Effect of mixed-sowing of near-isogenic lines on the clubroot disease controlling efficiency in rapeseed
GUO Qing-Yun,1, KUAI Jie,1,*, WANG Bo1, LIU Fang2, ZHANG Chun-Yu1, LI Gen-Ze3, ZHANG Yun-Yun3, FU Ting-Dong1, ZHOU Guang-Sheng1通讯作者:
收稿日期:2020-03-21接受日期:2020-06-2网络出版日期:2020-09-12
基金资助: |
Received:2020-03-21Accepted:2020-06-2Online:2020-09-12
Fund supported: |
作者简介 About authors
E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (288KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
郭清云, 蒯婕, 汪波, 刘芳, 张椿雨, 李根泽, 张云云, 傅廷栋, 周广生. 感抗油菜近等基因系混播对根肿病发病率的影响[J]. 作物学报, 2020, 46(9): 1408-1415. doi:10.3724/SP.J.1006.2020.04074
GUO Qing-Yun, KUAI Jie, WANG Bo, LIU Fang, ZHANG Chun-Yu, LI Gen-Ze, ZHANG Yun-Yun, FU Ting-Dong, ZHOU Guang-Sheng.
根肿病是十字花科作物最具破坏性的病害之一[1], 包括中国在内的60多个国家均有根肿病的发生。根肿菌在没有寄主情况下可在土壤中存活15年以上[2], 土壤一旦染菌, 防治极其困难。根肿病危害油菜后, 其籽粒产量与含油量均显著下降[3,4]。油菜是我国重要的油料作物, 根肿病土传病害的发病区域近年来有扩大发生的趋势。
目前, 根肿病防控措施主要有农业防治[5,6]、化学防治[7,8,9,10,11,12], 这些措施不仅防效较差, 且成本也居高不下, 生产中应用面积不大。实践证明, 抗病品种选育是根肿病防治最根本的途径。然而, 长期单一种植抗病品种, 易增加生理小种定向选择压力, 其他生理小种将成为新的优势小种, 导致抗病品种抗性丧失。在白菜和油菜中已有抗根肿病品种抗性丧失的现象[13]。
感、抗病品种同播可抑制病害发展, 在小麦条锈病和水稻稻瘟病防控研究上都得到了证实[14,15]。同播控制病害的机制主要有密度效应[16]、阻挡效应[17]和抗性诱导效应[18]。感、抗病品种同播可稳定优势小种, 从而保持品种抗性持久性[19]。本课题组前期大田试验发现, 感、抗根肿病油菜品种同播可显著降低感病品种发病率[20]。但目前尚未见油菜感、抗病品种同播时, 种子的播种间距对根肿病防控效果研究。据此, 本试验采用穴盘栽培方式, 设置感、抗根肿病近等基因系不同播种间距处理, 室内接种根肿病菌, 调查油菜苗期发病率、病情指数, 测定根系成分, 以期为感、抗病油菜品种同播在生产上的应用提供技术支撑及理论依据。
1 材料与方法
1.1 试验材料
1.1.1 供试菌种 安徽绩溪和四川礼州(均为2号生理小种), 以及安徽歙县和湖北恩施(均为4号生理小种)等根肿病区的油菜病株根系由沈阳农业大学园艺学院十字花科根肿病防控课题组提供, -40℃低温冷冻保存备用。1.1.2 供试品种(材料) 选用华双5号和华双5R、丙409和丙409R两组近等基因系为试验材料。华双5R和丙409R对上述2个生理小种均具有较强抗性, 而华双5号和丙409则对上述2个生理小种均表现为感病。
1.2 试验设计
2018年9月1日至2018年10月27日在沈阳农业大学园艺学院温室中, 采用穴盘(顶部口径60 mm、底部口径28 mm、深度53 mm)以营养土直播油菜的方式进行。将2组感病、抗病近等基因系种子分别按0 (T1)、2 (T2)、4 (T3)和6 cm (T4)间距穴播, 每穴播2~3粒, 出苗后4 d, 单穴中抗病及感病材料均定苗1株, 以2组感、抗病近等基因系种子单独播种为对照, 3次重复。1.3 测定项目与方法
1.3.1 休眠孢子悬浮液制备及接种 接种当天制备休眠孢子悬浮液。将低温保存的根肿组织在室温下解冻后切块, 加水搅成匀浆, 用纱布过滤后收集菌液。取适量菌液稀释后, 用医用血球计数板在显微镜下镜检休眠孢子数量并计算其浓度, 并将休眠孢子悬浮液浓度调至107孢子 mL-1, 备用。于出苗后7 d, 分别吸取2个生理小种浓度为107孢子 mL-1的菌悬液1 mL接种于幼苗根部。华双5号和华双5R分别接种绩溪2号小种和恩施4号小种, 丙409和丙409R分别接种礼州2号小种和歙县4号小种。1.3.2 病情调查 接种后42 d调查病情。将油菜根系洗净后, 每60株调查患根肿病病株数, 根据公式(1)计算发病率。根据病害分级及公式(2)计算病情指数。分级标准如下: 0级, 无症状; 1级, 少量小根瘤, 根瘤体积小于根系的1/3; 2级, 中度结瘤, 根瘤体积是根系的1/3至1/2; 3级, 重度结瘤, 根瘤体积超过根系2/3。
