删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

铅胁迫下红麻生理特性及DNA甲基化分析

本站小编 Free考研考试/2021-12-26

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙缂佺姷濞€閺岀喖宕滆鐢盯鏌涚€c劌鈧繈寮婚弴鐔虹闁绘劦鍓氶悵鏃傜磽娴f彃浜炬繝銏e煐閸旀牠鎮″▎鎾寸厽闁瑰鍊栭幋锕€鐓曢柟鎵閸婂灚鎱ㄥ鍡楀⒒闁绘挸銈搁弻鈥崇暆鐎n剛袦閻庢鍣崳锝呯暦閹烘埈娼╂い鎺嗗亾妞ゎ剙妫濆铏规嫚閹绘帩鍔夌紒鐐緲缁夋挳鎮惧┑瀣濞达絾鐡曢幗鏇炩攽閻愭潙鐏﹂懣銈夋煛鐎n亝鎹i柍褜鍓欑粻宥夊磿闁秴绠犻幖娣灪閸欏繘骞栧ǎ顒€濡介柍閿嬪灴瀵爼鎮欓弶鎴偓婊勩亜閺傛妯€闁哄矉绻濆畷銊╊敍濮橈絾鐎版俊銈囧Х閸嬫盯宕导鏉戠闁告洦鍘介崑姗€鏌嶉埡浣告灓婵炲吋妫冨娲传閸曞灚笑闂佺粯顨呴崯鏉戭嚕閹绘巻妲堟慨姗嗗幗濞堜即姊洪棃娴ゆ盯宕ㄩ銈囬棷婵犵數鍋犻幓顏嗗緤閼测晛鍨濇繛鍡樻尭娴肩娀鏌ц箛鎾磋础缁炬儳銈搁幃褰掑炊椤忓嫮姣㈡繝鈷€鍕闁哄矉缍侀弫鎰板川椤撶啘鈺侇渻閵堝骸浜濈紒璇插楠炴垿宕熼姘炊闂佸憡娲﹂崰鎺楀磻閹捐閿ゆ俊銈勮閹锋椽姊洪崨濠勭畵閻庢凹鍙冨畷鎺楀Ω閳哄倻鍘遍梺闈浨归崕娲偂閼测斁鍋撶憴鍕┛缂傚秳绶氶悰顕€宕堕浣镐罕闂佸壊鍋侀崹褰掔嵁濡ゅ懏鈷掑ù锝堟鐢盯鏌ㄥ鎵佸亾濞堝灝鏋涢柣鏍с偢閻涱噣寮介鐐电杸濡炪倖甯掗ˇ閬嶅船閻㈠憡鍋℃繝濠傚暟閻忛亶鏌涢幒鎾崇瑨闁宠閰i獮姗€鎼归锛版岸姊绘笟鈧ḿ褏鎹㈤崼銉ョ9闁哄稁鍘奸崥褰掓煕閹伴潧鏋熼柣鎾冲暣閺屾稑鈹戦崱妤婁患闂侀€炲苯澧柟顔煎€块獮鍡涘礃椤曞懏鏅濋梺鎸庢琚欓柟閿嬫そ濮婃椽宕ㄦ繝鍕ㄦ闂佹寧娲忛崕鎻掝嚗閸曨垰绀嬫い鏍ㄧ〒閸橀亶姊洪崷顓炰壕婵炲吋鐟╁畷顐⒚洪鍛幍濡炪倖姊归弸濠氭嚀閹稿寒娈介柣鎰级閸犳﹢鏌熼銊ユ搐闁卞洦鎱ㄥ鍡楀箹妞ゅ繐缍婂濠氬磼濞嗘埈妲梺纭咁嚋缁绘繈鐛幇鏉垮耿婵炴垶岣块ˇ銊╂偡濠婂啰效閽樼喐鎱ㄥΟ鍨厫闁抽攱鍨堕幈銊╂偡閻楀牊鎮欓梺缁樺笚濡炰粙寮诲☉銏犖╅柕鍫濇噹缁侇喖顪冮妶鍐ㄧ仾鐎光偓閹间降鈧礁顫滈埀顒勫箖閵忥紕鐟规い鏍ㄧ洴閺佹粓姊婚崒娆戭槮闁硅绱曠划娆撳箣閿旇姤娅囬梺闈涳紡閸涱垼妲搁梻浣规偠閸庮垶宕濇繝鍐洸婵犲﹤鐗婇悡娆撴煙娴e啯鐝繛鍛嚇閺岋綀绠涙繝鍐╃彆濡炪們鍔婇崕鐢稿箖濞嗗浚鍟呮い鏃傚帶婢瑰孩绻濆▓鍨灈闁挎洏鍎遍—鍐寠婢跺本娈惧┑掳鍊曢幊蹇涘磻閸岀偛绠圭紒顔煎帨閸嬫捇骞嶉幐搴$伌婵﹦绮幏鍛喆閸曨偂鍝楅梻浣规偠閸斿繘宕戦幇顓狀洸闁归棿绶¢弫鍌炴煕椤愶絾鍎曢柨鏇炲€归悡娆撴煙濞堝灝鏋涙い锝呫偢閺岋繝宕ㄩ钘夆偓鎰版煛鐏炶濮傞柟顔哄€濆畷鎺戔槈濮楀棔绱�40%闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆浜ら柤鏉挎健瀵爼宕煎顓熺彅闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼鍩栭崝鏍偂濞戞埃鍋撻獮鍨姎濡ょ姵鎮傞悰顕€寮介鐔哄幈闂侀潧枪閸庨亶鍩€椤掆偓缂嶅﹪鐛崼銉ノ╅柕澶婃捣閸犳牕鐣风粙璇炬棃鍩€椤掑嫬绠洪柣銏犳啞閻撶喖鐓崶銊﹀暗缂佺姳鍗抽幃妤€鈽夐幒鎾寸彋濡ょ姷鍋涢悧鎾翠繆閹间礁唯閹艰揪绲介弸娑氣偓瑙勬礀缂嶅﹪銆佸▎鎾崇畾鐟滃秶绱撳鑸碘拻濞达絿鐡旈崵娆戠磼缂佹ê濮囬棁澶嬫叏濮楀棗骞樻い鈺佸级閵囧嫯绠涢幘璺侯暫闂佽棄鍟伴崰鏍蓟閺囩喓绠鹃柛顭戝枛婵鈹戦埄鍐ㄧ祷闁绘鎹囧鏄忣樁缂佺姵鐩弫鎰板川椤掑倻娉垮┑锛勫亼閸婃洘顨ヨ箛娑樼闁跨噦鎷�
闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ帒锕︾粙蹇旂節閵忥絾纭炬い鎴濇喘閵嗗懘骞撻幑妤€缍婇幃鈺侇啅椤旂厧澹堢紓鍌欒閸嬫挸顭跨捄鍝勵槵闁稿鎹囧畷妤佸緞婵犱礁顥氶梻鍌欑窔閳ь剛鍋涢懟顖涙櫠娴煎瓨鐓曢柟鐑樻尭缁椦囨煙妞嬪骸孝妞ゆ柨绻橀、娆撳礂閻撳簶鍋撻鐐粹拻濞达綀顫夐崑鐘绘煕鎼搭喖鐏︾€规洘绻傞悾婵嬪礋椤掆偓閸擃厼顪冮妶鍡楀闁瑰啿娲銊╂嚍閵夛絼绨婚梺鍝勫暙濞村倸岣块敍鍕枑闁绘鐗嗙粭鎺楁煛閸曗晛鍔﹂柡灞糕偓鎰佸悑閹肩补鈧尙鏆楅梻浣虹帛鐢帡鏁冮妷鈺佄﹂柛鏇ㄥ枤閻も偓闂佽宕樺▔娑⒙烽埀顒勬⒒娴h櫣甯涢柟姝屽吹缁瑩骞嬮敂鍏夊亾閿旂偓宕夐柕濠忕畱绾绢垶姊虹紒妯碱暡婵炲吋鐟︾€靛ジ骞囬悧鍫氭嫼闂佸憡绻傜€氼參藟閻樼粯鐓曢柣妯哄暱婵鏌熼獮鍨仼闁宠棄顦埢搴ょ疀閺囩姷宓佸┑鐘殿暯濡插懘宕规导鏉戠妞ゆ劑鍊楃亸鐢碘偓骞垮劚濡稓寮ч埀顒傜磼閸撗冾暭闁挎艾顭胯閻擄繝寮婚悢铏圭煓闁割煈鍠楀В鎰版⒑娴兼瑧鎮奸柛蹇旓耿閻涱噣骞掑Δ鈧粻锝夋煛閸愶絽浜鹃梺鍝勫€甸崑鎾绘⒒閸屾瑧顦︾紓宥咃躬瀹曟垶绻濋崶褏顦┑顔斤耿椤ゅ倿寮繝鍥ㄧ厸闁搞儮鏅涙禍褰掓煛閳ь剚绂掔€n偆鍘介梺褰掑亰閸撴岸鍩㈤弴銏$厱闁靛牆娲ら弸搴ㄦ煃鐟欏嫬鐏存い銏$☉椤繈鎮℃惔銏╁晙缂傚倸鍊峰ù鍥ㄧ椤掑嫬纾婚柕鍫濐槸閺勩儵鏌嶈閸撴岸濡甸崟顖氱闁瑰瓨绻嶆禒楣冩⒑缂佹ɑ灏紒缁橈耿瀵鈽夐姀鐘靛姶闂佸憡鍔楅崑鎾绘偩閸洘鈷戦柛婵嗗閿涙梻绱掗幓鎺撳仴闁糕斁鍋撳銈嗗笒閸犳艾岣块幇顓犵婵炴潙顑嗗▍鍥╃磼鏉堚晛浠︾紒妤冨枛閸┾偓妞ゆ帒瀚繚婵炶揪绲跨涵璺何i崼銉︾厪闊洤艌閸嬫捇寮妷銉ゅ闂佺粯鍨兼慨銈夋偂閸愵喖绾ч柣鎰版涧椤e吋銇勯敃鈧崲鏌モ€︾捄銊﹀枂闁告洦鍓涢ˇ銉╂⒑鐎圭媭娼愰柛銊ユ健閵嗕礁鈻庨幘鏉戝壒濡炪倖鍔﹂崑鍌滆姳閽樺鐔嗛悷娆忓缁€瀣亜閵忊槄鑰块柟顔规櫊瀹曟宕妷褎鍠掗梻鍌氬€风粈渚€骞栭銈囩煓濞撴埃鍋撻柟顔斤耿楠炲洭鎮ч崼婵呯敾闂備礁缍婂ḿ褔宕崸妤佸亱婵ǹ鍩栭埛鎴︽煕濞戞﹫鏀诲璺哄閺屾稓鈧綆浜濋ˉ銏°亜閵忥紕澧电€规洜鍠栭、妤呭磼濠婂骸鏅梻浣筋嚙濞寸兘寮崨濠勪粴闁诲孩绋掔换鍫濐潖閾忓湱纾兼慨妤€妫欓悾鍓佺磽娴h櫣甯涢悽顖涘笒瀹撳嫰姊洪崷顓烆暭婵犮垺岣块悮鎯ь吋婢跺鍘卞銈嗗姧缁茶法绮诲Ο姹囦簻闁规儳鐡ㄩ妵婵囨叏婵犲懏顏犵紒杈ㄥ笒铻i煫鍥风导闁垶鏌熼鐭亪锝炲┑鍫熷磯闁惧繐婀遍弳浼存⒒娴g懓顕滅紒璇插€胯棟濞村吋娼欓悡鏇㈡煙閻戞ê鐏熼柍褜鍓氱敮鎺楋綖濠靛鏁嗗ù锝堫潐閸婂嘲鈹戦悙鑼憼缂侇喖绉堕幑銏ゅ醇閵夈儴鎽曢梺鎸庣☉鐎氼亜鈻介鍫熷仯闁搞儯鍔岀徊缁樸亜椤掆偓椤戝懘鍩為幋锔藉€烽柛娆忣樈濡垿姊洪幖鐐插缂侇喗鐟╅悰顕€宕橀妸銏$€婚梺鐟扮摠閺屻劍绂嶆ィ鍐╃厽闁靛繈鍨洪弳鈺呮煏閸℃韬柡宀嬬磿閳ь剨缍嗛崑鍡樻櫠閸偅鍙忓┑鐘叉噺椤忕姷绱掓潏銊ョ瑨閾伙綁鏌ц箛娑掑亾濞戞瑯鏁囬梻鍌欐祰濡嫰宕€涙ḿ顩查柛顐f礀閽冪喖鏌i弬鍨倯闁稿浜濋妵鍕冀閵娧勫櫑闂佽鍨伴悧蹇曟閹惧瓨濯村ù鐘差儏閹界敻鏌i姀鈺佺仚闁逞屽墯閸撴岸宕甸弴鐔翠簻闁哄洦顨呮禍楣冩⒑缁洘鏉归柛瀣尭椤啴濡堕崱妤冪懆闁诲孩鍑归崣鍐ㄧ暦閹达附鏅搁柣妯虹-閸欏棝姊洪崫鍕殭闁稿﹤鎲$粋宥嗐偅閸愨晝鍘搁梺绯曞墲宀e潡鎯屽畝鍕厵闁告瑥顦伴崐鎰版煙椤斻劌娲ら柋鍥ㄧ節闂堟稓澧遍柛搴$焸閺岋絾鎯旈妶搴㈢秷闂佽鎮傞ˉ鎾斥枎閵忕媭娼╅悹娲細閹芥洖鈹戦悙鏉戠亶闁瑰啿娲崺鈧い鎺戯功閻e灚顨ラ悙宸剰闁宠鍨垮畷鍫曞煛娴h姤瀚梻鍌氬€搁崐椋庣矆娓氣偓楠炲鏁撻悩鍐叉疄婵°倧绲介崯顐ょ不閻樿绠规繛锝庡墮婵$晫绱掗悩鍐叉诞婵﹦绮幏鍛矙閹稿骸鈧垳绱撴担椋庡妽闁圭ǹ鍟块锝夊箵閹哄棙顫嶅┑鐘欏嫬鍔ょ憸鐗堟そ濮婂宕掑顑藉亾妞嬪孩顐芥慨妯挎硾閻掑灚銇勯幒鎴濃偓鍛婄濠婂牊鐓犳繛鑼额嚙閻忥繝鏌¢崨顓犲煟妞ゃ垺鐩幃娆戝垝鐟欏嫬顏归梻鍌欑閸氬绂嶆禒瀣?