删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱

本站小编 Free考研考试/2021-12-26

刘荣,1,**, 王芳,1,**, 方俐,1,**, 杨涛1, 张红岩1, 黄宇宁1, 王栋1,3, 季一山1, 徐东旭2, 李冠1, 郭瑞军1, 宗绪晓,1,*1 中国农业科学院作物科学研究所作物种质资源中心, 北京 100081
2 张家口市农业科学院食用豆类研究所, 河北张家口 075000
3 山东省作物种质资源中心, 山东济南 250100

An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea

LIU Rong,1,**, WANG Fang,1,**, FANG Li,1,**, YANG Tao1, ZHANG Hong-Yan1, HUANG Yu-Ning1, WANG Dong1,3, JI Yi-Shan1, XU Dong-Xu2, LI Guan1, GUO Rui-Jun1, ZONG Xu-Xiao,1,*1 Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2 Institute of Legumes Crop, Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, Hebei, China
3 Shandong Center of Crop Germplasm Resources, Jinan 250100, Shandong, China

通讯作者: * 宗绪晓, E-mail: zongxuxiao@caas.cn

同等贡献(Contributed equally to this work)
收稿日期:2020-02-8接受日期:2020-04-15网络出版日期:2020-05-09
基金资助:国家自然科学基金项目.31801428
国家现代农业产业技术体系建设专项.CARS-08
农作物种质资源保护与利用专项.2019NWB036-07
中国农业科学院科技创新工程, 国家农作物种质资源共享服务平台.NICGR2019
国家重点研发计划项目.2017YFE0105100


Received:2020-02-8Accepted:2020-04-15Online:2020-05-09
Fund supported: National Natural Science Foundation of China.31801428
China Agriculture Research System.CARS-08
Crop Germplasm Resources Protection.2019NWB036-07
Agricultural Science and Technology Innovation Program (ASTIP) in CAAS.NICGR2019
National Infrastructure for Crop Germplasm Resources Project from the Ministry of Science and Technology of China.2017YFE0105100

作者简介 About authors
刘荣, E-mail: liurong@caas.cn;

王芳, E-mail: fwang11@huskers.unl.edu;

方俐, E-mail: hathor_fang@163.com












摘要
豌豆(Pisum sativum L.)是一种重要的食用豆类作物, 在全世界范围内广泛种植, 既可作为人类食物, 也可作为牲畜饲料。用SSR标记构建的遗传连锁图谱在豌豆和其他作物的标记辅助育种中发挥着重要的作用。尽管对豌豆遗传连锁作图的研究已有悠久历史, 但公众可获得且可转移的SSR标记以及基于遗传独特的中国豌豆种质的高密度遗传连锁图谱仍然有限。为了获得更多可转移的SSR标记和中国豌豆的高密度遗传连锁图谱, 本研究首先从自主开发和文献获取的12,491个全基因组SSR标记中筛选了617个多态性SSR标记, 并用于G0003973×G0005527 F2群体遗传连锁图谱的加密。加密后的图谱全长扩展到5330.6 cM, 包含603个SSR标记, 标记平均间距离8.8 cM, 相比之前的图谱有明显改善。基于上述结果, 我们又筛选了119个具有多态性的SSR标记, 用于构建大样本W6-22600×W6-15174 F2群体的遗传连锁图谱, 新图谱累积长度为1127.1 cM, 包含118个SSR标记, 装配在7条连锁群上。最后, 将来自以上2个遗传图谱的数据进行整合, 得到了一张覆盖范围6592.6 cM的整合图谱, 包含668个SSR标记, 由509个基因组SSR、134个EST-SSR和25个锚定标记组成, 分布在7条连锁群上。这些SSR标记和遗传连锁图谱将为豌豆的遗传研究和标记辅助育种提供有力工具。
关键词: 豌豆;SSR;遗传连锁图谱;整合图谱;标记辅助育种

Abstract
Pea (Pisum sativum L.) is an important food legume crop grown widely throughout the world for humans or livestock consumption. Genetic linkage map constructed with SSR markers have played a vital role in marker-assisted breeding of many crops including pea. Public available and transferable SSR markers and genetic linkage map with sufficient SSR markers based on genetically distinct Chinese pea germplasm are limited despite a long study history on genetic linkage mapping in pea. In this study, in order to obtain more transferable SSR markers and high resolution genetic linkage maps for Chinese pea, 617 polymorphic SSR markers were firstly screened from 12,491 genome-wide SSR markers and some related literatures by our laboratory, and these SSR markers were used to construct an enhanced genetic linkage map for the G0003973 × G0005527 F2 population. The enhanced genetic linkage map covered 5330.6 cM in total length containing 603 SSR markers with an average inter-marker distance of 8.8 cM, which was significantly improved both in marker number and in density compared with the previous map. 119 polymorphic SSR markers were screened based on the above results to develop a new map for a large W6-22600 × W6-15174 F2 population including 118 SSR markers with a cumulative length of 1127.1 cM assembled into seven genetic linkage groups. Furthermore, data from the above two genetic maps were combined to build an integrated map of 6592.6 cM, comprising 668 SSR markers, 509 genomic SSRs, 134 EST-SSRs and 25 anchor markers distributed in seven genetic linkage groups. These SSR markers and genetic linkage maps will provide a valuable tool for the genetic study and marker-assisted breeding in pea.
Keywords:pea (Pisum sativum L.);SSR;genetic linkage map;integrated map;marker-assisted breeding


PDF (1354KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506. doi:10.3724/SP.J.1006.2020.04028
LIU Rong, WANG Fang, FANG Li, YANG Tao, ZHANG Hong-Yan, HUANG Yu-Ning, WANG Dong, JI Yi-Shan, XU Dong-Xu, LI Guan, GUO Rui-Jun, ZONG Xu-Xiao. An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea[J]. Acta Agronomica Sinica, 2020, 46(10): 1496-1506. doi:10.3724/SP.J.1006.2020.04028


豌豆(Pisum sativum L.)属于豆科(Leguminosae/ Fabaceae), 野豌豆族(Vicieae), 豌豆属(Pisum), 染色体数为2n = 2x = 14, 基因组大小约为4.45 Gb[1,2]。豌豆富含蛋白质和多种营养元素, 是经济上最重要的食用豆类作物之一, 在世界范围内广泛种植, 既可以作为谷物和蔬菜供人类食用, 又可作为牲畜的饲料[3,4]。根据FAO的统计, 2018年, 豌豆(包括青豌豆和干豌豆)在全球食用豆类作物中的总产量仅次于普通菜豆; 同时, 中国青豌豆的总产量居世界首位, 而干豌豆的总产量仅次于加拿大和俄罗斯[5]。此外, 豌豆因其固氮能力而被认为是一种环境友好型作物, 在可持续农业系统中起着至关重要的作用[6]

高密度遗传连锁图谱是功能基因定位、比较基因组学以及分子辅助育种等研究的重要工具[7]。以前, 人们一直致力于利用包括RFLP、RAPD、SSR和SNP在内的多种分子标记基于不同类型的群体来构建豌豆的遗传连锁图谱[8,9,10,11,12,13,14,15]。最近, 有****针对豌豆开发了基于高密度SNP的遗传连锁图谱, 并为鉴定重要农艺性状的遗传基础提供了强大的工具[16,17,18,19]。此外, 新近公布的豌豆参考基因组也为理解豌豆关键农艺性状的分子基础并促进其育种改良奠定了重要基础[20]

SSR标记因其具有信息量丰富、共显性遗传、多等位基因、基因组覆盖广等特性, 同时在相近物种之间具有可重复性和可移植性[21,22], 在遗传多样性评估和物种亲缘关系鉴定[23,24]、遗传连锁图谱构建[25,26]、标记辅助选择[27,28]、DNA指纹图谱鉴定[29,30]等方面具有显著优势。相比基因组SSR, 位于基因区的EST-SSR因其具有更高的可转移性、较低的开发成本以及与基因的密切关系, 而越来越受到人们的重视[11,21]。然而, 尽管针对豌豆的遗传连锁作图研究已有很长的历史, 并且在豌豆中已经构建了几十种具有不同标记的遗传连锁图谱[31], 但公众可获得的可用于豌豆遗传研究的SSR上图标记较少, 同时基于遗传独特的中国豌豆种质[1,32-33]的遗传连锁图谱仍然有限。值得注意的是, 过去基于中国豌豆种质构建的遗传连锁图谱包括157个SSR标记, 分布在11个连锁群中, 全长1518 cM, 标记数量较少, 需要进一步加密并完善至7个连锁群[15]

与单个遗传连锁图谱相比, 整合遗传连锁图谱由于整合了多个群体的信息而具有多种优势[34,35], 例如具有更高的标记密度, 更完整的基因组覆盖范围, 可对不同群体进行标记共线性比较等, 在许多作物包括豌豆中均有应用[16,20,36-37]。因此, 本研究的目的如下: 1)筛选豌豆中可移植转换的SSR标记, 用于豌豆的遗传研究和分子作图。2)对我们以往基于G0003973×G0005527 F2群体, 构建的遗传连锁图谱进行加密。3)基于W6-22600×W6-15174 F2群体, 构建新的遗传连锁图谱。4)结合上述2个基于中国种质的遗传连锁图谱信息, 构建一张豌豆整合SSR遗传连锁图谱。

1 材料与方法

1.1 作图群体

本研究利用基于中国豌豆种质为亲本的2个F2群体进行遗传连锁作图。群体1 (PSP1)与本实验室之前的研究相同[15], 来自母本G0003973 (耐寒)和父本G0005527 (不耐寒)之间的杂交, 由190个F2个体组成。群体2 (PSP2)则是以母本W6-22600 (多小叶)与父本W6-15174 (无小叶)进行杂交, 由480个F2个体组成。

1.2 SSR标记筛选

利用本实验室自主开发[38]和文献获取[39,40,41]的12,491个SSR标记(包括11,145个基因组SSR和1346个EST-SSR), 对PSP1的亲本及随机选择的4个F2个体进行全基因组扫描, 筛选出多态性SSR标记用于遗传连锁作图。此外, 从以往研究中已发表的豌豆遗传连锁图谱中, 选择具有已知连锁群位置的125个SSR标记[10,42-44], 利用PSP1和PSP2的亲本和4个随机选择的F2个体来筛选锚定标记。

1.3 DNA提取和PCR扩增

在2个F2群体种植当年, 收集每个F2个体植株的嫩叶, 经液氮速冻后, 使用改良的CTAB方法[45]提取基因组DNA。用NanoDrop 2000检测DNA浓度并稀释到工作液浓度50 ng μL-1后, 于-20℃保存备用。

PCR扩增反应体系为10 μL, 包含1.5 μL基因组DNA (50 ng μL-1)、5 μL 2×Taq PCR Master Mix (Genstar, 中国北京)、0.5 μL正向引物 (2 μmol L-1)、0.5 μL反向引物 (2 μmol L-1)和2.5 μL ddH2O。PCR产物通过8%非变性聚丙烯酰胺凝胶电泳(PAGE)分离, 并通过0.1%硝酸银染色。根据片段大小记录等位基因状态, SSR标记状态编码如下: 与父本相同的带型记为“AA”, 与母本相同的带型记为“BB”; 具有双亲带型的记为“AB”; 缺失或无效的带型记为“-”。只有那些能够扩增出清晰条带并可以显示亲本多态性的SSR标记才被选择用于后续的基因分型。

1.4 遗传连锁图谱构建

分别对PSP1和PSP2的所有F2个体进行基因分型, 并去除缺失数据超过20%的标记或个体。使用χ2分析来检测标记偏分离状况, 并使用Bonferroni校正对P = 0.05的显著性水平进行校正, 在进一步的遗传作图中排除显著偏分离的标记。利用Kosambi作图函数对2个群体构建遗传连锁图谱, LOD>2。在以往公布的豌豆遗传连锁图谱的基础上, 通过筛选得到的锚定标记对每个连锁群进行分组[10,42-44]。然后, 利用共有标记将这2个群体的信息整合到一张遗传连锁图谱上。以上所有分析均利用QTL IciMapping V4.0软件完成[46]。遗传连锁图谱和物理图谱利用MapChart V2.3软件进行可视化展示[47]。然后, 本研究以新近发表的豌豆基因组为参考(Caméor genome build 1a) [20], 利用KnowPulse网站(https:// knowpulse.usask.ca/blast/nucleotide/nucleotide)的BL ASTn工具对50个共有标记的扩增片段序列进行比对, 参数选取默认参数, E-value设为1e-3

2 结果与分析

2.1 多态性标记筛选

利用本实验室自主开发[38]和文献获取[39,40,41]的12,491个SSR标记(包括11,145个基因组SSR和1346个EST-SSR), 对PSP1的亲本及随机选择的4个F2个体进行全基因组扫描, 初步筛选出扩增条带清晰且在父母本间呈多态性差异的954个多态性SSR标记, 用于PSP1群体190个F2个体的基因分型, 最终得到729个在190份F2群体单株中有清晰条带的多态性标记, 用于后续遗传连锁图谱的构建。然后利用这729个多态性标记对PSP2的亲本及随机选择的4个F2个体进行多态性检测, 最终在480个F2个体中成功筛选了103个多态性标记用于PSP2的遗传连锁图谱构建。

此外, 本研究还利用125个已知遗传连锁群位置信息的可公开获得的SSR标记[10,39-41]在2个群体中筛选锚定标记, 分别在PSP1和PSP2中鉴定出11个和17个锚定标记, 其中有3个标记为2个群体共有的锚定标记, 共计25个锚定标记, 这些标记可在后续遗传连锁图谱构建中用于分配连锁群(表1)。

Table 1
表1
表1筛选得到的25个锚定标记在以往发表豌豆遗传连锁图谱的分布
Table 1Distribution of the screened 25 anchor markers on previous genetic linkage map in pea
连锁群
Linkage group
锚定标记的数目
Number of anchor markers
锚定标记的名称
Name of anchor markers
I5AA67, AD147, AF016458, D21, PsAS2
II3AA332, AD83, D23
III4AA355, AD270, PSAJ3318, PSBLOX13.2
IV4AA430942, AA122, AA285, AA315
V1PSGAPA1
VI5AA335, AB71, AD160, AD60, PSGSR1
VII3AB65, AF004843, PSAB60

新窗口打开|下载CSV

2.2 遗传连锁图谱构建

获得所有样本的基因型数据后, 首先对所有标记进行数据完整性和偏分离检测。对于PSP1作图群体, 740个标记(包含11个锚定标记)中, 有43个标记缺失信息大于20%, 占总标记数的5.81%, 而有80个标记检测到偏分离现象, 占总标记数的10.81%。

因此, 排除这123个标记后, 共有617个标记用于后续的遗传连锁图谱分析。针对PSP1构建的遗传连锁图谱, 将603个标记分配到7条连锁群上。根据11个锚定标记, PSP1图谱的7条连锁群分别对应于以往发表的遗传连锁图谱的6条连锁群[10,39-41], 有2条连锁群均对应于LGI, 而缺少对应于LGV的连锁群, 可能是由于缺乏LGV的锚定标记。此外, 该图谱全长5330.6 cM, 相邻标记之间的平均距离为8.9 cM。每条连锁群的长度从494.9 cM (LGII)到904.7 cM (LGIV)不等, 平均为761.5 cM; 每条连锁群的标记数目从62 (LGII)到113 (LGI-2)不等, 平均为86个标记(图1表2)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1豌豆PSP1群体遗传连锁图谱

粗体代表锚定标记, 标记名称以“e”开头的为EST-SSR标记。
Fig. 1Genetic linkage map of PSP1 population in pea

The bold labels on the marker name represent anchor markers, and marker names started with “e” represent EST-SSR markers.


Table 2
表2
表2利用豌豆PSP1和PSP2群体构建的2个遗传连锁图谱的标记分布
Table 2Marker distribution on the two genetic linkage maps from PSP1 and PSP2 population in pea
连锁群
Linkage group
上图标记数目
Number of mapped markers
图谱长度
Map length (cM)
平均标记密度
Average marker density
PSP1PSP2PSP1PSP2PSP1PSP2
I7411751.0137.410.112.5
II6213494.9160.68.012.4
III9020855.3158.49.57.9
IV9714904.7119.09.38.5
I-2/V11319822.5173.37.39.1
VI7021658.6175.09.48.3
VII9720843.6203.48.710.2
平均Mean8617761.5161.08.99.8
总计Total6031185330.61127.162.368.9

新窗口打开|下载CSV

对于PSP2作图群体来说, 120个标记(包含17个锚定标记)中, 仅有1个标记由于缺失大于20%而被排除在后续分析之外。剩余的119个标记被用于进一步的连锁作图分析, 结果发现上图的118个标记分布在7条连锁群上。根据17个锚定标记, 这7条连锁群刚好完全对应于以往发表的遗传连锁图谱的7个连锁群[10,39-41]。此外, 该图谱的累积长度为1127.1 cM, 相邻标记之间的平均遗传距离为9.8 cM (图2表2)。每条连锁群的长度从119.0 cM (LG IV)到203.4 cM (LGVII)不等, 平均为161.0 cM; 每条连锁群的标记数目从11 (LGI)到21 (LGVI)不等, 平均为17个标记(图2表2)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2豌豆PSP2群体遗传连锁图谱

粗体代表锚定标记。
Fig. 2Genetic linkage map of PSP2 population in pea

The bold labels on the marker name represent anchor markers.


2.3 整合遗传连锁图谱构建

基于以上2个遗传连锁图谱, 通过两两比较共发现了53个共有标记, 每个连锁群上的共有标记数为3 (LGI)到14 (LGVII)不等(表3)。利用上述2个遗传连锁图上的53个共有标记, 我们构建了一张包含668个SSR标记的整合遗传连锁图谱(标记信息详见附表1), 分布在7条连锁群上, 累积长度为6592.6 cM, 相邻标记之间的平均距离为10.0 cM。每条连锁群的长度从682.7 cM (LGII)到1077.2 cM (LGIII)不等, 平均为941.8 cM。在这7条连锁群中, 分布在LGV的标记数量最多, 有125个标记, 同时标记密度也最低, 为8.1 cM; 另有3条连锁群包含的标记数也都超过了100, 分别是LGIV (104)、LGVII (103)和LGIII (102); 而标记数量最少的连锁群为LGII, 仅有68个标记, 累积长度也是最小的, 仅有682.7 cM (图3表3)。

Table 3
表3
表3豌豆整合遗传连锁图谱上的标记分布
Table 3Markers distribution on the integrated genetic linkage map in pea
连锁群
Linkage group
共有标记数目
Number of bridge markers
上图标记数目
Number of mapped markers
图谱长度
Map length (cM)
平均标记密度
Average marker density
I382976.811.9
II768682.710.0
III81021077.210.6
IV71041058.910.2
V71251018.28.1
VI784801.89.5
VII14103977.09.5
平均Mean7.695941.810.0
总计Total536686592.669.8

新窗口打开|下载CSV

图3

新窗口打开|下载原图ZIP|生成PPT
图3豌豆PSP1和PSP2整合遗传连锁图谱

粗体代表锚定标记, 下画线代表共有标记, 粗体加下画线代表共有锚定标记。标记名称以“e”开头的为EST-SSR标记。
Fig. 3Genetic linkage map integrated with PSP1 and PSP2 information in pea

The bold, underlined and bold underlined labels on the marker name represent anchor markers, common markers and common anchor markers, respectively. Marker names started with “e” represent EST-SSR markers.


