(R2=0.93—0.99),并用Langmuir参数计算了磷的吸附特征值。
Table 2
表2
表2长期不同施肥处理土壤吸附特征参数
Table 2
年份 Year | 处理 Treatment | Langmuir 曲线方程 Langmuir equation | 相关系数 R2 | 最大吸附量 Maximum adsorption capacity (Qmax) (mg·kg-1) | 吸附亲和力常数 Adsorption constant K | 最大缓冲容量 Max buffering capacity of soil P (MBC) (mg·kg-1) | 吸附饱和度 Phosphorus sorption saturation (DPS) (%) |
---|---|---|---|---|---|---|---|
1990 | CK | C/Q=0.0091Q+0.0778 | 0.9905 | 109.96 | 0.12 | 12.85 | 9.71a |
NK | C/Q=0.0058Q+0.0913 | 0.9796 | 170.71 | 0.06 | 10.95 | 6.16a | |
NPK | C/Q=0.0083Q+0.0179 | 0.9778 | 120.34 | 0.46 | 55.75 | 8.86a | |
NPKM | C/Q=0.0060Q+0.0914 | 0.9300 | 165.34 | 0.07 | 10.94 | 6.58a | |
2000 | CK | C/Q=0.0035Q+0.0558 | 0.9732 | 283.45 | 0.06 | 17.91 | 1.17b |
NK | C/Q=0.0038Q+0.0533 | 0.9520 | 259.47 | 0.07 | 18.77 | 2.05b | |
NPK | C/Q=0.0058Q+0.0371 | 0.9611 | 171.50 | 0.16 | 26.94 | 12.59ab | |
NPKM | C/Q=0.0770Q+0.0198 | 0.9751 | 130.01 | 0.39 | 50.42 | 55.62a | |
2010 | CK | C/Q=0.0032Q+0.0799 | 0.9821 | 311.82a | 0.04 | 12.96a | 0.73c |
NK | C/Q=0.0024Q+0.0600 | 0.9985 | 446.23a | 0.04 | 16.36a | 0.77c | |
NPK | C/Q=0.0046Q+0.0917 | 0.9533 | 218.29ab | 0.05 | 11.5a | 16.90b | |
NPKM | C/Q=0.0050Q+0.5000 | 0.9425 | 110.19b | 0.01 | 2.35b | 81.33a | |
P value | ** | * | NS | * | * |
* Means significant difference at 5% level (P<0.05), ** means significant difference at 1% level (P<0.01). The same as bellow
新窗口打开|下载CSV
Qmax反映了土壤胶体吸附点位的多少,可用来表征土壤磷库容量,当土壤中磷含量达到一定程度时,土壤才可向作物提供养分[34]。CK、NK和NPK处理的土壤磷的最大吸附量(Qmax)随时间均呈逐渐增加的趋势,2010年较1990年分别显著增加了183%、161%和81%。而NPKM处理的Qmax值则随施肥年限呈下降的趋势,2010年较1990年降低了33.35%。施肥21年后,NPKM处理Qmax值分别比CK,NK和NPK处理显著降低了64.66%、75.31%和49.52%。
K表示土壤胶体与磷酸根离子亲和力的高低,反映了土壤吸附磷的能级[35]。K值越大,表明该吸附反应的程度越强,生成物越稳定,供磷强度越弱[20]。当K>0时,表明土壤磷的吸附反应是在常温下自发进行的。本试验K值为0.01—0.49,说明各处理的吸附反应在常温下均能自发进行,但各处理的K值随试验年限的增加无规律性变化,各处理之间K值差异不显著。
MBC综合反映土壤吸磷强度和容量因素的参数[34],是判断土壤供磷特性的指标[23, 36],MBC值越大,表明土壤贮存磷的能力越大[9],磷损失的风险就越小。随试验年限的增加,各处理MBC值变化趋势不尽相同,CK和NK处理MBC值整体保持稳定,NPK和NPKM处理MBC值整体呈降低的趋势, 2010年分别较1990年降低79.37%和78.52%。2010年,NPKM处理MBC值最低,为2.35 mg·kg-1,比CK和NPK处理分别降低了81.87%和79.56%。
DPS反应土壤吸附磷位点的饱和状况,评价农田土壤磷素流失风险的指标,DPS越大,土壤固相的磷越容易解吸进入液相,土壤对磷的吸附能力越低,土壤中含有更高的溶解态磷[33],土壤磷淋失的风险也越大,一般将DPS值为25%作为判定土壤磷素流失的临界值[37]。随着试验年限的增加,CK和NK处理DPS值呈降低趋势,2010年较1990年显著降低92.04%和87.50%。施磷肥处理的DPS值呈增加的趋势,2010年,NPK和NPKM处理较1990年分别显著增加0.91和11.36倍,较同年份CK和NPK处理显著增加110和3.81倍。