闂侇剙绉撮悡鏇炩攽閸屾稓绠撻柍瑙勫灴閹晠宕归锝嗙槑闂備胶枪椤戝洭宕戝☉妯煎箵闁割煈鍠掗弸搴ㄦ煙閹呮瀮鐞氭繈姊虹拠鎻掑毐缂傚秴妫濆畷鏉课旈崨顓炴優闁诲繒鍋犳繛鍥籍閸喐娅滈梺鍛婁緱閸樿棄鈻撻鐘电=濞达絽鎼暩闂佸摜濮甸悧鐘差嚕婵犳碍鍋勯柣鎾虫捣閻i箖姊虹紒姗嗘當闁绘绮岃灋闁告洦鍨遍埛鎴︽偣閸ヮ亜鐨虹紒鐘靛劋缁绘盯宕ㄩ鐣岊槶闂佺懓绠嶉崹褰掑煘閹寸姭鍋撻敐搴濈盎闁诲寒鍘奸—鍐Χ閸℃衼缂備浇寮撶划娆忣嚕閸愬弬鏃堝礃椤忓棴绱冲┑鐐舵彧缁叉崘銇愰崘鈺冾洸闁绘劦鍓涚弧鈧梺闈涢獜缁蹭粙鎮¢幇鐗堢厱闁哄啠鍋撻柣妤冨█楠炲啴鏁撻悩鍐蹭簻闂佺ǹ绻楅崑鎰板储閹剧粯鍋℃繝濠傚閻帞鈧娲樼划宀勫煝鎼淬劌绠涙い蹇撴閻f儳鈹戦悙宸殶濠殿喗鎸抽、鏍幢濞戞瑥浜楅梺鍝勬储閸ㄦ椽鎮¢崘顔界厱婵犻潧妫楅鈺呮煃瑜滈崜婵嬵敋瑜忛崣鍛存⒑閸︻叀妾搁柛鐘愁殜閹€斥槈閵忊€斥偓鍫曟煟閹邦垱纭剧悮姘舵⒑闂堚晝绉い顐㈩樀婵$敻宕熼锝嗘櫇闂佹寧绻傚ú銊╂偩閻㈠憡鈷戝ù鍏肩懅閹ジ鏌涜箛鏂嗩亪鎮鹃悜钘夐唶闁哄洨鍋熼崢鎼佹⒑閸涘﹤濮€闁哄懏绮撻幆渚€骞掑Δ浣叉嫽闂佺ǹ鏈悷锔剧矈閹殿喒鍋撶憴鍕闁诲繑宀搁獮鍫ュΩ閳轰胶楠囬梺鍦仺閸斿秴顪冮懞銉ょ箚闁割偅娲栭柋鍥ㄧ箾閹寸儐娈曢柣顐㈢箻濮婄粯鎷呴搹鐟扮闂佸憡姊瑰ú鐔肩嵁閺嶎収鏁冮柨鏃囨濞堟繈鏌i悢鍝ユ噧閻庢哎鍔嶇粋宥呪堪閸喓鍘甸梺缁樺灦閿氶柣蹇嬪劦閺屽秷顧侀柛鎾寸懅缁辩偞绻濋崒婊勬闂佺懓鐡ㄧ换宥呩缚閵娾晜鐓冪憸婊堝礈閻斿鍤曞┑鐘宠壘閸楁娊鏌i弮鍥仩妞ゆ梹娲熼幃宄扳堪閸愵€倝鏌嶈閸撴岸宕欒ぐ鎺戦棷闁挎繂鎷嬮崵鏇㈡煙閹澘袚闁稿鍔楃槐鎾存媴妤犮劍宀搁獮蹇撁洪鍛嫼闂佸憡绋戦敃锕傚煡婢舵劖鐓ラ柡鍥埀顒侇殘閸掓帡顢橀姀鐘殿唺闂佽宕樼亸娆戠不濮橆剦娓婚柕鍫濇婵呯磼閺屻儳鐣洪挊鐔兼煕椤愩倕鏋嶇紒璇叉閵囧嫰骞囬埡浣轰痪闂佹悶鍊曞ú顓㈠蓟濞戙垹鐓涢悗锝庡墰閻﹀牓鎮楃憴鍕8闁告梹鍨块妴浣糕枎閹惧磭鐣鹃悷婊冪Ч瀹曪絾绻濋崶銊㈡嫽闂佺ǹ鏈悷銊╁礂瀹€鈧槐鎺楊敋閸涱厾浠搁悗瑙勬礃缁诲牓寮崘顔肩<婵﹢纭稿Σ鑸电節閻㈤潧浠滄俊顐g懇瀹曟繈寮撮悩鎰佸仺闂佺粯鍔楅。浠嬪磻閹捐崵宓侀柛顭戝枛婵骸顪冮妶蹇曠窗闁告濞婇獮鍐灳閺傘儲鐎婚梺鍦亾濞兼瑩鍩€椤掆偓閻忔氨鎹㈠☉銏犵闁绘劕鐏氶崰妤冪磽閸屾艾鈧綊鎳濇ィ鍐b偓锕傛嚄椤栵絾顎囬梻浣告啞閹搁箖宕伴弽褜鍤曞┑鐘崇閸嬪嫰鏌涜箛鏇炲付闁告搩鍓熷娲川婵犲嫮绱伴梺绋块閻ゅ洭鍩呴棃娑掓斀閹烘娊宕愬Δ浣瑰弿闁绘垼妫勭壕缁樼箾閹存瑥鐏柣鎾亾闂備焦瀵х换鍌毼涢弮鍌涘床闁糕剝绋掗悡鐔兼煙鏉堝墽绋绘い銉ヮ樀楠炲棝鎮㈤崗灏栨嫼闂傚倸鐗婃笟妤€顬婅閳规垿鍨鹃搹顐㈩槱缂備礁鍊哥粔鎾偩閿熺姴绠ラ柧蹇e亝閺夋悂姊绘担铏瑰笡闁告梹鐗曞玻鍨枎閹炬潙鈧爼鏌ㄩ弮鍥撻柛娆忕箰閳规垿鎮╅幓鎺濅痪闂佹悶鍊愰崑鎾翠繆閻愵亜鈧倝宕㈡總鍛婂€舵繝闈涱儜缂嶆牗绻濇繝鍌滃闁绘帒鐏氶妵鍕箳閹存繍浼€閻庤鎸风欢姘跺蓟濞戙垹绠涢柍杞扮椤ュ姊洪崫鍕殭闁绘妫楅蹇撯攽閸ャ儰绨婚梺鍝勫暙濞层倛顣块梻浣虹帛缁诲秹宕戞繝鍥ц摕闁挎繂妫欓崕鐔兼煃閵夈儱鏆遍弶鍫濇嚇濮婅櫣绮欏▎鎯у壉闂佸湱鎳撳ú顓烆嚕鐠囨祴妲堥柕蹇曞Х閻も偓婵$偑鍊栭幐楣冨磻濞戞瑦鍙忛柕蹇曞Л閺€浠嬫煟閹邦垰鐨哄褋鍨介弻娑氣偓锝庡亝鐏忕敻鏌熼獮鍨仼闁宠棄顦~婵嬫晲閸涱剙顥氶梻浣圭湽閸ㄨ鈻嶉妷銊d汗闁圭儤绻冮弲娑㈡⒑鐟欏嫬鍔ゅ褍娴锋竟鏇㈡偩鐏炵ǹ浜炬鐐茬仢閸旀瑧绱掗埀顒佹媴閸︻収娲告俊銈忕到閸燁垶鍩涢幒鎴欌偓鎺戭潩閿濆懍澹曟繝鐢靛仒閸栫娀宕楅悙顒傗槈閾绘牠鏌涘☉鍗炲箻闁哄苯鐗撳娲捶椤撯剝顎楅梺鍝ュУ閻楁粎鍒掓繝姘亹缂備焦岣块崢顏堟椤愩垺澶勬繛鍙夌墪閺嗏晠姊绘担鍛婃儓婵☆偅顨婇、鏍ㄥ緞閹邦剝鎽曢梺鏂ユ櫅閸燁偆娆㈤悙鍝勭婵烇綆鍓欓悘顕€鏌曢崱妤嬭含婵﹨娅i幏鐘诲灳閾忣偆褰查梻浣烘嚀閸ゆ牠骞忛敓锟�40%闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆浜ら柤鏉挎健瀵爼宕煎顓熺彅闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼鍩栭崝鏍偂濞戞埃鍋撻獮鍨姎濡ょ姵鎮傞悰顕€寮介鐔哄幈闂侀潧枪閸庨亶鍩€椤掆偓缂嶅﹪鐛崼銉ノ╅柕澶婃捣閸犳牠鐛幇顓熷劅闁挎繂鍟犻崑鎾诲箛閺夎法楠囬梺鍐叉惈閸婅崵绮婚悙瀛樺弿濠电姴鎳忛鐘电磼椤旂晫鎳囨鐐村姈閹棃濮€閳ユ剚浼嗙紓鍌氬€搁崐宄懊归崶顒夋晪鐟滃繒鍒掗弮鍫熷仭闁规鍠楀▓楣冩⒑濮瑰洤鐏╅柟璇х節瀵彃鈹戠€n偆鍘撻悷婊勭矒瀹曟粓鎮㈤崙銈堚偓鍨€掑锝呬壕濠殿喖锕ㄥ▍锝囨閹烘嚦鐔煎礂閻撳孩鐝i梻鍌欒兌椤㈠﹤鈻嶉弴銏犵婵°倕鍟崹婵嬫煛閸愩劎澧遍柡浣告閺屾盯寮撮妸銉ヮ潾闂佸憡锕╂禍顏勵潖閾忕懓瀵查柡鍥╁仜閳峰顪冮妶鍐ㄥ闁硅櫕锚椤曪綁骞庨懞銉ヤ簻闂佺ǹ绻楅崑鎰板储閻㈠憡鍊甸柣鐔告緲椤忣亜顭块悷鐗堫棤缂侇喗妫冮幃婊兾熼梹鎰泿闂備線娼х换鍡涘春濡ゅ拋鏁傞柛顐g箘閸樻挳姊虹涵鍛涧缂佺姵鍨块幃娆愮節閸曨剙鏋戝┑鐘诧工鐎氼剟顢氶柆宥嗙厱闁斥晛鍟伴埊鏇㈡煃闁垮绗掗棁澶愭煥濠靛棙鍣洪柛鐔哄仱閺岀喖顢涘鍗炩叺闂佸搫鐭夌徊鍊熺亙婵炶揪缍€濞咃綁鎮℃径鎰€甸悷娆忓缁€鍐磼椤旇偐鐒搁柛鈹垮劜瀵板嫰骞囬澶嬬秱闂備胶鍋ㄩ崕閬嶅储閺嶎厼绠i梺鍨儎缁诲棝鏌i幇鍏哥盎闁逞屽墯閻楃娀骞冭铻栭柛鎰典簽閻撴捇姊洪崷顓炰壕闁活亜缍婇崺鈧い鎺嗗亾闁硅櫕锕㈤獮鍐ㄢ堪閸喎娈熼梺闈涱槶閸庝即宕犻弽褉鏀介柣鎰煐瑜把呯磼闊厾鐭欐鐐搭殔楗即宕奸悢鍛婄彨闁诲骸绠嶉崕鍗灻洪妸褍顥氶柣鎾冲瘨閻斿棝鎮归搹鐟扮殤闁告梻鍠庨湁闁绘﹩鍠栭悘鍙変繆椤愶紕鍔嶇€垫澘瀚埀顒婄秵閸撴盯鎯侀崼銉﹀仭婵犲﹤鍟扮粻鏌ユ煙娓氬灝濮傛鐐达耿椤㈡瑩鎳栭埡鍌滃姼濠碉紕鍋戦崐鏍偋濠婂牆纾绘繛鎴炴皑娑撳秵鎱ㄥΟ鍨厫闁绘挻娲滈埀顒€鍘滈崑鎾绘煃瑜滈崜鐔风暦閹达附鍊烽柣鎴灻禍妤呮⒑闂堟侗妾у┑鈥虫川缁粯銈i崘鈺冨幍闁诲海鏁告灙闁逞屽墯閸ㄥ灝鐣烽悜绛嬫晣婵炴垶眉婢规洖鈹戦鐭亜鐣烽鍕┾偓鍌炴嚃閳哄啰锛滅紓鍌欑劍宀e灝煤閹绢喗鐓欐い鏃傛嚀婢ф煡鏌熼娑欘棃闁糕斂鍎靛畷鍗炍旈埀顒€鏁紓鍌氬€搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾鐎规洘鍔欏畷顐﹀Ψ瑜忛悡瀣偡濠婂懎顣奸悽顖氭喘閸┾偓妞ゆ垼娉曠粣鏃傗偓娈垮枟閹歌櫕鎱ㄩ埀顒勬煟濞嗗苯浜惧┑鐐靛帶閿曨亜顫忛搹鍦<婵☆垰澧庣槐浼存⒑鏉