删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

小麦-中间偃麦草2A/6St代换系014-459的分子细胞遗传学鉴定

本站小编 Free考研考试/2021-12-26

陶军,1,2, 兰秀锦,1,*1四川农业大学小麦研究所, 四川成都 611130
2绵阳市农业科学研究院, 四川绵阳 621023

Molecular cytogenetic identification of wheat-Thinopyrum intermedium 2A/6St substitution strain 014-459

TAO Jun,1,2, LAN Xiu-Jin,1,* 1Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
2Mianyang Academy of Agricultural Sciences, Mianyang 621023, Sichuan, China

通讯作者: *兰秀锦, E-mail:lanxiujin@163.com

收稿日期:2021-03-9接受日期:2021-06-16网络出版日期:2022-06-29
基金资助:本研究由国家自然科学基金项目资助(31970243)
This study was supported by the National Natural Science Foundation of China(31970243)


Received:2021-03-9Accepted:2021-06-16Published online:2022-06-29
作者简介 About authors
E-mail:tj4bmy@163.com



摘要
中间偃麦草是小麦遗传改良的有用资源, 育成了大量的小麦-中间偃麦草附加系、代换系及部分双二倍体。中4是小麦-中间偃麦草部分双二倍体, 很方便与普通小麦杂交并被广泛用于小麦的遗传改良。014-459是中4与普通小麦杂交后代, 具有一些特殊特性, 材料014-459与一些普通小麦杂交, 无论正反交, 其F1表现为不育, 而与另一些普通小麦的杂交F1表现为可育, 此外, 材料014-459粗蛋白和湿面筋含量很高。基于014-459的这些特性, 猜测其可能具有中间偃麦草染色体片段, 为此对014-459进行了细胞学鉴定。FISH和GISH以及PLUG标记分析用来分析材料014-459的染色体组成情况。连续的FISH和GISH试验证实小麦-中间偃麦草部分双二部体中4与小麦杂交后代品系014-459的1对小麦2A染色体被来自中间偃麦草的1对St染色体代换, PLUG标记分析证实这1对St染色体属于第6同源群, 可能来自中间偃麦草的St染色体被代换进小麦中造成了材料014-459的一些特性。对品系014-459的分子细胞遗传学鉴定对促进中间偃麦草6St染色体在小麦中利用及小麦品质改良有积极作用。
关键词: GISH;FISH;代换系;拟鹅冠草;细胞遗传学

Abstract
Thinopyrum intermedium is a valuable resource for wheat genetic improvement, and numerous wheat-Th. intermedium chromosome addition and substitution lines and partial amphiploids have been developed. Zhong 4 is a wheat-Th. intermedium partial amphidiploid, which can easily hybridize with wheat and is extensively utilized for wheat improvement. The strain 014-459 was a progeny of partial amphidiploid Zhong 4 descendant of wheat and Th. intermedium with some special characteristics such as high crude protein and wet gluten content and partial F1 of common wheat cultivars and strain 014-459 were sterility while a few others were fertility despite reciprocal cross. Molecular cytogenetic identification of strain 014-459 were detected for speculated contained fragment of Th. intermedium chromosomes based on its special characters. Genomic composition of strain 014-459 was detected by FISH, GISH, and PLUG (polymerase chain reaction-based landmark unique gene) marker analysis. Combined FISH/GISH analysis confirmed that a pair of wheat 2A chromosomes in strain 014-459 of the hybrid progeny between wheat-Thinopyrum intermedium partial amphidiploid Zhong 4 and wheat was replaced by a pair of St chromosomes from Thinopyrum intermedium. PLUG marker analysis verified that this pair belonged to the sixth homologous group. The special characters of strain 014-459 might be attributable to the substitution of Th. intermedium St chromosome into wheat. The study of molecular cytogenetic identification of strain 014-459 was probably beneficial to quality improvement and utilization of 6St chromosome of Th. intermedium in wheat breeding.
Keywords:GISH;FISH;substitution strain;Pseudoroegneria strigosa;cytogenetics


PDF (3468KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
陶军, 兰秀锦. 小麦-中间偃麦草2A/6St代换系014-459的分子细胞遗传学鉴定. 作物学报, 2021, 48(2): 511-517 DOI:10.3724/SP.J.1006.2022.11025
TAO Jun, LAN Xiu-Jin. Molecular cytogenetic identification of wheat-Thinopyrum intermedium 2A/6St substitution strain 014-459. Acta Crops Sinica, 2021, 48(2): 511-517 DOI:10.3724/SP.J.1006.2022.11025