2.2 长期不同施肥处理对黑土磷解吸特征的影响
土壤磷的解吸率是指土壤磷解吸量占土壤磷吸附量的百分比。解吸率的大小表征土壤的供磷能力,其值越大,土壤供磷能力越强,植物可吸收利用的磷含量也越多,反之亦然[38]。由图2可知,整体上3个试验年份中,不同施肥处理土壤磷的解吸率变化趋势较为一致,随添加磷浓度的增加呈先快速降低,再逐渐平缓的趋势。此外,随着试验年限的增加,CK和NK处理土壤磷解析率呈降低趋势,NPK处理解析率趋势变化不明显,NPKM处理磷解析率呈增加趋势。图2
新窗口打开|下载原图ZIP|生成PPT图2长期不同施肥年份和处理土壤磷解吸率的变化特征
Fig. 2Changes in desorption rate of different treatments in black soils under long-term fertilization
土壤易解吸磷(RDP,mg·kg-1)[39]是指在吸附试验过程中加入的含磷浓度为0的0.01 mol·L-1 NaCl溶液,由土壤固相进入液相的那部分磷,代表土壤中易溶态磷,一定条件下会淋失,造成水体污染[39]。由图3可知,CK、NK和NPK处理土壤RDP含量均随试验年限增加呈逐渐降低的趋势,与1990年比,2010年各处理RDP含量分别降低了82.83%、20.00%和48.57%,NPKM处理RDP含量随试验年限呈增加的趋势,比1990年增加了1.48倍。不同施肥处理相比,各年限均以NPKM处理RDP含量最高,均显著优于其他处理,施肥21年后,NPKM处理RDP含量比CK和NK处理分别增加了4.36倍和7.33倍,比NPK处理增加了78.57%。
2.3 长期不同施肥处理对黑土土壤性质的影响
表3列出了不同施肥处理土壤理化指标3个年限(1990,2000和2010)的均值。结果显示,全磷(Total-P)、有效磷(Olsen-P)和有机质(SOM)均以NPKM处理含量最高,分别为0.94、0.08和29.91 g·kg-1,显著高于其他处理(CK、NK、NPK),分别较CK处理显著增加了69.60%、14倍和38.62%,较NPK处理显著增加了56.53%、2.56倍和23.17%。比表面积(SSA)值以CK处理SSA最大,为19.82 m2·g-1,以NPKM处理最小,为6.25 m2·g-1, 较CK处理显著降低68.46%。游离铁铝氧化物(Free Fe2O3和Al2O3)含量各处理之间无显著差异。CK和NPKM处理的碳酸钙(CaCO3)含量和pH无差异,但均显著高于NK和NPK处理。图3
新窗口打开|下载原图ZIP|生成PPT图3长期不同施肥年份和处理的黑土易解吸磷变化特征
方柱上大写字母表示同一处理年份间差异显著,小写字母表示同一年份处理间差异显著(P<0.05)
Fig. 3Readily desorbable phosphorus (RDP) of different treatments in black soils under long-term fertilization
Different capital letters above the bars indicate significantly difference among the different fertilizing years at the same treatment, and the lowercase letter indicated the difference among the different treatments at the same year (P<0.05)
2.4 长期不同施肥处理黑土磷吸附-解吸特征参数对土壤性质的响应
为了深入了解土壤性质对磷吸附行为的影响,我们研究了土壤性质与磷吸附-解吸参数的相关性,同时将磷吸附解吸特征设为自变量,土壤性质设为应变量进行冗余分析,由于DPS是有效磷与Qmax计算结果所的,我们未将其进行冗余分析。由相关分析可知(表4),SOM和Total-P均与Qmax呈显著负相关(R2=-0.749*和-0.634*),与DPS和RDP呈显著正相关(R2=0.752—0.877*)。SSA与Qmax呈显著正相关(R2= 0.624*),与RDP呈极显著负相关(R2= -0.744**),CaCO3与RDP呈显著正相关(R2=0.658*),K值与MBC值之间、DPS与RDP之间均呈极显著正相关(R2=0.969**,R2=0.913**)。土壤性质之间也具有相关性,Total-P与SOM、CaCO3之间呈显著正相关(R2=0.678*和0.581*),与SSA之间存在显著负相关(R2=-0.656*),pH与CaCO3之间具有极显著正相关性(R2=0.719**),Free Fe2O3和Al2O3之间存在极显著正相关(R2=0.954**)。冗余分析结果表明(图4),土壤性质能解释磷吸附解析特征参数全部变异的83.85%,第一冗余因子(RDA1)能解释62.82%,主要与SOM、Total-P、SSA和CaCO3指标有关;第二冗余因子(RDA2)能解释全部变异的21.03%,主要与Free Fe2O3和Al2O3有关。根据交互式向前选择方法分析表明,SOM和Total-P是造成磷吸附解吸特征参数差异的主要因素,分别解释了全部变异的49.5%和18.7%(P<0.05),根据各环境因子解释率大小顺序,由高到低依次为:SOM,Total-P,Free Fe2O3,Free Al2O3,pH,CaCO3和SSA。