炴壆鍔嶉柣鈩冩礋閸╁懘鏁撻敓锟�9闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙8闁逞屽厸閻掞妇鎹㈠┑瀣倞鐟滃骸危椤掑嫭鈷戦柛婵嗗閳诲鏌涢幘瀵告噮缂佽京鍋涢~婊堝焵椤掆偓椤繒绱掑Ο鑲╂嚌闂侀€炲苯澧撮柛鈹惧亾濡炪倖甯掗崐鍛婄濠婂牊鐓犳繛鑼额嚙閻忥繝鏌¢崨顓犲煟妞ゃ垺宀搁崺鈧い鎺戝閽冪喐绻涢幋鐐垫噮缂佲檧鍋撻梻浣告啞閸斿繘寮插☉銏犵劦妞ゆ帊绀佹慨宥夋煛瀹€鈧崰鏍€佸☉姗嗘僵妞ゆ帊鐒﹂鎺戔攽閻樻剚鍟忛柛鐘冲浮瀹曟垿骞樼紒妯锋嫼闂傚倸鐗婄粙鎾存櫠閺囥垺鐓欓柧蹇e亜婵秹鎸婂┑鍥ヤ簻闁规澘鐖煎顕€鏌嶉柨瀣仼缂佽鲸甯¢、娑樷槈濞嗘埈妲┑鐘媰閸愩劎楠囩紓浣虹帛閻╊垶骞婇悩娲绘晢闁逞屽墴瀵ǹ鈽夐姀锛勫幍濡炪倖娲栧Λ娑氬姬閳ь剟姊虹化鏇熸珨缂佺粯绻傞悾鐑藉Ω閳哄﹥鏅╅柣鐔哥懃鐎氼剟顢旇ぐ鎺撯拻闁稿本鐟чˇ锕傛煙鐠囇呯瘈妤犵偞鍔欏畷鍗炩槈濡⒈妲伴柣鐔哥矊缁夌妫㈠┑顔角归崺鏍煕閹寸偞鍙忛柣鐔哄閹兼劙鏌i幒鎾淬仢闁哄本鐩俊鎼佸煛閳ь剟骞夐悙顒夋闁绘劖娼欐慨宥夋煙閻撳海绉烘い銏℃礋閺佸秹宕熼鐘虫瘞闂傚倷娴囬褏鈧稈鏅濈划娆撳箳閺囩喐鍣锋繝鐢靛У椤旀牠宕归柆宥呯闁规儼妫勭粻鏍偓鐟板婢瑰寮告惔銊у彄闁搞儯鍔嶉幆鍕归悩灞傚仮婵﹤顭峰畷鎺戭潩椤戣法鏁栭梻浣规偠閸斿繐鈻斿☉顫稏闊洦绋掗幆鐐烘偡濞嗗繐顏╅柛妯虹秺濮婃椽宕ㄦ繝浣虹箒闂佹悶鍔嬮崡鎶藉箖瑜嶉~婵嬫嚋绾版ɑ瀚肩紓鍌欑椤戝懎岣块敓鐙€鏁佹俊銈呭暊閸嬫挾鎲撮崟顒€顦╅梺鍛婃尵閸犲酣鏁冮姀鈩冨缂侇垱娲橀弬鈧俊鐐€栭弻銊╋綖閺囩喓顩锋繝濠傜墛閻撴洟鎮楅敐搴′簼鐎规洖鐭傞弻鈥崇暆閳ь剟宕伴弽顓溾偓浣糕枎閹炬緞鈺呮煏婢舵盯妾柟顔界懇濮婅櫣绱掑Ο鍝勵潓闂佹寧娲︽禍顏勵嚕鐠囧樊鍚嬪璺猴梗缁卞爼姊洪崨濠冨闁稿鎳庨埢鎾诲蓟閵夛腹鎷洪柣鐘叉礌閳ь剙纾导鍫㈢磽閸屾氨小缂佲偓娓氣偓閿濈偠绠涢幘浣规そ椤㈡棃宕熼褍鏁归梻浣侯攰婢瑰牓骞撻鍡楃筏闁告繂瀚€閿濆閱囬柕澶涜吂閹锋椽姊虹粙璺ㄧ闁告艾顑夋俊鐢告偄閸忚偐鍘遍梺闈浤涢崟顒佺槗濠电姷顣槐鏇㈠极婵犳氨宓侀柛銉墮缁狙囨偣娓氼垳鍘滅紒杈ㄧ叀濮婄粯鎷呴搹鐟扮闂佸憡姊瑰玻鎸庣缁嬪簱鏋庨柟鎯хТ濞差參銆侀弴銏℃櫆閻熸瑱绲剧€氬ジ姊绘担鍛婂暈缂佽鍊婚埀顒佽壘閸㈡彃宓勯柣鐔哥懃鐎氥劍绂嶅⿰鍫熺厵閻庣數枪娴犙囨煙閸愬弶宸濋柍褜鍓濋~澶娒哄Ο鍏煎床闁割偅绻勯弳锕傛煏婵炑€鍋撻柛瀣尭閳藉鈻庣€n剛绐楅梻浣告啞钃遍柟顔煎€块獮鍐ㄎ旈崘鈺佹瀭闂佸憡娲﹂崜娆撴瀹ュ鈷戦柛娑橈功缁犳捇姊虹敮顔惧埌闁伙絿鍏橀獮鍥级鐠囩嫏鍐剧唵閻犺櫣灏ㄩ崝鐔兼煛鐏炵晫澧︽慨濠冩そ瀹曟粓骞撻幒宥囨寜闂備胶枪鐎涒晠鎮¢敓鐘茬畺闁跨喓濮撮崡鎶芥煟濡搫鏆遍柡瀣灴閺岀喖鎳濋悧鍫濇锭缂備焦褰冨ḿ锟犲箚鐏炶В鏋庨柟鎹愭硾瑜板嫰姊洪幖鐐插姌闁告柨閰i崺銉﹀緞閹邦厾鍘介梺鍦劋閸ㄨ绂掑☉銏$厪闁搞儜鍐句純濡ょ姷鍋涢澶愬极閹版澘宸濇い鎾跺€妷鈺傗拻濞达絽鎳欓崷顓熷床闁圭増婢樼€氬銇勯幒鎴濃偓鐟扮暦閸欏绠鹃柟瀛樼懃閻忊晝鈧懓鎲$换鍐Φ閸曨垰绠涢柍杞拌兌娴犵厧顪冮妶搴″妞わ箓娼ч~蹇涙惞鐟欏嫬鐝伴梺鐐藉劚绾绢厽绂掗鐐╂斀闁宠棄妫楁禍婊堟煕閻斿憡缍戞い鏇秮椤㈡洟鏁冮埀顒傜矆閸愵喗鐓冮柛婵嗗閳ь剚鎮傞、鎾诲箻閸撲胶锛濇繛杈剧到婢瑰﹪宕曢幘瀵哥濠㈣泛顑嗙粈鍐磼閸屾稑娴い銏★耿婵偓闁抽敮鍋撻柟椋庣帛缁绘稒娼忛崜褍鍩岄梺纭咁嚋缁绘繂鐣烽鐐村€烽柣鎴炨缚閸樹粙姊洪棃娑掑悍濠碘€虫喘閹瞼鈧綆鍠楅悡娆戔偓鐟板婢ф宕甸崶顭戞闁绘劕鐡ㄥ畷灞绢殽閻愭潙绗掓い鎾炽偢瀹曨亝鎷呯拠鈩冿紖濠电姷鏁告慨鐑藉极閹间礁纾婚柣妯款嚙缁犲灚銇勮箛鎾搭棤缂佲偓婵犲倶鈧帒顫濋敐鍛闁诲孩顔栭崰妤呮偂閿熺姴绠犻柣妯绘た閺佸棝鏌涢幇鈺佸闁跨喓濮甸埛鎴︽偡濞嗗繐顏╅柛鏃囨硾閳规垿顢欓崫鍕ㄥ亾濠靛绠栭柨鐔哄Т閸楁娊鏌i弬鍨暢缂佺姵宀稿娲濞戞艾顣洪柣搴㈠嚬閸o綀妫熼梺鎸庢礀閸婂綊鎮″▎鎾寸厱闊洦鎸搁幃鎴︽煕婵犲啫濮嶉柡宀嬬磿娴狅箓鎮剧仦婵勫劜閵囧嫯顦辩紒鑸靛哺瀵鈽夊⿰鍛澑闂佸搫鍟崐鍫曞焵椤掍礁绗х紒杈ㄥ浮椤㈡瑩鎳栭埡渚囨澑闂備胶鎳撻崲鏌ュ箠濡櫣鏆﹂柣鎴犵摂閺佸洨鎲告惔銊︾叆闁靛牆顦伴埛鎺懨归敐鍛暈闁诡垰鐗婄换娑氫沪閸屾艾顫囬悗瑙勬磻閸楁娊鐛Ο鍏煎珰闁肩⒈鍓欓獮瀣煟鎼达紕鐣柛搴ㄤ憾钘濇い鏍ㄧ矌娑撳秹鏌熼幆鏉啃撻柣鎾寸懇閺岀喖顢涘⿰鍐炬毉濡炪們鍎遍ˇ鐢稿蓟閿濆绠抽柟瀵稿С缁敻姊洪棃娑欐悙閻庢矮鍗抽悰顔锯偓锝庝簴閺€浠嬫煕椤愶絿鐭庢俊鐐倐濮婄粯鎷呴崨闈涚秺閺佸啴濡烽妷搴悼閳ь剨缍嗛崜娑氬娴犲鐓曢悘鐐村礃婢规﹢鏌嶈閸撶喖藟閹捐泛鍨濋柛顐ゅ枔閻熷綊鏌嶈閸撴瑩顢氶敐澶嬪仺闁告挸寮堕弲銏ゆ⒑闁偛鑻晶鎾煃閵夛附顥堢€规洘锕㈤、娆撴寠婢跺本顎嶆繝鐢靛О閸ㄥ綊宕㈠⿰鍫濈柧婵犲﹤鐗婇崕搴€亜閺嶃劍鐨戦柡鍡缁辨帞鈧綆鍙庨崵锕傛煛閸愩劎澧曢柣鎺戠仛閵囧嫰骞掗幋婵囨缂備胶濮炬慨銈囨崲濠靛鍋ㄩ梻鍫熺◥閸濇姊虹憴鍕仧濞存粎鍋熷Σ鎰版倷閸濆嫮鍔﹀銈嗗笂閼冲墎绮绘ィ鍐╃厱婵犲﹤鍟弳鐔虹磼婢舵ê鏋ら柍褜鍓濋~澶娒洪埡鍐濞撴埃鍋撶€规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熼崫鍕ラ柛蹇撶灱缁辨帡鎮╅懡銈囨毇闂佸搫鐬奸崰鎾诲焵椤掑倹鏆╅弸顏劽归悪鍛暤闁哄矉缍侀獮姗€宕¢悙鎻捫戠紓鍌欐祰妞村摜鏁埄鍐х箚闁归棿鐒﹂弲婊冣攽椤旇棄濮冮柧蹇撻叄濮婄粯鎷呴搹骞库偓濠囨煛閸屾瑧绐旂€规洘鍨块獮姗€骞囨担鐟扮槣闂備線娼ч悧鍡椢涘Δ鍛€堕柨鏇炲€归崐鐢电磼濡や胶鈽夐柟铏姍閹矂宕煎婵嗙秺閹剝鎯旈敐鍡樺枛闂備胶绮幐楣冨窗閹版澘桅闁告洦鍠氶悿鈧梺鍦亾濞兼瑥鈻嶉妶澶嬬厽闊洦鎹囬悰婊呯磼閻樿櫕宕岀€殿喖顭烽幃銏㈠枈鏉堛劍娅撻梻浣稿悑娴滀粙宕曢娑氼浄闁靛繈鍊栭埛鎴﹀级閻愭潙顥嬮柛鏂跨Ч閺屾盯寮埀顒勬偡閵夆晜鍋╅柣鎴f闁卞洭鏌¢崶鈺佷户闁告ɑ鎮傚铏圭矙閹稿孩鎷辩紓浣割儐閸ㄥ灝鐣峰┑鍡╂建闁逞屽墮椤繑绻濆顒傦紲濠电偛妫欓崺鍫澪i鈧铏规兜閸滀礁娈濈紓浣虹帛缁诲牓鐛繝鍌楁斀閻庯綆浜為ˇ顓㈡偡濠婂喚妯€鐎规洘鍨块獮姗€骞囨担鐟板厞闂備胶绮幐鍛婎殽閹间礁鐓曢悗锝庡亞缁♀偓缂佺偓婢橀ˇ杈╁閸ф鐓涘ù锝囩摂閸ゆ瑩鏌i敐鍥у幋鐎规洖銈稿鎾Ω閿旇姤鐝滈梻鍌欒兌鏋柡鍫墮椤繈濡搁埡浣勓囨煥閺囩偛鈧綊鍩涢幒鎳ㄥ綊鏁愰崨顔兼殘闂佸摜鍠撻崑銈夊蓟濞戙垹绫嶉柍褜鍓熼幃褔鎮欓崫鍕庯箓鏌熼悧鍫熺凡缂佲偓閸愨斂浜滈柡鍐ㄥ€瑰▍鏇㈡煕濡濮嶆慨濠勭帛缁楃喖宕惰椤晝绱撴担鍓叉Ш闁轰礁顭烽獮鍐缂佺姵绋戦埥澶娾枎閹存繂绠為梻鍌欑閻ゅ洤螞閸曨倠娑樜旈崨顖氱ウ濠德板€曢幊蹇涘磹閸偅鍙忔俊顖滃帶娴滈箖鎮楀鐐
李增强,1, 丁鑫超1, 卢海1, 胡亚丽1, 岳娇1, 黄震1, 莫良玉1, 陈立1, 陈涛2, 陈鹏,1,*1广西大学农学院/广西高校植物遗传育种重点实验室, 广西南宁 530004
2广西壮族自治区亚热带作物研究所, 广西南宁 530004