中间偃麦草是小麦遗传改良的三级基因库, 有很多对小麦有益的抗性[1,2,3,4,5]和品质性状基因[6,7]。利用中间偃麦草向普通小麦转移有益的基因育成了大量的品种和材料[8,9,10,11,12,13]。对这些具有中间偃麦草血缘的材料的染色体组成进行鉴定, 必将促进其在小麦育种中的利用。中间偃麦草的基因组组成比较复杂, 各组成成分相互之间又容易混淆和难以区分。通过对intermediumbessariabicacaespitosaelongata进行杂交和C带分析, 显示intermedium的基因组为StEeEb [14,15,16]; 通过对T. intermedium和它的杂种减数分裂配对以及核型分析, 认为T. intermedium的基因组为JeJeJeJeSS[17]; 通过对Elymus transhyrcanus × Thinopyrum intermediumPseudoroegneria libanotica × Thinopyrum intermediumThinopyrum intermedium × Elytrigia repens三个杂种的染色体配对分析, 确认Thinopyrum intermedium的基因组组成为SJJ [18]。以总基因组DNA标记为探针的原位杂交技术, 可以用来鉴定小麦背景中的外源染色体[19,20,21], 同样, 将外源种的总DNA标记为探针不只局限于鉴定存在于小麦中的外源染色质。分别用二倍体的长穗偃麦草Ee, 比萨偃麦草Eb和四倍体的拟鹅冠草St总基因组DNA为探针对中间偃麦草基因组组成进行分析, 认为中间偃麦草基因组组成为EeEeEbEbStSt[22]。Zhang等[23]用St作探针, ABD+Ee作封阻, 对来自Wheat × Thinopyrum ponticum Th. intermedium 的抗BYDV种质的外源进行鉴定, 根据信号强度和在染色体上的分布的差异区分出St及E染色体组[23]。Chen等[24,25,26]用St作探针对Thinopyrum intermediumThinopyrum ponticum进行基因组分析, 提出用St作探针、普通小麦DNA作封阻时, 杂交信号可以分为3类, 进而可以将J、JS、S识别出来, 并据此提出Th. intermedium的基因组为JJJSJSSS。Tang等[27]用St作探针, E和ABD作封阻, 得出结论是中间偃麦草基因组组成为JJJJSStSt。不同作者对中间偃麦草基因组符号的使用不统一, 大致来说主要差异是J和E的使用上, 现在大多数情况下, J与Ee和Eb有关, Js则是修饰过的J, 而E基因组包括Ee和Eb。中间偃麦草与小麦杂交容易成功[4,28], 杂种F1大多不育, 生育期长, 而小麦-中间偃麦草部分双二倍体使中间偃麦草染色体向小麦中转移变得更加容易。对5种基本的基因组St、E、A、B和D的遗传关系进行了研究, 半定量的Southern杂交以及用不同量的St和E作探针, 不加封阻分别与小麦染色体杂交, 均一致表明, St和E与D基因组关系最近, 然后较近的是A基因组, 较远的是B基因组[29]。St和E与A、B、D很近的亲缘关系让存在于小麦染色体中的中间偃麦草外源染色体的鉴定很困难。中3、中4、中5是小麦与中间偃麦草后代[4,28], 是小麦-中间偃麦草部分双二倍体。Han等[30]、Zhang等[23]分别对中3、中4、中5进行了染色体组鉴定, Chen等[26]的研究认为中5中的中间偃麦草基因组组成为2St+2Js+3St-Js易位。而Tang等[27]认为中5基因组组成为3St+2Js+2St-Js交互易位。不同作者对同一材料的基因组组成的研究得出的结论不一致, 原因是St与St-Js易位以及Js与St-E易位容易混淆[27], 也可能是与外源基因组的重组特性有关[3], 这也同时说明了中间偃麦草及小麦-中间偃麦草部分双二倍体基因组组成的复杂性, 进而给鉴定其后代的外源染色质带来困难。重复序列pAs1是从Triticum tauschii中分离出来[31], pAs1能从A、B基因组中区分出7对D基因组染色体[32]; pSc119.2是从黑麦(Secale cereal L.)中分离出的串联重复序列, 11条小麦染色体有其杂交信号[33]。将pAs1和pSc119.2结合使用能鉴定所有B和D基因组染色体和1A、4A和5A染色体, 也就是通过pAs1和pSc119.2结合使用能把小麦21对染色体中的17对鉴定出来[34]。随着技术的发展, 用pAs1和pHvG38一起使用, 可以鉴定出小麦的整个染色体组的成分[35]。利用寡核苷酸序列探针替代重复序列应用于FISH分析, 简化了流程, 提高了效率, 还节省了费用, 促进了FISH的利用, Tang等[36]利用寡核苷酸序列探针oligo-pTa535和oligo-pSc119.2将小麦21对染色体区分开。PLUG标记是根据水稻和小麦之间直系同源基因的保守性和来自小麦ABD三个直系同源基因之间内含子多态性发展起来的EST-PCR标记, 结合小麦缺体-四体分析, 这些标记被分配给一个或多个染色体[37]。Hu等[38]将PLUG标记用来确认小麦和外源染色体之间的同源关系, 开发了一些St染色体特异的PLUG和SCAR标记, 利用它们成功地确定了小麦-中间偃麦草渐渗系中St染色体所属的同源群。Salina等[1]利用Hu发展的标记结合GISH确定了小麦代换系中外源染色体E (=J)所属同源群为第6同源群。利用小麦-中间偃麦草部分双二倍体中4与普通小麦育成材料014-459, 材料014-459与普通小麦杂交, 无论正反交, 其F1出现育性分化, 即014-459与一些普通小麦的杂交F1表现为不育, 而与另一些普通小麦的杂交F1表现为可育[39], 利用近红外分析, 初步得知粗蛋白和湿面筋含量很高, 2015和2016连续2年繁殖收获014-459, 送农业农村部谷物及制品质量监督检验测试中心(哈尔滨)分析, 014-459的粗蛋白和湿面筋含量突出, 2015年粗蛋白和湿面筋含量分别为17.56%和37.00%, 2016年粗蛋白和湿面筋含量分别为20.14%和40.90%, 远高于四川省平均水平。基于014-459的这些特性, 猜测其可能具有中间偃麦草染色体片段, 为此有必要对014-459进行细胞学鉴定, 而前人对中间偃麦草基因组组成的研究所取得的成果使得鉴定清楚材料014-459的染色体组成成为可能。