1.3.3 根系成分测定 接种后42 d, 调查根系发病情况并取根系, 在105℃杀青30 min后, 80℃烘干至恒重后, 测定根系成分。采用蒽酮比色法测定根系可溶性糖[21], 采用茚三酮显色法测定可溶性蛋白质[21], 采用Sluiter法测定木质素含量[22]。
1.4 数据分析
用SPSS 11.0统计软件进行方差分析, 以最小显著差法(Least Significant Difference, LSD)检验显著性, 显著性水平均设为0.05。2 结果与分析
2.1 室内接种试验发病情况
出苗后7 d接种根肿菌, 在不同生理小种及播种间距处理条件下, 接种42 d后感病品种幼苗有根肿病发生。2组感、抗根肿病油菜近等基因系(材料)苗期的根肿病发生情况分别见表1和表2。根据各处理的发病率及病情指数值可以发现, 本试验中选用的2个根肿菌生理小种均可使感病、抗病油菜品种致病, 且2号生理小种的致病性显著强于4号生理小种; 同一生理小种在不同感病材料间以及不同抗病材料间的致病性也存在明显差异; 与感病品种(材料)相比, 2组近等基因系中的抗病品种(材料)均对2个生理小种具有明显的抗性。Table 1
表1
表1华双5R和华双5号在各处理下的发病情况
Table 1
菌种 P. brassicae | 处理 Treatment | 华双5R Huashuang 5R | 华双5号 Huashuang 5 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
发病率 Disease incidence (%) | 病情分级 Disease severity scale | 病情指数 Disease index | 发病率 Disease incidence (%) | 病情分级 Disease severity scale | 病情指数 Disease index | ||||||||
0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | ||||||
绩溪2号 小种 Pathotype 2 from Jixi | CK | 5.0 ab | 57 | 0 | 1 | 2 | 4.4 b | 100.0 a | 0 | 0 | 10 | 50 | 94.5 a |
T1 | 3.3 b | 58 | 2 | 0 | 0 | 1.1 d | 65.0 c | 21 | 24 | 9 | 6 | 33.3 e | |
T2 | 3.3b | 58 | 1 | 1 | 0 | 1.7 d | 95.0 b | 3 | 10 | 8 | 39 | 79.4 d | |
T3 | 3.3 b | 58 | 0 | 1 | 1 | 2.8 c | 95.0 b | 3 | 4 | 7 | 46 | 86.7 c | |
T4 | 6.7 a | 56 | 0 | 1 | 3 | 6.1 a | 96.7 b | 2 | 4 | 3 | 51 | 90.6 b | |
均值Mean | 4.0 | 3.0 | 88.0 | 72.5 | |||||||||
恩施4号 小种 Pathotype 4 from Enshi | CK | 1.7 a | 59 | 1 | 0 | 0 | 0.6 a | 100.0 a | 0 | 0 | 17 | 43 | 90.6 a |
T1 | 1.7 a | 59 | 1 | 0 | 0 | 0.6 a | 62.5 d | 17 | 18 | 5 | 20 | 34.2 e | |
T2 | 1.7 a | 59 | 1 | 0 | 0 | 0.6 a | 80.0 c | 12 | 22 | 9 | 17 | 50.6 d | |
T3 | 1.7 a | 59 | 1 | 0 | 0 | 0.6 a | 81.7 c | 11 | 17 | 8 | 24 | 58.3 c | |
T4 | 0.0 b | 60 | 0 | 0 | 0 | 0.0 a | 91.7 b | 5 | 16 | 7 | 32 | 70.0 b | |
均值Mean | 1.3 | 0.5 | 79.0 | 53.3 |
新窗口打开|下载CSV
Table 2
表2
表2丙409R和丙409在各处理下的发病情况
Table 2
菌种 P. brassicae | 处理 Treatment | 丙409R Bing 409R | 丙409 Bing 409 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
发病率 Disease incidence (%) | 病情分级 Disease severity scale | 病情指数 Disease index | 发病率 Disease incidence (%) | 病情分级 Disease severity scale | 病情指数 Disease index | ||||||||
0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | ||||||
礼州2号 小种 Pathotype 2 from Lizhou | CK | 16.7 a | 51 | 0 | 4 | 5 | 12.8 a | 83.3 a | 10 | 8 | 12 | 30 | 67.8 a |