图4
新窗口打开|下载原图ZIP|生成PPT图4长期不同施肥处理黑土性质与磷吸附解吸特征参数的RDA分析
Fig. 4RDA showing the relationships between the soil properties and sorption-desorption parameters of different treatments in black soils under long-term fertilization
Table 3
表3
表3长期不同施肥处理对黑土性质的影响
Table 3
指标 Parameter | CK | NK | NPK | NPKM | P值 P value |
---|---|---|---|---|---|
全磷Total-P (g·kg-1) | 0.56±0.0536b | 0.56±0.1037b | 0.60±0.0448b | 0.94±0.2153a | * |
有效磷Olsen-P (mg·kg-1) | 5.42±0.6431c | 6.35±0.1641c | 22.99±2.5584b | 81.95±4.0825a | * |
有机质SOM (g·kg-1) | 21.58±1.6196b | 23.77±2.4263b | 24.28±2.4191b | 29.91±3.2205a | * |
酸碱度pH | 7.42±0.0504a | 6.63±0.1667b | 6.38±0.1938b | 7.25±0.0764a | * |
比表面积SSA (m2·g-1) | 19.82±0.8184a | 15.76±2.7509a | 17.06±2.8656a | 6.25±0.7227b | * |
游离氧化铁Free Fe2O3 (g·kg-1) | 8.66±0.8741 | 8.74±1.0689 | 8.55±0.7679 | 8.02±1.0075 | NS |
游离氧化铝Free Al2O3 (g·kg-1) | 2.00±0.1927 | 1.97±0.2463 | 1.94±0.1550 | 1.80±0.1898 | NS |
碳酸钙CaCO3 (g·kg-1) | 16.35±0.9500a | 13.40±0.9000b | 13.90±0.3000b | 17.80±0.3000a | * |
新窗口打开|下载CSV
Table 4
表4
表4黑土性质与磷吸附解吸特征参数的相关性
Table 4
SOM | SSA | pH | Al2O3 | Fe2O3 | CaCO3 | Total-P | Qmax | K | MBC | DPS | |
---|---|---|---|---|---|---|---|---|---|---|---|
SSA | -0.592 | ||||||||||
pH | -0.040 | -0.129 | |||||||||
Al2O3 | -0.041 | -0.181 | -0.159 | ||||||||
Fe2O3 | 0.077 | -0.218 | -0.248 | 0.954** | |||||||
CaCO3 | 0.353 | -0.541 | 0.719** | -0.134 | -0.150 | ||||||
Total-P | 0.678* | -0.656* | 0.222 | -0.198 | -0.251 | 0.581* | |||||
Qmax | -0.749* | 0.624* | 0.018 | -0.401 | -0.401 | -0.408 | -0.634* | ||||
K | 0.508 | -0.351 | -0.144 | 0.273 | 0.378 | 0.005 | 0.019 | -0.447 | |||
MBC | 0.376 | -0.230 | -0.199 | 0.217 | 0.346 | -0.095 | -0.145 | -0.248 | 0.969** | ||
DPS | 0.815** | -0.565 | 0.197 | -0.463 | -0.400 | 0.568* | 0.877** | -0.511 | 0.146 | 0.042 | |
RDP | 0.760* | -0.744** | 0.306 | -0.343 | -0.249 | 0.658* | 0.752** | -0.499 | 0.342 | 0.250 | 0.913** |
新窗口打开|下载CSV
3 讨论
3.1 不同施肥处理的土壤磷吸附与解吸特征