1 材料与方法

1.1 试验材料

品系014-459由绵阳市农业科学研究院育成, 由小麦-中间偃麦草部分双二倍体中4与普通小麦杂交选育而成, 中4与中5有特别的亲缘关系。中4 (可能是中5)从外单位引入绵阳市农业科学研究院三十多年并连年种植保存, 中国春由绵阳市农业科学研究院种植并保存, Pseudoroegneria spicata (PI232131)和Th. intermedium (PI223668)种植在四川农业大学小麦研究所苗圃。

1.2 减数分裂配对观察及减数分裂GISH片子的准备

小麦孕穗期的幼穗用固定液II (无水乙醇∶氯仿∶冰醋酸=6∶3∶1)固定24 h, 转入75%乙醇保存。一个小花取一个花药, 滴加一滴改良苯酚品红, 压碎, 显微镜下检查, 寻找合适的花药, 如果处于减数分裂中期, 照相, 用Olympus BX-51配备的SenSys Olympus DP70 CCD成像系统产生并形成文件, 剩余的2个花药转入75%乙醇保存。将处于减数分裂中期I的花药滴加一滴45%醋酸, 压碎, 液氮冷却载玻片, 用刀片揭开盖玻片, 气干, -20℃保存, GISH备用。

FISH探针Oligo-pSc119.2-2和Olig-pTa535-2是按照Tang等[36]的描述, 由生工生物工程(上海)股份有限公司合成, 并进行末端标记。

DNA提取: 中国春、014-459、中间偃麦草、拟鹅冠草总DNA提取参照Li等的描述[40], 略作修改, 用24∶1的三氯甲烷∶异戊醇代替三氯甲烷, 70%乙醇洗涤DNA, 改为70%乙醇洗2次, 再接着用100%乙醇洗2次。

1.3 根尖有丝分裂染色体的准备

根尖的准备按照Komuro等[41]的方法, 略作修改, 类似于Zeng等[42]的描述进行。DNA探针标记和基因组原位杂交按照Hao等[43]的描述进行, 减数分裂GISH参照根尖有丝分裂GISH方法进行, 分别用地高辛标记中间偃麦草、拟鹅冠草及黑麦草基因组总DNA, 其中的黑麦探针由四川农业大学小麦研究所提供, FISH探针St2-80[44]的质粒由王龙博士提供, St2-80探针的标记及杂交按照GISH方法做。

用Olympus BX-63配备的SenSys Olympus DP80 CCD成像系统产生GISH和FISH图像并形成文件。

1.4 分子标记分析

PLUG标记TNAC1088、TNAC1178、TNAC1383、TNAC1408、TNAC1614、TNAC1763、TNAC1903由Hu等[38]开发, 由生工生物工程(上海)股份有限公司合成。PCR程序及酶切、电泳等按照Hu等[38]所述进行, 限制性内切酶采用的是Taq I, TAKARA公司生产。

