Development and Characterization of Whole Genome SSR in Tetraploid Wild Peanut (Arachis monticola)
WANG YuLong1,2, HUANG BingYan2, WANG SiYu2,3, DU Pei2, QI FeiYan2, FANG YuanJin2, SUN ZiQi2, ZHENG Zheng2, DONG WenZhao2, ZHANG XinYou,1,21 College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan 2 Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huanghuaihai Plain/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002 3 School of Life Sciences, Zhengzhou University, Zhengzhou 450001
Abstract 【Objective】We aimed to identify simple sequence repeat (SSR) loci throughout the genome of tetraploid wild peanut Arachis monticola (AABB, 2n = 4x = 40), to identify their distribution characteristics, and to develop and validate SSR primers. These markers have potential uses in genetic evolution analyses and in the development of molecular markers for important traits in peanut.【Method】Using the bioinformatics software MISA, we searched for SSR loci in the whole genome sequence of A. monticola, which was downloaded from the GigaScience database of the BGI. One hundred SSR loci were randomly selected and primers were designed and synthesized. The primers were used to amplify products from four different Arachis genomes, and the products were analyzed by polyacrylamide gel electrophoresis (PAGE).【Result】 A total of 676 878 SSRs were found in the genome of tetraploid wild peanut A. monticola in 5 127 scaffolds (average, one SSR per 3.8 kb). The SSRs ranged from single nucleotides to hexanucleotides. Single nucleotide SSRs were significantly more abundant than hexanucleotide SSRs. Single, double, and triple nucleotide SSRs were predominant, accounting for 94.28% of all the SSRs. Single nucleotide SSRs accounted for the largest proportion of total SSRs (46.71%) and showed the highest density. Hexanucleotide SSRs accounted for the smallest proportion and showed the sparsest density. Most SSRs were located in intergenic regions, and most of the SSRs in gene sequences were located in introns. A total of 395 different repeat motifs were identified in the whole genome, of which 342 were in the A-subgenome and 356 were in the B-subgenome. The most abundant repeat motif was A/T. The most abundant repeat motifs for SSRs with 1-6 nucleotides were A/T, AT/AT, AAT/ATT, AAAT/ATTT, AAAAT/ATTTT, and AAAAAT/ATTTTT, respectively. There were less than 50 of each type of SSR repeat motif, but the number of each type of SSR motif varied greatly. The number of each type of SSRs repeat motif decreased with increasing number of nucleotides in the motif. Chromosome B03 had the most SSRs, and chromosome A08 showed the highest density of SSRs. We designed 192 303 pairs of SSR primers, and the detection rate of single-locus SSR markers was 50.35%. The distribution of SSR markers in the genome was dense at both ends and sparse in the middle. Among the 100 synthesized primer pairs, 90 pairs amplified stable and clear bands from A. monticola genomic DNA. The bands amplified from four different peanut genomic DNAs showed different characteristics. 