T1 | 15.0 a | 51 | 2 | 5 | 2 | 10.0 c | 70.0 cd | 18 | 9 | 11 | 17 | 48.3 d | |
T2 | 16.7 a | 50 | 4 | 3 | 3 | 10.6 c | 73.3 c | 16 | 9 | 7 | 28 | 58.1 c | |
T3 | 15.0 a | 51 | 2 | 4 | 3 | 10.6 c | 78.3 b | 13 | 7 | 14 | 26 | 62.8 b | |
T4 | 16.7 a | 50 | 3 | 3 | 4 | 11.7 b | 80.0 b | 12 | 6 | 10 | 32 | 67.8 a | |
均值Mean | 15.9 | 10.7 | 75.4 | 59.3 | |||||||||
歙县4号 小种 Pathotype 4 from Shexian | CK | 8.3 a | 55 | 3 | 0 | 2 | 5.0 a | 100.0 a | 0 | 3 | 10 | 47 | 91.1 a |
T1 | 5.0 b | 57 | 2 | 1 | 0 | 2.2 c | 43.3 e | 34 | 9 | 1 | 16 | 32.8 d | |
T2 | 6.7 ab | 56 | 1 | 2 | 1 | 4.4 b | 48.3 cd | 31 | 12 | 8 | 9 | 30.6 d | |
T3 | 8.3 a | 55 | 1 | 4 | 0 | 5.0 a | 50.0 bc | 30 | 6 | 11 | 13 | 37.2 c | |
T4 | 8.3 a | 55 | 1 | 4 | 0 | 5.0 a | 51.7 b | 29 | 4 | 8 | 19 | 42.8 b | |
均值Mean | 7.1 | 4.2 | 48.3 | 35.9 |
新窗口打开|下载CSV
感、抗根肿病近等基因系混播显著影响感病油菜品种的发病情况。混播后, 感、抗近等基因系中的感病品种的发病率显著降低, 发病等级和病情严重程度均显著低于感病品种单播处理, 2组感、抗近等基因系的变化趋势一致(表1和表2)。与感病品种单播处理相比, 当感病品种与抗病品种以0 cm混播时, 感病品种的发病率最低; 随着感、抗品种的混播间距增大, 感、抗近等基因系中的感病品种的发病率和病情指数下降幅度均呈递减趋势。
2.2 各品种根系成分差异
接种42 d后, 取样测定各处理的根系主要成分(表3和表4)。与未接种处理相比, 感病品种单播且接种处理的根系可溶性糖和蛋白质含量均显著增加, 抗病品种单播且接种处理的根系可溶性蛋白质含量增加, 可溶性糖含量下降; 接种后, 与各品种单播相比, 感、抗品种混播后, 各处理的根系可溶性糖和可溶性蛋白质含量均呈下降趋势。总木质素含量包括酸溶木质素和酸不溶木质素, 酸不溶木质素是主要成分。与未接种处理相比, 接种后的单播华双5R (抗病)根系酸不溶木质素和酸溶木质素均降低, 单播丙409R (抗病)根系酸不溶木质素降低, 酸溶木质素增加; 接种后的单播华双5号(感病)和丙409 (感病)根系酸溶木质素均增加, 酸不溶木质素均降低。2组近等基因系混播后接种, 各混播处理中的抗病品种和感病品种的总木质素含量整体呈上升趋势。Table 3
表3
表3华双5R和华双5号在不同处理下根系成分的变化
Table 3
菌种 P. brassicae | 距离 Distance | 可溶性糖 Soluble sugar (mg g-1) | 可溶性蛋白质 Soluble protein (mg g-1) | 酸溶木质素 Acid soluble lignin (%) | 酸不溶木质素 Acid insoluble lignin (%) | ||||
---|---|---|---|---|---|---|---|---|---|
华双5R Huashuang 5R | 华双5号 Huashuang 5 | 华双5R Huashuang 5R | 华双5号 Huashuang 5 | 华双5R Huashuang 5R | 华双5号 Huashuang 5 | 华双5R Huashuang 5R | 华双5号 Huashuang 5 | ||
绩溪2号小种Pathotype2 from Jixi | NI | 37.01 a | 25.60 c | 4.87 c | 2.67 e | 1.86 b | 1.26 c | 19.57 a | 18.99 a |
CK | 12.45 b | 45.98 b | 7.16 b | 8.90 c | 1.17 bc | 1.90 bc | 16.34 b | 17.92 b | |
T1 | 12.81 b | 26.82 c | 3.97 d | 4.50 d | 1.34 bc | 2.00 b | 18.41 a | 15.80 c | |
T2 | 12.13 b | 54.64 a | 4.15 cd | 12.70 b | 2.93 a | 2.87 a | 14.72 c | 15.41 c | |