2 结果与分析

2.1 减数分裂配对情况

014-459减数分裂中期大多正常, 很多能形成21对二价体, 后期同源染色体向两级分开正常, 末期形成2个正常细胞核(图1)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1减数分裂图

A、B为减数分裂中期I; C、D、E为后期I; F、G、H为末期I。
Fig. 1Meiosis in wheat-Thinopyrum intermedium

A-B: meiotic metaphase I; C-E: meiotic anaphase I; F-H: meiotic telophase I.


2.2 FISH和GISH结果

用中间偃麦草总DNA作探针, 小麦ABD基因组总DNA作封阻, 结果显示品系014-459有1对染色体完整地被中间偃麦草探针标记上, 另有1对染色体的短臂端部也被标记(图2-B), 结合FISH标记(图2-A), 可以看到1对短臂端部被标记的染色体为1B , 同时品系014-459缺少1对2A 染色体。由于有时GISH结果没有在1对染色体端部显示出杂交信号(图3-B), 加上其他实验者有过类似经历(个人交流), 茹岩岩等[46]对GISH分析中可能出现的假象进行了讨论, 因此, 用黑麦基因组DNA作探针, 对品系014-459进行检测, 发现确实有1对小麦/黑麦染色体整条短臂易位(图3-C)。对品系014-459的减数分裂中期染色体进行原位杂交, 用中间偃麦草总DNA作探针, 可以看到2条外源染色体能够配对(图2-E)。为确定来自中间偃麦草的外源染色体属于St、E还是Est, 用St基因组DNA作探针, 小麦DNA作封阻, GISH结果显示品系014-459中的外源染色体整条染色体上一致地被标记上信号(图2-C), 据此判断小麦中的1对2A染色体被中间偃麦草染色体的1对St染色体代替。

图2

新窗口打开|下载原图ZIP|生成PPT
图2原位杂交及花粉母细胞减数分裂图

A: 品系014-459FISH图, Oligo-pSc119.2-2(绿), oligo-pTa535-2(红); B: 品系014-459GISH图, 中间偃麦草DNA作探针, 中国春DNA为封阻; C: 品系014-459GISH图, 拟鹅冠草DNA为探针, 中国春DNA为封阻; D: 品系014-459FISH图, St2-80为探针, 中国春DNA为封阻; E: 品系014-459花粉母细胞减数分裂中期GISH图, 探针为中间偃麦草DNA, 封阻为中国春DNA。
Fig. 2In situ hybridization and pollen mother-cell meiosis in wheat-Thinopyrum intermedium

A: FISH map of strain 014-459. Oligo-pSc119.2-2 (green), oligo-pTa535-2 (red); B: GISH map of strain 014-459. DNA of Th. intermedium used as the probe, and DNA of CS was used as the blocker; C: GISH map of strain 014-459. DNA of Pseudoroegneria strigosa was used as the probe and DNA of CS was used as the blocker; D: FISH map of strain 014-459. St2-80 was used as the probe and DNA of CS was used as the blocker; E: GISH map of pollen mother cells of strain 014-459 at the meiotic metaphase. DNA of Th. intermedium was used as the probe and DNA of CS was used as the blocker.


进一步用FISH标记St2-80检测014-459根尖细胞中期染色体, St2-80信号分布在1对染色体上除着丝粒区域外的整个区域(图2-D), 也表明014-459中的外源染色体是来源于中间偃麦草的St基因组, 与用St作探针的GISH结果相符。

图3

新窗口打开|下载原图ZIP|生成PPT
图3原位杂交图

A: 品系014-459FISH图, Oligo-pSc119.2-2(绿), oligo-pTa535-2(红); B: 品系014-459GISH图, 中间偃麦草DNA作探针, 中国春DNA为封阻; C: 品系014-459GISH图, 黑麦DNA为探针, 中国春DNA为封阻。
Fig. 3In situ hybridization in wheat-Thinopyrum intermedium

A: FISH map of strain 014-459. Oligo-pSc119.2-2 (green), oligo-pTa535-2 (red); B: GISH map of strain 014-459. DNA of Th. intermedium used as the probe, and DNA of CS was used as the blocker; C: GISH map of strain 014-459. DNA of rye was used as the probe and DNA of Chinese Spring (CS) wheat was used as the blocker.