【Conclusion】The A. monticola genome was rich in SSRs ranging from single nucleotides to hexanucleotides. Single nucleotide repeats were the most abundant and densely distributed, and hexanucleotides showed the lowest frequency and the sparsest distribution. There was no strict correlation between the frequency of different repeats and the repeat type. The A-subgenome and B-subgenome had their own specific SSRs. The AT-enriched repeat motifs were the most abundant, while GC-enriched repeat motifs showed much lower frequencies. The number of SSRs with the same type of repeat motif decreased with increasing numbers of nucleotides in the motif. Compared with the genomes of the two diploid wild species, the tetraploid genome of A. monticola had more SSRs, a higher density of SSRs, and a different SSR distribution pattern. Preliminary validation analyses showed that the SSR primers designed in this study shared certain universal properties among four Arachis genomes. Keywords:peanut;Arachis monticola;whole genome sequence;SSR locus;motif
PDF (1471KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 王玉龙, 黄冰艳, 王思雨, 杜培, 齐飞艳, 房元瑾, 孙子淇, 郑峥, 董文召, 张新友. 四倍体野生种花生A.monticola全基因组SSR的开发与特征分析[J]. 中国农业科学, 2019, 52(15): 2567-2580 doi:10.3864/j.issn.0578-1752.2019.15.002 WANG YuLong, HUANG BingYan, WANG SiYu, DU Pei, QI FeiYan, FANG YuanJin, SUN ZiQi, ZHENG Zheng, DONG WenZhao, ZHANG XinYou. Development and Characterization of Whole Genome SSR in Tetraploid Wild Peanut (Arachis monticola)[J]. Scientia Acricultura Sinica, 2019, 52(15): 2567-2580 doi:10.3864/j.issn.0578-1752.2019.15.002
M:DL 1000分子标记;1-4分别表示 A. moticola、A. duranesis、A. ipaensis、Tifrunner;红色箭头表示目标条带 Fig. 7Amplification results of 12 different primers on genomes of four materials
M: DL 1000 marker; 1-4 represent A. moticola, A. duranesis, A. ipaensis, Tifrunner; the red arrow indicates the target strip
BERTIOLID J, CANNONS B, FROENICKEL, HUANGG, FARMERA DCANNONE K S, LIUX, GAOD, CLEVENGERJ, DASHS, RENL, MORETZSOHNM C, SHIRASAWAK, HUANGW, VIDIGALB, ABERNATHYB, CHUY, NIEDERHUTHC E, UMALEP, ARAúJOA C G, KOZIKA, KIMK D, BUROWM D, VARSHNEYR K, WANGX, ZHANGX, BARKLEYN, GUIMAR?ESP M, ISOBES, GUOB, LIAOB, STALKERH T, SCHMITZR J, SCHEFFLERB E, LEAL-BERTIOLIS C M, XUNX, JACKSONS A, MICHELMORER, OZIAS-AKINSP . The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut Nature Genetics, 2016,48(4):438-446. [本文引用: 2]
YIND, JIC, MAX, LIH, ZHANGW, LIS, LIUF, ZHAOK, LIF, LIK, NINGL, HEJ, WANGY, ZHAOF, XIEY, ZHENGH, ZHANGX, ZHANGY, ZHANGJ . Genome of an allotetraploid wild peanut Arachis monticola: A de novo assembly GigaScience, 2018,7(6):1-9. [本文引用: 2]
WANGZ, WEBERJ L, ZHONGG, TANKSLEYS D . Survey of plant short tandem DNA repeats Theoretical and Applied Genetics, 1994,88(1):1-6. [本文引用: 1]