Supplementary table 1
附表1
附表1豌豆整合遗传连锁图谱上图标记信息
Supplementary table 1Information of SSR markers used to generate the integrated genetic linkage map of pea
序号
No.
标记名称
Marker name
标记类型
Marker type
正向引物序列
Forward primer sequence
(5°-3°)
反向引物序列
Reverse primer sequence
(5°-3°)
退火温度Tm (℃)片段大小Band size
(bp)
连锁群Linkage group
整合图谱Integrated mapPSP1
G0003973× G0005527
PSP2
W6-22600×W6-15174)
127256基因组SSRCATTCCATTCCATACATCCATTTTGAAGTTGAAGCAGCCATTG60153II
226075基因组SSRCTATGGCACCATCTCTTGGACAACACAATGTATGTGGTGCAAAT59186II
328142基因组SSRTGCAAGCATATTGCCTTTTCTCAGTGGTTGCTAGCTGTTGA59176II
426020基因组SSRCTCTCAAATTTGGGGTCCTCTCATTGCGTCTCAACCTCAG59129II
525334基因组SSRTGAAGATGTGACAAACAACAGAAATCCTTCTCTGTTCCCACCAC60140III
623971基因组SSRGCGTGTTGATGCTGAAAGAATCAAAATTGGGGTGTGACAA60131II
725922基因组SSRCCAAGGGAAAACCCCTTCTAGTGTGAAAGCTTATTGTATATGTATCG58176II
8AD147锚定标记AGCCCAAGTTTCTTCTGAATCCAAATTCGCAGAGCGTTTGTTAC61330II-2I
9AA67锚定标记CCCATGTGAAATTCTCTTGAAGAGCATTTCACTTGATGAAATTTCG51370II
1020229基因组SSRGCGAAGACTTCCGACCATTACACGGTCAAGGCCTACATTT60181III
1118339基因组SSRTGGTTGAACTGGAACGAGTGTGAAATTGCAATGTAAGCATGA59137II
12e1154EST-SSRGCCATGCGACCATATTTACCATGGCCACAGAAACGAAAACII
13e1111EST-SSRTTCTTCGTCGGAGGATGAGTTTGAGAGGAGATTGGAGAAAAAII
1428832基因组SSRCTCACGCGTTGAAGATACCACACCGCCATTGTAGTACAGCII
1527227基因组SSRGCATTCCATGAATTGCATCTTTGCTGATTTCTTACTTGTTGTCA59167II
16e734EST-SSRAGGCAGTGACTGAATCATCGTAATGGCTTTGAGGCAGAGAGII
1718591基因组SSRAGGGCCGAATGCTAAGTGATTTTTGAACCCTGGAGGGAGT61155II
1821662基因组SSRGAACATTATCGGAATCAACAGCCCACACAAAAATGAACAACACA59158II
1917158基因组SSRCTCCCGAGTCTTGGCTAATGAGGCGCTCATAAACAGTTCC59175II
20e1171EST-SSRAGTCCCATCCCACGAAAAATCTCTTTCAAATCCCCCAACAII
21PEACPLHPPS基因组SSRGTGGCTGATCCTGTCAACAACAACAACCAAGAGCAAAGAAAA52120II
22e613EST-SSRCAATAATTTCACACACACCAAGAATCCAAAGAATCCTAAGAAACATGAII
2324312基因组SSRTGCCATATGCATTTCATGGTAAGCCCCTTTTCATCTTCAA59210II
24e1013EST-SSRACACCAACGATGACCCATTTCCGATCCACAAACCGTTATTII
2529847基因组SSRTTGTTCCTACCGTGCTTTCATCTTATTGGCCTGCACATCTTII
2629428基因组SSRCCATCCACATCCTTCCAAGTCACTCAACCCACGGAAAAGTII
27e700EST-SSRGGTTTCGGTTGATCATGGTAGGAACTTTCTCTCGGGATCAII
28e1189EST-SSRTGGCAATTGCGATGATTAGATTCATCCGTTTCATGATGTTGII
2925805基因组SSRCCAACTTACTTTTGCTTATCTGGTTGGGTCCATGACAAAGACAA58124II
3025096基因组SSRCAACATTGTTATCATCAAAACTCAAGGCGACAATCGATCTCAAGT58192II
3128733基因组SSRTGGCCTAGGTTTTTGTGTCCGCATCTCAAAAGGGCATTATTT59116II
3223546基因组SSRTCCACCTTGTTGCCCTAATCTGAATGCTTCTCAGATACAAAATGA60155II
3322611基因组SSRTGCAAATGTGCAATGAATGAGGCGGACATGAGAAGGAATA60187II
3427835基因组SSRCATCACTTGGGATTTCTTGAGAGAGGGCAATGGTAATCAGCAC60138II
3527301基因组SSRTGTCGGAAATTAAGAGGTGGATGGAAAAGTAAGCGGTGAACA60119II
36e1226EST-SSRCACACCAGGTATCAATCTGTGAACGTTCCGCTTTTCACTCTCTII
3716881基因组SSRATGGGCTTTAGGGGAAGAAAAAAAGCAGCACATGGAGGAC60133II
3821678基因组SSRCCCTTCAGCAACAATCACTGTGCCTCAGATTTGGAATGGT59151II
3920646基因组SSRTCTCACATGTTGTTATTTCTTTCTCATGATGTTCCCCAGATTTTCA59120II
40PsAS2锚定标记CTAATCACACGTTTAGGACCGGCGAAATCCAAACCGAACCTAATCC52300II
41e888EST-SSRGGCTTCTCCATTTGTGGTTCGCCAATGGAGGTTCTACAGCII
4218011基因组SSRGACCAACGACTTGGACATCAGGTGAGTTCCTAAGATGAATCAGA59197II
43e811EST-SSRTTTTGTGGGTCTCTCTTCACCCACCACACATGCAACACTCAII
4427246基因组SSRCCAGGTTAAAACGATGATTTTTGACTTTTCCCCTTGGTTGGAC60180II
453023基因组SSRGGTGCAAAATTTGAGGTGCTCACACACGACTACACACACTACG59153II
4627167基因组SSRGGCACAACTACAACCCACAAGGTTCAGGAATGGGTTCAGA59194II
47e799EST-SSRTGCAGGCTTTAGAAGTTGTTCACTCAGCAGCCACAATTACACAII
485897基因组SSRGGCAATAACTTAAGAGTACTAAGGAAAAGGGTGTCGTCGTGTGTGTA57282II
4927361基因组SSRCTGAAACGGTTTGCATTGTGTCCAACCACTTCTTAACAACCT58113II
5022209基因组SSRAATCCACAACCCCGTCAATACAAAAGAGACCTTCTTCCTCTCA59164II
5122259基因组SSRCATCATGGCTCAATCTCAACATTCCCAAATTCCTTCGTTCA60110II
5222406基因组SSRGGAAAGAGTTATGGCAATGGACTGGTGGTGGAGCTAAGTGTG60174II
5324555基因组SSRCGCTTATGTAGCCCCTTTTGGGCCAAAGGAGATTTGTGTC60123II
5424499基因组SSRAAAACAAACAAAACCGCAATGTAGCCATCACCAAAGCAACA60169II
55e624EST-SSRCCTTAGCAAGTTTGTCTTTGAGTGTGCAATGACATGATGGAAGAAII
5629029基因组SSRTAGGAGAGCGAGGAGCAAAGCCACCAAAAGCAAGAATGTGII
57e884EST-SSRTTCTTTCCGCCATGAGATTCGAGAGCAAGGGTTTGGAACAII
5828438基因组SSRGGAATGACGAAGTAACCACCTGATGCAAGTGCAACCTTTGA58185II
5917628基因组SSRGGTTTTGTTTGCCGTTGATTCCACCCCCAAACTTCCTTAT60153II
6017605基因组SSRCGCCCTTCATCATCATCTTCAGAGTCGGTCCCTCCAACAT61150II
611356基因组SSRCACGTGCACATACACACTCTTTGTGTCAGAGCATGTGTTCG57106II
62171基因组SSRCAAACACACACGCACACAAACGTGTGAGCGTGCATAAGT5870II
6328654基因组SSRAGCGACGTGAATATCACAATGGTTATCGCGGCGTGTAAATC59134II
64e658EST-SSRTGGTTTCTCTGCCAAAACAGTGATGAGTGGTGACGCAAATII
65e562EST-SSRCAAGATGCTTCTGATTCAGTGTCAGGATTTGAGCTTGGGAGGTII
6617989基因组SSRCAGAGCCGGAGTTCTGGATATTTGGTTGACATTAGCACATGA59195II
6726333基因组SSRAAACACACGACATGTTTCCTTTTTCACTGCAATTCGTCGATGT60116II
68D21锚定标记TATTCTCCTCCAAAATTTCCTTGTCAAAATTAGCCAAATTCCTC51200II
6918928基因组SSRTGAATGTGGAAAGGAGGAATGAGGGTCACCACTTTGGAGAG59178II
7018529基因组SSRGAATGTGCGTCCAACATCCTAGATTTTGATGCGGAAGAGC59151II
711863基因组SSRGCACACGAATACAGTCACGCGTGTGTTGACGTGCGAGTTT60118II
72e997EST-SSRGCCTGGAGTGTTGAAGAGGACCATCACAATTTCCCACACAII
731752基因组SSRGCACGCACACGAATACAGTCGACGTCGTGAGTTTGCATGT60115II
74AF016458锚定标记CACTCATAACATCAACTATCTTTCCGAATCTTGGCCATGAGAGTTGC54II
7523261基因组SSRCTGCTTTTGGGGTTTGGTTAGCAATGCAACTCCTCAACAA60156III
7622699基因组SSRCAACATGCCATTCTGGCTAAGCCGAAACCCCATGTAGAC60157II
7724895基因组SSRAAGAAAGTTGCGTTGGATGTGGTTTTGTACCGCCCAACACT60148II
7824731基因组SSRAGAAAATGGCCCACGAATTATGCATTGCATTGTGTTTGTG59204II
7925106基因组SSRAAGGCCAAACAGAAAGGAGACAATGTCCAAGAAAGATCCAGTT59178II
804083基因组SSRTGCAAACTCACACGTCAACAGTGCGTGTGCGAAGTACG60191II
811753基因组SSRGCACGCACACGAATACAGTCTCGTAGTTTGCATTGTGCGT60115II
8225341基因组SSRAATGCTTCTTCCACGGTCACTTCGCTCGAGTTCGATTCTT60184II
8325454基因组SSRTTCCAAGCAAGCGTTGAAGTTCAAGAGAGACTTTTCAAGAGGTT58204IIII
8429797基因组SSRTGTGATCAGGTGCTCCCATAGCGACAAATTATGGCTATGCIIII
8526436基因组SSRTTGCCTTGCCAACTTTTAGGCTTGCTTCTGCGCCATAAAT60195IIII
86e581EST-SSRCCTTGATGCCACAAATGAGATTGCCACTTTCTCAAAAACTCAIIII
87S217基因组SSRCACTCAACTCACCGACCTCAGACGGATGGAAATTGGTGTC521035IIII
88e956EST-SSRCGAGCGTGAGACTGTGATGTTCCACCGGTTCAACTTCAATIIII
89e344EST-SSRATGCAACCGGCGCAGTATCCACCTTTTCCTCGCTTTTT61159IIII
90e967EST-SSRTGACACTTTCGTGTACTGTGTTTTTTTCCAAAAGCCTCTCTTTCATCIIII
9120922基因组SSRAAAAGGAGAACACATTTTATAATAGCATGCTCTTAAAGGCGACAATG58146IIII
9229141基因组SSRTTCTTTCTGCTAGGAGCCACTCAAAGCCATCACCCTACACAIIII
9324959基因组SSRATCCTCACCGGTTTGATGACTGGAGAGTGATAGAGAAAAATTGTG59115IIII
9425059基因组SSRATGGATTGCGGATAGCTCAACAGCAGTTGTTCGCAGGTAA60189IIII
9524301基因组SSRTTGTGTTTTCCGGAGAGGTCTCCCTCCCAACCTTGAATTT60142IIIIII
96AA332锚定标记TGAAAATAAAGGCATGCAAATATGATTAGTCAACTTGTTGTGGA51255IIII
9729220基因组SSRGGGGCAGATTTGTGGTATTGTTCTTCTTCCTCACGTCTTTCTTTIIII
98AD83锚定标记CACATGAGCGTGTGTATGGTAAGGGATAAGAAGAGGGAGCAAAT61270IIII
9918272基因组SSRCCCCAACATTTCTCTAGGTAACATTCTTCGCAGCTCGGTAAGT59131IIIIII
100S42基因组SSRAGTTTCGGGTTCCTTGGAGTGTTGGCGTAGAACGATCCAT53211IIII
101e198EST-SSRACCATCACCACCAACAACACCTGCATCTGGAGAGGGAGAG59188IIII
102e14EST-SSRTCCGCAATGTTCTCTCGAATGGAGGTCTCCGCATTATCAA60188IIII
10321776基因组SSRAACGGATATGCATGGAGAGGAAAACACGACCATCCTTTGTG60172IIII
10421939基因组SSRGGTCCTCAAGCACCACCTAATGGGCGTCACTACTTAACTTTT58114IIII
10528257基因组SSRAAGGGCTGACGGTCTAACTGGAACTGACGGACGCTAGAGG59161IIIIII
10616237基因组SSRGCAAACGAAGCAGGCTTATCTTGGCTGATCCTGAAACTGA59152IIII
10718260基因组SSRAACCTTGAAATGGAGGTACATGAGACCATGATCGGATGTTGTG60129IIII
10821641基因组SSRCGATTTACCGTCCTTCATCAACGGTCTCCCATGTGTTTGT59166IIII
1093015基因组SSRACACATGCACACCCCCTTCTGCGTGTGTACGTGTGTACG60153IIII
110D23锚定标记ATGGTTGTCCCAGGATAGATAAGAAAACATTGGAGAGTGGAGTA51170IIII
111e1031EST-SSRCAACACAAGAACTTTGCACCTTTGATCCACCTGCATCATTGIIII
112e1215EST-SSRGAGACAGAAGACGGCGAAAGTGCCAAGAGTCAGGAGATTGIIII
11316433基因组SSRCACCGCAAACATAGCAAAAATCTCATAGCTGCGAGGTTCA60127IIII
114e617EST-SSRGCCAAACGGCTTTAAAACTTCTCGCTGTTGGAAAGAGAAGAAIIII
11520723基因组SSRCTCACTTCACGTGCGCTATCGCAGGAGCAGCTTGATTTTC60152IIII
11616437基因组SSRTTGTTTTTGTTGTTCTTGTTGTTGTTTTCGGGTTTTGCTTATGG59128IIII
11717531基因组SSRTGCAGGGGTGTGTGTTACATTGAACATGGTGAAATGGATTG59140IIII
11818237基因组SSRGGGATATGAGAAGGCGATACCTGGTTGTAGGATGTGGGATTT59127IIII
11917754基因组SSRAGCAACGGGCAACCTTATAGCCTTTTGTTTGGAAGCTCAA58169IIIIII
120e850EST-SSRTTTCTTCTCCCAAACTACCTCATATGCATGAACCAACCCATCTIIII
12117713基因组SSRAAAAAGGGGAAAGCAGGAGATTGACTGTGAGGCTGGTTTG60164IIII
12221945基因组SSRTTCACGCTCATCGCTAAGACTTCGAATCCTCCCTTCTTGA59113IIII
123e478EST-SSRGCCACCAACCAATTCAACTTTGGGTATTGGGAATGGAAAAIIII
124e36EST-SSRGCAGGGTGGGTATATCTGTGAGTGGTCCAATTCCTTTTTGC59219IIII
125e26EST-SSRTTTTGTCCCCGCGTTTAATACATTCATGCCACAAAAATGG60155IIII
126C24基因组SSRGCTACTGGAGGAGGCTTTCAGCCTTCTACACAACGGCTTC52162IIII
12728383基因组SSRTCGATTGTTATTGTGTTTCCTCTCTGAGATCAAGTGGGGGAAAA60150IIII
128e770EST-SSRGGTTTGAAAGGACCCCTAGCGTTACCGATGGCCATGAATCIIII
129143基因组SSRACATGCACACGTACACGCAAGTTGGCGTGCAGTAGAGGT6069IIIIII
13016534基因组SSRTTGCAAATATACCAATTCCAAAAATTGGAGCCTGGTGAAGACC58139IIII
13128055基因组SSRGCCAGCAATTTTAGCATTACGTTAGCTCAGCCCGGTAAAAA60163IIII
13225792基因组SSRGACGGAAACGAAATCGAAGATCAAAATTCACGCACACGAT60110IIIIII
13330024基因组SSRAGAGTGCCATCCCTTCAATGGAACGTTTGGTTGGAGGAGAIIII
13425769基因组SSRGCAGCAAGATGGTTGGTAGTTGACGTCGTAGTCGCCATCTC59144IIIIII
135e929EST-SSRTGAGGAGGGAGATGGAGAAAGAAGGCAAACCTACCAACCTCIIII
13630218基因组SSRGGACGTGTCCCACTCCTATGGGAAGGATAAAAACGTTGCAATAIIII
13730416基因组SSRGACACATGGAGCCACAAAAAGAATGGAGGGGAGAGATGAAIIII
138e577EST-SSRTGTCATTTCTTTTTAGTTCCTTTCAACCTTCGCTTGATTCTTCACCIIII
13916570基因组SSRCAAACACCAACCACCACAGTAAGGGGAGACGAAGTGGAGT59143IIII
14027099基因组SSRGGTACACCCACCGATACACCTCTAGACGCGGAGAGGGTAA60140IIII
14127112基因组SSRGCAACAAGATTTTGACGTTTTTGACGCTACCAACCGCTTTAG58129IIII
14228687基因组SSRCACGGAAGGCCCTACTTACAGTGGCGAGTAGAGCGTAAGG60189IIII
14328704基因组SSRTTCTGCAGTCAGCTTCAACTTCTAGTCACGGAAGCGATTCAA59147IIII
14422690基因组SSRGGTTCATCTGCACCCAAGTTGGCAACTCTCTCACACACACA60138IIII
14524812基因组SSRGACCAAACCACCTCACAGATGTGGCTCCTTTCTCATTTCTAACA60140IIII
14623154基因组SSRAAGACGAGGTGGCATGGTAGGAGAATGCATGCTTCAATCAA59183IIII
14728785基因组SSRGATCCACCCAATTCCCTTTTTGTATTGCAGCCGCTTTATG60208IIII
14819680基因组SSRGCCAACCCAACAATCTCAACCATTGGAACCAGATCGAACC60148IIII
14922052基因组SSRGTTACCGATGGCCATGAATCAGCGAGTGAAGAGGGAAGTG60147IIII
1501078基因组SSRCACACGCACAGACACACGTAGTGTGCGTATGCGTTACTGC6099IIII
15129138基因组SSRGCAGATTGAAACCAAAACGACTCGCAACCTGCACTTTCTTAIIIIII
152e763EST-SSRATGCTTTGATGGGCTCAACTTCCCAAACATGCTAGCAAAAIIIIII
15319532基因组SSRCCATGTTTGAATTCGGAGGAGCGCGATGATTCAAGGTTTA61165IIIIII
15419656基因组SSRCCAACGTTGTTGTTTTAGTGGCCAGAGTCGTGGAGCCCTAT58169IIIIII
15527876基因组SSRTGTTGTTGCCCATCAATCATAATCACACGAGGGATTGGAC60149IIIIII
15618323基因组SSRCAGACAATGGCAATTATTTGGTAACTGCTGTTGCTTCGATTTCA60136IIIIII
15721881基因组SSRCCATTCCCAACAATTTCCACGTGAGGTCCGGTTCTACAGG60119IIIIII
15830088基因组SSRTACTGGATCCGGATGAGGACTCGCATCAAAGCAAAAACCTIIIIII
159e605EST-SSRAGCACTTGCTACGGCAATTTAAACCTAGAAATAACGATGCAAAAIIIIII
16024265基因组SSRGTTTGCGGCCAAACAATATCTTTGCATGAGTGCACCTCTC60181IIIIII
16129627基因组SSRAGAAGACAACGACCGAGTGGAACCGCATAACCGCAATTTAIIIIII
16227019基因组SSRGCAGTTTCCACACTTTAAGTCCATGGGTGTGTTAACAGGGTGA60155IIIIII
163e1208EST-SSRAACCATTGCGCGTCTTTTACAGACCACCGCCATAACATTCIIIIII
16428130基因组SSRCGAATTTGGTTGCGACGACTCGCGCCTCTTTAGGAATAA60208IIIIII
16527378基因组SSRGCCAATTATTCCCTCCAGGTTTCGAAGGTTCTCCATCACC60147IIIIII
16628180基因组SSRTCGTTCATTTAACTTCGTGAGGTAAGAGAGTTCTCCGCCAAACA60201IIIIII
16724903基因组SSRTGGTGTCAACTTTTTGATGTTCAGACAAGTTGCTTTTGCTCCAC60147IIIIII
16826850基因组SSRTCACAGACAGTACACAAAGTTTTCTTGCGAGGGAGAACAGAAACAG59160IIIIIIIII
16924521基因组SSRAGGGAACCCCCAATTGACTACCAGAAACTGGGGTTGTGTT60208IIIIII
17023311基因组SSRTTTCAGAATGGTGCAGGGTATAGGATCTCAGTATACATGCGTAAA57168IIIIII
17124540基因组SSRCTCCCTCATGAGTCGTGACCATCAAAGGGGGAAGGTGAAG60143IIIIII
17226575基因组SSRGAAAATAAACAGTTGGCAACAAAACCACTCCAAACCCTTCAGGT59205IIIIII
17321726基因组SSRGGTGATGGAGAAAAGGGTGATGCATGCAGTCAAATCAAAA59157IIIIIIIII
17423518基因组SSRCAAGGACGACGACAACAACAGTGCCGACGTTCAAGAAAAT60202IIIIII
175e632EST-SSRAAACCTCTCTACAGCACCAACACGGGAGAGATTGTTTGAAGTATAGAAIIIIII
17628406基因组SSRCCGATTGTGCAGCAAGAGTAACGATGCACATGCAGAATTT59129IIIIII
17727038基因组SSRCGTCTACCTCCGACGATAGCTTCGCCAGATATATACAATAAAAAGA58187IIIIII
17825151基因组SSRGCCTTCGAGGCATCCTAATTGGAACCATAAGATTGGTGAA58157IIIIIIIII
17927270基因组SSRGGACCATTACCCTCCCATTTTTCCTTCCGTTTTGCAGTCT60194IIIIII
18028194基因组SSRTGGGGTCTTAAAGTTGTGACTTCCCGAAGGTGGGATGAAACTA60148IIIIII
18128645基因组SSRCTGAAATCGGAGTGGTCACAGGTGAAGCCCTTAGCTACCA59188IIIIII
18217193基因组SSRCACAGCCATACCCAAGTTACAAGGTTGCGAGGGATGAGAATA60178IIIIII
183e814EST-SSRGGTTGGTCCAATCCAACATCAGAACGAACACACACGAAACAIIIIII
184e494EST-SSRGACCCGTCTGGACTGGTAAATTGAAAGATGCGGAGTGATGIIIIII
18529436基因组SSRTCTAGCAGCATTGGGGAAACTAATGAGGGGAAGGGGATTTIIIIII
18627710基因组SSRAACCACAGAAAACTGCCAAGTTGAGAACCAAAAGCAGGTCA59110IIIIII
18729074基因组SSRTCGTCGAATGGTTGAAGAGATTCGCAAGTGAAGGAAAAAGAIIIIII
18829307基因组SSRGCGATTCCAGATGTCAGGTTCGTCTCCCTACCAGCAAAAAIIIIII
18924534基因组SSRGTGGTGTGAAAGGGGTTTTGCTTGCATTGGATTCCCTTTG60206IIIIII
19022543基因组SSRTTTCACGTACGTTCCCAACTCCCAGATCAACCACCTAACTTCA59160IIIIII
19123262基因组SSRGGTGACGGAGGTGATAGAGGTAGCAAATGCAAACCCAACA60183IIIIIIIII
19224701基因组SSRTATGCTGGAGTGTGGAGTGGTCAATCAATTCAACGGTACAGA58111IIIIII
19324784基因组SSRTTTAGACGGCCTTCGTTAGTGCTGAGCCTAAAGGGCTGAAA59115IIIIII
19427254基因组SSRGAAGGCCTCTAACGGTGAAAAATCAAACAGAGGCCACCAG59122IIIIII
19522754基因组SSRGGAACGACAACACGAACCTCGACACGTTATGCGCACACTC60161IIIIIIIII
19626131基因组SSRGGAAACGGTGGAAGATGAAATTGGCAAAAGGGATGAGAAG60175IIIIII
19724805基因组SSRTGCAGCAGATCAACCAAAACTTTTGAACTAAGGTGGTCTCAATC59144IIIIII
19818135基因组SSRCTTCAACCAACTGCGAGTGATCATTTGAGTTTTGCCATGTTC60120IIIIIIIII
199PSAJ3318锚定标记CAGTGGTGACAGCAGGGCCAAGCCTACATGGTGTACGTAGACAC58IIIIII
20029634基因组SSRCAATTAACAAACGCAGCCTTATTAGCCCGTGGATTTTCAACIIIIII
20126866基因组SSRCGATACATTAAGGGCGGAACTGACTCATTCGCATTTGGAGT59186IIIIII
20223757基因组SSRTGAAAGAGGGGAATTGAGAGATCAGGTTACAAGCCCGAGAT59187IIIIII
203AA355锚定标记AGAAAAATTCTAGCATGATACTGGGAAATATAACCTCAATAACACA51180IIIIIIIII
20423899基因组SSRCCCCATCCTTGTGAACAAATACGGTGTTTTGGTGGTGAAT60151IIIIII
205AD270锚定标记CTCATCTGATGCGTTGGATTAGAGGTTGGATTTGTTGTTTGTTG51290IIIIII
20620075基因组SSRGCCAGTCCCTTGAGTTAGGATGTTTCACGTGTTCCCCATA59122IIIIIIIII
207e696EST-SSRCGCTATCACTCTCTCTTTCTCTTTTATCGGAGGACGAGGTCTTTTIIIIII
208e1021EST-SSRAAAAAGCTGAAACATTCAGACCGGTCCATTCATTCTGCAGTGIIIIII
209e673EST-SSRGGAAGACGGAGTGGTGGTAAGTCGTCGTGGTGCTTCTCTCIIIIII
21016524基因组SSRCCAGAGGATGTGAACCAGGTATTCAACCAAGCTGAACCCTTA60138IIIIII
2114826基因组SSRAACATGCGTCTGTCGTGTCTTAGTGGGTGTGCGTGTGAGT59220IIIIII
21227093基因组SSRTCGTCATTCTCCCTCCAATCTATGATGTCCACGCGTTTTT59128IIIIII
21319688基因组SSRGAATCGGGTCGCTGAGATAGACCTCCACCGTACCATTCAA60133IIIIII
214e998EST-SSRGGCAGACTGGTCTCAACTCCATCATCGTTGGTGGAATCGTIIIIII
2152875基因组SSRTATTAGCACCCCTCACGTCCTTTCCCCTTCCTTCCAATCT60148IIIIII
21630442基因组SSRCCCACTCCATCAGTCTCTCCAGAGGACCGGTGATGTGTTCIIIIII
217e446EST-SSRAACCAGAGATGAGTGGAAAAATGGCCAACACCAGAGTTTGAATCIIIIII
21827160基因组SSRCTGCAGTTGCGTGTAGAGGATTGAATGATGATATAAATGCAATGAC59135IIIIII
219e472EST-SSRTCCATCACCAGGCATAGGTCGCCGGTAGTGAGAAGGATTGIIIIII
220864基因组SSRCACATACATGCAATCAAGCGGTGTGTTACGTGCGTGTGTG5992IIIIII
22124861基因组SSRTTCACAACCCCTCTCACTACATGGAGGGATGGTTTACAATGA58183IIIIII
22230382基因组SSRTTGGTGAGGCCTTGATTTTTGCCAGTGGGGATTAGAGACCIIIIII