Physiological characteristics and DNA methylation analysis under lead stress in kenaf (Hibiscus cannabinus L.)

LI Zeng-Qiang,1, DING Xin-Chao1, LU Hai1, HU Ya-Li1, YUE Jiao1, HUANG Zhen1, MO Liang-Yu1, CHEN Li1, CHEN Tao2, CHEN Peng,1,*1College of Agriculture, Guangxi University/Guangxi Colleges and Universities Key Laboratory of Plant Genetics and Breeding, Nanning 530004, Guangxi, China
2Guangxi Subtropical Crops Research Institute, Nanning 530004, Guangxi, China

通讯作者: *陈鹏, E-mail: hustwell@gmail.com

收稿日期:2020-05-8接受日期:2020-08-19网络出版日期:2021-06-12
基金资助:国家自然科学基金项目.31560341
国家自然科学基金项目.31960368
国家现代农业产业技术体系建设专项.CARS-16-E14


Received:2020-05-8Accepted:2020-08-19Online:2021-06-12
Fund supported: This work was supported by the National Natural Science Foundation of China.31560341
This work was supported by the National Natural Science Foundation of China.31960368
The China Agriculture Research System.CARS-16-E14

作者简介 About authors
E-mail: 1134485681@qq.com












摘要
DNA甲基化在植物响应生物和非生物胁迫中起重要作用, 但是有关铅胁迫下植物DNA甲基化水平变化的研究报道甚少。本研究以红麻P3A为材料, 采用水培法对幼苗进行不同浓度(0、200、400、600 μmol L -1) PbCl2处理, 测定幼苗农艺性状、根系ROS含量和抗氧化酶活性等变化情况; 利用甲基化敏感扩增多态性技术(methylation-sensitive amplification polymorphism, MSAP)分析600 μmol L -1铅胁迫条件下根系DNA甲基化水平变化, 回收差异甲基化片段并克隆测序, 采用qRT-PCR技术对DNA甲基化差异基因进行表达分析。结果表明, 不同浓度PbCl2胁迫均显著抑制幼苗的茎粗、根长和根表面积, 且400 μmol L -1及以上浓度PbCl2胁迫显著抑制红麻幼苗的株高和全鲜重。随着铅浓度的提高, 红麻幼苗根系的铅含量显著升高, O2?和MDA含量显著增加, SOD活性显著升高, POD活性呈先降低后升高, CAT活性呈先升高后降低的趋势。对照及600 μmol L -1 PbCl2处理下的幼苗根系DNA甲基化率分别为71.13%、62.20%, 其中全甲基化率分别为50.52%、37.80%, 半甲基化率分别为20.62%、24.40%, 即铅胁迫显著降低了红麻幼苗根系的DNA甲基化率和全甲基化率, 提高了根系的半甲基化率。qRT-PCR分析表明, 7个与抗性密切相关的DNA甲基化差异基因也存在表达量差异, 推测DNA甲基化水平变化在响应红麻铅胁迫中发挥重要作用。本结果为深入探索DNA甲基化响应植物非生物胁迫的潜在机制, 以及生产上利用红麻改良土壤铅污染提供了理论基础。
关键词: 红麻;铅胁迫;DNA甲基化;甲基化敏感扩增多态性(MSAP);实时荧光定量PCR (qRT-PCR);抗氧化酶系统

Abstract
DNA methylation plays an important role in response to plant biotic and abiotic stresses, but there are few reports on the changes of plant DNA methylation level under lead stress. In this study, kenaf (Hibiscus cannabinus L.) P3A was used as the material, the seedlings were cultured in Hoagland solution, and treated with at different concentrations (0, 200, 400, and 600 μmol L -1) of PbCl2. The changes of agronomic traits, ROS content and antioxidant enzyme activity of root were investigated. The changes of DNA methylation level in roots under 600 μmol L -1 lead stress were determined by methylation-sensitive amplification polymorphism (MSAP). The differentially methylated genes (DMGs) were cloned, sequenced, and functionally annotated. In addition, the expression levels of DMGs were investigated by qRT-PCR. The results showed that the stem diameter, root length and root surface area of seedlings were significantly inhibited by different concentrations of PbCl2 stress. And the plant height and total fresh weight of kenaf seedlings were significantly reduced under 400 μmol L -1 concentration or more of lead stress. The content of lead, O2? and MDA, and activities of SOD were increased significantly in kenaf seedlings roots, CAT activity increased first and then decreased with the increase of lead concentration, the POD activity showed a trend of decreasing first and then increasing. MSAP analysis of roots treated with 0 μmol L -1 and 600 μmol L -1 PbCl2 showed that DNA methylation rates were 71.13%, 62.20%, fully methylated ratio was 50.52%, 37.80%, and hemi-methylated ratio were 20.62%, 24.40%, respectively. In other words, lead stress significantly reduced DNA methylation rate and total methylation rate, whereas increased the hemi-methylation rate of roots of kenaf seedlings. qRT-PCR analysis showed that there were also differences in gene expression of seven DMGs closely related to resistance. It suggested that the change of DNA methylation level played an important role in kenaf response to lead stress in kenaf. This study provides a theoretical basis for further exploring the potential mechanism of DNA methylation in response to plant abiotic stress, and improving soil lead pollution in kenaf production.
Keywords:kenaf;lead stress;DNA methylation;MSAP;qRT-PCR;antioxidant enzyme system


PDF (1137KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042. doi:10.3724/SP.J.1006.2021.04104
LI Zeng-Qiang, DING Xin-Chao, LU Hai, HU Ya-Li, YUE Jiao, HUANG Zhen, MO Liang-Yu, CHEN Li, CHEN Tao, CHEN Peng. Physiological characteristics and DNA methylation analysis under lead stress in kenaf (Hibiscus cannabinus L.)[J]. Acta Agronomica Sinica, 2021, 47(6): 1031-1042. doi:10.3724/SP.J.1006.2021.04104


土壤重金属污染严重影响农作物的产量和品质, 并且通过食物链传递严重危害人类的健康。铅是最严重的土壤污染重金属之一, 有效治理土壤中的铅污染是目前亟待解决的重大课题[1]。红麻是世界上重要的纤维作物, 其生长迅速、生物量大、对重金属耐受性强, 并且不进入食物链, 是重金属污染土壤修复的理想作物[2]

DNA甲基化在调控植物生长发育和响应生物及非生物胁迫中起重要作用[3,4]。研究表明, 重金属胁迫下, 植物的DNA甲基化水平和模式会发生改变, 这可能是植物对逆境的应急响应[5]。甲基化敏感扩增多态性(methylation sensitive amplified polymorphism, MSAP)技术是基于扩增片段长度多态性(amplified fragment length polymorphism, AFLP)技术的基础上发展起来的, 它的主要原理是采用限制性内切酶Hpa II和Msp I对5′-CCGG-3′位点进行酶切, 由于这2种酶对该位点DNA甲基化的敏感性不同, 因此可以通过切割产生不同的片段来揭示DNA甲基化的程度, 该技术已广泛用于植物基因组DNA甲基化水平的检测[6,7]。何玲莉等[8]利用MSAP技术检测不同浓度铅胁迫对萝卜肉质根基因组DNA甲基化水平的变化发现, 其甲基化水平随着铅浓度的提高而上升, 推测可能是由于铅胁迫产生了大量的甲基自由基所致, 并且DNA甲基化水平的变化可以激活或者抑制相关基因的表达, 进而提高萝卜对铅胁迫的适应性。郭丹蒂[9]运用MSAP技术发现, 铅和镉胁迫均导致中华水韭DNA甲基化水平提高, 但与重金属的浓度无显著相关性。殷欣[10]也运用MSAP技术发现, 大豆基因组DNA甲基化水平随镉浓度的增加而逐渐提高, 并且甲基化差异基因广泛参与了植物响应重金属胁迫的过程。然而, 也有研究发现, 重金属胁迫导致基因组DNA甲基化水平降低的现象, 表明重金属胁迫下DNA甲基化水平变化和响应机制的复杂性[11]

有关DNA甲基化响应红麻重金属胁迫的研究尚未见报道。本研究利用不同浓度PbCl2对红麻材料P3A幼苗进行胁迫处理, 研究幼苗农艺性状、ROS含量和抗氧化酶活性变化, 检测铅胁迫下基因组DNA甲基化水平变化, 并对甲基化差异片段进行克隆测序和表达水平分析, 以期为明确铅胁迫对红麻生长的影响, 揭示DNA甲基化响应红麻铅胁迫的潜在机制具有重要意义。

1 材料与方法

1.1 试验材料及处理

红麻材料P3A由广西大学农学院周瑞阳教授提供。挑选适量籽粒饱满的种子, 常温条件下用蒸馏水浸泡1 h, 经3%过氧化氢消毒10 min, 再用蒸馏水冲洗3次, 均匀地摆放在铺有2层纱布(注意定期定量添加1/4 Hoagland营养液, 始终保持纱布湿润)的塑料盒(27 cm × 18 cm × 9 cm)中, 放置于恒温光照培养箱(光/暗周期为10 h/14 h, 温度为白天27℃/夜晚25℃, 下同)中培养7 d后, 选取长势一致的幼苗240株, 随机分成12组, 每组20株, 移栽于12个底部含有托盘的育苗盘(21孔花卉育苗盘)中, 即为4个处理, 每个处理3次重复。向托盘中分别添加含有不同PbCl2浓度(0、200、400、600 μmol L-1)的1/4 Hoagland处理液, 注意每天定量地更换处理液。

1.2 农艺性状及生理指标的测定

胁迫处理7 d后, 全部材料用蒸馏水清洗干净并用吸水纸擦干, 分别用直尺、游标卡尺和电子天平测定各单株的株高、茎粗、全鲜重, 并利用根系扫描分析仪(EPSON EXPRESSION 10000XL)对根系进行扫描分析。之后将材料用液氮速冻后保存于-80℃冰箱, 用于后续试验。

分别采用羟胺氧化法[12]、硫代巴比妥酸法[13]测定根系的超氧阴离子(superoxide anion, O2?)和丙二醛(malondialdehyde, MDA)含量; 分别采用氮蓝四唑法[13]、愈创木酚法[13]、紫外分光光度法[12]测定根系的超氧化物歧化酶(superoxide dismutase, SOD)、过氧化物酶(peroxidase, POD)、过氧化氢酶(catalase, CAT)活性。

1.3 甲基化敏感扩增多态性(MSAP)分析

参考Tang等[14]报道的MSAP方法并加以改良, 对部分处理(0、600 μmol L-1)的根系进行DNA甲基化水平分析。首先采用改良CTAB法[15]提取上述材料的基因组DNA, 之后分别用EcoR I/Hpa II和EcoR I/Msp I 两种酶组合进行双酶切, 连接, 预扩增、选择性扩增, 6%聚丙烯酰胺凝胶电泳, 银染、显色, 拍照保存并进行MSAP多态性片段的统计。双酶切体系(3种酶均购于NEB公司)为EcoR I 0.5 μL、Hpa II或Msp I 0.5 μL、CutSmart buffer 2 μL、模板DNA (100 ng μL-1) 4 μL、ddH2O 13 μL; 程序为37℃ 6 h, 80℃ (EcoR I/Hpa II)或65℃ (EcoR I/Msp I) 20 min。连接体系为正反向引物(10 μmol L-1)各1 μL、T4 DNA Ligase (350 U μL-1, TaKaRa公司) 2 μL、10×T4 DNA Ligase buffer 2 μL、酶切产物14 μL; 程序为16℃ 14 h, 65℃ 20 min。预扩增和选择性扩增体系均为稀释10倍后的连接产物或预扩增产物5 μL、正反向引物(10 μmol L-1)各1 μL、2×Rapid Taq Master Mix (南京诺唯赞生物科技有限公司) 10 μL、ddH2O 3 μL; 程序均为95℃ 3 min; 95℃ 15 s, 60℃ (以每对引物的平均Tm值为准) 15 s, 72℃ 30 s, 35个循环; 72℃ 5 min。接头序列、预扩增和选择性扩增引物序列见表1