LEVINSONG, GUTMANG A . Slipped-strand mispairing: A major mechanism for DNA sequence evolution Molecular Biology and Evolution, 1987,4(3):203-221. [本文引用: 1]
FIELDD, WILLSC . LONG, polymorphic microsatellites in simple organisms Proceedings of the Royal Society of London Series B: Biological Sciences, 1996,263(1367):209-215. [本文引用: 1]
GUR-ARIER, COHENC J, EITANY, SHELEFL, HALLERMANE M, KASHIY . Simple sequence repeats in Escherichia coli: Abundance, distribution, composition, and polymorphism Genome Research, 2000,10(1):62-71. [本文引用: 1]
TóTHG, GáSPáRIZ, JURKAJ . Microsatellites in different eukaryotic genomes: Survey and analysis Genome Research, 2000,10(7):967-981. [本文引用: 1]
HEX Y, ZHANGJ H, LIUT, WANGY, MAX L, ZHANGX G, YIND M . Analysis of identification method for hybrid F1 generation of peanut Molecular Plant Breeding, 2018,16(2):477-483. (in Chinese) [本文引用: 1]
孙子淇, 张新友, 徐静, 张忠信, 刘华, 严玫, 董文召, 黄冰艳, 韩锁义, 汤丰收, 刘志勇 . 河南省审定花生品种的指纹图谱构建 作物学报, 2016,42(10):1448-1461. DOI:10.3724/SP.J.1006.2016.01448URLMagsci [本文引用: 1] <p>利用14个SSR标记构建了河南省2015年之前选育并审定的90个花生品种的DNA指纹图谱,用14个SSR标记产生的95个多态性位点可将90个花生品种完全区分开,其中84个品种间有≥2个位点的差异,在剩余的3对品种中,每对仅有1个差异位点。聚类分析结果表明,在遗传相似系数0.98处,90个花生品种被聚集成88类,有2对品种分别聚集在一起,是由于它们每一个品种分别以另一个品种作亲本选育而成,仅有1个差异SSR位点,表明所构建的指纹图谱是有效的。以遗传相似系数0.95为划分标准,有74.4%的品种具有特异性,与其他作物相比,河南省育成花生品种总体上亲缘关系相对较近。根据60个SSR标记的群体结构分析,90个花生品种可以分为3个亚群,与根据分枝开花习性和荚果类型的分类相吻合,亚群划分情况与聚类分析结果基本一致。</p> SUNZ Q, ZHANGX Y, XUJ, ZHANGZ X, LIUH, YANM, DONGW Z, HUANGB Y, HANS Y, TANGF S, LIUZ Y . DNA fingerprinting of peanut (Arachis hypogaea L.) varieties released in Henan province Acta Agronomica Sinica, 2016,42(10):1448-1461. (in Chinese) DOI:10.3724/SP.J.1006.2016.01448URLMagsci [本文引用: 1] <p>利用14个SSR标记构建了河南省2015年之前选育并审定的90个花生品种的DNA指纹图谱,用14个SSR标记产生的95个多态性位点可将90个花生品种完全区分开,其中84个品种间有≥2个位点的差异,在剩余的3对品种中,每对仅有1个差异位点。聚类分析结果表明,在遗传相似系数0.98处,90个花生品种被聚集成88类,有2对品种分别聚集在一起,是由于它们每一个品种分别以另一个品种作亲本选育而成,仅有1个差异SSR位点,表明所构建的指纹图谱是有效的。以遗传相似系数0.95为划分标准,有74.4%的品种具有特异性,与其他作物相比,河南省育成花生品种总体上亲缘关系相对较近。根据60个SSR标记的群体结构分析,90个花生品种可以分为3个亚群,与根据分枝开花习性和荚果类型的分类相吻合,亚群划分情况与聚类分析结果基本一致。</p>
HUX H, MAOR X, MIAOH R, SHIY Q, CUIF G, YANGW Q, CHENJ . Construction of fingerprinting and analysis of genetic diversity with SSR markers for forty-six approved peanut cultivars from Shandong province Acta Agriculturae Nucleatae Sinica, 2016,30(10):1925-1933. (in Chinese) [本文引用: 1]
YINL, LIS L, RENY, SHIY M, YUANM . Construction of molecular fingerprint for 42 peanut varieties using SSR markers Journal of Peanut Science, 2017,46(1):8-13. (in Chinese) [本文引用: 1]
HANZ Q, GAOG Q, WEIP X, TANGR H, ZHONGR C . Analysis of DNA polymorphism and genetic relationships in cultivated peanut(Arachis hypogaea L.) using microsatellite markers Journal of Peanut Science, 2003(S1):295-300. (in Chinese) [本文引用: 1]