本研究中,在添加相同磷浓度下,施磷和不施磷处理黑土对磷的吸附量和解吸率具有很大的差异(图1和图2)。不施磷处理(CK和NK)表现出较大的Qmax,较小的DPS值和RDP值(表2和图3),对磷的吸附能力较强,解吸能力较弱,增施磷肥后,尤其是有机无机配施后,土壤磷的吸附量降低,土壤对磷的吸附能力减弱,解吸能力增强,表现为较小的Qmax值,较大的DPS值和RDP值(表2和图3),这与王斌等[9]在灰漠土中不施肥处理(CK)能增加磷的吸附量,化学磷肥配施有机肥处理(NPKM)可降低磷的吸附量,增加磷的解吸率研究结果相似,但是在南方泥田土和红壤中,施入有机肥增加了磷的最大吸附量,得到相反的结果,这可能是由于南方和北方土壤质地(黏粒、粉粒、砂粒)、土壤pH、铁铝氧化物等含量差异较大[11, 40],造成的土壤性质不同。3.2 土壤性质与磷吸附解吸特征的响应关系
研究表明,不同磷肥用量和不同土壤性质(如土壤质地、pH、铁铝氧化物、有机质等)土壤磷的吸附解吸特征均有显著性差异[5, 40-41]。长期定位试验进行了21年,各处理之间Olsen-P和Total-P含量差异较大,极差值分别达到了187 mg·kg-1和0.89 g·kg-1,不同施肥处理引起的土壤磷素养分盈亏差异较大[42],土壤中磷的吸附解吸也随着发生不同的变化。CK和NK处理由于无磷素输入,而又长期有生物量输出,土壤磷素处于持续耗竭的状态,有机质含量较低,对土壤表面电荷影响较小,土壤比表面积相比有机质含量较高的土壤较大(表3),而土壤铁铝氧化物含量无显著变化,因此其在等温吸附试验中表现出极大的磷素吸附量、Qmax值和MBC值,而又因其有效磷含量低,磷素最大吸附量又最高,决定了CK和NK处理具有极小的DPS值,随着试验年限的增加也出现了降低的趋势。随试验年限的增加,NPK处理土壤影响了土壤中磷形态含量,增加了有效磷浓度[43],但对土壤的比表面积影响较小(表3),虽然磷的吸附量变化不明显,但增加了土壤磷最大吸附量和有效磷量,使得土壤DPS值略有增加。NPKM处理比单施化肥处理(NPK)土壤Qmax,K和MBC值均显著降低,DPS和RDP含量均显著增加。且随着试验年限的增加,NPKM处理的Qmax,K和MBC值呈减小趋势,DPS和RDP含量均呈增加趋势,土壤易解吸磷含量也明显增加[44],这与张海涛等[45]研究低磷(0)和较高磷(150 mg·kg-1)土壤施加有机肥后,土壤RDP含量显著增加结果一致。许多研究表明,有机无机配施处理显著增加了黑土全磷和有效磷含量,土壤磷素为盈余状态[42],土壤磷的高能吸附位点饱和。此外,有机无机配施处理也显著增加了土壤有机质的含量[46],其值为23.48—33.45 g·kg-1,浓度较高。RDA结果分析表明,有机质是影响磷吸附解吸的最主要因素,这可能是有机质的施入影响土壤表面磷吸附位点,有机质在腐解过程中产生了有机酸根离子,与土壤溶液磷酸根存在竞争吸附,减弱了土壤对磷的吸附,增加了磷的解吸量[47],有机质分解的产物可被吸附到土壤表面的结合位点,或者与金属氧化物反应,形成络合物,导致吸附位点减少,减少土壤对磷的吸附[48,49],此外有机质的施入影响了土壤胶体面电荷性质,降低了土壤的比表面积(表3)[50],减少了土壤表面吸附位点,使磷的吸附转向低能态为主[12],另一方面,土壤有机质具有明显的凝胶特点,以胶膜的形式包被在氧化铁铝,碳酸钙等无机胶体表面形成有机无机复合体从而降低了土壤胶体对磷的吸附,增加了土壤溶液中的磷含量[51]。但林诚等[52]提出了配施有机肥的土壤Qmax值高于单施化肥,这可能是其研究的南方黄泥田土,配施有机肥后土壤有机质在分解过程中,溶解了土壤中的结晶态铁铝,提高了铁铝的活化度,增加了游离和无定形铁铝氧化物含量,增强了土壤对磷的吸附[53],而本研究中有机无机配施处理后土壤中游离的铁铝氧化物含量并无显著增加,对磷的吸附影响不显著。
NPKM处理因其较大的有效磷含量和较低的Qmax值,其DPS值显著高于其他处理,2010年DPS值为81%,显著高于临界值,易造成土壤磷素流失。分析其与土壤性质之间的关系,发现DPS值与SOM、Total-P呈显著正相关,之前研究也验证了这一关系[54]。本研究中DPS值与CaCO3含量呈显著正相关,本试验中,由于土壤pH维持在中性水平,土壤CaCO3含量较高,土壤中Ca-P含量较高[43],CASSON等[18]对施加牛粪的5种土壤磷吸附饱和度进行了深入研究,表明Ca-P含量的变化影响了DPS临界值的判定,也验证了本文结果,说明CaCO3也是土壤DPS值一个重要因素。
4 结论
长期施肥条件下黑土磷等温吸附方程的研究表明,Langmuir方程能较好地描述黑土对磷的吸附,长期施肥对磷的吸附解吸具有重要的影响,改变了土壤磷的吸附和解吸能力。有机无机配施处理(NPKM)后土壤全磷、有效磷、有机质含量增加,土壤比表面积减小,这些变化降低了土壤对磷的吸附能力,增强了土壤对磷的解吸能力,表现为最大吸附量(Qmax)、吸附系数(K)和磷缓冲容量(MBC)的降低,磷吸附饱和度(DPS)和易解吸磷(RDP)的增加。有机无机配施不单直接影响土壤磷的转化,还通过影响CaCO3含量、有机质含量,以及改变土壤比表面积等土壤性质间接影响土壤磷的吸附解吸过程,影响土壤中磷的转化。冗余分析表明,有机质是影响土壤磷吸附解吸最主要因素。此外,长期有机无机配施处理显著提高了土壤磷吸附饱和度,远远超过了25%的临界值,易造成磷素流失的风险。(责任编辑 李云霞)
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 2]
,
[本文引用: 1]
,
[本文引用: 2]
,