2.3 PLUG分析结果

按Hu等[38]的描述, 一套包括不同同源群的PLUG引物TNAC1088、TNAC1178、TNAC1383、TNAC1408、TNAC1614、TNAC1763、TNAC1903被用来扩增中国春、014-459和拟鹅冠草DNA, 产物经Taq I酶切后, 琼脂糖电泳分离, 检测条带, 其中第6同源群的引物TNAC1763扩增的中国春和014-459产物在经Taq I酶切后产生差异性条带, 由014-459产生的一条带是中国春所没有的, 这一条带也能由拟鹅冠草DNA的扩增产物经酶消化产生(图4-A), 说明品系014-459的染色体中的1对外源染色体St属于第6同源群, 为6St; 引物TNAC1178也能在中国春和014-459间产生酶切差异条带, 014-459比中国春的条带少1条, 引物TNAC1178为2同源群特异的, 可以推定这一条带是2A产生的, 这1结果与GISH结果揭示的014-459的2A染色体被一对St染色体所替换相符(图4-B)。

图4

新窗口打开|下载原图ZIP|生成PPT
图4PLUG标记分析结果

A: TNAC1763扩增产物(Taq I酶切), 箭头示St特异带; B: TNAC1178扩增产物(Taq I酶切), 箭头示CS (中国春)特异带, 014-459及St (拟鹅冠草)未扩出这条带。
Fig. 4PLUG marker analysis in wheat-Thinopyrum intermedium

A: TNAC1763 amplification product (Taq I digestion), with arrows indicating St-specific bands; B: TNAC1178 amplification product (Taq I digestion), with arrows indicating a CS-specific amplification band, which was absent from 014-459 and St (Pseudoroegneria strigosa).


3 讨论

小麦-中间偃麦草代换系014-459是小麦2A/6St代换系, 在鉴定St基因组的单个染色体时, microsatellite 标记大多不能作为St基因组染色体的标记信号, 不能用来区别St基因组的个体染色体(individual chromosomes)。重复序列pSc119.2, Afa- family能够在St基因组染色体上产生一些差异信号[47], 但是染色体FISH核型(FISH-banded idiograms)中Cs与Fs不易区分, 并且未能将AS、BS、CS、DS、ES、FS和GS分配到7个同源群, 用FISH标记来鉴别St基因组的个体染色体还是困难的, 在本文研究中, 确实能在外源St染色体上看到Olig-pTa535-2产生的信号。虽然FISH标记还不能将St基因组的单个染色体区分开, 但Hu开发的St染色体特异的PLUG标记能确定St与小麦染色体间的同源群关系, 被用来判断小麦中St究竟是来自哪一个个体染色体[6,38]

014-459是小麦2A/6St代换系也是1BL/1RS易位系。1BL/1RS易位带给小麦籽粒加工品质(grain processing quality)缺限[48,49,50], 1B/1R易位在小麦育成品种中广泛存在[51,52], 它对品质有不良效应。代换系014-459在具有1B/1R易位的情况下有突出的粗蛋白和湿面筋含量, 可以作为小麦品种品质改良的基础材料, 014-459中的1B/1R如果被替换掉, 保留St代换染色体, 可能会使其烘烤品质得到提升。014-459为2A/6St代换系, 具有中间偃麦草的6St染色体, 不光带来品质特性变化也能造成F1育性变化, 对小麦性状研究和利用中间偃麦草的6St染色体育种提供了便利。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Salina E A, Adonina I G, Badaeva E D, Kroupin P Y, Stasyuk A I, Leonova I N, Shishkina A A, Divashuk M G, Starikova E V, Khuat T M L. A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases
Euphytica, 2015,204:91-101.

[本文引用: 2]

Chen Q, Conner R L, Ahmad F, Laroche A, Fedak G, Thomas J B. Molecular characterization of the genome composition of partial amphiploids derived from Triticum aestivum×Thinopyrum ponticum and T. aestivum×T. intermedium as sources of resistance to wheat streak mosaic virus and its vector, Aceria tosichella
Theor Appl Genet, 1998,97:1-8.

[本文引用: 1]

Bao Y, Li X, Liu S, Cui F, Wang H. Molecular cytogenetic characterization of a new wheat-Thinopyrum intermedium partial amphiploid resistant to powdery mildew and stripe rust
Cytogenet Genome Res, 2009,126:390-395.

[本文引用: 2]

祁适雨, 于世选, 张耀辉, 于光华, 宋凤英. 春小麦与天蓝冰草远缘杂交育种的研究
中国农业科学, 1979,12(2):1-11.