任小平, 张晓杰, 廖伯寿, 雷永, 黄家权, 陈玉宁, 姜慧芳 . ICRISAT花生微核心种质资源SSR标记遗传多样性分析 中国农业科学, 2010,43(14):2848-2858. URLMagsci [本文引用: 1] <FONT face=Verdana>【目的】评价ICRISAT花生微核心种质资源的遗传多样性水平,揭示ICRISAT花生微核心种质资源遗传多样性,验证传统植物学分类的可靠程度,为充分发掘、利用ICRISAT花生微核心种质资源提供必要信息。【方法】采用27对花生SSR引物,对ICRISAT微核心花生种质168份材料(来自世界五大洲42个国家)进行遗传多样性分析;利用NTSYS-pc V2.0软件进行主成分分析(PCA)并绘制三维空间聚类图;利用Popgene V1.32估算种质群间的Nei78遗传距离等参数并进行UPGMA聚类分析,采用MEGA 3.1绘制种质群间聚类图。【结果】27对SSR引物共扩增出115条多态性条带,每对引物平均扩增出4.2930个等位变异,其中有效等位变异数2.7931,有效等位变异所占比重为65.49%;PM137、16C6、14H6、8D9和7G02等引物最为有效,其Shannon’s信息指数均在1.5以上,等位变异数5个以上,有效变异数3.7个以上。在多粒型群体中,来源于南美洲和印度种质资源的遗传多样性较低,来源于南美洲和非洲种质资源的遗传多样性较高;在珍珠豆型群体中,来源于北美洲种质资源的遗传多样性较低,来源于南美洲和非洲种质资源的遗传多样性较高;在普通型群体中,来源于北美洲种质资源的遗传多样性较低,来源于南美洲、美国和非洲种质资源的遗传多样性较高。来自南美洲的花生种质资源具有较高的遗传多样性,与花生起源于南美洲的结论一致。PCA分析,发现栽培种花生种质资源由4个差异明显的基因源构成,“hypogaea”包括普通型种质资源,“vulgaris”包括珍珠豆型种质资源,“fastigiata 1”包括多粒型种质资源,“fastigiata 2”包括多粒型种质资源。植物学分类单位间的Nei78遗传距离介于16.336—23.607 cM,UPGMA聚类方法将花生属植物学分类单位聚成5个组群,“组群1”对应“hypogaea”基因源,“组群2”对应“vulgaris”基因源,“组群3”对应“fastigiata 1”、“fastigiata 2”基因源之和,“组群4”和“组群5”分别代表秘鲁型和赤道型基因源,聚类结果支持4个基因源的划分。【结论】ICRISAT花生微核心种质资源具有丰富的遗传多样性,不同来源的变种群间存在明显的遗传差异,并分化成4个基因源,研究结果部分支持栽培种花生传统的植物学分类体系。为拓宽花生育成品种的遗传基础,应充分发掘ICRISAT微核心种质各基因源的遗传潜力。<BR></FONT> RENX P, ZHANGX J, LIAOB S, LEIY, HUANGJ Q, CHENY N, JIANGH F . Analysis of genetic diversity in ICRISAT mini core collection of peanut (Arachis hypogaea L.) by SSR markers Scientia Agricultura Sinica, 2010,43(14):2848-2858. (in Chinese) URLMagsci [本文引用: 1] <FONT face=Verdana>【目的】评价ICRISAT花生微核心种质资源的遗传多样性水平,揭示ICRISAT花生微核心种质资源遗传多样性,验证传统植物学分类的可靠程度,为充分发掘、利用ICRISAT花生微核心种质资源提供必要信息。【方法】采用27对花生SSR引物,对ICRISAT微核心花生种质168份材料(来自世界五大洲42个国家)进行遗传多样性分析;利用NTSYS-pc V2.0软件进行主成分分析(PCA)并绘制三维空间聚类图;利用Popgene V1.32估算种质群间的Nei78遗传距离等参数并进行UPGMA聚类分析,采用MEGA 3.1绘制种质群间聚类图。【结果】27对SSR引物共扩增出115条多态性条带,每对引物平均扩增出4.2930个等位变异,其中有效等位变异数2.7931,有效等位变异所占比重为65.49%;PM137、16C6、14H6、8D9和7G02等引物最为有效,其Shannon’s信息指数均在1.5以上,等位变异数5个以上,有效变异数3.7个以上。在多粒型群体中,来源于南美洲和印度种质资源的遗传多样性较低,来源于南美洲和非洲种质资源的遗传多样性较高;在珍珠豆型群体中,来源于北美洲种质资源的遗传多样性较低,来源于南美洲和非洲种质资源的遗传多样性较高;在普通型群体中,来源于北美洲种质资源的遗传多样性较低,来源于南美洲、美国和非洲种质资源的遗传多样性较高。来自南美洲的花生种质资源具有较高的遗传多样性,与花生起源于南美洲的结论一致。PCA分析,发现栽培种花生种质资源由4个差异明显的基因源构成,“hypogaea”包括普通型种质资源,“vulgaris”包括珍珠豆型种质资源,“fastigiata 1”包括多粒型种质资源,“fastigiata 2”包括多粒型种质资源。植物学分类单位间的Nei78遗传距离介于16.336—23.607 cM,UPGMA聚类方法将花生属植物学分类单位聚成5个组群,“组群1”对应“hypogaea”基因源,“组群2”对应“vulgaris”基因源,“组群3”对应“fastigiata 1”、“fastigiata 2”基因源之和,“组群4”和“组群5”分别代表秘鲁型和赤道型基因源,聚类结果支持4个基因源的划分。【结论】ICRISAT花生微核心种质资源具有丰富的遗传多样性,不同来源的变种群间存在明显的遗传差异,并分化成4个基因源,研究结果部分支持栽培种花生传统的植物学分类体系。为拓宽花生育成品种的遗传基础,应充分发掘ICRISAT微核心种质各基因源的遗传潜力。<BR></FONT>
詹世雄, 郑奕雄, 刘冠明, 张平湖, 杨灵, 庄东红 . 基于SSR标记的花生品种遗传多样性分析 中国油料作物学报, 2014,36(2):269-274. DOI:10.7505/j.issn.1007-9084.2014.02.020URLMagsci [本文引用: 1] <p>本研究从212对SSR标记引物中筛选出48对引物对63份花生品种进行遗传多样性分析,共得到251个等位变异,变异范围为2~13个,平均每个标记位点有5.23个变异;48个SSR标记的多态性信息含量为0.252~0.873,平均为0.647;63份材料的遗传多样性指数为0.508~2.243,平均值为1.272;品种间的遗传相似系数在0.657~0.960之间,不同类型的花生品种间的遗传相似性较小,不同来源花生品种间的亲缘关系也较远;聚类分析结果表明,63个花生品种在遗传相似系数为0.74处分为4大类,聚类分析结果与传统的花生分类结果吻合。</p> ZHANS X, ZHENGY X, LIUG M, ZHANGP H, YANGL, ZHUANGD H . Genetic diversity in peanut cultivars based on SSR markers Chinese Journal of Oil Crop Sciences, 2014,36(2):269-274. (in Chinese) DOI:10.7505/j.issn.1007-9084.2014.02.020URLMagsci [本文引用: 1] <p>本研究从212对SSR标记引物中筛选出48对引物对63份花生品种进行遗传多样性分析,共得到251个等位变异,变异范围为2~13个,平均每个标记位点有5.23个变异;48个SSR标记的多态性信息含量为0.252~0.873,平均为0.647;63份材料的遗传多样性指数为0.508~2.243,平均值为1.272;品种间的遗传相似系数在0.657~0.960之间,不同类型的花生品种间的遗传相似性较小,不同来源花生品种间的亲缘关系也较远;聚类分析结果表明,63个花生品种在遗传相似系数为0.74处分为4大类,聚类分析结果与传统的花生分类结果吻合。</p>