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1002/jpln.201000087Magsci [本文引用: 1]
Column experiments were conducted over 45 d to determine the degree of P mobility. The sandy loam soil was spiked with 200 mg P kg(-1) and 5% organic residues. The treatments included: control without any water-soluble P and plant residues, potato, wheat, water-soluble P fertilizer, wheat + water-soluble P, and potato + water-soluble P. Each column was leached with distilled water, and leachates were collected and analyzed for P, K(+), Ca(2+), Mg(2+), along with pH and EC. Sequential extraction was performed on soil samples at the end of leaching column experiments. The relatively high initial concentration of P in the leachates decreased to more stable values after 15 d which can be attributed to the colloid-bound P. The P concentrations in the leachates fluctuated between 8 and 220 mg L(-1) in the water-soluble-P fertilizer treatment, between 0.80 and 230 mg L(-1) in the potato + water-soluble-P treatment, and between 0.90 and 214 mg L(-1) in the wheat + water-soluble P treatment. Leaching loss of P mainly occurred in the 15 d of leaching, accounting for 94%, 88%, and 65% of total P leached in wheat + water-soluble-P, potato + water-soluble-P, and water-soluble-P treatments, respectively. Maximum amount of P leached was found from an exponential kind model and was in the range 0.45 mg kg(-1) to 125.4 mg kg(-1) in control and potato + water-soluble-P treatments, respectively. Sequential extraction results showed that in control and amended soils the major proportion of P was associated with Ca. The leachate samples in all treatments were saturated with respect to hydroxyapatite, beta-tricalcium phosphate, and octacalcium phosphate up to 20 d of leaching, whereas they were undersaturated with respect to Mg-P minerals through the entire leaching experiment.
,
[本文引用: 6]
[本文引用: 6]
,
[本文引用: 2]
,
[本文引用: 2]
,
[本文引用: 3]
[本文引用: 3]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 1]
[本文引用: 1]
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.4067/S0718-95162012005000015Magsci [本文引用: 1]