22317773基因组SSRTTCCACACGAGGCTATTTTCTGCAAAAGCGACATCTTGAC58170IIIIII
22418363基因组SSRCATGCATGGAGTTGGAAGAGGTCCCAAAATGCAGCCAATA59139IIIIII
22529125基因组SSRTCAGAGGTGTCATCGGTCTGTTTCAAATAAGTTTTGAACAAAGTGTIIIIII
226e999EST-SSRGTTTAGGAGCCTTGGGGTGTTCCAAACTCCGGCTTCTCTAIIIIII
2273647基因组SSRGGGGTCTTACAACACACGCTAGGCAGAGGTGTGAGCATCT60176IIIIII
2286144基因组SSRCAGAAAAGGAAGCAAGGTGCGTCGCCCTCGATTCTCATAC60297IIIIII
2294535基因组SSRCAGAAAAGGAAGCAAGGTGCTGTGTGTACGTGTTCACCCTT59206IIIIII
2303374基因组SSRGGGGTCTTACAACACACGCTTGAGCTAATCTCTCCGGGAA60165IIIIII
2312169基因组SSRGTTGTGTGTGTGCGTGTTCAGGGGTCTTACAACACACGCT60126IIIIII
2321935基因组SSRGGGGTCTTACAACACACGCTTGTGTGCGTGTTCACCTTTT60120IIIIII
2332303基因组SSRGGGGTCTTACAACACACGCTTGTTGTGTGTGTGCGTGTTC60130IIIIII
2344653基因组SSRCAGAAAAGGAAGCAAGGTGCTGTGTGCGTGTTCTACCCTT59211IIIIII
2355347基因组SSRCAGAAAAGGAAGCAAGGTGCAGCATCTCTCCGGTAACCCT60248IIIIII
2362008基因组SSRGGGGTCTTACAACACACGCTTGTGTGTGCGTGTTCTACCTT59122IIIIII
2375412基因组SSRCAGAAAAGGAAGCAAGGTGCGTGAGCAATCTCTCCGGGTA60252IIIIII
2382051基因组SSRGGGGTCTTACAACACACGCTTGTGTGTGTCGTGTTCTACCTTT60123IIIIII
2395400基因组SSRCAGAAAAGGAAGCAAGGTGCGTGAGCAATCTCTCCGGAAC60251IIIIII
2405348基因组SSRCAGAAAAGGAAGCAAGGTGCAGCAATCTCTCCGGTACCCT60248IIIIII
2414670基因组SSRCAGAAAAGGAAGCAAGGTGCTGTGTGTGTCGTGTTCTACCC60212IIIIII
2425540基因组SSRCAGAAAAGGAAGCAAGGTGCAGGCAGAGGTTGTGAGCAAT60260IIIIII
24321506基因组SSRATAGGGGGAGCAGGACCTAATTTGACTTGTGGAAAGGAAGTT58151IIIIII
24425416基因组SSRCGCCCAATTGGATTATGATTTGCTCAATGCACACTTACTAGC58145IIIIII
245e1197EST-SSRTCCAACCGTTAAACACTCTTCAGCATGAAGGGCTCTGAGTTCIIIIII
246PSBLOX13.2锚定标记CTGCTATGCTATGTTTCACATCCTTTGCTTGCAACTTAGTAACAG56IIIIII
24718562基因组SSRTTCTTCTGCTGCTGCTCAAAAAAACAAAAACCACAACCAAAAA60154IIIIII
24821610基因组SSRCGATTGATGCCGTGTCTAAGTTTCAAGTTTCTTCTAGATTTTGTCA58114IIIIII
24927991基因组SSRAATACAGCTGGACCCCACACGCAGGCCATTTCATTTCATT60121IIIIII
25022724基因组SSRCCCAAGAAGAAGGATGGTGAGAGCATTCTGGTGCTGTTGA60152IIIIII
25126028基因组SSRCGGCGAGATTTATTGACGATCAACGTGGCAAGCAAGTAGA60186IIIIII
2524397基因组SSRTAATCTCTCCGGGAACCCTTTGATATGATGCCATGAGGGA60201IIIIII
25320084基因组SSRCTCCCTCCCGAATGTAATCACGGGACGATCAACTTTGTCT60111IVIV
25416758基因组SSRCCCTTCAACAAAGCCTAACGAGGGTGCGAAGGAGGTTAGT60115IVIV
25521712基因组SSRCGGCGGGTTTGATAGAGTTACTTCACCCTTGCAACAAACA60166IVIV
25621774基因组SSRGCAAGTTCCCAATCGTCCTATCAAAAGCAAGGTCCCATTC60123IVIV
257e671EST-SSRTTGCCTCATTTATCATTCTCTTATGCAAAAGGTTATCTAGCTACGACTTGAIVIV
25829964基因组SSRCAATTCATGACGAAATTGACAAACATGGAGATGGAGAGTTCAAAAIVIV
259e996EST-SSRGCCGGTAAACGATCCATCTATGCAGCCACACTCCTTTACAIVIV
26019632基因组SSRAATGTAATTAACCCACGAAGTTGTGCCAAAGCTCTCTCATCCT57201IVIV
26121547基因组SSRTGAAAGCCTCAAAGCAACAACCATGGCATGTGCTAGTGTAG59156IVIV
26221250基因组SSRGTGCAATTTTCACACAGTGGACGAAGGTTGGAGCATGATT58144IVIV
26322067基因组SSRTATGCTCAGAGGGGCATAGGTTACGACGATGAGCGACTTG60158IVIV
26418533基因组SSRTCCAAAATGCGTGTCATCATTGACCGACACATTCATCTTCA60151IVIV
26526592基因组SSRTCCGATCCTGGTAAAGTGGTTCCAAAATGCGTGTCATCAT59174IVIV
26626369基因组SSRGCTGAAACGTGGGAAACATTTGGTTAGTGTTTGAAGGGTCTG59206IVIV
26725046基因组SSRTCCTTTGTCAGTGGGAATTTTTAGGATCATGGTTGTCGAGTTG60173IVIV
26824606基因组SSRCCGAACAAGATGAACCACCTAACAACATCGTGTGTGTTTGTCT59208IVIV
26923750基因组SSRCTCGTTGTACAATCCAGATGAACACCGTCCACCTTCTCATTT58209IVIV
27022599基因组SSRGGGTGTGAGGCAGTTGAAATAAATACCGAACCGAACCACTT60141IVIV
27124038基因组SSRGCCCCCACTTTTTCAACACTCCTGACACAAGGCCCTAC59145IVIV
27218438基因组SSRGATTGAGCCGTGCCAATATCGATCCCACCCTAGAGGAAAAA59145IVIV
27322352基因组SSRCCAACATCTTCCTCATCACCTTGAGAGTCGCAGTCGGATAA59129IVIV
27416512基因组SSRTAAGCCCGACGCTTCTATTCGTGCCTCAGTTTCCGTTTGT59136IVIV
275AA430942锚定标记CTGGAATTCTTGCGGTTTAACCGTTTTGGTTACGATCGAGCTA54IVIV
27617219基因组SSRTCATGTGCATGTGATGAAGAAAGGTGTACCCATGTGCCATTT60181IVIV
27728178基因组SSRTCAACCCATACTCTTGGAATCACCGGAGATTCCACAAATAACA59139IVIV
27828085基因组SSRTGCTTGCAACGTTTCTTTCTTACCCCTCCCTGAAAGGAGTA60142IVIV
279e538EST-SSRCTTCCCTTTCTTCCCTTTCAGTTCGGAAGGATCGATTTGAIVIV
28028374基因组SSRTCCACGGTCTTGCTATGTGTCTGGTTGCACATCAGGGTAG59187IVIV
281e578EST-SSRAGCAGCTCATATTCTCTGTCCAGCAGAAGCAGGATCTAGGGTAGIVIV
282e656EST-SSRAGCAGCTCATATTCTCTGTCCAAGCAGAAGCAGAAGCAGGATIVIV
283e650EST-SSRGCAGCTCATATTCTCTGTCCAAGCAGAAGCAGAAGCAGGATIVIV
28429955基因组SSRTCAAGTGCATTGGGAGAGACTAAAAACCGACCCATAATCAATTTIVIV
285e1073EST-SSRCTTGTTTCGCTCGGTACCTCCTATTGCAGGCAGTCCTGGTIVIV
28624844基因组SSRTTTCGTTTTCCCATTCTGGTCCCCCTTACACACGAATCTG59121IVIV
28726018基因组SSRTTGAGCTGCTCGCTGTAAGACACCAAACTGTTTCTTCACACA59146IVIV
28826179基因组SSRGGAAGGTGAAATTCCGTTGAAGCAAGTTGGTTCGGAAAAA60166IVIV
28924485基因组SSRGTGTCAAAGCTCGCCCTAATATTGGTACACTTGCCGAGAA58127IVIV
290e1130EST-SSRGCTGCTACCGTGGATTGTCTTTGAAGAGGTGTGGTGTGGAIVIV
291e1027EST-SSRGTCTCGGTCCGAACCATTTATCTTCTGATCAACAAAAGTAACAACAIVIV
292S5基因组SSRTGTGGGGCTTGTTACACTGAAGCTACCATAACAGACAAAACC54205IVIV
29322276基因组SSRATGCGGCATTTTGCTTTATCTTGGTCTGCAAATCGAAACA60127IVIV
29429630基因组SSRCCTACCTTAAGTCGCCCATGTTCCAAACATAGGCTTCGTCTCIVIVIV
295AA285锚定标记TCGCCTAATCTAGATGAGAATACTTAACATTTTAGGTCTTGGAG51248IVIV
29628304基因组SSRTTTTCAGCTGATCGGATATCTACAGGCAGCATCTTGAAAATCGT60132IVIVIV
297e535EST-SSRAAAAACCAAGCACACCCATAAGCAAGACACAGCACAAAAACAIVIV
29827384基因组SSRTTGTGCCAACAAAAATCACAACAGAATGCCGTTCACTTTTCT59115IVIV
299e561EST-SSRTCCGATCTTGCTTCTGAATCTTTCATCAACCCAGACGCATAIVIV
300B83基因组SSRCCCTCTCCCATCTCATCTCAAAAGAAAGTAGAGATCCAGCACTGA54205IVIV
30124635基因组SSRCCCTCTCCCATCTCATCTCAAGAGATCCCAGCACTGATTG58152IVIV
30223788基因组SSRTGGAGAAATTATGAGAATGTTCAATGGCACGTCGACACACACAAAC61184IVIV
30324392基因组SSRGCGGAAACAGGAGAGAGAGAGCACGTGCTCCATCATAGAC59121IVIV
304e828EST-SSRAACCCCATTTTCAATATTTTTCAGGATTGTTCTCCGCATCTTCIVIV
30518358基因组SSRCCTGAACCGATTTTGGTGATATTCCGCCCTCTTTCACTTC60138IVIV
30627275基因组SSRTGCTCACATTAACCAAAAGCACTGGATGGGTATGTCCCATTT60147IVIVIV
30727252基因组SSRTAATGCCGACTGTGTGCTGTGCAATTCAGCAAAAAGGAGAA59111IVIV
308AA122锚定标记GGGTCTGCATAAGTAGAAGCCAAAGGTGTTTCCCCTAGACATCA61190IVIV
30928244基因组SSRTGGGAGAGGGGATAACTGAACATGTTGTTTGGTGCGTTTC59182IVIV
31019487基因组SSRCCACCTGCTCAATTCCAAATGGCGAAGCGAATCTAACATC60178IVIVIV
31122506基因组SSRCGAAACATGCACAACCATTTTGAACGTTCTGACCCAGATG59208IVIV
31222693基因组SSRCGACAACAACAACCACATCACTCCATCGAACGAAAGGAAC59148IVIV
31324465基因组SSRTCAAGCAGAAGAGTCGACCATAGCTATGTTCCCGCCAAAT60161IVIV
31425164基因组SSRCCAAATACAAGCATTAATAGGGAGATGGTCGACTCTTCTGCTTGA60110IVIV
31525419基因组SSRTGCAAGTCCTGATGCAAGTCGCGATTCAGGATTGGCTTAC60140IVIV
31627605基因组SSRAAATGAACGGAAACAGAAAGAAACATAGCACACGCAGCAAAC58155IVIV
31729578基因组SSRCAAGTCATGAACGTCTCAAAAGATGGACGCGTTTTAAAGTTCCIVIV
31827854基因组SSRTCCTTCATCAAAACGCAACAATTGACGTTCAAGCGGGTAG60138IVIV
319e155EST-SSRTTTCTCGTTGCACTCATCCATCGGTTGTCGTTTCTTGTTG60174IVIV
32021866基因组SSRGCAGCCTTCAAATCCTCTTCAAAACGCGCTTACGCTTCTA59139IVIV
32129760基因组SSRTGTGCCTCAGAGATGTTCAAAAGAGGTGGTGCGGTGACTATIVIV
32218049基因组SSRACCCCTCTTTGCTAGGGTGAACCACACATCTCGCACACAT60202IVIV
323e342EST-SSRCACAACAACCCCTCCAAAACTTTGGATTTTCGCTTGGGTA60189IVIV
324e546EST-SSRTGACAGTGAGTGAGTGGCTTCTTTGCGGGTGAAAAGAAAAAGIVIV
32521805基因组SSRTGGGAATGTGAAGTGGTGAATGTGGTGTGGTTGGTTTCTG60128IVIV
32621622基因组SSRACAGCATGAAATGCGTGAAATCGTCATCCCAACTTCATCA60139IVIVIV
327AA315锚定标记AGTGGGAAGTAAAAGGTGTAGTTTCACTAGATGATATTTCGTT51IVIV
32879基因组SSRGCTCAGTCAGCCCGTCATAGTGCGTGTGTGCGTGTGT6066IVIV
32917066基因组SSRCTCTCCCCCACACCTGATAAGAGGACCCAGTAGGGATCGT60159IVIV
33024036基因组SSRGAAGGACCAAATCAATTCTCTAAAACCGACGTCAACGACTGATA58196IVIVIV
33124423基因组SSRCATCCCACTCTAACCGCACTGCATAATCGGCTCTCTCTCC59184IVIV
33225717基因组SSRCGTGCATGCATGTGTATGTTTCACCGATCAACACCAATTT59192IVIV
33328434基因组SSRGTTTTCAATCGATCCGTCCATTCCACCGTCTTCTTCAACA59164IVIV
334e1213EST-SSRTTGGTTTCCGGTTAAAATGACAATCCCATTCACACCACAAIVIV
335e782EST-SSRCATTGAGTTTGAGGATGAGGACCCATAACCATATCTCACAGTTCAIVIV
336e336EST-SSRCCCCAAACCATATCCCTACATTCCATTCCCAAACTCACTTG60170IVIV
33721227基因组SSRCGGATTCAACAAGCAGAACACGAGAATGGAGGAAGAAGTTG60153IVIV
338S236基因组SSRAAATGGCCGTTTTATGATCGCGGAGCTGAACCTTCTGGTA53604IVIV
339e182EST-SSRTGGTAACCCTAGCAATCATCACTCTTTGGCAACAACATCTCA58241IVIV
34028173基因组SSRTGCATTGCTAATAACATTAGAACCATTTCCTTTTAAGCAAGGTGAGGT59197IVIV
34129016基因组SSRTTTCAAAGGCAAGGCAAAACCACCTCGCAAAATTGGACTTIVIV
342e273EST-SSRCAACAACTTCTACAGCAGCAAGCAGTAGCATCTGGCTGTGA57152IVIV
343e1121EST-SSRAACAACGGCAACAACAACAAGTGGCCTTAGTCCCAAGAAAIVIV
344e908EST-SSRTGCAGTGATGAAGTGGTTGACACTGCTCCATATCCCACAAIVIV
34527057基因组SSRTGACCCTAGCAATTAGGATTTGAACCATGCCTCCAAAAACTTG60160IVIV
34624907基因组SSRAAGCAATCCTAATCCATGTGTGCATCCTTTCCGCCTTTGTTA59134IVIVIV
34722155基因组SSRACCCGAGTCAGTCGCTTATGAACACGGCTTCAATTTACGA58135IVIV
348e878EST-SSRCGCATTTTCACTCCACACACCGTTCGGAACATCCAAGGTIVIV
349o79基因组SSRTTGTCTTCACCACCTTACGATCATCAGCCAATAGTT52300IVIV
35027068基因组SSRTTTCGGGCGTCAAATAATTCGCCACACCTCCAAATGAGTT60152IVIV
35120339基因组SSRCCTTCCGTGACCAAGAGAAAGGTGGATGAGATGGATGAATG60146IVIV
352e307EST-SSRCTTGTCAGCTTGGCATTCAAGCGAGTTTCCATTCATCACA60177IVIV
353e360EST-SSRCTTGCCCAAATTCAAGCTGTCTCTATTACACAAATGCCAGTG55239IVIV
354B110基因组SSRCCTCTTCAACGGTACGAGGATTGCAGAGAGACGAGAGAGAAA56208IVIV
35527300基因组SSRCGGCAGTATTTGCAACAAGACCTCAAGGCCAGATGATTTT59159IVIV
356e1029EST-SSRTCATTGCATGCCATTCTTTCCGAAATAGAGAAAAGATAGAACCAGIVIV
35729971基因组SSRCGAAATTGAATGCAGGAATGCAACCTCCAAACTCCAAACAAVV
35828387基因组SSRGGCTCCATATCATGTTTCTATGCAAAAGGAGGGAACATGGAAGA60201VI-2V
35922059基因组SSRATCTTCCGCAACAACACACAACGTGAAACGGCACAGTATT58203VI-2
36027937基因组SSRACAAGGCATGGTATGGTGGATGAACACAAATTGCAGCCTAA59124VI-2
361S220基因组SSRAGCTCTTTCTTCCACCACCACAGGTTCCAGCTGAGAGGAG551001VI-2
362e59EST-SSRGAGGGTTTCCCGACTTCATTTAAAGGTTTTCGCCACCATC60154VI-2
363e723EST-SSRGGGGGTGTCTTACGTTGATGCCCCAAAACCAGCTGAACTAVI-2
36429094基因组SSRCCCCAAAACCAGCTGAACTAGGGGGTGTCTTACGTTGATGVI-2
36518391基因组SSRCCATCCTCCACGTGTCTCTTTCGCATATCCAAATGCAAAC60142VI-2
366e121EST-SSRAGCTCCATTTTGGAGTTTGTCCTGAACCTGATTATAGCCAAGA56211VI-2
367e619EST-SSRAAGTCTCTCATACCTAACCAACCACGCAGCCAAATTTGAGGAAGAVI-2
36820702基因组SSRGTTCTCCATCGCCTTCTTTCTGTGTTATGCCGAGCTTTTG59151VI-2
369e611EST-SSRCCACAACCCCCTCTCTCTCCTGCGAATTCGGAAAGAAACVI-2
370e1060EST-SSRAGAAGTTTTGTTGGTGCAAAGATGCTCATTTCTTTACCTTTCTTGAVI-2
371e1233EST-SSRCGTTCCTTGTCTCTCCTCAAAATTCCCAACATGCACCATTTVI-2
37222184基因组SSRGGGCGAAAACAACTTCCATACCTGGATGCTCCCAAAATAA60149VI-2
37326117基因组SSRCATCGGGCGAGATAACAAATTTCCAAGCCTCACTTTCTCC59202VI-2
37426857基因组SSRTGCTACAAGTCTAAATACAACACTCTTCGGGAAGAGAATGATGAGGA57133VI-2
37524882基因组SSRTTTCTGGAACCTCGCAAAACTTGCCTCAATTTGGAGACCT60173VI-2
37623829基因组SSRCGCTCGGCCATGTAACTTATGGAAATGGGACTGAAACTGG59199VI-2V
37724112基因组SSRTTGATCATCCTCTCGCTTTTTGTTGTCGTCATCAAAACACAG57187VI-2
37823525基因组SSRTGTGCTTTTCTCTTGGCTTCTCCAGAGGAACCACAAGGTGT59125VI-2
37924512基因组SSRAAGCGTACGTGGCAAGAAATTCCCTGGGAGAGATGAAAGA60171VI-2
38024236基因组SSRCAAACCTTCTTTATTTCCATTTCAACTTCTGGTCCACGCAAAAC59152VI-2
381e738EST-SSRCCAATGGACTAGGTGGTGGATGATGGATGGGGTGATCATAVI-2
38225394基因组SSRAATGGGTTTTGCTACGTGGTGGGTGAGTGGAGAAAGCACT59142VI-2
38325076基因组SSRGCTTGCAAGTGTGCGTGTATCCAGCCAAATGCACAATAAA60181VI-2
38425618基因组SSRTTCCATCGTGAACCTTCCTCCACACGACTTGCAATGTTCC60204VI-2V
385e122EST-SSRTCCACCGACATCTCTTCTCAAGGTGGTGGTTGTTGTTGGT59180VI-2
38619657基因组SSRTCCAAACCCTAGTTAGAGAAAGAAAGCACCATCATCGTTCATCA58188VI-2
38728929基因组SSRGGACTTTTGCGGGTATGAAATGTCTCTTTAGATTCGTTCCAAAAVI-2
388e5EST-SSRATTAGGGCCGGATAATTTGGTCCTCAGCAGCTGTCTCAAA60162VI-2
38925089基因组SSRATTCTTGTTGGCGAAACACCTTGCATTACCCAAAGCTCCT60185VI-2
39024228基因组SSRGCAAATTTTCGTTAAATGGATGTGACAACCTGGAGACGCATTC59134VI-2
39126521基因组SSRTGTCTAAGGGTGACAAAAGATCATGAACCCGCTCTTCCTTACT59159VI-2
39225851基因组SSRAGGCAACACGAGGACGAATACGACGGAATTGAAAAACAAAA60152VI-2
39325986基因组SSRCAATAGGCCGCGTAAGAAAATTGCCATCGATTTGATTTGA60158VI-2V
39422848基因组SSRGTGGTGGAAGAGCGTTTGATCATGGTGCGTTAACCCAGTT60190VI-2
39522829基因组SSRTAGAAGGTTGCCTTGGGTGTGCCCACCAAAGAAATCAAAA60114VI-2
39624850基因组SSRTGGCACACATCTTCAATACAAAGCACAACCGTTTTTGGTTCT59137VI-2
39726012基因组SSRTGGCCCTCAACCTTGTATGTGCAACACAGAACAAAGCACAA60138VI-2
39829460基因组SSRTTCCTGACGCGGACATTAACGGAAATTCGGCAAGGACTTAVI-2
399e599EST-SSRGCAATTTTCTCACTCCATCTCCAAAGGAAAGCAACTCGGTGAVI-2
40029839基因组SSRGAACCTCGTTTTTGCATCCTAATGATAGGGGTTGCCACATVI-2
40121936基因组SSRTGTTGTTTGTTTGGTTGAGGACGTTGGCAAACATCATTATCA59187VI-2
40222325基因组SSRTGCGAGGGATGAGTTTCTTTTGTGTGGCCAAATCGAAGTA60187VI-2V
40325721基因组SSRAAAAGGAAGCAACTCGGTGAGCAATTTTCTCACTCCATCTCC60168VV
40416452基因组SSRCGATGGTTGCTGTTGTGAGAACCCCAAACAAACACCAATG61129VV
40524388基因组SSRGGTCTGGGTCTTTGGCCTATAGCATTGCAACGAAGGTTTC60126VV
40623759基因组SSRGGGGTGACAGTGTAGGGTTTTTAGGCACACGCTTTCATGTT60157VI-2V
40723282基因组SSRTGGTGATGCATGATCATTTAGATACAACCCCACCCTGATTGT59152VV
40825755基因组SSRTTTTCCAACTAAGGTTGTTTCTTTCCAAAAGGAGGAGGCTGAAGA59150VV
40928889基因组SSRATTTGTGGTGCAAGCCTTCTAAAATTGTACATGGACTCCTTTCTCVV
41027456基因组SSRGCACATCCCATTTTTCCAGTTTCATTACTTTGATAGTGTTCACAAA57120VV
41127661基因组SSRATTCATCTCTTTTCCTAAACAAAAATCACACCTCCACGTTCATCTC57152VV
41229062基因组SSRTCACCATCGTGAGCAAGTTCGGATGTTACGCCCACAATGVV
41329741基因组SSRGCAAAAAGCATTGTCCATTTCGCCTAATCTACAAACGGCTGAGVV
414PSGAPA1锚定标记GACATTGTTGCCAATAACTGGGGTTCTGTTCTCAATACAAG51VV
41516914基因组SSRAACCTCGAGCAACAACAGGTTTAGGTTGGCGTTTTTGGTC60149VI-2V
416e691EST-SSRGATTTAATGCGCGGTTGATGTGAGTGAAATCATGGGTGGAVI-2
41728482基因组SSRCCGACACACTCCTCAACAAATCATCAGGATGAGGACACTCC60155VI-2
41829694基因组SSRGAGTGCCTGATCCAAGAGGACTCTAAAGGGTGGCAACGACVI-2
41928277基因组SSRAACACAAGCGCGTTAGTTGAGACCAGAGTCGAAGCGAAAC60183VI-2
42029430基因组SSRTGCGATTTTTCAGTGAGGTGAACGCAGGTGATGAGCCTATVI-2
42127008基因组SSRCGAGCAACAGACTGCAAAAAGCCAACTTTCAATGTTTGACATA59132VI-2
42216549基因组SSRCAATGAGATGCTGGCGATAAGTTCGGTGTTGTGGGTTTTT60140VI-2
423e506EST-SSRCCCCTTTATCCCCCTATTTCCCTCAACACCAATGAACCACVI-2
424e938EST-SSRCTCCTCCTCTGATCCCTTCAAAATTTCGATCAGGGGTTCCVI-2
425e625EST-SSRGCTCCAATGGCTTCCTAACAAACAAGGGGCAATCACAATCVI-2
426e800EST-SSRAATCGCCAAAGGGTTTGTTTCGCTTTGGTTCTAGCAGGATVI-2
427e1095EST-SSRTATCCATTGCCAGCAGCATAAATCGCCAAAGGGTTTGTTTVI-2
428157基因组SSRCACATCGACAGAGACATACGAGTGTGTGTGATGTGTGTGGTG5770VI-2
42921491基因组SSRACACGGGATCGAGCTTTAGATCCTTTCCTCTAACTTCTTCCTTCT59175VI-2
4303644基因组SSRCACACGCAGAATCACACGTACGTGTGTGTGCATGTAATCG59176VI-2
4313790基因组SSRGCGTGTGTACATGTGTGTGCGCGACTTGCACAAGCAGA60182VI-2
4324696基因组SSRTGCATGTGCATGTAATCGTGTCACACGCACGTACAAATCA60213VI-2
4335849基因组SSRACATTCACACACACACGCAAAAGCTGTGTGCACGTGAGTT60278VI-2
4343919基因组SSRGCACACGCAAACTCACAAGTTGCGTGTGTGCATTTGTTTA60186VI-2
435919基因组SSRGCACACGCAAACTCACACTTGCGCATGTGCATTCGTGT6094VI-2
4364190基因组SSRACACGCATGCACGATTACATTGTCCGTGTACGAGCTTTTG60194VI-2
4374013基因组SSRACACGCATGCACGATTACATGTACGAGCTTTTGTCACGCA60189VI-2
4383772基因组SSRCATGCACGATTACATGCACACGTAGCTTTGTCACGCATGT60181VI-2
4394156基因组SSRACACGCATGCACGATTACATGTGTCGTGTACGAGCTTTGC60193VI-2
4403835基因组SSRACACGCATGCACGATTACATGCTTTGTCACGCGATGTGTA60183VI-2
4414427基因组SSRACACGCATGCACGATTACATCGTACGTGTCCGTGTACGAG60202VI-2
4423955基因组SSRACACGCATGCACGATTACATACGTAGCTTTTGTCACGCAT58187VI-2
4434014基因组SSRACACGCATGCACGATTACATGTGTACGAGCTTTGTCACGC60189VI-2
4443567基因组SSRTGCATATGTGTGTGTCTGCGATACACATGCGTGCAAAAGC60173VI-2
4454274基因组SSRCACACAGAAGCACACGCCGCATGTGTGTGTGCGATGTA60197VI-2
4464043基因组SSRACACGCATGCACGATTACATCGTGTACGTAGCTTTGCACG60190VI-2
4473695基因组SSRACACGCATGCACGATTACATTTGTCACGCATGTGTATGTGTT60178VI-2
4483771基因组SSRACACGCATGCACGATTACATGCTTTGTCACGCATGTGTATG60181VI-2