T3 | 10.04 c | 55.28 a | 3.79 d | 19.70 a | 2.98 a | 3.28 a | 15.24 c | 15.43 c | |
T4 | 7.95 d | 55.84 a | 9.43 a | 20.81 a | 3.04 a | 3.17 a | 13.65 d | 15.43 c | |
恩施4号 Pathotype 4 from Enshi | NI | 37.01 a | 25.60 d | 4.87 d | 2.67 c | 1.86 b | 1.26 de | 19.57 a | 18.99 a |
CK | 27.21 b | 43.85 a | 10.81 a | 12.05 a | 1.63 b | 1.63 cd | 17.30 b | 18.16 b | |
T1 | 20.68 c | 17.40 e | 6.77 c | 2.80 d | 1.11 c | 2.11 bc | 17.60 b | 18.13 b | |
T2 | 15.07 d | 33.26 c | 8.63 b | 5.30 c | 2.76 a | 2.79 b | 16.08 c | 15.21 c | |
T3 | 10.91 e | 35.40 b | 8.99 b | 5.06 c | 2.75 a | 3.56 a | 15.78 c | 15.93 c | |
T4 | 7.01 f | 36.78 b | 9.30 b | 7.49 b | 2.90 a | 3.74 a | 14.43 d | 15.45 c |
新窗口打开|下载CSV
Table 4
表4
表4丙409R和丙409在不同处理下根系成分的变化
Table 4
菌种 P. brassicae | 距离 Distance | 可溶性糖 Soluble sugar (mg g-1) | 可溶性蛋白质 Soluble protein (mg g-1) | 酸溶木质素 Acid soluble lignin (%) | 酸不溶木质素 Acid insoluble lignin (%) | ||||
---|---|---|---|---|---|---|---|---|---|
丙409R Bing 409R | 丙409 Bing 409 | 丙409R Bing 409R | 丙409 Bing 409 | 丙409R Bing 409R | 丙409 Bing 409 | 丙409R Bing 409R | 丙409 Bing 409 | ||
礼州2号小种Pathotype 2 from Lizhou | NI | 33.46 a | 35.64 d | 3.22 d | 8.30 ab | 1.87 bc | 1.50 d | 15.73 a | 16.10 a |
CK | 31.69 b | 55.76 a | 9.37 a | 5.35 c | 2.50 ab | 3.14 a | 14.76 b | 13.44 d | |
T1 | 16.10 c | 25.90 f | 6.59 c | 8.64 ab | 1.32 c | 1.61 d | 15.83 a | 15.00 b | |
T2 | 15.83 cd | 32.38 e | 8.34 b | 8.90 a | 2.48 ab | 3.04 a | 14.00 b | 13.55 d | |
T3 | 14.51 d | 43.26 c | 8.68 b | 9.73 a | 2.80 a | 2.35 bc | 14.43 b | 14.98 b | |
T4 | 14.07 d | 50.71 b | 7.13 bc | 9.39 a | 2.92 a | 2.83 ab | 10.66c | 14.26 c | |
歙县4号小种Pathotype 4 from Shexian | NI | 33.46 a | 35.64 e | 3.22 d | 8.30 b | 1.87 b | 1.50 c | 15.73 b | 16.10 a |
CK | 16.82 b | 66.57 b | 5.23 bc | 15.50 a | 3.22 a | 2.74 ab | 15.44 b | 15.17 b | |
T1 | 16.27 b | 39.60 d | 3.42 d | 8.87 b | 1.86 b | 1.52 c | 16.45 a | 14.67 b | |
T2 | 15.68 c | 48.43 c | 5.75 b | 4.83 c | 3.15 a | 3.31 a | 13.88 c | 12.28 c | |
T3 | 12.55 d | 49.88 c | 11.33 a | 3.54 d | 3.15 a | 2.71 ab | 11.09 d | 10.79 d | |
T4 | 11.50 e | 76.25 a | 2.99 d | 2.54 d | 3.44 a | 3.21 a | 11.57 d | 11.83 c |
新窗口打开|下载CSV
对接种后的所有处理的根系主要成分与发病率和病情指数进行相关性分析发现, 油菜根肿病发病率和病情指数与根系可溶性糖、可溶性蛋白呈极显著正相关; 酸溶木质素和酸不溶木质素与发病率及病情指数呈正相关, 但未达显著水平(表5)。