Phosphorus is one of the seventeen essential nutrients required for plant growth. Despite its importance, it is limiting crop yield on more than 40% of the world's arable land. Moreover, global P reserves are being depleted at a higher rate and according to some estimates there will be no soil P reserve by the year 2050. This is a potential threat to sustainable crop production. Most of the P applied in the form of fertilizers may be adsorbed by the soil, and is not available for plants lacking specific adaptations. Available soil P and hence crop yield can, however, be increased through applying P containing fertilizers to feed the ever increasing world population. The P contained in crop residues if left in the field can be recycled by incorporating the residues into the soil whereas part of P in crop residues fed to livestock can be returned back to the soil in the form of manure and as bone meal. Additionally, plants have evolved a diverse array of strategies to obtain adequate P for their growth under P limiting conditions (a term called as P-efficiency mechanisms). Plant P-efficiency mechanisms include both improved uptake efficiency (the ability of a plant to take up more P under P limiting condition) and improved utilization efficiency (the ability of a plant to produce higher dry matter yield per unit P taken up). Uptake efficiency mechanisms include modification of root architecture, development of large root system, longer root hairs and thinner roots, exudation of low molecular weight organic acids, protons and enzymes such as phosphatases and phytases, association with mycorrhiza, production of cluster roots and expression of high affinity P transporters all of which contribute to increased P uptake efficiency of the plant. Other mechanisms include the use of alternative P-independent enzymes and glycolytic pathways, efficient cytoplasmic P homeostasis and higher ability to remobilize P from other plant parts all of which are part of enhanced P utilization efficiency. Traits related to the above morphological, physiological, biochemical and molecular adaptation mechanisms under P stress can be utilized in improving cultivated crops for P efficiency through breeding programs.
[D]. ,
[本文引用: 2]
[D].
[本文引用: 2]
,
[本文引用: 2]
,
[本文引用: 1]
[D]. ,
[本文引用: 2]
[D]. ,
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[D]. ,
[本文引用: 1]
,
[本文引用: 1]
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]