4491683基因组SSRGTGCGCATGGTGCATATAAACATATACACACACGCACGCA60113VI-2
4503807基因组SSRACACGCATGCACGATTACATGCTTTGCACGCATGTGTAGT60182VI-2
4514114基因组SSRATACACGCATGGCACGATTAGTACGAGCTTTTGTCACGCA60192VI-2
4523600基因组SSRCACATGCACACGCACACTTATGTCCGTGTACGAGCTTTTG60174VI-2
4534080基因组SSRACACGCATGCACGATTACATTGTACGAGCTTTTGTCACGC60191VI-2
4543770基因组SSRACACGCATGCACGATTACATAGCTTTGCACGCATGTGTAT59181VI-2
4553808基因组SSRACACGCATGCACGATTACATGCTTTTGCACGCATGTGTAT60182VI-2
4563921基因组SSRACACGCATGCACGATTACATTACGAGCTTTTGTCACGCAC60186VI-2
4573377基因组SSRCACATGCACACGCACACTTACGTAGCTTTGTCACGCATGT60165VI-2
4583597基因组SSRCGGGTTCACGTATGTGTGTTACGCGTATATTCACACGCAC59174VI-2
4593923基因组SSRTACACGCATGCACGATTACACGTAGCTTTGTCACGCATGT60186VI-2
4604825基因组SSRGCATGTGCATTTAATCGTGCTGCACACGTACACACAAATCA60220VI-2
4613298基因组SSRTATGCGTGTGTGTGCTTGTGCACACATACACGTGTGAACCC60162VI-2
4623181基因组SSRCACATACACATGCGTGCAAACGTGTGGTCATGTACGTGTG59158VI-2
46324331基因组SSRAATGGCGCACTTCACTTTCTCCGTTAACGCCTAGCTCAAG60137VI-2
46425387基因组SSRGGCTCATGCATCTACCACCTATCCCGACGTTCACATTTTC60170VI-2
46524186基因组SSRGGTGGATCCTCCTTTTGTCATCCCAATCACCACTTCTTCA59167VI-2
46619075基因组SSRCACGAGTACAACATGGAGTGAAGCAAGCTCAACCTCCTCATACC59187VI-2
467e531EST-SSRCACCTCCACCCTTTCACCTCTGGAGGTGGGAGATTGTCTVI-2
46828857基因组SSRCCGAAATGTTCCGAAGAGAGTTTCAATTCAATGCCGAAATVI-2
46927046基因组SSRAAAGAAGGGGATGCGAGAAGGCTCAAGTCAGTCGGACCAC61145VI-2
47030087基因组SSRCGCATACACTGAGGTAACACCAATACACCGGAAGAGGACCAVI-2
471o65基因组SSRACCGCAACAACAGGATAATTGAGGTGAAATCGGAAGAC53143VI-2
472e1035EST-SSRTTTTGCACCCCCTTATGTCTCCACAAAACTCGGGTGAAATVI-2
47319252基因组SSRCAATATTGATCGGAATTTGTTTCTGCGGTTTGATTGAGTTTGA58199VI-2
47429379基因组SSRAGGCACGTTGGTGCTAGACTCCTCAATGATCCCAAAGCACVI-2
475e178EST-SSRCGAAGAAGATCAAAATCACCACAGCTTCAGGGGTTTCTTTCC59195VI-2
476e135EST-SSRGTTCGTTCGTTCGTTCCTTGTCTGTCTGGAAATGAAATGG56219VI-2
477AD147锚定标记AGCCCAAGTTTCTTCTGAATCCAAATTCGCAGAGCGTTTGTTAC61330VI-2I
478e921EST-SSRAAGGGGTGATCAAGCATCAATTGAGGGAACATGAAGAAATCAVI-2
479e915EST-SSRGTGGACTCGGATTGGGACTAGCATCGACGACGAAGAAGACVI-2
480111基因组SSRCGCACAGCAACACACACATGCAGTTAGTGCGTGCGTG6068VI-2
48122913基因组SSRTCCAACAAACTCAGCCACAGCAATGGTGGTGGTGCTCATA60175VI-2
48223383基因组SSRTGGAGAAATTGGTGGTGACATGCAACCATGTTCTTGTTCC60141VIVI
48323611基因组SSRTGCAAATGTGCAATGAATGAGGCGGACATGAGAAGGAATA60187VIVI
48425953基因组SSRGGCCACAACCGTGATGAGGGATCCAAGACCGAGACAAC60117VIVI
48524326基因组SSRAAAACGAGAGGCTCGAAACAACTAAAACCTCGCGCATCAC60185VIVIVI
48617422基因组SSRACCACAAATGCTTCCGCTTAGTTGTTGTTGCTGCTGCTGT60200VIVI
48722197基因组SSRGTTGTTGTTGCTGCTGCTGTACCACAAATGCTTCCGCTTA60200VIVI
48829622基因组SSRAACTTCTGCAGTGGCATGTGCAAAACAACCTATAAGGATGGAAAAVIVI
48929331基因组SSRGGGTGGACCGAATATTTCAACGTCACCTCTACCGAAGCTCVIVI
490e124EST-SSRGCTTCTGAACCAAGCACACAAACAATCCCATGTATCAGCAAC59235VIVI
491e1097EST-SSRCCCTTCTCATGGGGAATGATTAGTCCATGGAAGCGGAAAAVIVI
492e1105EST-SSRTAGTCCATGGAAGCGGAAAACCCTTCTCATGGGGAATGATVIVI
49327153基因组SSRGGGAGCGATGCACATAGTATTGCCCTACAACGAGTGACACA59134VIVI
49426929基因组SSRCACATTCACGACGAGGACAGGCACACTGTAAGCACTTTTCTCA60142VIVI
495e853EST-SSRCTTCCCGGGTAAGAACAACAGCTATGGTTCAGGCGTTTCTVIVI
49623637基因组SSRAAGAGGCTCGTGACCCAATATGCATTGCATCCTTCAAGAG60192VIVI
497AD160锚定标记ACCAGTCAAATGGTTAGAAAGTGAATGGAAAAGAGAATCAAGTT51190VIVIVI
49823578基因组SSRAAGGAAGGTGGTGTGGAATGCAATATTACTCAGCCATTAATTAACCT58205VIVI
499PSGSR1锚定标记TGAAACCACCATTCTCTGGAAAGACCCCACTTGAAAATTACTTC58VIVI
50025075基因组SSRCATCACTCACTCGCCAAAAAAACCATCTTTGCCAGGTACG60192VIVIVI
501e709EST-SSRTGTGCAACCGAGATTGGTAACGCCAAAAATACTGATTCACTTCVIVI
50227176基因组SSRTGCCTTCAGGTTTTCAAGGTTGATGAAAGCAATTTTCATGACTT60147VIVI
50329246基因组SSRCCCTTGCTTGGGTAAGAAATCGTGCCGGGTATGTATCTGGTVIVIVI
5044816基因组SSRCGTCATCATTGTTCGTCATTCTGGTCGTAGGGTGTGTCGTCT60219VIVI
5052089基因组SSRACACACGTCACACACACGTCTGATGTGTATGCGTGATGGA59124VIVI
50628621基因组SSRCGTTTTCACATTCGCTAACCTGGAGAAAGGTTTCCTGATGA58171VIVI
50727428基因组SSRGCACGCCTGACTTCTTCTTTAAATGGATTGCGACGTGATT60174VIVI
50824560基因组SSRGATAAAGGCAGCGACAGAGGAATGAAGTGCAAGCCCAAAT60202VIVI
50923737基因组SSRCGTGCAACCATAGCAAGAGAAAACCGCTCAAGCTCAGGTA60182VIVI
51026025基因组SSRATGCACTCAAAGGCCATCATCACTTGCAGAGCGAGAGAAA59113VIVI
51124906基因组SSRTCGAGTCAATCGCTCAGAACTGCCCAGATGTCATAAGGTG59134VIVI
51216445基因组SSRTCAAACCGCTGAAAAACAAAGCGGTGGGAGGGAGATAC59128VIVI
51316397基因组SSRAGGGCCAGGTTTATTTCCACTTTCCCAATGGCAAGTTAGC60123VIVI
514e715EST-SSRCGTTGAAACAGCGATTCTGATTTCTTCAATACCTCAATGGTTCVIVI
51528153基因组SSRTGGGTTGTCGTGTTGTTGTTAACACTCCCAACTCCATTTTT58183VIVI
51627491基因组SSRTCCTAACCAACCAATAACACGATTTGAGGATTTCGGTGACCTC60180VIVI
517C58基因组SSRTCACGTGCTTGTCGTTCTTCTAAGAAACCGCCATGGAT TTVIVI
518B117基因组SSRACATCAGGGAAGAACGCATCGAGGGTGAAGACCAGCTTTGVIVI
51930379基因组SSRTGTTGGCAGGAAACTCTTCAAGCCACAAATTTCGTTGTGTTVIVI
52024575基因组SSRTTGTGAGCACATTGGAGGAGGGATTGTGTTGGTTAGAGAAAGAGA60161VIVI
52123468基因组SSRCGGCAGCATCTACACAAGAGACGTTGAAGACTCCGTCACC60171VIVI
52229440基因组SSRTGTTCCCCTTTAATTTTCATCCTAAGAAGCCGTCACGAAATGTVIVI
52330004基因组SSRTCTTTGCGGATATGCATTTTACGGGTGAGGACTGAAAACTCVIVI
5242614基因组SSRATGTGTGTGCGTGTGTGTTGGATTGTTATGTGCTGCGTGG60140VIVI
5253494基因组SSRGCACCGCTCTGACACTCATATGAGAGTGGAGTGGCTGAAG59170VIVI
5263244基因组SSRCTTCCCCTCGCAATTTATGAATGTGTGTGCGTGTGTGTTG60160VIVI
5274583基因组SSRACACCATTGCACCATTCTGATGCGTGTGTTGTGAGTGAGA60208VIVI
5284581基因组SSRACACCATTGCACCATTCTGAGTGCGTGTGTGTTGTGAGTG60208VIVI
5294629基因组SSRACACCATTGCACCATTCTGAGTGCGTGTGTGTGTGAGTGA60210VIVI
5304811基因组SSRATGTGTGTGCGTGTGTGTTGACACCATTGCACCATTCTGA60219VIVI
531e93EST-SSRATGGCCTTTGCAATTACAGGGCTGATGTTGGCCAAGGTAT60203VIVI
532e771EST-SSRTCCGGCAAGATATTGGAAAACTGCAGAGGCTGTCACTCAAVIVI
533e1109EST-SSRTCCGGCAAGATATTGGAAAAGCTTGGATCGCAGGAAAATAVIVI
53420896基因组SSRTGATGACCCTGCAAATTCAATGCACCACTGTCAGGTGATT60131VIVI
535e596EST-SSRTCCCTCATTCTCCCTTTTCAGACGGCGCTGATGATAGACTVIVI
536e1098EST-SSRAGAGGACGTGTTGCTGTGTGCACAGAATTGGCAGAAACAGAGVIVI
53727272基因组SSRTGTAGCGGCACACTTTGAGAGATCTCTGCCACCCATCTTC60190VIVI
53828790基因组SSRGCTGTGGGGGTTTAATCAGACCGCAATCCTTCAAGAACTC60133VIVI
53929200基因组SSRATGCTGATGAAATGCGAATGCATCTGTACCCGGACCTTTGVIVI
54027844基因组SSRGCTTCAAGCTACCAAGTGGACCTCACGGGCTCTACCATAC58118VIVI
54129877基因组SSRGTCGTGGGGAAAAGGTATCAGGTACGACAACCCTACCTTTGVIVI
542e975EST-SSRAGCAGCTCCTACTCCTTCTCCGCGCAAATCCTATTCCAAAGVIVI
543e940EST-SSRGCGCAAATCCTATTCCAAAGATTTCAGCAGCTCCTACTCCTVIVI
54419691基因组SSRTTGTAAGACCGACTCGTCCACGGTCTGAGGTTGTTGTGAA59146VIVI
54516588基因组SSRCGGTCTGAGGTTGTTGTGAATTGTAAGACCGACTCGTCCA59146VIVI
54625488基因组SSRTGAAGAATGAGCTTCAATTTTTGTGGGTGCAATCATGAGTGTTG59145VIVI
54726625基因组SSRGCTCCATCACGGTGAGTTTTTCCCACTTTCACGATGTTCA60191VIVI
54825280基因组SSRCTCTCTGCCCACTGCTCTGTCTCACGTTGGGATGCTAAA59122VIVI
54925711基因组SSRAAGGTTTTGAAATAAATGAAGTTTGTGAAAGCCCACTTGATCTTC57188VIVI
55025888基因组SSRAAGGGGGAGAGAGGTGGTTATCGCCTTTTCTTTCTTCTTCA59164VIVIVI
551AA335锚定标记ACGCACACGCTTAGATAGAAATATCCACCATAAGTTTTGGCATA61220VIVI
55223568基因组SSRTCCCTCATTCTCCCTTTTCAGACGGCGCTGATGATAGACT60127VIVIVI
55323081基因组SSRACCCTTGCTTTGCCACATAATGTTGCTCTTTTGTTGAGTTGA59149VIVI
55423431基因组SSRGCAACAACAGCAACCTCTGATGAAGGTGGAACTTGGTTTTG60145VIVIVI
55527435基因组SSRTTGATGCTCTTCTTCCATTCAACATACAAAACACACAAAAAGGATTG60171VIVI
55616410基因组SSRAAGGTCATGCTTCTTCATCTCTGGGTGAGGTGTTATGGCACT57125VIVI
55728516基因组SSRCCAAAATTCATGCATGGTACGTCCAGTGGCTCATAGAGGAGA60169VIVI
55826140基因组SSRTTGTGTGCAAACCACCTAGCGATTGCATCACACGGTCAAG60200VIVI
55923309基因组SSRGAAGATGGCAACGTGTCAAAAACTCATCCTCCACCACCAC60128VIVI
56029872基因组SSRTCCACTTCCACCCACAAAATGCAATGGAGGTTTTGCTTTTVIVI
56126514基因组SSRTGGGCACAAGTCTGTGAGAATTGGGTTGAGGTGTTTAGGTG60153VIVI
562AD60锚定标记CTGAAGCACTTTTGACAACTACATCATATAGCGACGAATACACC51216VIVI
563AB71锚定标记CCAACCATTTGTGAGTTCCCTTTTCGTCGAACCACGAGAATAGA61145VIVI
56423949基因组SSRTCGGTCAATTTTCACGTAGCGCAGAGAATGAAAGAAATATAAAGAAA58142VIVI
56522903基因组SSRTGCTTGCCAGAATAAAAGTCCCCTCTAGGGTTTCGGGTCTC59181VIVI
56627055基因组SSRTCTGCAAACTCCCAACACTGGGTGGTTTGGTTGCAATCTT60206VIIVII
567e282EST-SSRGGCAAGCATAAAAGGGACACTTCATCCAAGAACCCTCGAC60185VIIVII
568e144EST-SSRTCCATTTCCCGAGTTTATCGAACACGAATATGCAACAAGC56151VIIVII
569S244基因组SSRTTTAGCACAGAACAGCGTAGTTAACGCCCTTGAGAATTTCG53606VIIVII
57021399基因组SSRTGATTCTAGTTCATTTCACAAACACACGTCCTGCACCTAGCTTCTT60153VIIVIIVII
57126099基因组SSRGCTCTTCGTAACGCTCACAATGACGACGGAGACTGAGTTG59201VIIVII
57219979基因组SSRCACCAGAAAATTTGTTATCAAAAAGAGCACCCTGGGAAATTACAAA60161VIIVIIVII
57324547基因组SSRCGGCAGAATTAGGGTTTTGATCAATTCCGAACCACCTTTC60198VIIVII
574e968EST-SSRACCGCTTGAACTCCAAACAAGAAGGTAACAACGCCGAGAAVIIVII
57518013基因组SSRTCAATTCCGAACCACCTTTCCGGCAGAATTAGGGTTTTGA60198VIIVII
576S144基因组SSRTTTTCTCACCGCGCTTATTTAACAACCACCGAAGACGAAG54235VIIVII
57720828基因组SSRCATGGATCCCAACAGAAACATGGTTTTTACCCGAGACTGG59144VIIVII
578e876EST-SSRGCAGATTGACTGCTCATGATGTAGCTGATTATTGGGCACCTGVIIVII
57921405基因组SSRTCCACCATCTAATCCCCTCTTAGCTGATTATTGGGCACCTG60147VIIVIIVII
58018103基因组SSRCATGTGCATGTGCAAGTACGCTTTAAAATGCCCGGACAAA60209VIIVII
58117431基因组SSRTTCACAATTCACCACCAATCACCAACGTCAGGTACGATTCA60201VIIVIIVII
58217666基因组SSRGTGCATTGGCTCGTACTCAATCCACAATATAGCCCAGACCA60158VIIVIIVII
583S85基因组SSRTTCCAACCATGGAAGCTTTTTTCTTCGTCGGGTACAGTGA54188VIIVII
584e255EST-SSRTGGAGAAGGGCAAAATATCGTCTCAACACCACATCAAGGAA59249VIIVII
58525965基因组SSRTGATTCGTAGACCCCACACAAAGGTTAATGTCTTCTTTTTGAAGTT57150VIIVIIVII
58617384基因组SSRAGTAGCGGTGTGTGGTTGTGGGGAAGAAAAAGGTTGGAAGA60197VIIVIIVII
58730253基因组SSRCTACGTTTGGCCCTTGTGTTGGCCCTAAATCTAAAATGAACAAVIIVII
588B179基因组SSRACCGACGCTTCAATGGTATTTTCATCTCCGACCCTACACC55267VIIVII
589e499EST-SSRGACTCCACGCACAGAACTGAGGAGAGGGGAGTGAATGTGAVIIVII
590e544EST-SSRCACTACACAAGAAGCAAAGAAAAAATTCCTTTCCGGTCCATTTCVIIVII
591e1002EST-SSRCCACGCGTGACAAGTAAAGAATTCCTTTCCGGTCCATTTCVIIVII
59221420基因组SSRGGTGGTCGACGTATCGAAGTTCAATGTTGTTGCGCTTACAT59142VIIVII
59318255基因组SSRTGTCAAATCCAATAAAAACACACATTTGTGCACACCGTCAATTT59129VIIVII
594e643EST-SSRCACCACCACTCTCACACCATTGCATTGCGAGAGTAAGACAAVIIVII
595e825EST-SSRAGTTTCCGCCATCAACATTTCCTACCTGCATTCACAACCATVIIVII
59617225基因组SSRGTTGCAAGCTGCTACCATCAAGACGGATCCAACAATCTCC59182VIIVII
59717593基因组SSRCATCCTCCTCCTCCATACCATCATCATCAATGCAAAGGACA60148VIIVII
59824407基因组SSRGGGATCAAAGCAACCCTTTTCATGGCAAGGAAGACCGTAG60208VIIVII
59924810基因组SSRTGAGCGAGGTAGGAAGAACCCCTCTACAGTGGCCCTCTCA59132VIIVII
60025354基因组SSRACCCTTGGGGCTTACAATTCGACGTGGCTGGACATAACAA60184VIIVII
60125799基因组SSRCTGCAGAAGGCCCTGTTCTAGATTCTTCATTCTCAACACACATTG60137VIIVII
60225430基因组SSRGCACTTGACGATGCATTTGAGGGAAAGGGAACGATTTCAT60210VIIVII
60323294基因组SSRGGAGGAGGATGACGATGAAAAGGGCTACCGGACTGAAACT60172VIIVII
60424142基因组SSRGCAGCCATGGTTGATTGATTTCAAGAACATTACTTTTTCCCTCT58194VIIVII
60527051基因组SSRTGGTGGTGGAGAGTGATTGATCTGGTGGTACTTCCTCCAAAT60208VIIVII
606e1114EST-SSRGTGCGGCTTCATTTTCAACTTTCTCAACTGGTTGGTTCCATAVIIVII
607e1209EST-SSRAGTGCGGCTTCATTTTCAACTCAATTTGATCCATGCAGTAGGVIIVII
608AF004843锚定标记CCATTTCTGGTTATGAAACCGCTGTTCCTCATTTTCAGTGGG54VIIVII
60923606基因组SSRGGGTTTGCCTCTTTTTCTCTCATCGTCAAAACTGCCCAAAC59113VIIVII
61021345基因组SSRTGCAATGCATGTTGATACGTCGCAAAAACTCAAACTCAAACTCAA60152VIIVII
61127583基因组SSRTGCACAGAGGATGGTTCTCATGGATTGAGCCTCTTGTCCT60110VIIVII
61225610基因组SSRTTTGGTCGTTGCCAAACTAAAGGACATACCGAGCCAGATG59133VIIVII
61326656基因组SSRAGAAGAGCGTCGGGAAGAGTCCATGACGGAAAACAACCTT60188VIIVII
61425728基因组SSRTGGACAAATCTCGTGCAAAGCCAACTTCCCATCTCCAACA60164VIIVII
61524471基因组SSRCAACACAACCTCCTCCAGGTTAAGCCATTCCCACCTTCTG60121VIIVII
61624734基因组SSRCGCATGAGAGGATAATGATGAACCATAGCTTTCCCGAATCAG60183VIIVII
61724588基因组SSRAAATAGATGAGAAAGAGAGAGATTACGCGCACTTCCATTCACATGAT57137VIIVII
61824602基因组SSRTGAGTGGGCGTGTGATTTAGTTGCACTGTCGCATTTGAGT60118VIIVII
61924503基因组SSRAAAGGAGATCACCTATGAGAGAGAAAATTGATTTGGGATCTTGGATA57154VIIVIIVII
62028097基因组SSRCAAAATCGGCAGGATTTACAATTTGCCTATGAACCTAAAACCAT59124VIIVII
62124814基因组SSRGTGCAACCAGAGCATGTTTCCATCGACTGTGGAGACATTGA59152VIIVII
622AB65锚定标记CTCGTATCCAAAGATTCGTAGAAGGGTTAATCGGAGTTTTATGA51VIIVII
62329468基因组SSRAGTACTCTCGCCGCATCAGTCACCCCACTTGAGCATATCAVIIVIIVII
62428967基因组SSRCTCGTCCTCATCGAAAAGCTAGTGAACAACGCAAGGGTTTCVIIVII
62529500基因组SSRTGGGAATTGACGAAGAGTGTTATGGAGAGGGTTGCTGACATVIIVII
626e46EST-SSRAGGAGGGAGTGGTGGAGATTCATCACGTGCTTGTGCTTCT60227VIIVII
627e1173EST-SSRTGATTCCGAATGGGAAACTTAATCCGCAAACACATCAACAVIIVII
628e1276EST-SSRTGAAACAATAGTGCTTTGTTGAAACTTTTTCTCGTCTGCGTGTGACVIIVII
62922060基因组SSRCCGCCTTAGGAAGCCTAACTCGGCTTGATAATTTGGTGCT60181VIIVII
630e628EST-SSRGCCACCCTGTTTCTGCTAACCTTGTGGATCGGTTCGTGATVIIVII
631e524EST-SSRTCACACCATAGAGAATAACAACAACATCTGAAGCCATCTCCATTCTCVIIVII
63228608基因组SSRTCATGATTTCAAATTTCTTTCACAACGCCGTTGGGTAATTGTAAC60136VIIVII
63322101基因组SSRACCAATCCAGACGCAAATTCGGGGACAGTGACGAGAACAT60156VIIVII
63419460基因组SSRCAATCCAAACGCAAATCTAACAAATTGCAAGCCCTACACACA59187VIIVII
63517910基因组SSRCATGCCTGCTTCCTTCTGTTTTGCAATTTCAAGCCTTCAC59187VIIVIIVII
63627398基因组SSRGAACCACATTGGGGATTCTGAACCTGCAAAAGCCATAAGC59180VIIVII
63730165基因组SSRCCTTTTTACCCCTCCCTCAGTCAAATGCAAAGGGAAACAAVIIVII
63827755基因组SSRTGCATTTGAGCTAGTGACATTCTAAAAACCAACCCAACCACTT58163VIIVII
639e1193EST-SSRGTTGGCGAGGAATGATTGTTTCACACACTCTGCCATTTCAVIIVII
640PSAB60基因组SSRAATTAATGCCAATCCTAAGGTATTGGTTGCACTATTTTCGTTCTC59VIIVII
64128054基因组SSRAGCAAAGTCACCAGCTGTTTTTCCTGTTCTAAAACAAAAACAAGAGA59113VIIVII
64230124基因组SSRGACTATGTGTGTGCATGAATTTGAGGCCATCTCGTTTCAGTACCVIIVII
64330304基因组SSRCACGCACAGACAGATCATCAGAAGTTGGGGATGGGAAGATVIIVII
64428108基因组SSRCGACAATGTTGCCAGCTATCTTTTAGGATTTTATCGACGTTTTTC59119VIIVII
645e291EST-SSRCAAGCGTCGAAGATGAACAAGCTGGCTGCAAAAGTTTACC60205VIIVII
646e292EST-SSRGCACATGAAAAATGCCAAAGCTGTTGCTGTTGGTGGTGAG59220VIIVII
647PS11824基因组SSRACCACCACCACCGAGAAGATTTTGTGGCAATGGAGAAACA52210VIIVII
648e527EST-SSRTTGAAGCAGTGGCAGAGTTGTCTCAATGAAACATAAGAATGACCTTVIIVII
649e1202EST-SSRTGCATGGTTATGATGCTTGATCACACACCCCTTCAATTATTCVIIVII
65023521基因组SSRCGCCAATTCCTTTTCCCTACAGAACTCACAGGCGATGGTC60112VIIVII
65124652基因组SSRGAGAAAGCGGCTGCTTAGAAGCTGTCACCGAGAATGATGA60190VIIVII
65225241基因组SSRTGCAAGCAAGCAAAATTGAATGCATGCCCTTTATTTCTTTG60142VIIVII
65324944基因组SSRTCAACCGGAATCTGGAAAACATGGCGCAATCCTAGTGAAC60193VIIVII
65422896基因组SSRATGTACGCCATGCAGTCAAAACAAGATGGGCGTCGAATAC60151VIIVII
65524398基因组SSRTTCGATGCATGAATGACAAAATCGGCGGAGACTAAGATCA59142VIIVII
65620817基因组SSRGGCGTAGAGGGCTAAACCTTTTCCCGAGTCCTAACTTTCTTG60135VIIVII
65719526基因组SSRACTCCTGGACACCCTGAGAACTGACCAAGGGGACCTGTAA60198VIIVII
65829620基因组SSRCCACTGAAGGCTCCTGAACTAGCGATCACCGATAGTGTCCVIIVIIVII
659e1220EST-SSRATGGTGGTGGAGGTGTGATTCATCGCCAAATGGATCTTCTVIIVII
66017980基因组SSRCAATTCACAACGTTCCACTCATTTTCGTGAAATTGAAATGACC59194VIIVIIVII
66129248基因组SSRCAACAATGTGCATGGAAAAACTCGCATTGCGTAACGATAAVIIVIIVII
66228595基因组SSRCCGGTTCATCGATAAATGTGATCTCAAACCCACCAACAACA60199VIIVII
6632629基因组SSRCAAAACACATACGCACACACACCCGTCATGATGTCATGTAAA59141VIIVII
664e123EST-SSRGAGCACAACTTTGCAAGCAGACACGTCATTTCAAACCACT55198VIIVII
665e1249EST-SSRCCCGTTTCAAATTAGAACGATAACACGGTTCGGCATTTATTTCVIIVII
66623536基因组SSRGACGTTGATTGGCCTGTTTTTGACCATGACATGCCTGTTT60180VIIVII
66721796基因组SSRTCTTCGCTGGGAAGTTGAGTGGAAGCGATGTCGTTTCATT60210VIIVIIVII
66828261基因组SSRCTCTCCCCATGGAGAACAACAACAGCTGAAATTGGCGTAGA60131VIIVII
粗体代表锚定标记,下划线代表共有标记,粗体加下划线代表共有锚定标记。标记名称以“e”开头的为EST-SSR标记。
The bold, underlined and bold underlined labels represent anchor markers, common markers and common anchor markers, respectively. Marker names that start with “e” represent EST-SSR markers.