WANGY L, SHANL, FUC, XUP L, JIANGY S, LIUZ J, QUZ C, TANGG Y . Different SSR detection techniques and their application in genetic diversity analysis of peanut (Arachis hypogaea L.) cultivars Journal of Plant Genetic Resources, 2014,15(1):96-105. (in Chinese) [本文引用: 1]
RENX, JIANGH, YANZ, CHENY, ZHOUX, HUANGL, LEIY, HUANGJ, YANL, QIY, WEIW, LIAOB . Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers PLoS ONE, 2014,9(2):e88091. [本文引用: 1]
VARSHNEYR K, BERTIOLID J, MORETZSOHNM C, VADEZV, KRISHNAMURTHYL, ARUNAR, NIGAMS N, MOSSB J, SEETHAK, RAVIK, HEG, KNAPPS J, HOISINGTOND A . The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.) Theoretical and Applied Genetics, 2009,118(4):729-739. [本文引用: 1]
LIUH . Inheritance of main traits related to yield and quality, and their QTL mapping in peanut (Arachis hypogaea L.) [D]. Zhengzhou: Henan Agricultural University, 2011. (in Chinese) [本文引用: 1]
SHIRASAWAK, BERTIOLID J, VARSHNEYR K, MORETZSOHNM C, LEAL-BERTIOLIS C M, THUDIM, PANDEYM K, RAMIJ F, FONCEKAD, GOWDAM V C, QINH , GUOB, HONGY, LIANGX, HIRAKAWAH, TABATAS, ISOBES . Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes, 2013,20(2):173. [本文引用: 1]
PANDEYM K, WANGM L, QIAOL, FENGS, KHERAP, WANGH, TONNISB, BARKLEYN A, WANGJ, HOLBROOKC C, CULBREATHA K, VARSHNEYR K, GUOB . Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.) BMC Genetics, 2014,15(1):1-14. [本文引用: 1]
LIY, LIL, ZHANGX, ZHANGK, MAD, LIUJ, WANGX, LIUF, WANY . QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (Arachis hypogaea L.) Euphytica, 2017,213(2):57. [本文引用: 1]
HOPKINSM S, CASAA M, WANGT, MITCHELLS E, DEANR E, KOCHERTG D, KRESOVICHS . Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut Crop Science, 1999,39(4):1243-1247. [本文引用: 1]
HEG, MENGR, NEWMANM, GAOG, PITTMANR N, PRAKASHC S . Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.) BMC Plant Biology, 2003,3(1):3. [本文引用: 1]
FERGUSONM E, BUROWM D, SCHULZES R, BRAMELP J, PATERSONA H, KRESOVICHS, MITCHELLS . Microsatellite identification and characterization in peanut (Arachis hypogaea L.) Theoretical and Applied Genetics, 2004,108(6):1064-1070. [本文引用: 1]
MORETZSOHNM D C, HOPKINSM S, MITCHELLS E, KRESOVICHS, VALLSJ F M, FERREIRAM E . Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome BMC Plant Biology, 2004,4(1):11. [本文引用: 1]
MORETZSOHNM C, LEOIL, PROITEK, GUIMAR?ESP M, LEAL-BERTIOLIS C M, GIMENESM A, MARTINSW S, VALLSJ F M, GRATTAPAGLIAD, BERTIOLID J . A microsatellite-based, gene-rich linkage map for the AA genome of Arachis(Fabaceae) Theoretical and Applied Genetics, 2005,111(6):1060-1071. [本文引用: 1]