Table 5
表5
表5接种后根系成分与发病率及病情指数的相关性分析
Table 5
指标 Parameter | 可溶性糖 Soluble sugar | 可溶性蛋白质 Soluble protein | 酸溶木质素 Acid soluble lignin | 酸不溶木质素 Acid insoluble lignin | 总木质素 Total lignin |
---|---|---|---|---|---|
发病率Disease incidence | 0.797** | 0.403** | 0.177 | 0.089 | 0.165 |
病情指数Disease index | 0.822** | 0.509** | 0.176 | 0.074 | 0.164 |
新窗口打开|下载CSV
3 讨论
3.1 本研究的材料选用
本研究中选用的试验材料为2组抗根肿病油菜近等基因系, 除抗根肿病基因外, 其他遗传背景和农艺性状相近。因此, 用其作试验材料, 感、抗品种(材料)生长整齐一致, 在接种根肿菌后, 发病率的调查以及根系成分的测定, 可排除其他因素如生长差异等的干扰, 从而更容易研究感、抗品种(材料)的混播效应。3.2 感、抗近等基因系混播在油菜根肿病防治上的潜在应用价值
国内外很多研究表明, 寄主的多样性有利于寄主与病原菌群体之间的协同进化, 对病原物群体产生稳定化选择, 进而使得病原物群体处于一个稳定状态, 避免新的优势病原菌出现。利用多系品种防控病害一直是国内外植物病害防治研究的热点, 如小麦条锈病[14]、水稻稻瘟病[15]等。这些研究里多以几个抗性品种混播为主控制气传性病害, 并取得了较好的防治效果。Hariri等[23]利用1个感病品种和1个抗病品种以1:1和1:3的比例混播, 均减轻了土传小麦花叶病的感染率。本研究团队2017—2018年度大田混播试验研究发现, 混播能显著改善根肿病病情, 田间实际发病率均小于理论发病率[20]。本文盆栽试验结果也表明, 混播中感病品种的发病率及病情指数显著低于感病品种单播, 表明感、抗品种混播可以作为防治油菜根肿病的策略之一。此外, 本研究结果表明, 与单播相比, 在0 cm混播间距下, 2组感病品种的发病率及病情严重程度下降幅度最大, 且随着感、抗品种的混播间距增大, 发病率和病情严重程度呈递增趋势。说明实际生产中, 要求将感、抗品种混匀后均匀播种, 可起到较好的效果。
3.3 感抗品种混播减轻根肿病为害的可能机制
混播控制病害发生的机制有密度效应[16]、阻挡效应[17]和抗性诱导效应[18] 3种。根肿菌休眠孢子在土壤中存活时间长, 寄主和非寄主作物均能诱导休眠孢子萌发, 这种萌发刺激作用被认为是根系分泌物引起的[24,25]。研究表明, 种植抗病品种能减轻后茬感病油菜品种病害严重程度[26]。说明抗病品种启动了抗性品种的免疫反应, 寄主与根肿菌互作引起根系分泌某些初生或次生代谢物质到土壤中, 这些物质可能对后茬感病寄主有利。鉴于这些代谢物质的扩散范围有限, 所以在本研究中, 密度更有可能是决定病害发生重要因素。试验结果证实, 以0 cm混播间距下对根肿病防控效果最好, 我们推测邻近的感、抗品种在相互作用影响下, 给予根肿病病菌较小的选择压。在根肿菌接种量107孢子 mL-1范围内, 混播中的抗病品种的发病情况稳定, 其中华双5R (高抗)与对照无显著差异, 丙409R (中抗)的发病情况较对照降低。2个抗病品种间的表现差异与各自抗病位点不同有关。华双5R和丙409R的抗性均表现为质量性状抗性, 对根肿菌生理小种具有专化抗性, 只对优势4号小种有抗性。专一抗性持久性会受到根肿菌致病型的种类、数量及根肿病相对流行程度的影响。通过Williams系统鉴定出我国至少8种不同的根肿菌生理小种(1号、2号、4号、7号、9号、10号、11号和13号), 其中4号为优势生理小种。抗性品种抗性的持久性会随着病源区生理小种的变化而变化。前人经验也表明抗病品种的抗性存在丧失迹象[27]。为了维持抗性品种的抗性, 抗性品种至少轮作3年[28]。这明显降低了农业生产的经济效益, 所以从长远意义来看, 感、抗品种混播可能会调整根肿菌生理小种种群结构, 维持主要的优势小种, 减缓其他混生小种的变异速度, 最终减缓抗性品种的抗性丧失速度。这种猜想还有待进一步深入研究。
3.4 混播群体根系成分的变化
不同的十字花科寄主对根肿病的抗性反应不同, 对根肿病侵染的反应也存在差异。感病品种的可溶性糖和可溶性蛋白质含量较抗病品种显著增加[29,30], 这与本研究结果一致。Siemens等[31]比较了感染根肿菌的拟南芥与健壮株在转录组上的差异, 结果发现, 淀粉、糖、脂质、次生代谢物、营养元素(N、P、S)以及参与细胞分裂及伸长的相关基因在感染植株的根部上调, 相关防御蛋白基因下调。蛋白质组分析发现, 甘蓝型油菜的根部在侵染早期阶段有20种蛋白质表现差异, 包括参与木质素合成蛋白、细胞分裂素代谢蛋白、糖酵解蛋白、细胞内钙调蛋白和活性氧蛋白[32]。本试验的相关性分析表明, 病情指数与可溶性糖含量和可溶性蛋白质含量呈极显著正相关。根肿菌在寄主根皮层增殖并消耗营养物质, 影响根部生长激素代谢失衡, 如生长素和细胞分裂素, 最终根部肿大形成根瘤[31,33]。根瘤因此成为一个代谢库, 改变了正常的源-库关系, 在生长激素的调控作用下促使地上部的糖类和蛋白质被重新分配到根肿组织中[33]。近等基因系混播与单播的根系成分变化趋势相反, 前者降低了根中可溶性糖和可溶性蛋白质含量, 可能是混播中抗病品种启动免疫反应, 根系分泌出某种化感物质对邻近的感病品种起到促进作用, 如调控根中植物生长激素的变化, 维持根细胞正常生长, 最后发病率降低; 又或者是对根肿菌起到抑制作用。