[本文引用: 3]

Qi S Y, Yu S S, Zhang Y H, Yu G H, Song F Y. Studies on wheat breeding by distant hybridization between wheat and Agropyron glaucum
Sci Agric Sin, 1979,12(2):1-11 (in Chinese with English abstract).

[本文引用: 3]

Li H, Wang X. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat
J Genet Genom, 2009,36:557-565.

[本文引用: 1]

Li G, Wang H, Lang T, Li J, La S, Yang E, Yang Z. New molecular markers and cytogenetic probes enable chromosome identification of wheat- Thinopyrum intermedium introgression lines for improving protein and gluten contents
Planta, 2016,244:1-12.

[本文引用: 2]

Georgieva M, Sepsi A, Tyankova N, Molnár-Láng M. Molecularcytogeneticcharacterization of two high protein wheat-Thinopyrum intermedium partialamphiploids
J Appl Genet, 2011,52:269-277.

[本文引用: 1]

祁适雨, 肖志敏, 辛文利, 孙连发, 张延滨, 何孟元, 卜秀玲, 韩方普, 辛志勇, 马有志. “远中”号小偃麦在小麦育种中的应用
麦类作物学报, 2000,20:10-15.

[本文引用: 1]

Qi S Y, Xiao Z M, Xin W L, Sun L F, Zhang Y B, He M Y, Pu X L, Han F P, Xin Z Y, Ma Y Z. Utilization of Yuanzhong octopioidy Trititrigia in wheat breeding
J Triticeae Crops, 2000,20:10-15 (in Chinese with English abstract).

[本文引用: 1]

薛秀庄, 王祥正. 八倍体小偃麦中3、中4、中5在小麦育种中的应用
陕西农业科学, 1989, (5):1-5.

[本文引用: 1]

Xue X Z, Wang X Z. Utilization of octoploid tritrigia Zhong 3, Zhong 4 and Zhong 5
Shaanxi J Agric Sci, 1989, ( 5):1-5 (in Chinese with English abstract).

[本文引用: 1]

王黎明, 林小虎, 张平杰, 张志雯, 王玉海, 赵逢涛, 高居荣, 李文才, 李兴峰, 王洪刚. 小麦-中间偃麦草二体异代换系山农0095的选育及其鉴定
中国农业科学, 2005,38:1958-1964.

[本文引用: 1]

Wang L M, Lin X H, Zhang P J, Zhang Z W, Wang Y H, Zhao F T, Gao J R, Li W C, Li X F, Wang H G. Breeding and characterization of wheat-Thinopyrum intermedium alien substitution line Shannong 0095
Sci Agric Sin, 2005,38:1958-1964 (in Chinese with English abstract).

[本文引用: 1]

张耀辉, 宋建荣, 岳维云, 吕莉莉, 王希恩. 八倍体小偃麦中5的利用
甘肃农业科技, 2007, ( 10):8-10.

[本文引用: 1]

Zhang Y H, Song J R, Yue W Y, Lyu L L, Wang X E. The use of octoploid tritelytrigia variety, Zhong 5
Gansu Agric Sci Technol, 2007, ( 10):8-10 (in Chinese).

[本文引用: 1]

杨永乾, 李小军, 宋杰, 孙玉, 茹振钢. 小麦-中间偃麦草代换系中233的分子细胞学鉴定
麦类作物学报, 2014,34:449-453.

[本文引用: 1]

Yang Y Q, Li X J, Song J, Sun Y, Ru Z G. Molecular and cytological identification of wheat-Thinopyrum intermedium alien substitution line Zhong 233
J Triticeae Crops, 2014,34:449-453 (in Chinese with English abstract).

[本文引用: 1]

李爱博, 李金荷, 宋建荣, 王化俊, 张耀辉, 尚勋武, 曹世勤, 李葆春. 小麦-中间偃麦草抗锈易位系中梁27的鉴定及分析
麦类作物学报, 2015,35(11):27-31.

[本文引用: 1]

Li A B, Li J H, Song J R, Wang H J, Zhang Y H, Shang X W, Cao S Q, Li B C. Idientification and analysis of Zhongliang 27, a wheat-Thinopyrum intermedium translocation line with resistance to stripe rust
J Triticeae Crops, 2015,35(11):27-31 (in Chinese with English abstract).

[本文引用: 1]

Stebbins G L, Pun F T. Artificial and natural hybrids in the Gramineae, tribe hordeae: VI. Chromosome pairing in Secale cereale × Agropyron intermedium and the problem of genome homologies in the Triticinae
Genetics, 1953,38:600-608.