CUCL M, MACEE S, CROUCHJ H, QUANGV D, LONGT D, VARSHNEYR K . Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea) BMC Plant Biology, 2008,8(1):55. [本文引用: 1]
YUANM, GONGL, MENGR, LIS, DANGP, GUOB, HEG . Development of trinucleotide (GGC)n SSR markers in peanut (Arachis hypogaea L.) Electronic Journal of Biotechnology, 2010,13(6):5-6. [本文引用: 1]
SHIRASAWAK, KOILKONDAP, AOKIK, HIRAKAWAH, TABATAS, WATANABEM, HASEGAWAM, KIYOSHIMAH, SUZUKIS, KUWATAC, NAITOY, KUBOYAMAT, NAKAYAA, SASAMOTOS, WATANABEA, KATOM, KAWASHIMAK, KISHIDAY, KOHARAM, KURABAYASHIA, TAKAHASHIC, TSURUOKAH, WADAT, ISOBES . In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut BMC Plant Biology, 2012,12(1):80. [本文引用: 1]
MACEDOS E, MORETZSOHNM C, MLEAL-BERTIOLI S C, ALVESD M, GOUVEAE G, AZEVEDOV C, BERTIOLID J . Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut BMC Research Notes, 2012,5(1):86. [本文引用: 1]
LUOM, DANGP, GUOB Z, HEG, HOLBROOKC C, BAUSHERM G, LEER D . Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut Crop Science, 2005,45(1):346-353. [本文引用: 1]
PROITEK, LEAL-BERTIOLIS C , BERTIOLID J, MORETZSOHNM C, SILVAF R D, MARTINSN F, GUIMAR?ESP M . ESTs from a wild Arachis species for gene discovery and marker development BMC Plant Biology, 2007,7(1):7. [本文引用: 1]
LIANGX, CHENX, HONGY, LIUH, ZHOUG, LIS, GUOB . Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species BMC Plant Biology, 2009,9(1):35. [本文引用: 1]
WANGJ, PANL, YANGQ, YUS . Development and characterization of EST-SSR markers from NCBI and cDNA library in cultivated peanut (Arachis hypogaea L.) Legume Genomics and Genetics, 2010,1(6):30-33. [本文引用: 1]
KOILKONDAP, SATOS, TABATAS, SHIRASAWAK, HIRAKAWAH, SAKAIH, SASAMOTOS, WATANABEA, WADAT, KISHIDAY, TSURUOKAH, FUJISHIROT, YAMADAM, KOHARAM, SUZUKIS, HASEGAWAM, KIYOSHIMAH, ISOBES . Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp Molecular Breeding, 2012,30(1):125-138. [本文引用: 1]
GUOY, KHANALS, TANGS, BOWERSJ E, HEESACKERA F, KHALILIANN, NAGYE D, ZHANGD, TAYLORC A, STALKERH T, OZIAS-AKINSP, KNAPPS J . Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A-and B-genome diploid species of peanut BMC Genomics, 2012,13(1):608. [本文引用: 1]
BOSAMIAT C, MISHRAG P, THANKAPPANR, DOBARIAJ R . Novel and stress relevant EST derived SSR markers developed and validated in peanut PLoS ONE, 2015,10(6):e0129127. [本文引用: 1]
HUANGL, WUB, ZHAOJ, LIH, CHENW, ZHENGY, RENX, CHENY, ZHOUX, LEIY, LIAOB, JIANGH . Characterization and transferable utility of microsatellite markers in the wild and cultivated Arachis species PLoS ONE, 2016,11(5):e0156633. [本文引用: 1]
HEG, WOULLARDF E, MARONGI, GUOB Z . Transferability of soybean SSR markers in peanut (Arachis hypogaea L.) Peanut Science, 2006,33(1):22-28. [本文引用: 2]
WANGH, PENMETSAR V, YUANM, GONGL, ZHAOY, GUOB, FARMERA D, ROSENB D, GAOJ, ISOBES, BERTIOLID J, VARSHNEYR K, COOKD R, HEG . Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.) BMC Plant Biology, 2012,12(1):10. [本文引用: 1]