Table 1
表1
表1接头和引物序列
Table 1Lists of adapter and primer sequences
引物类型
Primer type
引物名称及序列Primer name and sequence (5′-3′)
EcoR I (E)Hpa II/Msp I (HM)
接头
Adapter
EA1CTCGTAGACTGCGTACCHMA1GACGATGAGTCTAGAA
EA2AATTGGTACGCAGTCHMA2CGTTCTAGACTCATC
预扩增
Pre-amplification
E0GACTGCGTACCAATTCAHM0GATGAGTCTAGAACGGT
E1GACTGCGTACCAATTCAACHM1GATGAGTCTAGAACGGTAG
E2GACTGCGTACCAATTCAAGHM2GATGAGTCTAGAACGGTAC
E3GACTGCGTACCAATTCACAHM3GATGAGTCTAGAACGGTTG
选择性扩增E4GACTGCGTACCAATTCACTHM4GATGAGTCTAGAACGGTTC
Selective amplificationE5GACTGCGTACCAATTCACCHM5GATGAGTCTAGAACGGTGT
E6GACTGCGTACCAATTCACGHM6GATGAGTCTAGAACGGTGC
E7GACTGCGTACCAATTCAGCHM7GATGAGTCTAGAACGGTCT
E8GACTGCGTACCAATTCAGGHM8GATGAGTCTAGAACGGTCG

新窗口打开|下载CSV

MSAP多态性条带标记方法如下: 同一水平线上, EcoR I/Hpa II和EcoR I/Msp I酶切都有带, 记为I型(无甲基化); EcoR I/Hpa II酶切有带而EcoR I/ Msp I酶切无带, 记为II型(半甲基化); EcoR I/Hpa II酶切无带而EcoR I/Msp I酶切有带, 记为III型(全甲基化); EcoR I/Hpa II和EcoR I/Msp I酶切都无带, 记为IV型(全甲基化)。DNA甲基化水平统计方法如下: 甲基化条带数 = II型+III型+IV型, 甲基化率 = (II型+III型+IV型)/(I型+II型+III型+IV型)×100%; 半甲基化条带数 = II型, 半甲基化率 = II型/(I型+II型+III型+IV)×100%; 全甲基化条带数 = III型+IV型, 全甲基化率 = (III型+IV型)/(I型+II型+III型+IV型)×100% [7]

1.4 甲基化差异片段的回收、克隆和测序分析

对显色后的6%变性聚丙烯酰胺凝胶结果进行照相和MSAP多态性片段统计后, 切下观察到的甲基化差异片段于1.5 mL离心管中, 加入30 μL ddH2O, 煮沸10 mim, 用枪头将胶块捣碎, 短暂离心后取上清进行PCR扩增。体系包含上清10 μL、选择性扩增时的正反向引物(10 μmol L-1)各4 μL、2×Rapid Taq Master Mix 50 μL、ddH2O 32 μL, PCR程序同选择性扩增。之后进行2%琼脂糖凝胶电泳及胶回收。使用北京全式金生物技术有限公司的T1 Cloning Kit进行克隆, 阳性克隆经PCR方法鉴定后, 送深圳华大基因科技服务有限公司测序。测序结果在红麻基因组数据库[16] (https://bigd.big.ac.cn/gwh)及NCBI网站上进行Nucleotide BlAST同源性比对。

1.5 实时荧光定量PCR (qRT-PCR)分析

利用改良异硫氰酸胍法[17]分别提取相应根系材料(0, 600 μmol L-1)的RNA, 并进行1%琼脂糖凝胶电泳, 采用超微量紫外分光光度计检测RNA的质量和浓度, 之后使用诺唯赞反转录试剂盒(货号: R223-01)反转录成cDNA, 并以此为模板进行qRT-PCR分析。以组蛋白基因His3为内参基因, 采用2-ΔΔCT方法[2]计算基因的相对表达量, qRT-PCR引物序列见表2

Table 2
表2
表2实时荧光定量PCR引物序列
Table 2Primer sequences for qRT-PCR
引物名称
Primer name
正向引物
Forward sequence (5′-3′)
反向引物
Reverse sequence (5′-3′)
AHL23TCCTCCATCCGAACCAGTGTGCAAGGGAATCCAGAGAGACCATC
CesA2CCTAAAAATGCCGAACTCTACGCTAGAAAATCTGGACTCTCCTGGTGC
ETO1ATCTTTTCCGAGTTTGGTGTATCCTCGCTCCCTCCTTTCTTCGTC
NPF5.4TGAAGTTAGCAGCATCGGTTGTTCCAACACTTCCAAGAGGGT
PLKTTGCGGCACTACGAGGTTGTTCCCCAATCATTCAATCTCCATACC
PME7CGCTGGACAAGAAAGATACCGGACACGCCGAGTGACATCATAGA
RABA1fACAAGGCTCACCATTTCCACATGGGTCCCAGATACGAGGTTTTC
SGT1TCATTGCCAACACTAAAGCACACATCCTAAGGCTACTCTGGAATCTGGGT
VPS13FTTGAGCCATCGTGGTGAAGGGGCAGCAGGATTTGCGGTGTT
WD40ATGCCCTCCTTCAATGCGTCCCAATACCGATGAACAGCC
β-man6GATGATTGGTGGAGGAATGAGCAGTCGTCTGCTGCTTTAGAGGTCAC
His3 (reference gene)GTGGAGTCAAGAAGCCTCACAGATGGCTCTGGAAACGCAAA

新窗口打开|下载CSV

2 结果与分析

2.1 不同浓度PbCl2胁迫对红麻幼苗农艺性状的影响

对不同浓度PbCl2胁迫下红麻幼苗农艺性状的测定发现(表3), 低浓度(200 μmol L-1) PbCl2胁迫对幼苗的株高、全鲜重和根鲜重无显著抑制, 中浓度(400 μmol L-1)及高浓度(600 μmol L-1)胁迫下均出现显著抑制。说明低浓度PbCl2胁迫对红麻幼苗生长无明显的影响, 红麻具有较强的铅耐受性。不同浓度PbCl2胁迫均显著抑制了幼苗的茎粗、根长和根表面积。中浓度和高浓度PbCl2胁迫对幼苗生长的抑制除在株高方面呈显著性差异外, 在其他方面均无显著性差异。

Table 3
表3
表3不同浓度PbCl2胁迫对红麻幼苗农艺性状的影响
Table 3Effects of different concentrations of PbCl2 on agronomic characters of kenaf seedlings
PbCl2浓度
Concentration of PbCl2 (μmol L-1)
株高
Plant height
(cm)
茎粗
Stem diameter (mm)
全鲜重
Fresh weight
(g)
根鲜重
Root fresh weight (g)
根长
Root length
(cm)
根表面积
Root surface area (cm2)
018.12±0.42 a2.01±0.02 a14.33±0.61 a2.71±0.17 a105.79±12.13 a16.70±1.38 a
20018.18±0.20 a1.78±0.01 b13.58±0.50 a2.48±0.15 a76.99±4.53 b13.53±0.61 b
40014.90±0.05 b1.64±0.06 c8.91±0.16 b1.27±0.01 b34.60±1.09 c6.51±0.32 c
60012.18±0.20 c1.52±0.03 c7.27±0.27 b1.00±0.04 b28.79±1.84 c5.12±0.44 c
不同小写字母表示在0.05水平差异显著。
Values followed by different lowercase letters indicate significant difference at the 0.05 probability level.

新窗口打开|下载CSV

2.2 不同浓度PbCl2胁迫对红麻幼苗根系铅含量的影响

图1可知, 随着PbCl2浓度的逐渐增加, 根系中的铅含量显著升高。红麻幼苗根系的铅含量在对照条件下为3.59 mg kg-1, 低浓度(200 μmol L-1)、中浓度(400 μmol L-1)和高浓度(600 μmol L-1) PbCl2胁迫分别使根系的铅含量增加了34、138和203倍。结合对红麻幼苗农艺性状的测定结果得出, 本研究中不同浓度PbCl2胁迫虽然显著增加了幼苗根系中铅的积累, 但是并没有严重影响到红麻的生长, 说明红麻对铅胁迫具有较强的耐受性。

图1

新窗口打开|下载原图ZIP|生成PPT
图1不同浓度PbCl2胁迫对根系铅含量的影响

不同小写字母表示在0.05水平差异显著。
Fig. 1Effects of different concentrations of PbCl2 on lead contents in roots

Bars superscripted by different lowercase letters indicate significant differences at the 0.05 probability level.


2.3 不同浓度PbCl2胁迫对红麻幼苗根系抗氧化系统的影响

图2可知, 随着PbCl2胁迫浓度的升高, 红麻幼苗根系的O2? (图2-A)和MDA含量(图2-B)、以及SOD活性(图2-C)总体上都呈逐渐上升的趋势。POD活性(图2-D)呈先下降后缓慢上升的趋势, 高浓度(600 μmol L-1) PbCl2胁迫下活性最高, 其次为对照条件和中浓度(400 μmol L-1), 低浓度(200 μmol L-1) PbCl2胁迫下活性最低。CAT活性(图2-E)呈先上升后降低的趋势, 中浓度PbCl2胁迫下活性最高, 其次为高浓度和低浓度, 对照条件下活性最低。各项指标在不同浓度PbCl2胁迫下都呈显著性差异。即不同浓度PbCl2胁迫均使红麻幼苗根系的O2?和MDA含量升高, SOD和CAT活性上升。POD活性在高浓度胁迫下升高, 中浓度和低浓度胁迫下降低。说明铅胁迫使红麻幼苗根系发生了膜脂过氧化, 但其自身的抗氧化酶活性也会相应提高, 以清除过量ROS的产生, 使铅胁迫对幼苗的伤害降到最低。

图2

新窗口打开|下载原图ZIP|生成PPT
图2不同浓度PbCl2胁迫对根系抗氧化系统的影响

不同小写字母表示在0.05水平差异显著。
Fig. 2Effects of different concentration of PbCl2 on physiological indicators of roots

Bars superscripted by different lowercase letters indicate significant differences at the 0.05 probability level.


2.4 PbCl2胁迫对红麻幼苗根系DNA甲基化水平的影响

运用MSAP技术分析了600 μmol L-1 PbCl2胁迫和对照条件下红麻幼苗根系的DNA甲基化水平, 部分代表性聚丙烯酰胺凝胶电泳结果见图3, 统计结果见表4。对照条件下, 幼苗根系的DNA甲基化率为71.13%, 其中全甲基化率和半甲基化率分别为50.52%和20.62%。600 μmol L-1 PbCl2胁迫下, 幼苗根系的DNA甲基化率为62.2%, 其中全甲基化率和半甲基化率分别为37.8%和24.4%。即600 μmol L-1 PbCl2胁迫使幼苗根系的DNA甲基化率和全甲基化率降低, 半甲基化率升高。表明在整体水平上, 600 μmol L-1 PbCl2胁迫降低了红麻幼苗根系的DNA甲基化水平。

图3

新窗口打开|下载原图ZIP|生成PPT
图3MSAP聚丙烯酰胺凝胶电泳图

泳道1和3代表EcoR I/Hpa II酶切, 泳道2和4代表EcoR I/Msp I酶切。1和2: PbCl2-0; 3和4: PbCl2-600。虚线方框: I型(无甲基化); 白色方框: II型(半甲基化); 黑色方框: III型(全甲基化); 虚点方框: IV型(全甲基化)。
Fig. 3MSAP acrylamide gel analysis

The left lane 1, 3 and right lane 2, 4 represent digestion with EcoR I/ Hpa II and EcoR I/Msp I respectively. The lane 1, 2, and 3, 4 represent the PbCl2-0, PbCl2-600 respectively. The dotted line frame, white frame, black frame and virtual point frame represent the type I (no methylation), type II (hemi-methylation), type III (full methylation), and type IV (full methylation), respectively.