新窗口打开|下载CSV

将我们的整合图谱与以往的遗传图谱相比较, 结果发现, 本研究中的7条连锁群能够与以往遗传连锁图谱中7条连锁群相对应[10,42-44]。通过比较整合遗传图谱和2个单独的遗传图谱之间共有标记的顺序和位置, 结果发现, LGIV和LGVII这2个连锁群在不同图谱中的标记顺序存在较高的共线性, 而其他连锁群则由于作图群体差异而观察到了一些倒位和标记重排的现象。此外, 在整合图谱的LGV上, 同时包含2个锚定标记, 一个是在以往图谱中定位于LGV的PSGAPA1, 另一个是在以往图谱中定位于LGI的锚定标记AD147, 因而导致LGV的定义存疑(附图1)。

附图1

新窗口打开|下载原图ZIP|生成PPT
附图1整合图谱和2个单独图谱及其与豌豆参考基因组物理图谱之间共有标记比较(A–G)

图谱左侧数字为标记位置信息,而右侧为标记名称。遗传图谱包括PSP1、PSP2和整合图谱的图距单位为cM,参考基因组(Reference genome)的物理图谱图距单位为MB。图谱标记名称红色代表锚定标记,标记名称粗体加下划线代表共有标记。标记名称以“e”开头的为EST-SSR标记。
Supplementary Fig. 1Comparison of the common markers among the integrated map and the two individual maps as well as the physical map of the reference genome (A–G)

Numbers on the left of the map and labels on the right of the map represent the position and name of markers, respectively. The map distance unit of genetic maps including PSP1, PSP2 and integrated map is cM, while the map distance unit of physical map of the reference genome is MB. The red and underline labels represent anchor markers and common markers, respectively. Marker names that start with “e” represent EST-SSR markers.


本研究以新近发表的豌豆基因组为参考(Caméor genome build 1a)[20], 对50个共有标记的扩增片段序列进行了BLAST比对分析, 从而对本文得到的遗传图谱和豌豆的物理图谱相比较(附表2)。发现有45个标记被成功比对到豌豆的7条染色体上, 上述有争议的1条连锁群(LGI-2/LGV)被证明为LGV。其中30个标记具有唯一比对位置, 15个标记比对到2个以上的位置; 剩下的5个标记比对到了未挂载到染色体的组装支架上。此外, 还比较了3个遗传图谱和物理图谱的标记顺序(附图1), 发现chr2LG1与LGI-PSP2高度一致, chr6LG2与LGII-PSP1高度一致, chr5LG3与LGIII-Integrated map基本一致, chr4LG4与LGIV- PSP1、LGIV-PSP2和LGIV-Integrated map基本一致, chr3LG5与LGV-PSP2和LGV-Integrated map基本一致, chr1LG6与LGVI-PSP2和LGVI-Integrated map基本一致, chr7LG7与LGIV-PSP1、LGIV-PSP2和LGIV-Integrated map一致率较高。

Supplementary table 2
附表2
附表2豌豆遗传连锁图谱上共有标记BLAST比对结果
Supplementary table 2BLAST results of common markers on genetic linkage maps of pea
标记名称Marker name连锁群Linkage group染色体/连锁群 Chromosome/LG比对条数 Number of blast results最小E-value
The minimal of E-value
最高比对率
The maximal identifies (%)
起始位置
Start position
终止为止
End position
比对长度Mapped length
整合图谱 Integrated mapPSP1
G0003973 × G0005527
PSP2
W6-22600×W6-15174)
20229IIIchr2LG1206.7E-9410021,564,67121,564,851180
25334IIIchr2LG142.7E-70100329,941,758329,941,897139
23261IIIchr2LG111.7E-79100410,201,631410,201,786155
24301IIIIIIchr6LG213.9E-589644,747,00844,747,143135
28257IIIIIIchr6LG213.5E-559389,359,78989,359,941152
17754IIIIIIchr6LG213.0E-8599284,992,981284,993,149168
25769IIIIIIchr6LG2173.9E-5895379,342,213379,342,360147
25792IIIIIIchr6LG236.5E-12193430,274,319430,274,608289
26850IIIIIIIIIchr5LG314.5E-809995,945,21695,945,375159
21726IIIIIIIIIchr5LG324.4E-80100105,392,839105,392,995156
25151IIIIIIIIIchr5LG3314.4E-80100128,426,677128,426,833156
18135IIIIIIIIIchr5LG318.3E-59100157,545,697157,545,816119
22754IIIIIIIIIchr5LG332.2E-82100178,517,012178,517,172160
20075IIIIIIIIIchr5LG316.6E-4595255,763,443255,763,559116
29630IVIVIVchr4LG412.3E-9710077,755,73577,755,921186
28304IVIVIVchr4LG445.8E-649977,763,19777,763,328131
27275IVIVIVchr4LG451.1E-5894144,374,211144,374,362151
24036IVIVIVchr4LG411.5E-102100298,729,278298,729,473195
19487IVIVIVchr4LG423.6E-92100329,433,230329,433,407177
21622IVIVIVchr4LG411.0E-69100411,138,053411,138,191138
24907IVIVIVchr4LG417.5E-67100441,578,306441,578,439133
23829VVVchr3LG542.8E-10410040,897,21840,897,416198
25618VVVchr3LG5108.7E-1019991,875,17191,875,372201
25986VVVchr3LG519.0E-5691181,332,864181,333,028164
16914VVVchr3LG512.2E-4589191,073,596191,073,747151
22325VVVchr3LG515.4E-9198221,771,656221,771,845189
23759VVVchr3LG514.4E-80100276,140,552276,140,708156
24326VIVIVIchr1LG613.3E-9610030,662,37930,662,563184
25075VIVIVIchr1LG611.0E-929846,237,14746,237,342195
29246VIVIVIchr1LG625.0E-7210063,898,49663,898,638142
23568VIVIVIchr1LG617.9E-63100339,601,745339,601,871126
25888VIVIVIchr1LG614.1E-84100342,366,936342,367,099163
23431VIVIVIchr1LG613.5E-73100359,154,849359,154,993144
21405VIIVIIVIIchr7LG714.0E-479023,151,03323,151,166133
17431VIIVIIVIIchr7LG727.5E-949828,469,95528,470,153198
19979VIIVIIVIIchr7LG718.3E-719733,247,38333,247,539156
17666VIIVIIVIIchr7LG718.1E-719733,247,46633,247,619153
25965VIIVIIVIIchr7LG717.5E-498979,270,35179,270,512161
17384VIIVIIVIIchr7LG714.0E-10310086,051,35086,051,546196
29468VIIVIIVIIchr7LG713.9E-5895196,186,432196,186,576144
24503VIIVIIVIIchr7LG742.6E-5291201,461,481201,461,642161
17910VIIVIIVIIchr7LG712.0E-6897329,043,834329,043,990156
17980VIIVIIVIIchr7LG711.9E-9498474,504,396474,504,591195
29248VIIVIIVIIchr7LG717.2E-7599481,640,880481,641,037157
21796VIIVIIVIIchr7LG712.7E-9797488,671,955488,672,158203
18272IIIIIIscaffold0002419.2E-599843,94344,076133
23262IIIIIIIIIscaffold0307114.7E-95100151,557151,739182
28387VVVscaffold0350922.0E-10510040,82841,028200
21399VIIVIIVIIscaffold0091618.8E-67969,84610,002156
29620VIIVIIVIIscaffold01087121.1E-549647,70247,832130
遗传图谱包括PSP1、PSP2和整合图谱的图距单位为cM,参考基因组(Reference genome)物理图谱图距单位为MB。图谱标记名称粗体加下划线代表共有标记。
The map distance unit of genetic maps including PSP1, PSP2 and Integrated map is cM, while the map distance unit of physical map of the reference genome is MB. The underline labels represent common markers. Marker names that start with “e” represent EST-SSR markers.