ZHANGJ, LIANGS, DUANJ, WANGJ, CHENS, CHENGZ, ZHANGQ, LIANGX, LIY . De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.) BMC Genomics, 2012,13(1):90. [本文引用: 1]
PENGZ, GALLOM, TILLMANBL, ROWLANDD, WANGJ . Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.) Molecular Genetics and Genomics, 2016,291(1):363-381. [本文引用: 1]
ZHAOC, QIUJ, AGARWALG, WANGJ, RENX, XIAH, GUOB, MAC, WANS, BERTIOLID J, VARSHNEYR K, PANDEYM K, WANGX . Genome-wide discovery of microsatellite markers from diploid progenitor species,Arachis duranensis and A. ipaensis, and their application in cultivated peanut(A. hypogaea) Frontiers in Plant Science, 2017,8:1209. [本文引用: 10]
LUOH, XUZ, LIZ, LIX, LVJ, RENX, HUANGL, ZHOUX, CHENY, YUJ, CHENW, LEIY, LIAOB, JIANGH . Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.) Theoretical and Applied Genetics, 2017,130(8):1635-1648. [本文引用: 1]
ZHAOY, PRAKASHC S, HEG . Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public database BMC Research Notes, 2012,5(1):362. [本文引用: 1]
SHIRASAWAK, ISOBES, TABATAS, HIRAKAWAH . Kazusa Marker DataBase: A database for genomics, genetics, and molecular breeding in plants Breeding Science, 2014,64(3):264-271 [本文引用: 1]
LAWSONM J, ZHANGL Q . Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes Genome Biology, 2006,7(2): R14.1-R14.11. [本文引用: 6]
CAVAGNAROP F, SENALIKD A, YANGL, SIMONP W, HARKINST T, KODIRAC D, HUANGS, WENGY . Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.) BMC Genomics, 2010,11(1):569. [本文引用: 2]
TONGZ J, JIAOF C, XIAOB G . Analysis of SSR loci in Nicotina tabacum genome and its two ancestral species genome Scientia Agricultura Sinica, 2015,48(11):2108-2117. (in Chinese) URL [本文引用: 3]
SONAHH, DESHMUKHR K, SHARMAA, SINGHV P, GUPTAD K, GACCHER N, RANAJ C, SINGHN K, SHARMAT R . Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium PLoS ONE, 2011,6(6):e2129 [本文引用: 1]
CAIB, LIC H, YAOQ H, ZHOUJ, TAOJ M, ZHANGZ . Analysis of SSRs in grape genome and development of SSR database Journal of Nanjing Agricultural University, 32(4):28-32. (in Chinese) [本文引用: 1]
YUJ, DOSSAK, WANGL, ZHANGY, WEIX, LIAOB, ZHANGX . PMDBase: A database for studying microsatellite DNA and marker development in plants Nucleic Acids Research, 2017,45(Database issue):D1046-D1053. [本文引用: 1]
YUANZ M . Development and characterization of SSR markers providing genome-wide coverage and high resolution in maize [D]. Yaan: Sichuan Agricultural University, 2013. (in Chinese) [本文引用: 3]
KANTETYR V, ROTAM L, MATTHEWSD E, SORRELLSM E . Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat Plant Molecular Biology, 2002,48:501-510. [本文引用: 1]
SONGQ, JIAG, ZHUY, GRANTD, NELSONR T, WANGE Y, HYTEND L, CREGANP B . Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR1.0) in soybean Crop Science, 2010,50(5):1950-1960. [本文引用: 1]
ZHENGY, ZHANGG, WUW R . Characterization and comparison of microsatellites in gramineae Genomics and Applied Biology, 2011,30:513-520. (in Chinese) [本文引用: 1]