4 结论
感、抗品种混播是防治作物病害发生的举措之一。本研究选用2组感、抗近等基因系, 发现油菜感、抗品种混播可以显著降低感病品种的根肿病发病率, 且混播间距在0 cm时效果最好。混播与单播相比, 感病品种根系中可溶性糖及可溶性蛋白质含量均显著降低, 酸不溶木质素含量显著增加。该技术可以作为油菜根肿病防控的技术措施, 在根肿病发病区域油菜生产上有着较好的应用前景。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
DOI:10.1080/07060661.2013.875487URL [本文引用: 1]
Clubroot disease and the causal microbe Plasmodiophora brassicae offer abundant challenges to agriculturists and biological scientists. This microbe is well fitted for the environments which it inhabits. Plasmodiophora brassicae exists in soil as microscopic well-protected resting spores and then grows actively and reproduces while shielded inside the roots of host plants. The pathogen is active outside the host for only short periods. Consequently, scientific studies are made challenging by the biological context of the host and pathogen and the technology required to investigate and understand that relationship. Controlling clubroot disease is a challenge for farmers, crop consultants and plant pathology practitioners because of the limited options which are available. Full symptom expression happens solely in members of the Brassicaceae family. Currently, only a few genes expressing strong resistance to P. brassicae are known and readily available. Agrochemical control is similarly limited by difficulties in molecule formulation which combines efficacy with environmental acceptability. Manipulation of husbandry encouraging improvements in soil structure, texture, nutrient composition and moisture content can reduce populations of P. brassicae. Integrating such strategies with rotation and crop management will reduce but not eliminate this disease. There are indications that forms of biological competition may be mobilized as additions to integrated control strategies. This review charts key themes in the development of scientific biological understanding of this host-pathogen relationship by offering signposts to grapple with clubroot disease which devastates crops and their profitability. Particular attention is given to the link between soil and nutrient chemistry.