新窗口打开|下载CSV

3 讨论

3.1 SSR标记筛选

由于具有多态性高、多等位基因、共显性、可重复、可转移和基因组覆盖度高等特性, SSR标记包括基因组SSR和基于表达序列标签的EST-SSR已被广泛应用于种质资源鉴定评价、遗传变异检测、遗传进化分析、遗传连锁图谱构建、功能基因定位以及标记辅助育种等诸多领域[21,48-50]。通过对基因组SSR和EST-SSR的应用范围进行比较发现, 基因组SSR因为多态性较高更适合于区分遗传关系比较近的基因型, 并且在指纹图谱构建和种质资源鉴定研究中更具优势; 而从基因或表达序列标签数据生成的EST-SSR标记则有利于获得更多基因的相关信息, 在重要农艺性状的标记辅助选择中具有更大优势, 同时在近缘物种之间具有更高的可转移性[21,51]。以往的研究已经成功开发了一些SSR标记[10-12,38,44], 并用于遗传多样性评估[1,33,52-55], 遗传连锁图谱构建[10,15], 以及标记性状关联分析[32,56]等。然而, 豌豆作为具有重要经济价值和显著生态优势的食用豆类作物之一, 目前具有明确定位信息同时可公开获取的基因组SSR和EST-SSR标记数量还相对有限, 这极大地阻碍了豌豆的分子遗传研究和标记辅助育种。在本研究中, 我们利用大规模筛选从本实验室开发的12,491个SSR标记中得到了729个多态性SSR标记, 同时从125个已发表的具有明确遗传图谱定位信息的标记中筛选了25个锚定标记, 分别用于2个基于中国豌豆种质F2群体的遗传连锁图谱构建和整合。在最终得到的整合遗传图谱中, 上图标记达到668个, 包括509个基因组SSR、134个EST-SSR和25个锚定标记, 分布在7条连锁群上, 对应于豌豆的7条染色体, 相关标记信息详见附表1。这些已定位的SSR标记将为豌豆种质资源鉴定、遗传关系分析、分子遗传作图以及标记辅助选择提供宝贵资源。

3.2 遗传连锁图谱构建

高密度遗传连锁图谱是进行遗传研究和分子育种的有力工具。针对豌豆的遗传连锁作图已经有很长的研究历史, 前人利用不同的分子标记和不同的作图群体已经构建了许多豌豆遗传连锁图谱[31]。随着二代测序技术的发展, 基因组SSR、EST-SSR和SNP标记的高通量开发为豌豆的分子作图奠定了重要基础[14-18,57]。最近, 有****还利用SRAP、SSR和SNP这3种标记基于F2群体构建了一张豌豆的遗传连锁图谱, 包含128个遗传标记, 分布在9个连锁群上, 然后他们利用9个SSR标记作为锚定标记, 将其中的6个连锁群与以往发表的遗传连锁图谱中的连锁群对应起来[58]。尽管在豌豆中已经构建了超过50张的遗传连锁图谱, 然而目前国际上还没有基于SSR标记构建的标记数目达500个以上的图谱, 因此豌豆SSR遗传连锁图谱无论在标记数目和密度上均有待完善[10,15]。此外, 前人的研究已经证明中国豌豆种质资源具有独特的遗传背景[1,32-33], 然而基于中国种质的豌豆遗传连锁图谱很少。过去的一项研究基于中国种质构建的豌豆遗传连锁图谱总长1518 cM, 仅包含157个SSR标记, 标记间平均距离为9.7 cM, 而且分布在11条连锁群上, 与豌豆的单倍体染色体数并不一致(2n = 2x = 14)[15]。在本研究中, 我们首先基于与以往研究[15]相同的作图群体(PSP1), 筛选了大量多态性SSR标记, 对以往的图谱进行加密。加密后的图谱累计长度扩展到5330.6 cM, 标记数目增加到603个, 标记间平均距离缩小为8.9 cM, 所有标记分布在7个连锁群上(图1表2), 其中6条与以往发表的豌豆遗传图谱一一对应。此外, 我们还利用一个新的大样本作图群体(PSP2)构建了一张新的豌豆遗传连锁图谱, 并通过17个锚定标记将总共118个标记定位在与以前发表的豌豆遗传图谱完全一致的7条连锁群上(图2表2)[10]。本研究基于中国豌豆种质构建的2个作图群体代表了与国外豌豆群体具有显著差异的基因组背景, 得到了2个SSR遗传连锁图谱, 与以往的研究相比[15], PSP1图谱在标记数目和密度上具有明显提高, 而PSP2在连锁群装配方面则具有明显改善, 这些图谱将为中国豌豆的标记辅助育种提供有力工具。

3.3 整合遗传图谱

整合图谱凭借较高的标记数目和密度以及更完整的基因组覆盖范围等优势[34,35], 在许多作物包括豌豆中均有应用。过去几十年, 在豌豆遗传连锁作图悠久的研究历史中, 前人已经通过整合来自多个作图群体的信息而获得了很多复合遗传连锁图谱[10,16,31,36-37,42,59-61]。2015年, 法国科学家利用13.2K的基因芯片对12个豌豆RIL群体进行基因分型, 同时整合了以往图谱中的2277个标记, 构建了一个包含15,079个标记和7条连锁群的高密度一致性连锁图谱, 该图谱全长794.9 cM, 平均标记间距离0.24 cM, 为评估豌豆基因组结构、基因含量和进化历史以及候选基因鉴定提供了有力工具[16]。然而上述一致性图谱包含的EST-SSR和基因组SSR标记仅有187个, 为了在豌豆遗传连锁图谱上积累最大数量的SSR标记, 本研究通过53个共有标记将2个F2作图群体的数据合并构建了一个整合遗传连锁图谱, 覆盖范围为6592.6 cM, 包括668个SSR标记(509 基因组SSR、134 EST-SSR和25个锚定标记), 分布在7条连锁群上(图3表3)。值得注意的是, 遗传连锁图谱的长度随标记数目的增多而延伸, 这种现象在包括豌豆在内的多个物种中均有发现, 有人推测可能与重组事件和偏分离有关[36-37,62-64]。此外, 有****认为延伸的图谱长度对图谱上标记的映射顺序几乎没有影响[61]。过去的研究发现, 由于多等位标记、数据缺失、偏分离和染色体重排等原因, 在比较不同杂交群体获得的遗传连锁图谱时, 会出现标记定位和顺序的不一致[10,36-37,65]。在本研究中, 通过对2个单独的遗传连锁图谱之间53个共有标记的比较发现, 基于2个群体构建的遗传图谱均可组装到7条连锁群上, 与以往研究中的7个连锁群具有较好的对应关系, 然而PSP1图谱的LGI-2 (包含LGI锚定标记AD147)对应于PSP2图谱的LGV (包含LGV锚定标记PSGAPA1), 导致整合图谱中LGV的不确定性(附图1)。但是由于PSP1图谱中7个连锁群有6个与以往发表的图谱一一对应, 仅剩1个连锁群(LGI-2)因为缺乏额外的锚定标记无法与以往发表的LGV相对应; 同时PSP1图谱中的LGI-2与PSP2图谱中的LGV之间存在7个共有标记, 基于上述两点原因, 我们推测LGI-2应该对应于以往发表图谱中的LGV。然后通过对50个共有标记的扩增片段序列的BLAST比对分析, 对3个遗传图谱和物理图谱进行共线性比较, 结果支持有争议的一条连锁群确实对应于以往遗传图谱中的LGV (附表2), 而该连锁群上的锚定标记AD147可能是异位所致。另一方面, 单独图谱和整合图谱共线性比较发现, 不同图谱在LGIV和LGVII这2个连锁群上的标记顺序具有高度一致性, 而在其他连锁群上则观察到标记的颠倒和错位(附图1), 推测这种不一致性可能是由不同作图群体中发生的染色体重排引起的[10,36-37]。不同遗传图谱与物理图谱的共线性比较得到了类似的结果(附图1附表2), 物理图谱的chr4LG4和chr7LG7与3个遗传图谱在LGIV和LGVII这2个连锁群上的标记顺序具有较高的一致性, 说明这2条连锁群或染色体在不同群体的亲本间并未发生明显结构变异; 物理图谱中的chr2LG1、chr3LG5和chr1LG6与PSP2遗传图谱的LGI、LGV和LGVI基本一致, 而与PSP1遗传图谱的标记顺序全部或部分相反, 说明PSP1群体的亲本在这3条连锁群或染色体上可能发生了倒位; 物理图谱中的chr6LG2与PSP1遗传图谱LGII的标记顺序基本一致, 而与PSP2遗传图谱的标记顺序全部相反, 说明PSP2群体的亲本在这条连锁群或染色体上可能发生了倒位; 物理图谱中的chr5LG3与LGIII-Composite map的标记顺序一致, 而与PSP1和PSP2遗传图谱的标记顺序相反, 可能是参考基因组的豌豆基因型在该条染色体上发生了倒位或者错误组装。

4 结论

利用2个基于中国豌豆种质的F2群体, 通过QTL IciMapping V4.0软件, 整合得到一张包含7条连锁群、668个SSR标记、总遗传距离为6592.6 cM、平均标记密度为10 cM的豌豆遗传连锁图谱。本研究将为豌豆的分子遗传研究和标记辅助育种提供有力工具。

附表和附图 请见网络版: 1) 本刊网站http://zwxb. chinacrops.org/; 2) 中国知网http://www.cnki.net/; 3) 万方数据http://c.wanfangdata.com.cn/Periodical-zuow xb.aspx。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Zong X X, Redden R J, Liu Q C, Wang S M, Guan J P, Liu J, Xu Y H, Liu X J, Gu J, Yan L, Ades P, Ford R. Analysis of a diverse global Pisum sp collection and comparison to a Chinese local P. sativum collection with microsatellite markers
Theor Appl Genet, 2009,118:193-204.

DOI:10.1007/s00122-008-0887-zURL [本文引用: 4]
Twenty-one informative microsatellite loci were used to assess and compare the genetic diversity among Pisum genotypes sourced from within and outside China. The Chinese germplasm comprised 1243 P. sativum genotypes from 28 provinces and this was compared to 774 P. sativum genotypes that represented a globally diverse germplasm collection, as well as 103 genotypes from related Pisum species. The Chinese P. sativum germplasm was found to contain genotypes genetically distinct from the global gene pool sourced outside China. The Chinese spring type genotypes were separate from the global gene pool and from the other main Chinese gene pool of winter types. The distinct Chinese spring gene pool comprised genotypes from Inner Mongolia and Sha’anxi provinces, with those from Sha’anxi showing the greatest diversity. The other main gene pool within China included both spring types from other northern provinces and winter types from central and southern China, plus some accessions from Inner Mongolia and Sha’anxi. A core collection of Chinese landraces chosen to represent molecular diversity was compared both to the wider Chinese collection and to a geographically diverse core collection of Chinese landraces. The average gene diversity and allelic richness per locus of both the micro-satellite based core and the wider collection were similar, and greater than the geographically diverse core. The genetic diversity of P. sativum within China appears to be quite different to that detected in the global gene pool, including the presence of several rare alleles, and may be a useful source of allelic variation for both major gene and quantitative traits.]]>

Smykal P, Aubert G, Burstin J, Coyne C J, Ellis N T H, Flavell A J, Ford R, Hybl M, Macas J, Neumann P, McPhee K E, Redden R J, Rubiales D, Weller J L, Warkentin T D. Pea (Pisum sativum L.) in the genomic era
Agronomy, 2012,2:74-115.

DOI:10.3390/agronomy2020074URL [本文引用: 1]

Tian S J, Kyle W S A, Small D M. Pilot scale isolation of proteins from field peas (Pisum sativum L.) for use as food ingredients
Int J Food Sci Technol, 1999,34:33-39.

DOI:10.1046/j.1365-2621.1999.00236.xURL [本文引用: 1]

Santalla M, Amurrio J M, De Ron A M. Food and feed potential breeding value of green, dry and vegetable pea germplasm
Can J Plant Sci, 2001,81:601-610.

DOI:10.4141/P00-114URL [本文引用: 1]

FAOSTAT. [2020-03-14]. http://www.fao.org/faostat/en/.
URL [本文引用: 1]

MacWilliam S, Wismer M, Kulshreshtha S. Life cycle and economic assessment of Western Canadian pulse systems: The inclusion of pulses in crop rotations
Agric Syst, 2014,123:43-53.

DOI:10.1016/j.agsy.2013.08.009URL [本文引用: 1]

Semagn K, Bjornstad A, Ndjiondjop M N. Principles, requirements and prospects of genetic mapping in plants
Afr J Biotechnol, 2006,5:2569-2587.

[本文引用: 1]

Dirlewanger E, Isaac P G, Ranade S, Belajouza M, Cousin R, de Vienne D. Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L
Theor Appl Genet, 1994,88:17-27.

DOI:10.1007/BF00222388URLPMID:24185876 [本文引用: 1]
An F2 population of pea (Pisum sativum L.) consisting of 174 plants was analysed by restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) techniques. Ascochyta pisi race C resistance, plant height, flowering earliness and number of nodes were measured in order to map the genes responsible for their variation. We have constructed a partial linkage map including 3 morphological character genes, 4 disease resistance genes, 56 RFLP loci, 4 microsatellite loci and 2 RAPD loci. Molecular markers linked to each resistance gene were found: Fusarium wilt (6 cM from Fw), powdery mildew (11 cM from er) and pea common Mosaic virus (15 cM from mo). QTLs (quantitative traits loci) for Ascochyta pisi race C resistance were mapped, with most of the variation explained by only three chromosomal regions. The QTL with the largest effect, on chromosome 4, was also mapped using a qualitative, Mendelian approach. Another QTL displayed a transgressive segregation, i.e. the parental line that was susceptible to Ascochyta blight had a resistance allele at this QTL. Analysis of correlations between developmental traits in terms of QTL effects and positions suggested a common genetic control of the number of nodes and earliness, and a loose relationship between these traits and height.

Laucou V, Haurogne K, Ellis N, Rameau C. Genetic mapping in pea. 1. RAPD-based genetic linkage map of Pisum sativum
Theor Appl Genet, 1998,97:905-915.

DOI:10.1007/s001220050971URL [本文引用: 1]

Loridon K, McPhee K, Morin J, Dubreuil P, Pilet Nayel M L, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune Henaut I, Burstin J. Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.)
Theor Appl Genet, 2005,111:1022-1031.

DOI:10.1007/s00122-005-0014-3URL [本文引用: 14]
This paper aims at providing reliable and cost effective genotyping conditions, level of polymorphism in a range of genotypes and map position of newly developed microsatellite markers in order to promote broad application of these markers as a common set for genetic studies in pea. Optimal PCR conditions were determined for 340 microsatellite markers based on amplification in eight genotypes. Levels of polymorphism were determined for 309 of these markers. Compared to data obtained for other species, levels of polymorphism detected in a panel of eight genotypes were high with a mean number of 3.8 alleles per polymorphic locus and an average PIC value of 0.62, indicating that pea represents a rather polymorphic autogamous species. One of our main objectives was to locate a maximum number of microsatellite markers on the pea genetic map. Data obtained from three different crosses were used to build a composite genetic map of 1,430cM (Haldane) comprising 239 microsatellite markers. These include 216 anonymous SSRs developed from enriched genomic libraries and 13 SSRs located in genes. The markers are quite evenly distributed throughout the seven linkage groups of the map, with 85% of intervals between the adjacent SSR markers being smaller than 10cM. There was a good conservation of marker order and linkage group assignment across the three populations. In conclusion, we hope this report will promote wide application of these markers and will allow information obtained by different laboratories worldwide in diverse fields of pea genetics, such as QTL mapping studies and genetic resource surveys, to be easily aligned.]]>

DeCaire J, Coyne C J, Brumett S, Shultz J L. Additional pea EST-SSR markers for comparative mapping in pea (Pisum sativum L.)
Plant Breed, 2012,131:222-226.

DOI:10.1111/pbr.2011.131.issue-1URL [本文引用: 2]

Mishra R K, Gangadhar B H, Nookaraju A, Kumar S, Park S W. Development of EST-derived SSR markers in pea (Pisum sativum) and their potential utility for genetic mapping and transferability
Plant Breed, 2012,131:118-124.

DOI:10.1111/pbr.2011.131.issue-1URL [本文引用: 2]

Leonforte A, Sudheesh S, Cogan N O I, Salisbury P A, Nicolas M E, Materne M, Forster J W, Kaur S. SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.)
BMC Plant Biol, 2013,13:161.

DOI:10.1186/1471-2229-13-161URLPMID:24134188 [本文引用: 1]
BACKGROUND: Field pea (Pisum sativum L.) is a self-pollinating, diploid, cool-season food legume. Crop production is constrained by multiple biotic and abiotic stress factors, including salinity, that cause reduced growth and yield. Recent advances in genomics have permitted the development of low-cost high-throughput genotyping systems, allowing the construction of saturated genetic linkage maps for identification of quantitative trait loci (QTLs) associated with traits of interest. Genetic markers in close linkage with the relevant genomic regions may then be implemented in varietal improvement programs. RESULTS: In this study, single nucleotide polymorphism (SNP) markers associated with expressed sequence tags (ESTs) were developed and used to generate comprehensive linkage maps for field pea. From a set of 36,188 variant nucleotide positions detected through in silico analysis, 768 were selected for genotyping of a recombinant inbred line (RIL) population. A total of 705 SNPs (91.7%) successfully detected segregating polymorphisms. In addition to SNPs, genomic and EST-derived simple sequence repeats (SSRs) were assigned to the genetic map in order to obtain an evenly distributed genome-wide coverage. Sequences associated with the mapped molecular markers were used for comparative genomic analysis with other legume species. Higher levels of conserved synteny were observed with the genomes of Medicago truncatula Gaertn. and chickpea (Cicer arietinum L.) than with soybean (Glycine max [L.] Merr.), Lotus japonicus L. and pigeon pea (Cajanus cajan [L.] Millsp.). Parents and RIL progeny were screened at the seedling growth stage for responses to salinity stress, imposed by addition of NaCl in the watering solution at a concentration of 18 dS m-1. Salinity-induced symptoms showed normal distribution, and the severity of the symptoms increased over time. QTLs for salinity tolerance were identified on linkage groups Ps III and VII, with flanking SNP markers suitable for selection of resistant cultivars. Comparison of sequences underpinning these SNP markers to the M. truncatula genome defined genomic regions containing candidate genes associated with saline stress tolerance. CONCLUSION: The SNP assays and associated genetic linkage maps developed in this study permitted identification of salinity tolerance QTLs and candidate genes. This constitutes an important set of tools for marker-assisted selection (MAS) programs aimed at performance enhancement of field pea cultivars.

Sindhu A, Ramsay L, Sanderson L A, Stonehouse R, Li R, Condie J, Shunmugam A S K, Liu Y, Jha A B, Diapari M, Burstin J, Aubert G, Tar’an B, Bett K E, Warkentin T D, Sharpe A G. Gene-based SNP discovery and genetic mapping in pea
Theor Appl Genet, 2014,127:2225-2241.

DOI:10.1007/s00122-014-2375-yURL [本文引用: 2]
Pea (Pisum sativum L.) is one of the world's oldest domesticated crops and has been a model system in plant biology and genetics since the work of Gregor Mendel. Pea is the second most widely grown pulse crop in the world following common bean. The importance of pea as a food crop is growing due to its combination of moderate protein concentration, slowly digestible starch, high dietary fiber concentration, and its richness in micronutrients; however, pea has lagged behind other major crops in harnessing recent advances in molecular biology, genomics and bioinformatics, partly due to its large genome size with a large proportion of repetitive sequence, and to the relatively limited investment in research in this crop globally. The objective of this research was the development of a genome-wide transcriptome-based pea single-nucleotide polymorphism (SNP) marker platform using next-generation sequencing technology. A total of 1,536 polymorphic SNP loci selected from over 20,000 non-redundant SNPs identified using deep transcriptome sequencing of eight diverse Pisum accessions were used for genotyping in five RIL populations using an Illumina GoldenGate assay. The first high-density pea SNP map defining all seven linkage groups was generated by integrating with previously published anchor markers. Syntenic relationships of this map with the model legume Medicago truncatula and lentil (Lens culinaris Medik.) maps were established. The genic SNP map establishes a foundation for future molecular breeding efforts by enabling both the identification and tracking of introgression of genomic regions harbouring QTLs related to agronomic and seed quality traits.]]>

Sun X L, Yang T, Hao J J, Zhang X Y, Ford R, Jiang J Y, Wang F, Guan J P, Zong X X. SSR genetic linkage map construction of pea (Pisum sativum L.) based on Chinese native varieties
Crop J, 2014,2:170-174.

DOI:10.1016/j.cj.2014.03.004URL [本文引用: 8]

Tayeh N, Aluome C, Falque M, Jacquin F, Klein A, Chauveau A, Berard A, Houtin H, Rond C, Kreplak J, Boucherot K, Martin C, Baranger A, Pilet-Nayel M L, Warkentin T D, Brunel D, Marget P, Le Paslier M C, Aubert G, Burstin J. Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high-density, high-resolution consensus genetic map
Plant J, 2015,84:1257-1273.

DOI:10.1111/tpj.13070URLPMID:26590015 [本文引用: 4]
Single nucleotide polymorphism (SNP) arrays represent important genotyping tools for innovative strategies in both basic research and applied breeding. Pea is an important food, feed and sustainable crop with a large (about 4.45 Gbp) but not yet available genome sequence. In the present study, 12 pea recombinant inbred line populations were genotyped using the newly developed GenoPea 13.2K SNP Array. Individual and consensus genetic maps were built providing insights into the structure and organization of the pea genome. Largely collinear genetic maps of 3918-8503 SNPs were obtained from all mapping populations, and only two of these exhibited putative chromosomal rearrangement signatures. Similar distortion patterns in different populations were noted. A total of 12 802 transcript-derived SNP markers placed on a 15 079-marker high-density, high-resolution consensus map allowed the identification of ohnologue-rich regions within the pea genome and the localization of local duplicates. Dense syntenic networks with sequenced legume genomes were further established, paving the way for the identification of the molecular bases of important agronomic traits segregating in the mapping populations. The information gained on the structure and organization of the genome from this research will undoubtedly contribute to the understanding of the evolution of the pea genome and to its assembly. The GenoPea 13.2K SNP Array and individual and consensus genetic maps are valuable genomic tools for plant scientists to strengthen pea as a model for genetics and physiology and enhance breeding.

Boutet G, Carvalho S A, Falque M, Peterlongo P, Lhuillier E, Bouchez O, Lavaud C, Pilet-Nayel M L, Riviere N, Baranger A. SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population
BMC Genomics, 2016,17:121.

DOI:10.1186/s12864-016-2447-2URLPMID:26892170 [本文引用: 1]
BACKGROUND: Progress in genetics and breeding in pea still suffers from the limited availability of molecular resources. SNP markers that can be identified through affordable sequencing processes, without the need for prior genome reduction or a reference genome to assemble sequencing data would allow the discovery and genetic mapping of thousands of molecular markers. Such an approach could significantly speed up genetic studies and marker assisted breeding for non-model species. RESULTS: A total of 419,024 SNPs were discovered using HiSeq whole genome sequencing of four pea lines, followed by direct identification of SNP markers without assembly using the discoSnp tool. Subsequent filtering led to the identification of 131,850 highly designable SNPs, polymorphic between at least two of the four pea lines. A subset of 64,754 SNPs was called and genotyped by short read sequencing on a subpopulation of 48 RILs from the cross 'Baccara' x 'PI180693'. This data was used to construct a WGGBS-derived pea genetic map comprising 64,263 markers. This map is collinear with previous pea consensus maps and therefore with the Medicago truncatula genome. Sequencing of four additional pea lines showed that 33 % to 64 % of the mapped SNPs, depending on the pairs of lines considered, are polymorphic and can therefore be useful in other crosses. The subsequent genotyping of a subset of 1000 SNPs, chosen for their mapping positions using a KASP assay, showed that almost all generated SNPs are highly designable and that most (95 %) deliver highly qualitative genotyping results. Using rather low sequencing coverages in SNP discovery and in SNP inferring did not hinder the identification of hundreds of thousands of high quality SNPs. CONCLUSIONS: The development and optimization of appropriate tools in SNP discovery and genetic mapping have allowed us to make available a massive new genomic resource in pea. It will be useful for both fine mapping within chosen QTL confidence intervals and marker assisted breeding for important traits in pea improvement.

Ma Y, Coyne C J, Grusak M A, Mazourek M, Cheng P, Main D, McGee R J. Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.)
BMC Plant Biol, 2017,17:43.

DOI:10.1186/s12870-016-0956-4URLPMID:28193168 [本文引用: 2]
BACKGROUND: Marker-assisted breeding is now routinely used in major crops to facilitate more efficient cultivar improvement. This has been significantly enabled by the use of next-generation sequencing technology to identify loci and markers associated with traits of interest. While rich in a range of nutritional components, such as protein, mineral nutrients, carbohydrates and several vitamins, pea (Pisum sativum L.), one of the oldest domesticated crops in the world, remains behind many other crops in the availability of genomic and genetic resources. To further improve mineral nutrient levels in pea seeds requires the development of genome-wide tools. The objectives of this research were to develop these tools by: identifying genome-wide single nucleotide polymorphisms (SNPs) using genotyping by sequencing (GBS); constructing a high-density linkage map and comparative maps with other legumes, and identifying quantitative trait loci (QTL) for levels of boron, calcium, iron, potassium, magnesium, manganese, molybdenum, phosphorous, sulfur, and zinc in the seed, as well as for seed weight. RESULTS: In this study, 1609 high quality SNPs were found to be polymorphic between 'Kiflica' and 'Aragorn', two parents of an F6-derived recombinant inbred line (RIL) population. Mapping 1683 markers including 75 previously published markers and 1608 SNPs developed from the present study generated a linkage map of size 1310.1 cM. Comparative mapping with other legumes demonstrated that the highest level of synteny was observed between pea and the genome of Medicago truncatula. QTL analysis of the RIL population across two locations revealed at least one QTL for each of the mineral nutrient traits. In total, 46 seed mineral concentration QTLs, 37 seed mineral content QTLs, and 6 seed weight QTLs were discovered. The QTLs explained from 2.4% to 43.3% of the phenotypic variance. CONCLUSION: The genome-wide SNPs and the genetic linkage map developed in this study permitted QTL identification for pea seed mineral nutrients that will serve as important resources to enable marker-assisted selection (MAS) for nutritional quality traits in pea breeding programs.