Table 4
表4
表4DNA甲基化水平统计分析
Table 4Statistical analysis of DNA methylation level
甲基化类型
Methylation type
PbCl2浓度PbCl2 concentration变化比率(上升↑, 下降↓)
Exchange rate (up↑, down↓)
0 μmol L-1600 μmol L-1
类型I (无甲基化) Type I (unmethylation)8311032.53↑
类型II (半甲基化) Type II (hemi-methylation)617116.39↑
类型III, IV (全甲基化) Type III and IV (full methylation)14711025.17↓
半甲基化率Hemi-methylated ratio (%)20.6224.4018.33↑
全甲基化率Fully methylated ratio (%)50.5237.8034.20↓
甲基化率/MSAP Total methylated ratio/MSAP (%)71.1362.2012.55↓

新窗口打开|下载CSV

2.5 甲基化差异片段的测序及qRT-PCR分析

本研究共扩增出291条MSAP多态性片段, 回收到97条DNA甲基化差异片段, 测序比对得到38条具有功能的DNA甲基化差异序列。与植物生长发育和响应逆境相关的甲基化差异序列测序结果见表5, 其中14条DNA甲基化差异序列比对到的同源基因与响应植物抗逆性密切相关, 例如AT-hook家族基因(AHL23)、SGT家族基因(SGT1)、S-腺苷-L-蛋氨酸依赖性甲基转移酶家族蛋白(SAM- MET)、NRT1/PTR家族蛋白(NPF5.4)、RaBa家族蛋白(RaBa1f)、Ran GTPase结合蛋白(GTPase)、WD40重复序列蛋白(WD40)、乙烯过表达蛋白(ETO1)、液泡分选蛋白(VPS13F)、β-甘露聚糖酶(β-man6)、类受体蛋白激酶(PLK)、纤维素合成酶(CesA2)、果胶酯酶抑制剂(PME7)、线粒体内膜转位因子(TIM21)。

Table 5
表5
表5甲基化差异片段比对分析
Table 5Comparisons analysis of differentially methylated sequences
基因名
Gene name
片段大小
Fragment length (bp)
基因代号或ID
Gene symbol or ID
基因全称
Gene full name
功能注释
Functional annotation
7-dlgase255Hca.05G0009940Hca. flavonol-3-O-glycoside-7-O-glucosyltransferase 1将UDP-糖基供体转移到花色素的C7羟基(羧基)[18]
Transfer UDP glycosyl donor to C7 hydroxy (carboxy) of anthocyanins.
AHL23110Hca.02G0040470Hca. AT hook motif domain containing proteinAT-hook家族蛋白在植物生长发育、激素信号转导和逆境胁迫应答中发挥重要作用[19]
At-hook family proteins play an important role in plant growth and development, plant hormone signal transduction and stress response.
CesA2140Hca.03G0045600Hca. CESA1-cellulose synthaseCesA影响初生壁和次生壁的生物合成,响应植物的抗病性[20]
CesA affects cell wall biosynthesis and responds to plant disease resistance.
chD12136CP023742Gossypium hirsutum cultivar TM1 chromosome D12尚未见报道。
Has not been reported.
EF1B/S6131Hca.09G0002430Hca. eukaryotic translation initiation factor 3 subunit D尚未见报道。
Has not been reported.
ETO1178Hca.13G0028050Hca. ethylene-responsive protein related乙烯调控种子萌发、器官衰老、生物和非生物胁迫等过程。
Ethylene regulates seed germination, organ senescence, biotic and abiotic stress.
GTPase361Hca.01G0050250Hca. RAN GTPase-activating protein 1参与调控细胞周期中各个时期的细胞生命活动。
It is involved in the regulation of cell activities at various stages of the cell cycle.
Kinase165Hca.02G0009450Hca. protein kinase family protein尚未见报道。
Has not been reported.
mit-gene247KR736346Gossypium trilobum mitochondrion, complete genome尚未见报道。
Has not been reported.
NPF5.4269LOC108487536Gossypium arboreum protein NRT1/ PTR FAMILY 5.4-likeNRT1/PTR家族蛋白参与转运植物激素及次生代谢物合成过程。
NRT1/PTR family proteins are involved in the transport of plant hormones and the synthesis of secondary metabolites.
Phosphatase248Hca.13G0013080Hca. phosphatidic acid phosphatase-related参与磷酸基团转移、代谢等生理过程。
It is involved in the transfer and metabolism of phosphate groups.
PLK265Hca.15G0014780Hca. receptor-like protein kinase类受体激酶通过接收和传递胞外信号调控细胞的生理反应,参与植物生长发育过程。
Receptor-like protein kinase regulates cellular physiological responses by receiving and transmitting extracellular signals and are involved in plant growth and development.
PME7117Hca.01G0006960Hca. pectinesterase果胶酯酶抑制剂在植物生长发育和响应逆境胁迫中发挥重要作用[21]
Pectinesterase inhibitor plays an important role in plant growth and response to stress.
PMT24171Hca.15G0021740Hca. methyltransferase催化腐胺向N-甲基腐胺的转化。
Catalyze the conversion of putrescine to N-methylputrescine.
RaBa1f170LOC105766406Gossypium raimondii ras-related protein RABA1fRABA家族蛋白在调控根毛扩张?细胞壁组分、响应生物胁迫等方面发挥重要作用。
RABA family protein plays an important role in regulating root hair expansion, cell wall components and responding to biological stress.
SAM-MET114Hca.18G0000220Hca. S-adenosyl-L-methionine-dependent methyltransferases催化的甲基化修饰对植物信号传导、染色体表达和基因沉默等起重要的调节作用。
Catalytic methylation plays an important role in regulating signal transduction, chromosome expression and gene silencing in plants.
SGT1300Hca.02G0014470Hca. SGT1 proteinSGT1基因与植物与植物响应生物和非生物胁迫密切相关 。
SGT1 gene is closely related to plant response to biotic and abiotic stress.
TIM21257Hca.12G0027090Hca. mitochondrial import inner membrane translocase subunit Tim负责线粒体内膜的转运与装配[22]
Responsible for the transport and assembly of mitochondrial intima.
TPR353Hca.17G0008870Hca. tetratricopeptide repeat domain containing protein介导与蛋白质的相互作用。
Mediates interactions with proteins.
VPS13F102Hca.05G0005060Hca. vacuolar protein sorting-associated protein 16液泡分选相关蛋白参与调控主根的发育和植株生长素响应过程。
Vacuolar protein sorting-associated protein are involved in the regulation of taproot development and auxin response.
WD40140Hca.01G0001440Hca. katanin p80 WD40 repeat-containing subunit B1 homolog 1WD40是拟南芥生长发育和胁迫信号传递的关键调控因子[23]
WD40 is a key regulator of Arabidopsis growth and stress signal transmission.
β-man6188Hca.02G0010790Hca. alpha-mannosidase 2α-甘露聚糖酶引导蛋白的跨膜运输。
alpha-mannosidase guides the transmembrane transport of proteins.

新窗口打开|下载CSV

挑选以上部分DNA甲基化差异基因对600 μmol L-1 PbCl2胁迫和对照条件下的红麻幼苗根系进行qRT-PCR分析。由图4可知, 11个与响应植物抗性密切相关的DNA甲基化差异基因中, 有7个基因在PbCl2胁迫下的表达量与对照呈显著性差异。其中基因AHL23CesA2NPF5.4PME7SGT1的表达量在PbCl2胁迫下显著降低, 基因PLKRaBa1fWD40的表达量在PbCl2胁迫下显著升高。说明这些基因的DNA甲基化情况变化与基因表达水平变化密切相关, 并且DNA甲基化变化对基因表达水平的影响是复杂多样的。DNA甲基化水平的升高大多数情况下抑制基因的表达, 但也存在对基因表达水平起促进作用, 或者无显著影响的情况[4]

图4

新窗口打开|下载原图ZIP|生成PPT
图4PdCl2胁迫下甲基化差异片段的qRT-PCR分析

不同小写字母表示在0.05水平差异显著。
Fig. 4qRT-PCR analysis of the differentially methylated sequences under PdCl2 stress

Bars superscripted by different lowercase letters indicate significant differences at the 0.05 probability level.


3 讨论

3.1 红麻可以作为修复铅污染土壤的潜在作物

研究表明, 禾本科牧草和黄化枫林木的生物量随着土壤中铅浓度的逐渐增加呈先升高后降低的趋势[24,25], 低浓度铅胁迫可以促进小麦种子的萌发[25]。本研究表明, 低浓度(200 μmol L-1) PbCl2胁迫对红麻幼苗的生长无明显的影响, 而在较高浓度(400 μmol L-1以上)则表现出明显的抑制, 并且一定浓度范围内(400~600 μmol L-1)铅胁迫对幼苗生长的抑制并无显著性差异, 表明红麻具有较强的铅耐受性。由于红麻以收获营养器官为目的, 不进入食物链, 因此生产上可以利用红麻能够吸收土壤中的重金属铅, 并且对其产量无明显影响的优势来改良土壤。

植物在正常的生长发育条件下, 活性氧的产生与清除之间时常处于良性的动态平衡状态[27]。当植物遭受生物或非生物胁迫后, 这种动态平衡就会被打破, 导致植物体内积累大量的活性氧, 例如积累过量的O2-使膜发生过氧化作用, 产生过量丙二醛(MDA), 使细胞膜及细胞器破坏解体, 最终影响植物的生长发育[23-24,27]。与此同时, 当植物遭受逆境胁迫时, 负责清除活性氧的抗氧化酶等系统的活性会相应提高, 使对植物的伤害降到最低, 但当胁迫程度严重时, 会引起抗氧化酶系统紊乱, 无力清除更多的活性氧, 最终严重影响植物的生长发育[28,29]。本研究表明, 不同浓度PbCl2胁迫均显著提高了红麻幼苗根系的O2?和MDA含量, 以及SOD和CAT的活性, POD活性也在高浓度铅胁迫下显著升高。表明红麻具有较强的抗氧化系统, 可以在一定范围内清除铅胁迫产生的ROS以缓解对红麻生长的影响。

3.2 铅胁迫降低了红麻幼苗根系的DNA甲基化水平

本研究首次检测了红麻幼苗根系的DNA甲基化水平, 并得出600 μmol L-1 PbCl2胁迫使幼苗根系的DNA甲基化率和全甲基化率降低, 半甲基化率升高, 即整体上降低了幼苗根系的DNA甲基化水平。这与李雪林等[30]和高桂珍等[31]在其他作物中的研究结果一致, 但也有相反的结论[8,9]。这可能是由于不同作物和不同非生物胁迫的特性, 或者铅胁迫浓度和处理时间不同而导致的。也有研究表明, 枫树在不同浓度盐胁迫下的DNA甲基化水平变化情况不同, 并且相同浓度盐胁迫对不同组织DNA甲基化水平变化的影响也不尽相同[31], 说明植物响应非生物胁迫时, DNA甲基化情况变化的复杂性。

3.3 红麻铅胁迫下DNA甲基化变化参与调控抗性相关基因的表达

本研究发现了7个已报道的与植物抗逆性密切相关的基因在铅胁迫下同时存在DNA甲基化和基因表达水平的差异, 因此我们推测DNA甲基化水平的变化可能参与调控这些基因的表达, 进而调控红麻对铅胁迫的响应。在水稻中已经鉴定出49个与生长发育和响应胁迫相关的果胶酯酶抑制剂PMEI家族基因[21]。PMEI家族基因参与植物油菜素内酯的调节[33], 很多基因也抑制蔗糖转移酶的活性[21], 影响植物的抗逆性。本研究中甲基化差异基因PME7在铅胁迫下几乎不表达, 因此可能对油菜素内酯和蔗糖的合成起到促进作用, 提高红麻幼苗对铅胁迫的适应性。纤维素合酶CesA在纤维素和细胞壁结构的合成中起重要作用[20,34], 拟南芥CesA3CesA7基因表达水平的下调可以增强对葡萄孢菌的抗病性[35]。DNA甲基化可能通过调控纤维素合成酶基因的表达促进纤维素的合成, 最终可以提高拟南芥的抗盐性[36]。本研究中纤维素合酶CesA2的甲基化情况在铅胁迫下发生了改变, 基因表达量显著下调, 因此推测其甲基化情况的变化在调控基因表达、促进纤维素合成, 进而在响应铅胁迫方面起到了一定的作用。AT-hook家族基因在植物的生长发育、植物激素信号转导和响应逆境胁迫中起重要的作用, 部分AT-hook家族基因表达量的变化很可能参与到了番茄响应逆境胁迫中[19]。NRT1/PTR家族蛋白在植物转运硝酸盐、钾盐、氨基酸和植物激素过程中起重要的作用[37,38]。本研究中AT-hook家族的甲基化差异基因AHL23在铅胁迫下几乎不表达, NRT1/PTR家族基因NPF5.4在铅胁迫下的表达量显著降低, 可能会影响营养元素和植物激素的转运, 使红麻幼苗在铅胁迫下生长受抑。有研究报道SGT1家族基因与植物的抗病性密切相关[39], 李为民等[40]研究发现, 过表达SGT1的转基因烟草对赤星病菌的抗性明显提高, 拟南芥SGT1基因突变体对霜霉病的抗性大大降低[39]。本研究中, 甲基化情况的变化使得抗病基因SGT1的表达量显著降低, 且该基因也可能参与到了植物非生物胁迫的响应中。

类受体蛋白激酶PLKs广泛参与植物细胞信号转导和逆境胁迫的响应过程, 水稻PLKN1基因正向调控水稻的抗盐性, 高盐胁迫下其突变体的存活率降低, MDA含量升高, SOD和CAT活性降低[41]。本研究中甲基化差异基因PLK在铅胁迫下的表达量显著升高, 因此可能抑制MDA的积累, 提高抗氧化酶的活性, 进而提高红麻幼苗对铅胁迫的适应性。RaBa家族基因在植物响应生物和非生物胁迫中发挥重要的作用[42], 转PtRabA2f基因拟南芥受胁迫的影响更小[43]。核桃WD40转录因子JrATG18a基因参与到了逆境胁迫的响应当中[44], 夏凯文[23]也发现, WD40重复序列结构域蛋白是拟南芥生长发育和胁迫信号传递的关键调控因子。本研究中甲基化差异基因RaBa1fWD40在铅胁迫下的表达量均显著提高, 因此推测DNA甲基化水平的变化参与以上抗性基因的表达, 从而启动了红麻幼苗对铅胁迫的应急响应。

4 结论

红麻对铅胁迫具有较强的耐受性, 并且一定浓度范围内的铅胁迫对红麻生长的抑制无显著差异, 生产上可以利用红麻来改良重金属铅污染土壤。一定浓度范围内的铅胁迫下, 红麻幼苗可以通过提高自身的抗氧化酶活性来清除过量ROS的产生。600 μmol L-1 PbCl2胁迫使幼苗根系整体的DNA甲基化水平降低, 与植物抗逆性密切相关的AT-hook家族基因、NRT1/PTR家族蛋白、RaBa家族蛋白、SGT家族基因、WD40重复序列蛋白、类受体蛋白激酶、纤维素合成酶等相关基因在铅胁迫下都发生了DNA甲基化和基因表达水平的显著变化。推测红麻幼苗可以通过自身的抗氧化酶系统, 及DNA甲基化水平变化来响应铅胁迫, 以消除或减轻铅胁迫对红麻生长的影响。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Wadhwa S K, Tuzen M, Kazi T G, Soylak M, Hazer B. Polyhydroxybutyrate-b-polyethyleneglycol block copolymer for the solid phase extraction of lead and copper in water, baby foods, tea and coffee samples
Food Chem, 2014,152:75-80.