,
DOI:10.1080/07060661003621761URL [本文引用: 1]
,
DOI:10.1007/s00344-009-9090-yURL [本文引用: 1]
The significance of Plasmodiophora brassicae Woronin and clubroot disease which it incites in members of the family Brassicaceae is reviewed as the focus for this special edition of the Journal of Plant Growth Regulation. This is a monographic treatment of recent research into the pathogen and disease; previous similar treatments are now well over half a century old. Vernacular nomenclature of the disease indicates that it had a well-established importance in agriculture and horticulture from at least the Middle Ages onward in Europe and probably earlier. Subsequently, the pathogen probably spread worldwide as a result of transfer on and in fodder taken by colonists as livestock feed. It is a moot point, however, whether there was much earlier spread by P. brassicae into China and subsequently Japan as Brassica rapa (Chinese cabbage and many variants) colonized those lands in archaeological time. Symptoms, worldwide distribution, and economic impact are briefly described here to provide a basis for understanding subsequent papers. Clubroot disease devastates both infected field and protected vegetable and agricultural Brassica crops. Particular importance is placed on recent reports of crop losses in tropical countries, albeit where the crops are grown in cooler altitudes, and in the Canadian prairie land canola crops. The latter is of enormous importance because this crop is the single most important and essential source of vegetable oils used in human foodstuffs and in industrial lubricants where mineral oils are inappropriate.]]>
,
DOI:10.1080/07060660609507280URL [本文引用: 1]
,
DOI:10.1016/j.eja.2015.07.007URL [本文引用: 1]
,
DOI:10.1007/s10658-005-2797-0URL [本文引用: 1]
西南大学硕士学位论文, ,
[本文引用: 1]
MS Thesis of Southwest University,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
明,高油酸和普通油酸花生油甘三酯类型差别不大,但含量区别明显,特别是sn-OOO的含量是决定花生油类型的 关键。]]>
[本文引用: 1]
,
URL [本文引用: 1]
]]>
[本文引用: 1]
,
DOI:10.1080/07060661.2013.861871URL [本文引用: 1]
Clubroot research in Germany addresses a broad range of aspects of this disease, including host resistance and its genetic basis, different means of integrated control and basic studies of the physiological alterations in the host during infection. The intimate relationship between Plasmodiophora brassicae Wor. and its host leads to a dramatic change in hormone status, cellular development and source-sink relations. Apart from plant growth-promoting hormones, such as auxins and cytokinins, changes in secondary metabolites were also found to be associated with club development, exhibiting their effect either directly on growth hormones or indirectly via their general bioactive properties. Clubroot resistance is another focus of German research programmes. While clubroot has been a major concern of vegetable growers, now the disease has a significant impact on oilseed rape (Brassica napus L.). Accordingly, recent research addresses different aspects of clubroot control in this crop. The release of the clubroot resistant oilseed rape cultivar 'Mendel' by a German breeding company has been a milestone in clubroot management in oilseed rape worldwide. The efficacy of this resistance source is of key relevance and studies are being undertaken to characterize pathogenic variation. In addition to cultivar resistance, agronomical approaches, such as application of calcium cyanamide, are available, and integrated pest management strategies can address the prevention of the multiplication of P. brassicae inoculum. Clubroot resistance has been studied also in the model plant Arabidopsis thaliana. This work has resulted in the cloning of the resistance locus RPB1.