[本文引用: 1]

Dewey D R. The genome structure of intermediate wheatgrass
J Hered, 1962,53:282-290.

[本文引用: 1]

Xu J, Conner R L. Intravarietal variation in satellites and C-banded chromosomes of Agropyron intermedium ssp. Trichophorum cv. Greenleaf
Genome, 1994,37:305-310.

[本文引用: 1]

Liu Z W, Wang R R. Genome analysis of Elytrigia caespitosa, Lophopyrum nodosum, Pseudoroegneria geniculata ssp. scythica and Thinopyrum intermedium (Triticeae: Gramineae)
Genome, 1993,36:102-111.

[本文引用: 1]

Assadi M, Runemark H. Hybridisation, genomic constitution and generic delimitation in Elymus s. l.(Poaceae: Triticeae)
Plant Syst Evol, 1995,194:189-205.

[本文引用: 1]

Le H T, Armstrong K C, Miki B. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe
Mol Biol Rep, 1990,7:150-158.

[本文引用: 1]

Heslopharrison J S, Leitch A R, Schwarzacher T, Anamthawatjónsson K. Detection and characterization of 1B/1R translocations in hexaploid wheat
Heredity, 1990,65:385-392.

[本文引用: 1]

Schwarzacher T, Anamthawat-Jónsson K, Harrison G E, Islam A K M R, Jia J Z, King I P, Leitch A R, Miller T E, Reader S M, Rogers W J. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat
Theor Appl Genet, 1992,84:778-786.

[本文引用: 1]

吉万全, 薛秀庄, 王秋英, 王长有, Fedak G, Patroski R, 刘广田. 中间偃麦草的GISH分析
西北植物学报, 2001,21:401-405.

[本文引用: 1]

Ji W Q, Xue X Z, Wang Q Y, Wang C Y, Fedak G, Patroski R, Liu G T. GISH analysis of Thinopyrum intermedium
Acta Bot Boreal-Occident Sin, 2001,21:401-405 (in Chinese with English abstract).

[本文引用: 1]

Zhang X Y, Koul A, Petroski R, Ouellet T, Fedak G, Dong Y S, Nwang R R. Molecular verification and characterization of BYDV-resistant germ plasms derived from hybrids of wheat with Thinopyrum ponticum and Th intermedium
Theor Appl Genet, 1996,93:1033-1039.

[本文引用: 3]

Chen Q, Conner R L, Laroche A, Thomas J B. Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization
Genome, 1998,41:580-586.

[本文引用: 1]

Chen Q. Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe: a landmark approach for Thinopyrum genome research
Cytogenet Genome Res, 2005,109:350-359.

[本文引用: 1]

Chen Q, Friebe B, Conner R L, Laroche A, Thomas J B, Gill B S. Molecular cytogenetic characterization of Thinopyrum intermedium-derived wheat germplasm specifying resistance to wheat streak mosaic virus
Theor Appl Genet, 1998,96:1-7.

[本文引用: 2]

Tang S, Li Z, Jia X, Larkin P J. Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat
Theor Appl Genet, 2000,100:344-352.

[本文引用: 3]

孙善澄. 小偃麦新品种与中间类型的选育途径、程序和方法
作物学报, 1981,7:51-58.

[本文引用: 2]

Sun S C. The approach and methods of breeding new varieties and new species from Agrotriticum hybrids
Acta Agron Sin, 1981,7:51-58 (in Chinese with English abstract).

[本文引用: 2]

Liu Z, Li D Y, Zhang X Y. Genetic relationships among five basic genomes St, E, A, band D in Triticeae revealed by genomic southern and insitu hybridization
Integr Plant Biol, 2007,49:1080-1086.

[本文引用: 1]

Han F P, Liu B, Fedak G, Liu Z H. Genomic constitution and variation in five partial amphiploids of wheat- Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis
Theor Appl Genet, 2004,109:1070-1076.

[本文引用: 1]

Rayburn A L, Gill B S. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa
Plant Mol Biol Rep, 1986,4:102-109.

[本文引用: 1]

Rayburn A L, Gill B S. Molecular analysis of D-genome of the Triticea
Theor Appl Genet, 1987,73:385-388.

[本文引用: 1]

Mcintyre C L, Pereira S, Moran L B, Appels R. New Secale cereale(rye) DNA derivatives for the detection of rye chromosome segments in wheat
Genome, 1990,33:635-640.

[本文引用: 1]

Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes
Genome, 1993,36:489-494.

[本文引用: 1]

Pedersen C, Langridge P. Identification of the entire chromosome complement of bread wheat by two-colour FISH
Genome, 1997,40:589-593.