Barilli E, Cobos M J, Carrillo E, Kilian A, Carling J, Rubiales D. A high-density integrated DArTseq SNP-based genetic map of Pisum fulvum and identification of QTLs controlling rust resistance
Front Plant Sci, 2018,9:167.

DOI:10.3389/fpls.2018.00167URLPMID:29497430 [本文引用: 1]
Pisum fulvum, a wild relative of pea is an important source of allelic diversity to improve the genetic resistance of cultivated species against fungal diseases of economic importance like the pea rust caused by Uromyces pisi. To unravel the genetic control underlying resistance to this fungal disease, a recombinant inbred line (RIL) population was generated from a cross between two P. fulvum accessions, IFPI3260 and IFPI3251, and genotyped using Diversity Arrays Technology. A total of 9,569 high-quality DArT-Seq and 8,514 SNPs markers were generated. Finally, a total of 12,058 markers were assembled into seven linkage groups, equivalent to the number of haploid chromosomes of P. fulvum and P. sativum. The newly constructed integrated genetic linkage map of P. fulvum covered an accumulated distance of 1,877.45 cM, an average density of 1.19 markers cM(-1) and an average distance between adjacent markers of 1.85 cM. The composite interval mapping revealed three QTLs distributed over two linkage groups that were associated with the percentage of rust disease severity (DS%). QTLs UpDSII and UpDSIV were located in the LGs II and IV respectively and were consistently identified both in adult plants over 3 years at the field (Cordoba, Spain) and in seedling plants under controlled conditions. Whenever they were detected, their contribution to the total phenotypic variance varied between 19.8 and 29.2. A third QTL (UpDSIV.2) was also located in the LGIVand was environmentally specific as was only detected for DS % in seedlings under controlled conditions. It accounted more than 14% of the phenotypic variation studied. Taking together the data obtained in the study, it could be concluded that the expression of resistance to fungal diseases in P. fulvum originates from the resistant parent IFPI3260.

Kreplak J, Madoui M A, Capal P, Novak P, Labadie K, Aubert G, Bayer P E, Gali K K, Syme R A, Main D, Klein A, Berard A, Vrbova I, Fournier C, d’Agata L, Belser C, Berrabah W, Toegelova H, Milec Z, Vrana J, Lee H, Kougbeadjo A, Terezol M, Huneau C, Turo C J, Mohellibi N, Neumann P, Falque M, Gallardo K, McGee R, Tar’an B, Bendahmane A, Aury J M, Batley J, Le Paslier M C, Ellis N, Warkentin T D, Coyne C J, Salse J, Edwards D, Lichtenzveig J, Macas J, Dolezel J, Wincker P, Burstin J. A reference genome for pea provides insight into legume genome evolution
Nat Genet, 2019,51:1411-1422.

DOI:10.1038/s41588-019-0480-1URLPMID:31477930 [本文引用: 4]
We report the first annotated chromosome-level reference genome assembly for pea, Gregor Mendel's original genetic model. Phylogenetics and paleogenomics show genomic rearrangements across legumes and suggest a major role for repetitive elements in pea genome evolution. Compared to other sequenced Leguminosae genomes, the pea genome shows intense gene dynamics, most likely associated with genome size expansion when the Fabeae diverged from its sister tribes. During Pisum evolution, translocation and transposition differentially occurred across lineages. This reference sequence will accelerate our understanding of the molecular basis of agronomically important traits and support crop improvement.

Kalia R K, Rai M K, Kalia S, Singh R, Dhawan A K. Microsatellite markers: an overview of the recent progress in plants
Euphytica, 2011,177:309-334.

DOI:10.1007/s10681-010-0286-9URL [本文引用: 4]
In recent years, molecular markers have been utilized for a variety of applications including examination of genetic relationships between individuals, mapping of useful genes, construction of linkage maps, marker assisted selections and backcrosses, population genetics and phylogenetic studies. Among the available molecular markers, microsatellites or simple sequence repeats (SSRs) which are tandem repeats of one to six nucleotide long DNA motifs, have gained considerable importance in plant genetics and breeding owing to many desirable genetic attributes including hypervariability, multiallelic nature, codominant inheritance, reproducibility, relative abundance, extensive genome coverage including organellar genomes, chromosome specific location and amenability to automation and high throughput genotyping. High degree of allelic variation revealed by microsatellite markers results from variation in number of repeat-motifs at a locus caused by replication slippage and/or unequal crossing-over during meiosis. In spite of limited understanding of the functions of the SSR motifs within the plant genes, SSRs are being widely utilized in plant genome analysis. Microsatellites can be developed directly from genomic DNA libraries or from libraries enriched for specific microsatellites. Alternatively, microsatellites can also be found by searching public databases such as GenBank and EMBL or through cross-species transferability. At present, EST databases are an important source of candidate genes, as these can generate markers directly associated with a trait of interest and may be transferable in close relative genera. A large number of SSR based techniques have been developed and a quantum of literature has accumulated regarding the applicability of SSRs in plant genetics and genomics. In this review we discuss the recent developments (last 4-5 years) made in plant genetics using SSR markers.

Vieira M L C, Santini L, Diniz A L, Munhoz C D. Microsatellite markers: what they mean and why they are so useful
Genet Mol Biol, 2016,39:312-328.

DOI:10.1590/1678-4685-GMB-2016-0027URLPMID:27561112 [本文引用: 1]
Microsatellites or Single Sequence Repeats (SSRs) are extensively employed in plant genetics studies, using both low and high throughput genotyping approaches. Motivated by the importance of these sequences over the last decades this review aims to address some theoretical aspects of SSRs, including definition, characterization and biological function. The methodologies for the development of SSR loci, genotyping and their applications as molecular markers are also reviewed. Finally, two data surveys are presented. The first was conducted using the main database of Web of Science, prospecting for articles published over the period from 2010 to 2015, resulting in approximately 930 records. The second survey was focused on papers that aimed at SSR marker development, published in the American Journal of Botany's Primer Notes and Protocols in Plant Sciences (over 2013 up to 2015), resulting in a total of 87 publications. This scenario confirms the current relevance of SSRs and indicates their continuous utilization in plant science.

Ali A, Pan Y B, Wang Q N, Wang J D, Chen J L, Gao S J. Genetic diversity and population structure analysis of Saccharum and Erianthus genera using microsatellite (SSR) markers
Sci Rep, 2019,9:10.

DOI:10.1038/s41598-018-36877-0URLPMID:30626881 [本文引用: 1]
=0.9 for Ceriodaphnoa dubia, Asellus aquaticus, Daphnia magna, Daphnia pulex; r(2) >=0.8 for Hyalella azteca, Chironomus spec. larvae and Culex spec. larvae) to convert size measured on the spheroid counter to traditional, microscope based, length measurements, which follow the longest orientation of the body. Finally, we demonstrate semi-automated measurement of growth curves of individual daphnids (C. dubia and D. magna) over time and find that the quality of individual growth curves varies, partly due to methodological reasons. Nevertheless, this novel method could be adopted to other species and represents a step change in experimental throughput for measuring organisms' shape, size and growth curves. It is also a significant qualitative improvement by enabling high-throughput assessment of inter-individual variation of growth.]]>

Hao L, Zhang G S, Lu D Y, Hu J J, Jia H X. Analysis of the genetic diversity and population structure of Salix psammophila based on phenotypic traits and simple sequence repeat markers
PeerJ, 2019,7:e6419.

DOI:10.7717/peerj.6419URLPMID:30805247 [本文引用: 1]
Salix psammophila (desert willow) is a shrub endemic to the Kubuqi Desert and the Mu Us Desert, China, that plays an important role in maintaining local ecosystems and can be used as a biomass feedstock for biofuels and bioenergy. However, the lack of information on phenotypic traits and molecular markers for this species limits the study of genetic diversity and population structure. In this study, nine phenotypic traits were analyzed to assess the morphological diversity and variation. The mean coefficient of variation of 17 populations ranged from 18.35% (branch angle (BA)) to 38.52% (leaf area (LA)). Unweighted pair-group method with arithmetic mean analysis of nine phenotypic traits of S. psammophila showed the same results, with the 17 populations clustering into five groups. We selected 491 genets of the 17 populations to analyze genetic diversity and population structure based on simple sequence repeat (SSR) markers. Analysis of molecular variance (AMOVA) revealed that most of the genetic variance (95%) was within populations, whereas only a small portion (5%) was among populations. Moreover, using the animal model with SSR-based relatedness estimated of S. psammophila, we found relatively moderate heritability values for phenotypic traits, suggesting that most of trait variation were caused by environmental or developmental variation. Principal coordinate and phylogenetic analyses based on SSR data revealed that populations P1, P2, P9, P16, and P17 were separated from the others. The results showed that the marginal populations located in the northeastern and southwestern had lower genetic diversity, which may be related to the direction of wind. These results provide a theoretical basis for germplasm management and genetic improvement of desert willow.

Choi J K, Sa K J, Park D H, Lim S E, Ryu S H, Park J Y, Park K J, Rhee H I, Lee M, Lee J K. Construction of genetic linkage map and identification of QTLs related to agronomic traits in DH population of maize (Zea mays L.) using SSR markers
Genes Genomics, 2019,41:667-678.

DOI:10.1007/s13258-019-00813-xURLPMID:30953340 [本文引用: 1]
BACKGROUND: In this study, we used phenotypic and genetic analysis to investigate Double haploid (DH) lines derived from normal corn parents (HF1 and 11S6169). DH technology offers an array of advantages in maize genetics and breeding as follows: first, it significantly shortens the breeding cycle by development of completely homozygous lines in two or three generations; and second, it simplifies logistics, including requiring less time, labor, and financial resources for developing new DH lines compared with the conventional RIL population development process. OBJECTIVES: In our study, we constructed a maize genetic linkage map using SSR markers and a DH population derived from a cross of normal corn (HF1) and normal corn (11S6169). METHODS: The DH population used in this study was developed by the following methods: we crossed normal corn (HF1) and normal corn (11S6169), which are parent lines of a normal corn cultivar, in 2014; and the next year, the F1 hybrids were crossed with a tropicalized haploid inducer line (TAIL), which is homozygous for the dominant marker gene R1-nj (Nanda and Chase in Crop Sci 6:213-215, 1966), and we harvested seeds of the haploid lines. RESULTS: A total of 200 SSR markers were assigned to 10 linkage groups that spanned 1145.4 cM with an average genetic distance between markers of 5.7 cM. 68 SSR markers showed Mendelian segregation ratios in the DH population at a 5% significance threshold. A total of 15 quantitative trait loci (QTLs) for plant height (PH), ear height (EH), ear height ratio (ER), leaf length (LL), ear length (EL), set ear length (SEL), set ear ratio (SER), ear width (EW), 100 kernel weight (100 KW), and cob color (CC) were found in the 121 lines in the DH population. CONCLUSION: The results of this study may help to improve the detection and characterization of agronomic traits and provide great opportunities for maize breeders and researchers using a DH population in maize breeding programs.

Yang T, Jiang J Y, Zhang H Y, Liu R, Strelkov S, Hwang S F, Chang K F, Yang F, Miao Y M, He Y H, Zong X X. Density enhancement of a faba bean genetic linkage map (Vicia faba) based on simple sequence repeats markers
Plant Breed, 2019,138:207-215.

DOI:10.1111/pbr.2019.138.issue-2URL [本文引用: 1]

Anjani K, Ponukumatla B, Mishra D, Ravulapalli D P. Identification of simple-sequence-repeat markers linked to Fusarium wilt (Fusarium oxysporum f. sp carthami) resistance and marker- assisted selection for wilt resistance in safflower (Carthamus tinctorius L.) interspecific offsprings
Plant Breed, 2018,137:895-902.

DOI:10.1111/pbr.2018.137.issue-6URL [本文引用: 1]

Swathi G, Rani C V D, Md J, Madhav M S, Vanisree S, Anuradha C, Kumar N R, Kumar N A P, Kumari K A, Bhogadhi C, Ramprasad E, Sravanthi P, Raju S K, Bhuvaneswari V, Rajan C P D, Jagadeeswar R. Marker-assisted introgression of the major bacterial blight resistance genes, Xa21 and xa13, and blast resistance gene, Pi54, into the popular rice variety, JGL1798
Mol Breed, 2019,39:12.

DOI:10.1007/s11032-018-0919-6URL [本文引用: 1]

Kumar N, Shikha D, Kumari S, Choudhary B K, Kumar L, Singh I S. SSR-based DNA Fingerprinting and diversity assessment among Indian germplasm of Euryale ferox: an aquatic underutilized and neglected food crop
Appl Biochem Biotechnol, 2018,185:34-41.

DOI:10.1007/s12010-017-2643-9URLPMID:29082475 [本文引用: 1]
Euryale ferox is native to Southeast Asia and China, and it is one of the important aquatic food crops propagated mostly in eastern part of India. The aim of the present study was to characterize and evaluate the genetic diversity of ex situ collections of E. ferox germplasm from different geographical states of India using microsatellite (simple sequence repeats (SSRs)) markers. Ten SSR markers were analyzed to assess DNA fingerprinting and genetic diversity of 16 cultivated germplasm of E. ferox. Total 37 polymorphic alleles were recorded with an average of 3.7 allele frequency per primer. The polymorphic information content value varied from 0.204 to 0.735 with mean of 0.448. A high range of heterozygosity (Ho 0.228; He 0.512) was detected in the present study. The neighbor-joining (N-J) tree and the principle coordinate analysis showed that the germplasm divided in to three main clusters. The results of the present investigation comply that SSR markers are effective for computing genetic assessment of genetic diversity and similarity with classifying cultivated varieties of E. ferox. Evaluation of genetic diversity among Indian E. ferox germplasm could provide useful information for genetic improvement.

Siew G Y, Ng W L, Tan S W, Alitheen N B, Tan S G, Yeap S K. Genetic variation and DNA fingerprinting of durian types in Malaysia using simple sequence repeat (SSR) markers
PeerJ, 2018,6:e4266.

DOI:10.7717/peerj.4266URLPMID:29511604 [本文引用: 1]
Durian (Durio zibethinus) is one of the most popular tropical fruits in Asia. To date, 126 durian types have been registered with the Department of Agriculture in Malaysia based on phenotypic characteristics. Classification based on morphology is convenient, easy, and fast but it suffers from phenotypic plasticity as a direct result of environmental factors and age. To overcome the limitation of morphological classification, there is a need to carry out genetic characterization of the various durian types. Such data is important for the evaluation and management of durian genetic resources in producing countries. In this study, simple sequence repeat (SSR) markers were used to study the genetic variation in 27 durian types from the germplasm collection of Universiti Putra Malaysia. Based on DNA sequences deposited in Genbank, seven pairs of primers were successfully designed to amplify SSR regions in the durian DNA samples. High levels of variation among the 27 durian types were observed (expected heterozygosity, HE = 0.35). The DNA fingerprinting power of SSR markers revealed by the combined probability of identity (PI) of all loci was 2.3x10(-3). Unique DNA fingerprints were generated for 21 out of 27 durian types using five polymorphic SSR markers (the other two SSR markers were monomorphic). We further tested the utility of these markers by evaluating the clonal status of shared durian types from different germplasm collection sites, and found that some were not clones. The findings in this preliminary study not only shows the feasibility of using SSR markers for DNA fingerprinting of durian types, but also challenges the current classification of durian types, e.g., on whether the different types should be called

Tayeh N, Aubert G, Pilet Nayel M L, Lejeune Henaut I, Warkentin T D, Burstin J. Genomic tools in pea breeding programs: Status and perspectives
Front Plant Sci, 2015,6:1037.

DOI:10.3389/fpls.2015.01037URLPMID:26640470 [本文引用: 3]
Pea (Pisum sativum L.) is an annual cool-season legume and one of the oldest domesticated crops. Dry pea seeds contain 22-25% protein, complex starch and fiber constituents, and a rich array of vitamins, minerals, and phytochemicals which make them a valuable source for human consumption and livestock feed. Dry pea ranks third to common bean and chickpea as the most widely grown pulse in the world with more than 11 million tons produced in 2013. Pea breeding has achieved great success since the time of Mendel's experiments in the mid-1800s. However, several traits still require significant improvement for better yield stability in a larger growing area. Key breeding objectives in pea include improving biotic and abiotic stress resistance and enhancing yield components and seed quality. Taking advantage of the diversity present in the pea genepool, many mapping populations have been constructed in the last decades and efforts have been deployed to identify loci involved in the control of target traits and further introgress them into elite breeding materials. Pea now benefits from next-generation sequencing and high-throughput genotyping technologies that are paving the way for genome-wide association studies and genomic selection approaches. This review covers the significant development and deployment of genomic tools for pea breeding in recent years. Future prospects are discussed especially in light of current progress toward deciphering the pea genome.

Liu R, Fang L, Yang T, Zhang X Y, Hu J G, Zhang H Y, Han W L, Hua Z K, Hao J J, Zong X X. Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections
Sci Rep, 2017,7:5919.

DOI:10.1038/s41598-017-06222-yURLPMID:28724947 [本文引用: 3]
Frost stress is one of the major abiotic stresses causing seedling death and yield reduction in winter pea. To improve the frost tolerance of pea, field evaluation of frost tolerance was conducted on 672 diverse pea accessions at three locations in Northern China in three growing seasons from 2013 to 2016 and marker-trait association analysis of frost tolerance were performed with 267 informative SSR markers in this study. Sixteen accessions were identified as the most winter-hardy for their ability to survive in all nine field experiments with a mean survival rate of 0.57, ranging from 0.41 to 0.75. Population structure analysis revealed a structured population of two sub-populations plus some admixtures in the 672 accessions. Association analysis detected seven markers that repeatedly had associations with frost tolerance in at least two different environments with two different statistical models. One of the markers is the functional marker EST1109 on LG VI which was predicted to co-localize with a gene involved in the metabolism of glycoproteins in response to chilling stress and may provide a novel mechanism of frost tolerance in pea. These winter-hardy germplasms and frost tolerance associated markers will play a vital role in marker-assisted breeding for winter-hardy pea cultivar.

Wu X B, Li N N, Hao J J, Hu J G, Zhang X Y, Blair M W. Genetic diversity of Chinese and global pea (Pisum sativum L.) collections
Crop Sci, 2017,57:1-11.

DOI:10.2135/cropsci2015.07.0415URL [本文引用: 3]

Milczarski P, Bolibok Br?goszewska H, My?ków B, Stoja?owski S, Heller Uszyńska K, Góralska M, Br?goszewski P, Uszyński G, Kilian A, Rakoczy Trojanowska M. A high density consensus map of rye (Secale cereale L.) based on DArT markers
PLoS One, 2011,6:e28495.

DOI:10.1371/journal.pone.0028495URLPMID:22163026 [本文引用: 2]
BACKGROUND: Rye (Secale cereale L.) is an economically important crop, exhibiting unique features such as outstanding resistance to biotic and abiotic stresses and high nutrient use efficiency. This species presents a challenge to geneticists and breeders due to its large genome containing a high proportion of repetitive sequences, self incompatibility, severe inbreeding depression and tissue culture recalcitrance. The genomic resources currently available for rye are underdeveloped in comparison with other crops of similar economic importance. The aim of this study was to create a highly saturated, multilocus linkage map of rye via consensus mapping, based on Diversity Arrays Technology (DArT) markers. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant inbred lines (RILs) from 5 populations (564 in total) were genotyped using DArT markers and subjected to linkage analysis using Join Map 4.0 and Multipoint Consensus 2.2 software. A consensus map was constructed using a total of 9703 segregating markers. The average chromosome map length ranged from 199.9 cM (2R) to 251.4 cM (4R) and the average map density was 1.1 cM. The integrated map comprised 4048 loci with the number of markers per chromosome ranging from 454 for 7R to 805 for 4R. In comparison with previously published studies on rye, this represents an eight-fold increase in the number of loci placed on a consensus map and a more than two-fold increase in the number of genetically mapped DArT markers. CONCLUSIONS/SIGNIFICANCE: Through the careful choice of marker type, mapping populations and the use of software packages implementing powerful algorithms for map order optimization, we produced a valuable resource for rye and triticale genomics and breeding, which provides an excellent starting point for more in-depth studies on rye genome organization.

Blenda A, Fang D D, Rami J F, Garsmeur O, Luo F, Lacape J M. A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check
PLoS One, 2012,7:e45739.

DOI:10.1371/journal.pone.0045739URLPMID:23029214 [本文引用: 2]
A consensus genetic map of tetraploid cotton was constructed using six high-density maps and after the integration of a sequence-based marker redundancy check. Public cotton SSR libraries (17,343 markers) were curated for sequence redundancy using 90% as a similarity cutoff. As a result, 20% of the markers (3,410) could be considered as redundant with some other markers. The marker redundancy information had been a crucial part of the map integration process, in which the six most informative interspecific Gossypium hirsutumxG. barbadense genetic maps were used for assembling a high density consensus (HDC) map for tetraploid cotton. With redundant markers being removed, the HDC map could be constructed thanks to the sufficient number of collinear non-redundant markers in common between the component maps. The HDC map consists of 8,254 loci, originating from 6,669 markers, and spans 4,070 cM, with an average of 2 loci per cM. The HDC map presents a high rate of locus duplications, as 1,292 markers among the 6,669 were mapped in more than one locus. Two thirds of the duplications are bridging homoeologous A(T) and D(T) chromosomes constitutive of allopolyploid cotton genome, with an average of 64 duplications per A(T)/D(T) chromosome pair. Sequences of 4,744 mapped markers were used for a mutual blast alignment (BBMH) with the 13 major scaffolds of the recently released Gossypium raimondii genome indicating high level of homology between the diploid D genome and the tetraploid cotton genetic map, with only a few minor possible structural rearrangements. Overall, the HDC map will serve as a valuable resource for trait QTL comparative mapping, map-based cloning of important genes, and better understanding of the genome structure and evolution of tetraploid cotton.

Sudheesh S, Lombardi M, Leonforte A, Cogan N O I, Materne M, Forster J W, Kaur S. Consensus genetic map construction for field pea (Pisum sativum L.), trait dissection of biotic and abiotic stress tolerance and development of a diagnostic marker for the er1 powdery mildew resistance gene
Plant Mol Biol Rep, 2015,33:1391-1403.