DOI:10.1016/j.foodchem.2013.11.133URLPMID:24444908 [本文引用: 1]
A new adsorbent, polyhydroxybutyrate-b-polyethyleneglycol, was used for the separation and preconcentration of copper(II) and lead(II) ions prior to their flame atomic absorption spectrometric detections. The influences of parameters such as pH, amount of adsorbent, flow rates and sample volumes were investigated. The polymer does not interact with alkaline, alkaline-earth metals and transition metals. The enrichment factor was 50. The detection limits were 0.32 mug L(-1) and 1.82 mug L(-1) for copper and lead, respectively. The recovery values were found >95%. The relative standard deviations were found to be less than 6%. The validation of the procedure was performed by analysing certified reference materials; NIST SRM 1515 Apple leaves, IAEA-336 Lichen and GBW-07605 Tea. The method was successfully applied for the analysis of analytes in water and food samples.

Chen P, Ran S, Li R, Huang Z, Qian J, Yu M, Zhou R. Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf (Hibiscus cannabinus L.)
Mol Breed, 2014,34:1879-1891.

[本文引用: 2]

Finnegan E J, Peacock W J, Dennis E S. DNA methylation, a key regulator of plant development and other processes
Curr Opin Genet Dev, 2000,10:217-223.

DOI:10.1016/s0959-437x(00)00061-7URLPMID:10753779 [本文引用: 1]
Recent research has demonstrated that DNA methylation plays an integral role in regulating the timing of flowering and in endosperm development. The identification of key genes controlling these processes, the expression of which is altered in plants with low methylation, opens the way to understanding how DNA methylation regulates plant development.

Chinnusamy V, Zhu J K. Epigenetic regulation of stress responses in plants
Curr Opin Plant Biol, 2009,12:133-139.

DOI:10.1016/j.pbi.2008.12.006URLPMID:19179104 [本文引用: 2]
Gene expression driven by developmental and stress cues often depends on nucleosome histone post-translational modifications and sometimes on DNA methylation. A number of studies have shown that these DNA and histone modifications play a key role in gene expression and plant development under stress. Most of these stress-induced modifications are reset to the basal level once the stress is relieved, while some of the modifications may be stable, that is, may be carried forward as 'stress memory' and may be inherited across mitotic or even meiotic cell divisions. Epigenetic stress memory may help plants more effectively cope with subsequent stresses. Comparative studies on stress-responsive epigenomes and transcriptomes will enhance our understanding of stress adaptation of plants.

葛才林, 杨小勇, 刘向农, 孙锦荷, 罗时石, 王泽港. 重金属对水稻和小麦DNA甲基化水平的影响
植物生理与分子生物学学报, 2002,28:363-368.

[本文引用: 1]

Ge C L, Yang X Y, Liu X N, Sun J H, Luo S S, Wang Z G. Effects of heavy metal on the DNA methylation level in rice and wheat
J Plant Physiol Mol Biol, 2002,28:363-368 (in Chinese with English abstract).

[本文引用: 1]

Michael M C, Michael N, Eberhard R. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases
Nucleic Acids Res, 1994,22:3640-3559.

[本文引用: 1]

李增强, 史奇奇, 孔祥军, 汤丹峰, 廖小芳, 韦范, 何冰, 莫良玉, 周瑞阳, 陈鹏. 红麻不育系与保持系基因组DNA甲基化比较分析
中国农业大学学报, 2017,22(11):17-27.

[本文引用: 2]

Li Z Q, Shi Q Q, Kong X J, Tang D F, Liao X F, Wei F, He B, Mo L Y, Zhou R Y, Chen P. Comparative analysis on the kenaf (Hibiscus cannabinus L.) genomic DNA methylation of its male sterility line and maintainer line
J China Agric Univ, 2017,22(11):17-27 (in Chinese with English abstract).

[本文引用: 2]

何玲莉, 沈虹, 王燕, 王娟娟, 龚义勤, 徐良, 柳李旺. 铅胁迫下萝卜基因组DNA甲基化分析
核农学报, 2015,29:1278-1284.

[本文引用: 2]

He L L, Shen H, Wang Y, Wang J J, Gong Y Q, Xu L, Liu L W. Analysis of genomic DNA methylation level in radish under lead stress
J Nuclear Agric Sci, 2015,29:1278-1284 (in Chinese with English abstract).

[本文引用: 2]

郭单蒂. 重金属Pb、Cd对中华水韭(Isoetes sinensis) DNA甲基化的影响. 哈尔滨师范大学硕士学位论文,
黑龙江哈尔滨, 2014.

[本文引用: 2]

Guo S D. The Effect of Heavy metals of Pb and Cd on DNA Methylation in Isoetes sinensis
MS Thesis of Harbin Normal University, Harbin, Heilongjiang,China, 2014 (in Chinese with English abstract).

[本文引用: 2]

殷欣. 镉胁迫下大豆生理生化特性及DNA甲基化变异的研究. 哈尔滨师范大学硕士学位论文,
黑龙江哈尔滨, 2016.

[本文引用: 1]

Yin X. Soybean Physiological and Biochemical Characteristics and DNA Methylation Variation under Cadmium Stress
MS Thesis of Harbin Normal University, Harbin, Heilongjiang,China, 2016 (in Chinese with English abstract).

[本文引用: 1]

Sciandrello G, Caradonna F, Mauro M, Barbata G. Arsenic- induced DNA hypomethylation affects chromosoma instability in mammalian cells
Carcinogenesis, 2004,25:413-417.

URLPMID:14633664 [本文引用: 1]

曹翠玲, 麻鹏达. 植物生理学教学实验指导. 西安: 西北农林科技大学出版社, 2016. pp 96-99.
[本文引用: 2]

Cao C L, Ma P D. Experimental Guidance of Plant Physiology. Xi’an: Northwest A&F University Press, 2016. pp 96-99(in Chinese).
[本文引用: 2]

王学奎, 黄见良. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2015. pp 282-286.
[本文引用: 3]

Wang X K, Huang J L. The Principle and Technology of Plant Physiology and Biochemistry Experiment. Beijing: Higher Education Press, 2015. pp 282-286(in Chinese).
[本文引用: 3]

Tang X M, Tao X, Wang Y, Ma D W, Li D, Yang H, Ma X R. Analysis of DNA methylation of perennial ryegrass under drought using the methylation-sensitive amplification polymorphism (MSAP) technique
Mol Genet Genomics, 2014,289:1075-1084.

[本文引用: 1]

李荣华, 夏岩石, 刘顺枝, 孙莉丽, 郭培国, 缪绅裕, 陈健辉. 改进的CTAB提取植物DNA方法
实验室研究与探索, 2009,28(9):14-16.

[本文引用: 1]

Li R H, Xia Y S, Liu S Z, Sun L L, Guo P G, Miao S Y, Chen J H. CTAB-improved method of DNA extraction in plant
Res Exp Lab, 2009,28(9):14-16 (in Chinese with English abstract).

[本文引用: 1]

Zhang L W, Xu Y, Zhang X T, Ma X K, Zhang L L, Liao Z Y, Zhang Q, Wan X B, Chang Y, Zhang J S, Li D X, Zhang L M, Xu J T, Tao A F, Lin L H, Fang P P, Chen S, Qi R, Xu X M, Qi J M, Ming R. The genome of kenaf (Hibiscus cannabinus L.) provides insights into bast fibre and leaf shape biogenesis
Plant Biotechnol J, 2020,18:1796-1809.

[本文引用: 1]

王春晖, 赵云雷, 王红梅, 陈伟, 龚海燕, 桑晓慧. 适用于转录组测序的棉花幼根总RNA提取方法筛选
棉花学报, 2013,25:372-376.

[本文引用: 1]

Wang C H, Zhao Y L, Wang H M, Chen W, Gong H Y, Sang X H. Screening of methods to isolate high-quality total RNA from young cotton roots
Cotton Sci, 2013,25:372-376 (in Chinese with English abstract).

[本文引用: 1]

原晓龙, 陈剑, 陈中华, 华梅, 王娟, 王毅. 滇牡丹类黄酮7-O-葡萄糖基转移酶基因的鉴定与表达分析
西部林业科学, 2018,47(5):19-25.

[本文引用: 1]

Yuan X L, Chen J, Chen Z H, Hua M, Wang J, Wang Y. Characterization and expression analysis of a favonoid 7-O-glucosyltransferase gene in Paeonia delavayi
J West China For Sci, 2018,47(5):19-25 (in Chinese with English abstract).

[本文引用: 1]

丁丽雪, 李涛, 李植良, 徐小万, 李颖, 王恒明, 王永飞, 马三梅, 黎振兴. 番茄AT-hook基因家族的鉴定及胁迫条件下的表达分析
植物遗传资源学报, 2016,17:303-315.

[本文引用: 2]

Ding L X, Li T, Li Z L, Xu X W, Li Y, Wang H M, Wang Y F, Ma S M, Li Z X. Genome-wide identification and expression analysis in oxidative stress of AT-hook gene family in tomato
J Plant Genet Resour, 2016,17:303-315 (in Chinese with English abstract).

[本文引用: 2]

Ana Ca?o-Delgado, Penfield S, Smith C, Catley M, Bevan M. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana
Plant J, 2003,34:351-362.

[本文引用: 2]

Nguyen H P, Jeong H Y, Kim H, Kim Y C, Lee C. Molecular and biochemical characterization of rice pectin methylesterase inhibitors (OsPMEIs)
Plant Physiol Biochem, 2016,101:105-112.

[本文引用: 3]

陈江淑, 邓治, 刘辉, 范玉龙, 姜达, 夏立琼, 夏志辉, 李德军. 巴西橡胶树TIM23-1基因克隆、进化及表达分析
植物生理学报, 2015,51:1735-1742.

[本文引用: 1]

Chen J S, Deng Z, Liu H, Fan Y L, Jiang D, Xia L Q, Xia Z H, Li D J. Cloning, phylogenetic and expression analyses of TIM23-1 gene in Hevea brasiliensis
Plant Physiol Commun, 2015,51:1735-1742 (in Chinese with English abstract).

[本文引用: 1]

夏凯文. 拟南芥WD40家族蛋白TAWD在抵御高温胁迫中的功能研究. 华中师范大学硕士学位论文,
湖北武汉, 2019.

[本文引用: 3]

Xia K W. Function Study of the WD40-repeat Protein TAWA in Arabidopsis Thermotolerance
MS Thesis of Central China Normal Unversity, Wuhan, Hubei,China, 2019 (in Chinese with English abstract).

[本文引用: 3]

李慧芳, 王瑜, 袁庆华, 赵桂琴. 铅胁迫对禾本科牧草的生长及体内酶活性的影响
种子, 2014,33(8):1-7

[本文引用: 2]

Li H F, Wang Y, Yuan Q H, Zhao G Q. The impacts of lead stress on the growth of forage grasses and their enzyme activities
Seed, 2014,33(8):1-7 (in Chinese with English abstract).

[本文引用: 2]

张博宇. 铅胁迫对黄花风铃木幼苗生长和生理的影响
广西大学硕士学位论文,广西南宁, 2019.

[本文引用: 2]

Zhang B Y. Effects of Lead Stress on Growth and Physiology of Tabebuia chrysantha Seedlings
MS Thesis of Guangxi University, Nanning, Guangxi,China, 2019 (in Chinese with English abstract).

[本文引用: 2]

周秋峰, 于沐, 赵建国, 张果果. 重金属胁迫对小麦生长发育及相关生理指标的影响
中国农学通报, 2017,33(33):7-14.



Zhou Q F, Yu B, Zhao J G, Zhang G G. Heavy metal stress on growth and development and physiological indexes of wheat
Chin Agric Sci Bull, 2017,33(33):7-14 (in Chinese with English abstract).



Roychoudhury A, Basu S, Sarkar S N, Sengupta D N. Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars
Plant Cell Rep, 2008,27:1395-1410.

[本文引用: 2]

Liang W, Ma X, Wan P, Liu L. Plant salt-tolerance mechanism: a review
Biochem Biophys Res Commun, 2017,495:286-291.