[本文引用: 1]

Tang Z, Yang Z, Fu S. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis
J Appl Genet, 2014,55:313-318.

[本文引用: 2]

Ishikawa G, Nakamura T T, Saito M, Nasuda S, Endo T R, Wu J, Matsumoto T. Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers
Theor Appl Genet, 2009,118:499-514.

[本文引用: 1]

Hu L J, Li G R, Zeng Z X, Chang Z J, Cheng L, Zhou J P, Yang Z J. Molecular cytogenetic identification of a new wheat- Thinopyrum substitution line with stripe rust resistance
Euphytica, 2011,177:169-177.

[本文引用: 5]

陶军, 兰秀锦. 对具有一个共同亲本的杂种F1育性差异的初步研究
四川农业大学学报, 2020,38(1):1-7.

[本文引用: 1]

Tao J, Lan X J. Preliminary study on fertility difference of F1 hybrids based on a common parent
J Sichuan Agric Univ, 2020,38(1):1-7 (in Chinese with English abstract).

[本文引用: 1]

Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica
Theor Appl Genet, 2001,103:455-461.

[本文引用: 1]

Komuro S, Endo R, Shikata K, Kato A. Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure
Genome, 2013; 56:131-137.

[本文引用: 1]

Zeng D Y, Luo J T, Li Z L, Chen G, Zhang L Q, Ning S Z, Yuan Z W, Zheng Y L, Hao M, Liu D C. High transferability of homoeolog-specific markers between bread wheat and newly synthesized hexaploid wheat lines
PLoS One, 2016,11:e0162847.

[本文引用: 1]

Hao M, Luo J T, Yang M, Zhang L Q, Yan Z H, Yuan Z W, Zheng Y L, Zhang H G, Liu D C. Comparison of homoeologous chromosome pairing between hybrids of wheat genotypes Chinese Spring ph1b and Kaixian-luohanmai with rye
Genome, 2011,54:959-964.

[本文引用: 1]

Wang L, Shi Q H, Su H D, Wang Y, Sha L N, Fan X, Kang H Y, Zhang H Q, Zhou Y H. St2-80: a new FISH marker for St genome and genome analysis in Triticeae
Genome, 2017,60:553-563.

[本文引用: 1]

Wan Y, Liu K, Wang D, Shewry P R. High-molecular-weight glutenin subunits in the Cylindropyrum and Vertebrata section of the Aegilops genus and identification of subunits related to those encoded by the Dx alleles of common wheat
Theor Appl Genet, 2000,101:879-884.



茹岩岩, 张学勇, 李大勇, 游光霞, 晏月明. 对基因组原位杂交信号释译可能出现的片面性——来自一个小麦易位系(A-3)中外源遗传物质鉴定的启示
作物学报, 2002,28:6-10.

[本文引用: 1]

Ru Y Y, Zhang X Y, Li D Y, You G X, Yan Y M. Risk in explanation of GISH signals enlightenment from verification of alien chromatin in a wheat translocation line (A3) by GISH
Acta Agr Sin, 2002,28:6-10 (in Chinese with English abstract).

[本文引用: 1]

Linc G, Gaál E, Molnár I, Icsó D, Molnár-Láng M. Molecular cytogenetic (FISH) and genome analysis of diploid wheatgrasses and their phylogenetic relationship
PLoS One, 2017,12:e0173623.

[本文引用: 1]

Martín P, Gómez M, Carrillo J M. Interaction between allelic variation at the Glu-D1 locus and a 1BL.1RS translocation on flour quality in bread wheat
Crop Sci, 2001,41:1080-1084.

[本文引用: 1]

Clarke B C, Mukai Y, Appels R. The Sec-1 locus on the short arm of chromosome 1R of rye(Secale cereale)
Chromosoma, 1996,105:269-275.

[本文引用: 1]

Burnett C J, Lorenz K J, Carver B F. Effects of the 1B/1R translocation in wheat on composition and properties of grain and flour
Euphytica, 1995,86:159-166.

[本文引用: 1]

Graybosch R A, Peterson C J, Shelton D R, Baenziger P S. Genotypic and environmental modification of wheat flour protein composition in relation to end-use quality
Crop Sci, 1996,36:296-300.

[本文引用: 1]

Li Z, Ren T H, Yan B J, Tan F Q, Yang M Y, Ren Z L. A mutant with expression deletion of gene sec-1 in a 1RS.1BL line and its effect on production quality of wheat
PLoS One, 2016,11:e0146943.

[本文引用: 1]

相关话题/鉴定 材料 信号 序列 作物