DOI:10.1007/s11105-014-0837-7URL [本文引用: 5]

Sudheesh S, Rodda M, Kennedy P, Verma P, Leonforte A, Cogan N O I, Materne M, Forster J W, Kaur S. Construction of an integrated linkage map and trait dissection for bacterial blight resistance in field pea (Pisum sativum L.)
Mol Breed, 2015,35:185.

DOI:10.1007/s11032-015-0376-4URL [本文引用: 5]

Yang T, Fang L, Zhang X Y, Hu J G, Bao S Y, Hao J J, Li L, He Y H, Jiang J Y, Wang F, Tian S, Zong X X. High-throughput development of SSR markers from pea (Pisum sativum L.) based on next generation sequencing of a purified Chinese commercial variety
PLoS One, 2015,10:e0139775.

DOI:10.1371/journal.pone.0139775URLPMID:26440522 [本文引用: 3]
Pea (Pisum sativum L.) is an important food legume globally, and is the plant species that J.G. Mendel used to lay the foundation of modern genetics. However, genomics resources of pea are limited comparing to other crop species. Application of marker assisted selection (MAS) in pea breeding has lagged behind many other crops. Development of a large number of novel and reliable SSR (simple sequence repeat) or microsatellite markers will help both basic and applied genomics research of this crop. The Illumina HiSeq 2500 System was used to uncover 8,899 putative SSR containing sequences, and 3,275 non-redundant primers were designed to amplify these SSRs. Among the 1,644 SSRs that were randomly selected for primer validation, 841 yielded reliable amplifications of detectable polymorphisms among 24 genotypes of cultivated pea (Pisum sativum L.) and wild relatives (P. fulvum Sm.) originated from diverse geographical locations. The dataset indicated that the allele number per locus ranged from 2 to 10, and that the polymorphism information content (PIC) ranged from 0.08 to 0.82 with an average of 0.38. These 1,644 novel SSR markers were also tested for polymorphism between genotypes G0003973 and G0005527. Finally, 33 polymorphic SSR markers were anchored on the genetic linkage map of G0003973 x G0005527 F2 population.

Kwon S J, Brown A F, Hu J, McGee R, Watt C, Kisha T, Timmerman-Vaughan G, Grusak M, McPhee K E, Coyne C J. Genetic diversity, population structure and genome-wide marker-trait association analysis emphasizing seed nutrients of the USDA pea (Pisum sativum L.) core collection
Genes Genomics, 2012,34:305-320.

DOI:10.1007/s13258-011-0213-zURL [本文引用: 5]

Kaur S J, Pembleton L W, Cogan N O, Savin K W, Leonforte T, Paull J, Materne M, Forster J W. Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers
BMC Genomics, 2012,13:104.

DOI:10.1186/1471-2164-13-104URLPMID:22433453 [本文引用: 2]
BACKGROUND: Field pea (Pisum sativum L.) and faba bean (Vicia faba L.) are cool-season grain legume species that provide rich sources of food for humans and fodder for livestock. To date, both species have been relative 'genomic orphans' due to limited availability of genetic and genomic information. A significant enrichment of genomic resources is consequently required in order to understand the genetic architecture of important agronomic traits, and to support germplasm enhancement, genetic diversity, population structure and demographic studies. RESULTS: cDNA samples obtained from various tissue types of specific field pea and faba bean genotypes were sequenced using 454 Roche GS FLX Titanium technology. A total of 720,324 and 304,680 reads for field pea and faba bean, respectively, were de novo assembled to generate sets of 70,682 and 60,440 unigenes. Consensus sequences were compared against the genome of the model legume species Medicago truncatula Gaertn., as well as that of the more distantly related, but better-characterised genome of Arabidopsis thaliana L.. In comparison to M. truncatula coding sequences, 11,737 and 10,179 unique hits were obtained from field pea and faba bean. Totals of 22,057 field pea and 18,052 faba bean unigenes were subsequently annotated from GenBank. Comparison to the genome of soybean (Glycine max L.) resulted in 19,451 unique hits for field pea and 16,497 unique hits for faba bean, corresponding to c. 35% and 30% of the known gene space, respectively. Simple sequence repeat (SSR)-containing expressed sequence tags (ESTs) were identified from consensus sequences, and totals of 2,397 and 802 primer pairs were designed for field pea and faba bean. Subsets of 96 EST-SSR markers were screened for validation across modest panels of field pea and faba bean cultivars, as well as related non-domesticated species. For field pea, 86 primer pairs successfully obtained amplification products from one or more template genotypes, of which 59% revealed polymorphism between 6 genotypes. In the case of faba bean, 81 primer pairs displayed successful amplification, of which 48% detected polymorphism. CONCLUSIONS: The generation of EST datasets for field pea and faba bean has permitted effective unigene identification and functional sequence annotation. EST-SSR loci were detected at incidences of 14-17%, permitting design of comprehensive sets of primer pairs. The subsets from these primer pairs proved highly useful for polymorphism detection within Pisum and Vicia germplasm.

Xu S C, Gong Y M, Mao W H, Hu Q Z, Zhang G W, Fu W, Xian Q Q. Development and characterization of 41 novel EST-SSR markers for Pisum sativum (Leguminosae)
Am J Bot, 2012,99:E149-E153.

DOI:10.3732/ajb.1100445URL [本文引用: 5]
Methods and Results: Forty-one novel EST-SSR primers were developed and characterized for size polymorphism in 32 Pisum sativum individuals from four populations from China. In each population, the number of alleles per locus ranged from one to seven, with observed heterozygosity and expected heterozygosity ranging from 0 to 0.8889 and 0 to 0.8400, respectively. Furthermore, 53.7% of these markers could be transferred to the related species, Vicia faba.Conclusions: The developed markers have potential for application in the study of genetic diversity, germplasm appraisal, and marker-assisted breeding in pea and other legume species.]]>

Bordat A, Savois V, Nicolas M, Salse J, Chauveau A, Bourgeois M, Potier J, Houtin H, Rond C, Murat F, Marget P, Aubert G, Burstin J. Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L
G3: Genes Genom Genet 2011,1:93-103.

[本文引用: 4]

顾竟, 李玲, 宗绪晓, 王海飞, 关建平, 杨涛. 豌豆种质表型性状SSR标记关联分析
植物遗传资源学报, 2011,12:833-839.



Gu J, Li L, Zong X X, Wang H F, Guan J P, Yang T. Association analysis between morphological traits of pea and its polymorphic SSR markers
J Plant Genet Resour, 2011,12:833-839 (in Chinese with English abstract).



Burstin J, Deniot G, Potier J, Weinachter C, Aubert G, Barranger A. Microsatellite polymorphism in Pisum sativum
Plant Breed, 2001,120:311.

DOI:10.1046/j.1439-0523.2001.00608.xURL [本文引用: 4]

Dellaporta S L, Wood J, Hicks J B. A plant DNA minipreparation: version II
Plant Mol Biol Rep, 1983,1:19-21.

DOI:10.1007/BF02712670URL [本文引用: 1]

Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations
Crop J, 2015,3:269-283.

DOI:10.1016/j.cj.2015.01.001URL [本文引用: 1]

Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs
J Hered, 2002,93:77-78.

DOI:10.1093/jhered/93.1.77URLPMID:12011185 [本文引用: 1]

Parida S K, Kalia S K, Kaul S, Dalal V, Hemaprabha G, Selvi A, Pandit A, Singh A, Gaikwad K, Sharma T R, Srivastava P S, Singh N K, Mohapatra T. Informative genomic microsatellite markers for efficient genotyping applications in sugarcane
Theor Appl Genet, 2009,118:327-338.

DOI:10.1007/s00122-008-0902-4URL [本文引用: 1]
Genomic microsatellite markers are capable of revealing high degree of polymorphism. Sugarcane (Saccharum sp.), having a complex polyploid genome requires more number of such informative markers for various applications in genetics and breeding. With the objective of generating a large set of microsatellite markers designated as Sugarcane Enriched Genomic MicroSatellite (SEGMS), 6,318 clones from genomic libraries of two hybrid sugarcane cultivars enriched with 18 different microsatellite repeat-motifs were sequenced to generate 4.16Mb high-quality sequences. Microsatellites were identified in 1,261 of the 5,742 non-redundant clones that accounted for 22% enrichment of the libraries. Retro-transposon association was observed for 23.1% of the identified microsatellites. The utility of the microsatellite containing genomic sequences were demonstrated by higher primer designing potential (90%) and PCR amplification efficiency (87.4%). A total of 1,315 markers including 567 class I microsatellite markers were designed and placed in the public domain for unrestricted use. The level of polymorphism detected by these markers among sugarcane species, genera, and varieties was 88.6%, while cross-transferability rate was 93.2% within Saccharum complex and 25% to cereals. Cloning and sequencing of size variant amplicons revealed that the variation in the number of repeat-units was the main source of SEGMS fragment length polymorphism. High level of polymorphism and wide range of genetic diversity (0.16–0.82 with an average of 0.44) assayed with the SEGMS markers suggested their usefulness in various genotyping applications in sugarcane.]]>

Kamaluddin , Khan M A, Kiran U, Ali A, Abdin M Z, Zargar M Y, Ahmad S, Sofi P A, Gulzar S. Molecular markers and marker-assisted selection in crop plants
In: Abdin M Z, Kiran U, Kamaluddin, Ali A, eds. Plant Biotechnology: Principles and Applications. Singapore: Springer Singapore, 2017. pp 295-328.



Nadeem M A, Nawaz M A, Shahid M Q, Do?an Y, Comertpay G, Y?ld?z M, Hatipo?lu R, Ahmad F, Alsaleh A, Labhane N, ?zkan H, Chung G, Baloch F S. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing
Biotechnol Biotechnol Equip, 2018,32:261-285.

DOI:10.1080/13102818.2017.1400401URL [本文引用: 1]

Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants: features and applications
Trends Biotechnol, 2005,23:48-55.

DOI:10.1016/j.tibtech.2004.11.005URLPMID:15629858 [本文引用: 1]
Expressed sequence tag (EST) projects have generated a vast amount of publicly available sequence data from plant species; these data can be mined for simple sequence repeats (SSRs). These SSRs are useful as molecular markers because their development is inexpensive, they represent transcribed genes and a putative function can often be deduced by a homology search. Because they are derived from transcripts, they are useful for assaying the functional diversity in natural populations or germplasm collections. These markers are valuable because of their higher level of transferability to related species, and they can often be used as anchor markers for comparative mapping and evolutionary studies. They have been developed and mapped in several crop species and could prove useful for marker-assisted selection, especially when the markers reside in the genes responsible for a phenotypic trait. Applications and potential uses of EST-SSRs in plant genetics and breeding are discussed.

Smykal P, Hybl M, Corander J, Jarkovsky J, Flavell A J, Griga M. Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis
Theor Appl Genet, 2008,117:413-424.

DOI:10.1007/s00122-008-0785-4URL [本文引用: 1]
One hundred and sixty-four accessions representing Czech and Slovak pea (Pisum sativum L.) varieties bred over the last 50years were evaluated for genetic diversity using morphological, simple sequence repeat (SSR) and retrotransposon-based insertion polymorphism (RBIP) markers. Polymorphic information content (PIC) values of 10 SSR loci and 31 RBIP markers were on average high at 0.89 and 0.73, respectively. The silhouette method after the Ward clustering produced the most probable cluster estimate, identifying nine clusters from molecular data and five to seven clusters from morphological characters. Principal component analysis of nine qualitative and eight quantitative morphological parameters explain over 90 and 93% of total variability, respectively, in the first three axes. Multidimensional scaling of molecular data revealed a continuous structure for the set. To enable integration and evaluation of all data types, a Bayesian method for clustering was applied. Three clusters identified using morphology data, with clear separation of fodder, dry seed and afila types, were resolved by DNA data into 17, 12 and five sub-clusters, respectively. A core collection of 34 samples was derived from the complete collection by BAPS Bayesian analysis. Values for average gene diversity and allelic richness for molecular marker loci and diversity indexes of phenotypic data were found to be similar between the two collections, showing that this is a useful approach for representative core selection.]]>

宗绪晓, 关建平, 王述民, 刘庆昌. 中国豌豆地方品种SSR标记遗传多样性分析
作物学报, 2008,34:1330-1338.

DOI:10.3724/SP.J.1006.2008.01330URL
利用21对豌豆多态性SSR引物, 对来自全国春、秋播区19省区市的1 221份豌豆地方品种进行遗传多样性分析, 共扩增出104条多态性带, 每对引物平均扩增出4.95个等位变异, 其中有效等位变异占62.52%。省份间SSR等位变异分布均匀, 但是省份间有效等位变异数、Shannon’s信息指数(I)差异明显, 省籍资源群间遗传多样性差异显著。遗传多样性以内蒙古资源群最高, 甘肃、四川、云南和西藏等资源群其次, 辽宁资源群最低。PCA三维空间聚类图揭示, 我国豌豆地方品种资源分化成3个基因库, 基因库I主要由春播区的内蒙古、陕西资源构成, 基因库II主要由秋播区最北端的河南资源构成, 基因库III主要由除上述省份之外的其他省区市的资源构成。UPGMA聚类分析表明, 不同省份资源群间的遗传距离变化范围为5.159~27.586, 中国豌豆地方资源据此聚类成2个组群8个亚组群, 与3个基因库的聚类结果相呼应。聚类结果显示, 我国豌豆地方品种资源群间遗传距离与其来源地生态环境相关联。
Zong X X, Guan J P, Wang S M, Liu Q C. Genetic diversity among Chinese pea (Pisum sativum L.) landraces revealed by SSR markers
Acta Agron Sin, 2008,34:1330-1338 (in Chinese with English abstract).



Zong X X, Ford R, Redden R R, Guan J P, Wang S M. Identification and analysis of genetic diversity structure within Pisum genus based on microsatellite markers
Agric Sci China, 2009,8:257-267.

DOI:10.1016/S1671-2927(08)60208-4URL

宗绪晓, 关建平, 王述民, 刘庆昌, Redden R R, Ford R. 国外栽培豌豆遗传多样性分析及核心种质构建
作物学报, 2008,34:1518-1528.

DOI:10.3724/SP.J.1006.2008.01518URL [本文引用: 1]
Pisum sativum L.)进行遗传多样性分析与核心种质构建。共扩增出109条多态性带, 每对引物平均扩增出5.19个等位变异。SSR等位变异在各大洲间分布不均匀, 有效等位变异数、Shannon’s信息指数(I)洲际间差异明显。各大洲资源群间遗传多样性差异显著, 其中亚洲最高(I = 1.1753), 欧洲其次(I = 1.1387), 俄罗斯联邦(I = 1.0285)、美洲(I = 1.0196)、非洲(I = 0.9254)、大洋洲(I = 0.8608)依次降低。利用Popgene 1.32软件, 依豌豆栽培资源洲际间Nei78遗传距离可聚类成2个组群和4个亚组群; 基于Structure 2.2软件分析, 国外栽培豌豆资源实际由3大类群组成, 并与Popgene 1.32聚类结果呼应得较好。上述两种分析方法均表明, 国外栽培豌豆类群的遗传多样性与其地理分布相关。设计并实践了一套基于Structure分析的科学可靠、逻辑性强的核心种质构建标准化方案, 并依此构建了一套以6.57%的资源(48份)涵盖总体84.4%等位变异的国外栽培豌豆核心种质。]]>
Zong X X, Guan J P, Wang S M, Liu Q C, Redden R R, Ford R. Genetic diversity and core collection of alien Pisum sativum L. germplasm
Acta Agron Sin, 2008,34:1518-1528 (in Chinese with English abstract).

[本文引用: 1]

Prakash N, Kumar R, Choudhary V K, Singh C M. Molecular assessment of genetic divergence in pea genotypes using microsatellite markers
Legume Res, 2016,39:183-188.

[本文引用: 1]

Duarte J, Riviere N, Baranger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune Henaut I, Martinant J P, Pichon J P, Pilet Nayel M L, Boutet G. Transcriptome sequencing for high throughput SNP development and genetic mapping in pea
BMC Genom, 2014,15:126.

DOI:10.1186/1471-2164-15-126URL [本文引用: 1]

Guindon M F, Martin E, Cravero V, Gali K K, Warkentin T D, Cointry E. Linkage map development by GBS, SSR, and SRAP techniques and yield-related QTLs in pea
Mol Breed, 2019,39:54.

DOI:10.1007/s11032-019-0949-8URL [本文引用: 1]

Aubert G, Morin J, Jacquin F, Loridon K, Quillet M C, Petit A, Rameau C, Lejeune Henaut I, Huguet T, Burstin J. Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula
Theor Appl Genet, 2006,112:1024-1041.

DOI:10.1007/s00122-005-0205-yURL [本文引用: 1]
The identification of the molecular polymorphisms giving rise to phenotypic trait variability—both quantitative and qualitative—is a major goal of the present agronomic research. Various approaches such as positional cloning or transposon tagging, as well as the candidate gene strategy have been used to discover the genes underlying this variation in plants. The construction of functional maps, i.e. composed of genes of known function, is an important component of the candidate gene approach. In the present paper we report the development of 63 single nucleotide polymorphism markers and 15 single-stranded conformation polymorphism markers for genes encoding enzymes mainly involved in primary metabolism, and their genetic mapping on a composite map using two pea recombinant inbred line populations. The complete genetic map covers 1,458cM and comprises 363 loci, including a total of 111 gene-anchored markers: 77 gene-anchored markers described in this study, 7 microsatellites located in gene sequences, 16 flowering time genes, the Tri gene, 5 morphological markers, and 5 other genes. The mean spacing between adjacent markers is 4cM and 90% of the markers are closer than 10cM to their neighbours. We also report the genetic mapping of 21 of these genes in Medicago truncatula and add 41 new links between the pea and M. truncatula maps. We discuss the use of this new composite functional map for future candidate gene approaches in pea.]]>

Duarte J, Riviere N, Baranger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune Henaut I, Martinant J P, Pichon J P, Pilet Nayel M L, Boutet G. Transcriptome sequencing for high throughput SNP development and genetic mapping in pea
BMC Genom, 2014,15:126.

DOI:10.1186/1471-2164-15-126URL

Sindhu A, Ramsay L, Sanderson L A, Stonehouse R, Li R, Condie J, Shunmugam A S K, Liu Y, Jha A B, Diapari M, Burstin J, Aubert G, Tar’an B, Bett K E, Warkentin T D, Sharpe A G. Gene-based SNP discovery and genetic mapping in pea
Theor Appl Genet, 2014,127:2225-2241.

DOI:10.1007/s00122-014-2375-yURL [本文引用: 2]
Pea (Pisum sativum L.) is one of the world's oldest domesticated crops and has been a model system in plant biology and genetics since the work of Gregor Mendel. Pea is the second most widely grown pulse crop in the world following common bean. The importance of pea as a food crop is growing due to its combination of moderate protein concentration, slowly digestible starch, high dietary fiber concentration, and its richness in micronutrients; however, pea has lagged behind other major crops in harnessing recent advances in molecular biology, genomics and bioinformatics, partly due to its large genome size with a large proportion of repetitive sequence, and to the relatively limited investment in research in this crop globally. The objective of this research was the development of a genome-wide transcriptome-based pea single-nucleotide polymorphism (SNP) marker platform using next-generation sequencing technology. A total of 1,536 polymorphic SNP loci selected from over 20,000 non-redundant SNPs identified using deep transcriptome sequencing of eight diverse Pisum accessions were used for genotyping in five RIL populations using an Illumina GoldenGate assay. The first high-density pea SNP map defining all seven linkage groups was generated by integrating with previously published anchor markers. Syntenic relationships of this map with the model legume Medicago truncatula and lentil (Lens culinaris Medik.) maps were established. The genic SNP map establishes a foundation for future molecular breeding efforts by enabling both the identification and tracking of introgression of genomic regions harbouring QTLs related to agronomic and seed quality traits.]]>

Sybenga J. Recombination and chiasmata: few but intriguing discrepancies
Genome, 1996,39:473-484.

DOI:10.1139/g96-061URLPMID:18469909 [本文引用: 1]
The paradigm that meiotic recombination and chiasmata have the same basis has been challenged, primarily for plants. High resolution genetic mapping frequently results in maps with lengths far exceeding those based on chiasma counts. In addition, recombination between specific homoeologous chromosomes derived from interspecific hybrids is sometimes much higher than can be explained by meiotic chiasma frequencies. However, almost the entire discrepancy disappears when proper care is taken of map inflation resulting from the shortcomings of the mapping algorithm and classification errors, the use of dissimilar material, and the difficulty of accurately counting chiasmata. Still, some exchanges, especially of short interstitial segments, cannot readily be explained by normal meiotic behaviour. Aberrant meiotic processes involving segment replacement or insertion can probably be excluded. Some cases of unusual recombination are somatic, possibly premeiotic exchange. For other cases, local relaxation of chiasma interference caused by small interruptions of homology disturbing synaptonemal complex formation is proposed as the cause. It would be accompanied by a preference for compensating exchanges (negative chromatid interference) resulting from asymmetry of the pairing chromatid pairs, so that one side of each pair preferentially participates in pairing. Over longer distances, the pairing face may switch, causing the normal random chromatid participation in double exchanges and the relatively low frequency of short interstitial exchanges. Key words : recombination frequency, map length, chiasmata, discrepancy, chromatid interference.

Knox M R, Ellis T H N. Excess heterozygosity contributes to genetic map expansion in pea recombinant inbred populations
Genetics, 2002,162:861-873.

URLPMID:12399396
Several plant genetic maps presented in the literature are longer than expected from cytogenetic data. Here we compare F(2) and RI maps derived from a cross between the same two parental lines and show that excess heterozygosity contributes to map inflation. These maps have been constructed using a common set of dominant markers. Although not generally regarded as informative for F(2) mapping, these allowed rapid map construction, and the resulting data analysis has provided information not otherwise obvious when examining a population from only one generation. Segregation distortion, a common feature of most populations and marker systems, found in the F(2) but not the RI, has identified excess heterozygosity. A few markers with a deficiency of heterozygotes were found to map to linkage group V (chromosome 3), which is known to form rod bivalents in this cross. Although the final map length was longer for the F(2) population, the mapped order of markers was generally the same in the F(2) and RI maps. The data presented in this analysis reconcile much of the inconsistency between map length estimates from chiasma counts and genetic data.

Truong S K, McCormick R F, Morishige D T, Mullet J E. Resolution of genetic map expansion caused by excess heterozygosity in plant recombinant inbred populations
G3: Genes Genom Genet, 2014,4:1963-1969.

[本文引用: 1]

Ellis T H, Turner L, Hellens R P, Lee D, Harker C L, Enard C, Domoney C, Davies D R. Linkage maps in pea
Genetics, 1992,130:649-663.

URLPMID:1551583 [本文引用: 1]
We have analyzed segregation patterns of markers among the late generation progeny of several crosses of pea. From the patterns of association of these markers we have deduced linkage orders. Salient features of these linkages are discussed, as is the relationship between the data presented here and previously published genetic and cytogenetic data.
相关话题/遗传 基因组 资源 作物 基因