[本文引用: 1]

Zhu J K. Abiotic stress signaling and responses in plants
Cell, 2016,167:313-324.

[本文引用: 1]

李雪林, 林忠旭, 聂以春, 郭小平, 张献龙. 盐胁迫下棉花基因组DNA表观遗传变化的MSAP分析
作物学报, 2009,35:588-596.

[本文引用: 1]

Li X L, Lin Z X, Nie Y C, Guo X P, Zhang X L. MSAP analysis of epigenetic changes in cotton (Gossypium hirsutum L.) under salt stress
Acta Agron Sin, 2009,35:588-596 (in Chinese with English abstract).

[本文引用: 1]

高桂珍, 应菲, 陈碧云, 李浩, 吕晓丹, 闫贵欣, 许鲲, 伍晓明. 热胁迫过程中白菜型油菜种子DNA的甲基化
作物学报, 2011,37:1597-1604.

[本文引用: 2]

Gao G Z, Ying F, Chen B Y, Li H, Lyu X D, Yan G X, Xu K, Wu X M. DNA methylation of seed in response to heat stress in Brassica rapa L
Acta Agron Sin, 2011,37:1597-1604 (in Chinese with English abstract).

[本文引用: 2]

Mastan S G, Rathore M S, Bhatt V, Yadav P, Chikara J. Assessment of changes in DNA methylation by methylation-sensitive amplification polymorphism in Jatropha curcas L. subjected to salinity stress
Gene, 2012,508:125-129.



Wolf S, Mravec J, Greiner S, Grégory M, Hofte H. Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling
Curr Biol CB, 2012,22:1732-1737.

[本文引用: 1]

Ellis C. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens
Plant Cell Online, 2001,13:1025-1033.

[本文引用: 1]

Vicente R, Javier G A, Pablo V. Enhanced disease resistance to Botrytis cinereal in myb46 Arabidopsis plants is associated to an early downregulation of CesA genes
Plant Signaling Behavior, 2011,6:911-913.

URLPMID:21617373 [本文引用: 1]

王津, 韩榕. DNA甲基转移酶赋予拟南芥盐胁迫耐受性
江苏农业学报, 2019,35:1028-1031.

[本文引用: 1]

Wang J, Han R. DNA methyltransferases confer salt stress tolerance in Arabidopsis thaliana
Jiangsu J Agric Sci, 2019,35:1028-1031 (in Chinese with English abstract).

[本文引用: 1]

Li H, Yu M, Du X Q, Wang Z F, Wu W H, Quintero F J, Jin X H, Li H D, Wang Y. NRT1.5/NPF7.3 functions as a proton-coupled H+/K + antiporter for K + loading into the xylem in Arabidopsis
Plant Cell, 2017,29:2016-2026.

[本文引用: 1]

Criado M V, Roberts I N, Echeverria M, Barneix A J. Plant growth regulators and induction of leaf senescence in nitrogen-deprived wheat plants
J Plant Growth Regul, 2007,26:301-307.

[本文引用: 1]

Peart J R, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice D C, Baulcombe D C. Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants
Proc Natl Acad Sci USA, 2002,99:10865-10869.

[本文引用: 2]

李为民. 海岛棉Rar1Sgt1Rac1KTN1基因及中棉cab基因启动子的克隆和功能分析
中国农业科学院博士学位论文,北京, 2003.

[本文引用: 1]

Li W M. Cloning and Functional Analysis of Gossypium barbadense Rar1, Sgr1, Rac1, KTN1 Genes and Gossypium arboretum cab Promoter
PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing,China, 2003 (in Chinese with English abstract).

[本文引用: 1]

路凯, 张亚东, 朱镇, 陈涛, 赵庆勇, 赵凌, 周丽慧, 姚姝, 赵春芳, 梁文化, 魏晓东, 王才林. 水稻类受体蛋白激酶RLKN1在调节植物耐盐性中的功能研究
见:江苏省遗传学会2019年学术研讨会论文集. 南京: 江苏省遗传学会, 2019. p 10.

[本文引用: 1]

Lu K, Zhang Y D, Zhu Z, Chen D, Zhao Q Y, Zhao L, Zhou L H, Yao S, Zhao C F, Liang W H, Wei X D, Wang C L. Function of rice receptor-like protein kinase PLKN1 in regulating plant salt tolerance
In: Proceedings of the 2019 Academic Seminar of Jiangsu Genetics Society. Nanjing: Jiangsu Genetics Society, 2019. p 10 (in Chinese).

[本文引用: 1]

Asaoka R, Uemura T, Ito J, Fujimoto M, Ito E, Ueda T, Nakano A. Arabidopsis RABA1 GTPases are involved in transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance
Plant J, 2013,73:240-249

[本文引用: 1]

代丽红. 杨树盐逆境响应基因PtRabA2f的功能研究
黑龙江大学硕士学位论文,黑龙江哈尔滨, 2014.

[本文引用: 1]

Dai L H. Study on the Function of Salt Stress Response Gene PtRabA2f in Poplar
MS Thesis of Heilongjiang University, Harbin, Heilongjiang,China, 2014 (in Chinese with English abstract).

[本文引用: 1]

陈淑雯, 郝茜珣, 贾彩霞, 赵爱国, 李大培, 杨桂燕. 核桃WD40转录因子JrATG18a基因的克隆及逆境响应
植物遗传资源学报, 2018,19:979-986.

[本文引用: 1]

Chen S W, Hao Q X, Jia C X, Zhao A G, Li D P, Yang G Y. Identification and stress response analysis of a WD40 transcription actor JrATG18a gene from Juglans regia
J Plant Genet Resour, 2018,19:979-986 (in Chinese with English abstract).

[本文引用: 1]

相关话题/基因 植物 生物 序列 技术

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆牊顏犵紒鈧繝鍌楁斀闁绘ɑ褰冮埀顒€顕槐鎾愁潩鏉堛劌鏋戦梺鍝勫暙閻楀嫰鍩€椤戣法绐旂€殿喕绮欓、姗€鎮欓懠鍨涘亾閸喒鏀介柨娑樺娴犙呯磼椤曞懎鐏︾€殿噮鍋婇幃鈺冪磼濡攱瀚奸梻鍌欑贰閸嬪棝宕戝☉銏″殣妞ゆ牗绋掑▍鐘绘煙缂併垹鏋熼柣鎾跺枛閺岀喖宕归鍏兼婵炲瓨绮嶆竟鍡涘焵椤掑喚娼愭繛鍙夌墬閺呰埖鎯旈妸銉ь唹闂佸憡娲﹂崜姘叏濠婂牊鐓涘璺侯儏椤曟粓鏌f惔銏犫枙婵﹤顭峰畷鎺戔枎閹寸姷宕查梻渚€鈧偛鑻晶浼存煕鐎n偆娲撮柟宕囧枛椤㈡稑鈽夊▎鎰娇濠电偛顕崢褔鎮洪妸鈺傚亗闁哄洢鍨洪悡鐔镐繆椤栨繂鍚归柛娆屽亾闂備礁鎲¢悷銉р偓姘煎櫍閸┾偓妞ゆ帒鍠氬ḿ鎰箾閹绘帞绠荤€规洖缍婇幊鐐哄Ψ閵堝洨鐣鹃梻浣稿閸嬪懎煤閺嶎厽鍊峰┑鐘叉处閻撳繐鈹戦悙鑼虎闁告梹娼欓湁闁稿繐鍚嬬粈瀣叏婵犲啯銇濋柟绛圭節婵″爼宕ㄩ閿亾妤e啯鈷戦柤濮愬€曢弸鍌炴煕鎼淬垹鈻曢柛鈹惧亾濡炪倖甯婄粈渚€宕甸鍕厱婵炲棗绻愰弳娆愩亜閺囶亞绉鐐查叄閹稿﹥寰勯幇顒佹毆闂傚倷绶氬ḿ褔篓閳ь剙鈹戦垾铏枠鐎规洏鍨介弻鍡楊吋閸″繑瀚奸柣鐔哥矌婢ф鏁幒鎾额洸濞寸厧鐡ㄩ悡鏇㈡煙閹屽殶闁瑰啿娲弻鏇㈠幢濡も偓閺嗘瑩鏌嶇拠鏌ュ弰妤犵偛顑夐幃鈺冨枈婢跺苯绨ラ梻鍌氬€风粈渚€骞夐敓鐘冲仭闁挎洖鍊归弲顏堟煟鎼淬値娼愰柟鍝デ硅灋婵炴垯鍨归悞鍨亜閹烘垵鏋ゆ繛鍏煎姈缁绘盯骞撻幒鏃傤啋閻庤娲樼换鍫ョ嵁鐎n喗鏅濋柍褜鍓熷鍛婄瑹閳ь剟寮婚悢鐓庣鐟滃繒鏁☉銏$厸闁告侗鍠楅崐鎰版煛鐏炶濮傞柟顔哄€濆畷鎺戔槈濮楀棔绱�闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸婂潡鏌ㄩ弮鍫熸殰闁稿鎸剧划顓炩槈濡娅ч梺娲诲幗閻熲晠寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬪灝顒㈤柡灞诲姂閸╃偤骞嬮敃鈧壕鍏兼叏濮楀棗骞栭柡鍡楃墦濮婅櫣绮欏▎鎯у壋闂佸摜濮甸崝妤呭箲閵忕姭妲堥柕蹇曞Х椤撳搫鈹戦悙鍙夘棞缂佺粯甯楃粋鎺楁嚃閳哄啰锛滅紓鍌欓檷閸ㄥ綊鐛幇鐗堢厱閻庯綆鍋呭畷灞炬叏婵犲懏顏犻柟椋庡█瀵濡烽鐟颁壕婵°倓鑳剁弧鈧梺閫炲苯澧繛鐓庣箻婵℃悂鏁冮埀顒€顕i崸妤佺厽閹兼番鍔嶅☉褔鏌熼懞銉х煁缂佸顦濂稿幢閹邦亞鐩庨梻浣告惈缁嬩線宕戦崟顒傤浄闁挎洖鍊归悡鐔兼煙閹呮憼缂佲偓閸愵亞纾肩紓浣贯缚濞插鈧娲栧畷顒冪亽闂佸憡绻傜€氬嘲岣块弴鐐╂斀闁绘﹩鍋呮刊浼存倶閻愯埖顥夋い顐簽缁辨挻鎷呴搹鐟扮缂備浇顕ч悧鎾崇暦濞差亜鐒垫い鎺嶉檷娴滄粓鏌熼悜妯虹仴妞ゅ繆鏅濈槐鎺楁偐椤旂厧濮曢梺闈涙搐鐎氭澘顕i鈧崺鈧い鎺戝绾惧潡鏌涢幇顖氱毢闁哄棴绠撻弻鏇熷緞閸繂濮夐梺琛″亾濞寸姴顑嗛悡鐔兼煙闁箑澧紒鐙欏嫨浜滈柕澹啩妲愰梺璇″枙缁瑩銆佸☉妯峰牚闁告剬鍕垫綗婵犵數濮烽。浠嬪焵椤掆偓绾绢參宕洪敐鍡愪簻闁靛繆鍓濈粈瀣煛娴gǹ鈧潡骞冮崜褌娌柦妯侯槺椤斿洭姊婚崒姘偓鐑芥嚄閼哥數浠氶梻浣告惈閻楁粓宕滃☉姘灊婵炲棙鎸哥粻濠氭偣閸ヮ亜鐨洪柣銈呮喘濮婅櫣鍖栭弴鐐测拤闂佽崵鍣︾粻鎾崇暦閹达箑鍐€闁靛ě鍜佸晭闂備胶纭堕崜婵婃懌闁诲繐绻嬮崡鎶藉蓟閿濆绠婚悗娑欋缚椤︺劍绻涢敐鍛悙闁挎洦浜妴浣糕槈濡攱鐎婚梺鍦劋缁诲倹淇婇幎鑺モ拻濞达絽鎳欓崷顓涘亾濞戞帗娅婄€规洖缍婂畷鐑筋敇閻曚焦缍楅梻浣筋潐瀹曟﹢顢氳婢规洟宕楅崗鐓庡伎濠碘槅鍨伴幖顐﹀箖閹存惊鏃堝籍閸啿鎷绘繛鎾村焹閸嬫捇鏌嶈閸撴盯宕戝☉銏″殣妞ゆ牗绋掑▍鐘绘倵濞戞瑡缂氱紒鐘冲劤闇夐柨婵嗘噹閺嗛亶鏌涘顒碱亪鍩ユ径濞㈢喖鏌ㄧ€e灚缍岄梻鍌欑窔濞佳呮崲閸℃稑鐒垫い鎺嗗亾闁告ɑ鐗犲畷娆撴嚍閵壯呯槇闂佹眹鍨藉ḿ褍鐡梻浣瑰濞插繘宕愬┑瀣畺鐟滃海鎹㈠┑瀣倞鐟滃繘寮昏椤啴濡堕崱妤冪懆闁诲孩鍑归崣鍐箖閿熺姴唯闁冲搫鍊婚崢浠嬫⒑閸濆嫭宸濋柛瀣洴閸┾偓妞ゆ巻鍋撴繝鈧柆宥呯劦妞ゆ帊鑳堕崯鏌ユ煙閸戙倖瀚