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
DOI:10.1146/annurev.py.20.090182.001043URL [本文引用: 2]
,
DOI:10.1111/nyas.1977.287.issue-1URL [本文引用: 2]
,
URLPMID:10963595 [本文引用: 2]
中国农业科学院硕士学位论文, ,
[本文引用: 1]
MS Thesis of Chinese Academy of Agricultural Sciences,
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
,
DOI:10.1023/A:1017980809756URL [本文引用: 1]
The multiplication of Soil-borne wheat mosaic virus (SBWMV) was studied in mixtures of two winter wheat (Triticum aestivum) cultivars, one susceptible (Soissons) and the other resistant (Trémie). Two seed mixtures of susceptible and resistant varieties in ratios of 1 : 1 and 1 : 3 and their component pure stands, i.e. each variety grown separately, were grown in a field infected with SBWMV. The presence of the virus was detected using DAS-ELISA from January to May. The resistant cultivar Trémie showed no foliar symptoms nor could the virus be detected in the leaves or roots. In May, about 88% of plants of susceptible cultivar Soissons grown in pure stands were infected. At this time, the disease reduction relative to pure stands was 32.2% in the 1 : 1 mixture and 39.8% in the 1 : 3 mixture. Optical density (OD) values from ELISA of the infected plants in the two mixtures were consistently lower than that of the infected plants in cultivar Soissons in pure stands. The ELISA index (EI) calculated using three scales of OD values was 65.5% in the susceptible cultivar in pure stands. The value for this index was 19.1% in the 1 : 1 mixture and 7.9% in the 1 : 3 mixture. The plants of the resistant cultivar Trémie infected in the same field and transferred in January to a growth cabinet at 15 °C multiplied the virus and produced viruliferous zoospores. These results show that the resistant cultivar Trémie plays a role in disease reduction in the cultivar mixtures in field conditions. Possible reasons for this are discussed.]]>
,
DOI:10.1016/j.cropro.2012.11.025URL [本文引用: 1]
7.0 in both the presence and absence of REs. The effects of various pH values on the percent of root hair infection varied. Root hair infection was higher at relatively lower pH values (6.0-7.0) compared to either lower or higher pH values when a NS was added. It was however lower at pH values below 6.5 compared to those above 6.5 when the experiment was conducted in the absence of a NS. The possible impacts of REs, different pH values, and calcium levels in the soil on the severity of clubroot on canola are discussed. Crown Copyright (C) 2013 Published by Elsevier Ltd.]]>
,
DOI:10.4141/CJPS10200URL [本文引用: 1]
Ahmed, H. U., Hwang, S. F., Strelkov, S. E., Gossen, B. D., Peng, G., Howard, R. J. and Turnbull, G. D. 2011. Assessment of bait crops to reduce inoculum of clubroot (Plasmodiophora brassicae) of canola. Can. J. Plant Sci. 91: 545-551. Clubroot, caused by Plasmodiophora brassicae, is a serious threat to canola (Brassica napus, B. rapa) production in western Canada because of its long-lived resting spores, high spore production potential, and negative impact on seed yield when inoculum concentrations are high. The impact of bait crops on soil resting spore populations and subsequent clubroot severity was studied in replicated trials under greenhouse and field conditions. Resting spore populations were often slightly reduced following two cycles of cruciferous crops (canola or Chinese cabbage) relative to non-cruciferous host crops (red clover, perennial ryegrass, orchardgrass, bentgrass) and non-host crops (barley, wheat). Subsequent clubroot severity showed a similar trend, but the impact was generally small and inconsistent. Bait crops had no effect on clubroot severity at two commercial field sites where populations of resting spores were high (1 x 10(6) spores per gram of soil). We conclude that the use of bait crops is unlikely to be an important component of an IPM program for clubroot of canola.
,
DOI:10.1111/j.1365-3059.2012.02636.xURL [本文引用: 1]
Clubroot, caused by Plasmodiophora brassicae, has become a serious threat to canola (Brassica napus) production in western Canada. Experiments were conducted to assess the effect of growing resistant and susceptible canola genotypes on P.brassicae soil resting spore populations under greenhouse, mini-plot and field conditions. One crop of susceptible canola contributed 1 center dot 4x108sporesmL1 soil in mini-plot experiments, and 1x1010sporesg1 gall under field conditions. Repeated cropping of susceptible canola resulted in greater gall mass compared to resistant canola lines. It also resulted in reduced plant height, increased clubroot severity in susceptible canola, and increased numbers of resting spores in the soil mix.
,
DOI:10.1094/PDIS-09-11-0807URL [本文引用: 1]
Plasmodiophora brassicae, the cause of clubroot of crucifers, is an increasingly important pathogen of canola (Brassica napus) in Alberta, Canada. In response, clubroot-resistant canola genotypes are being deployed to help reduce yield losses. Two experiments were conducted to examine the effect on P. brassicae virulence of repeated exposure of a population and single-spore isolate of the pathogen to the same host. The first experiment examined changes in the index of disease over five cycles of infection on seven Brassica hosts (European Clubroot Differential [ECD] 02, ECD 04, ECD 05, ECD 15, '45H26', '45H29', and 08N823R). The second experiment tested the virulence of five cycled populations ('45H29', 08N82312, ECD 05, and ECD 15) and three cycled single-spore isolates ('45H29', 08N823R, and ECD05) on four resistant canola genotypes ('73-77', '73-67', VT-SD-09, and '9558C'). The results from these experiments clearly demonstrate the ability of both single-spore isolates and populations of P brassicae to rapidly erode the resistance present in the two canola genotypes, '45H29' and 08N823R. Although the index of disease increased on these two genotypes, the four resistant canola genotypes remained resistant to all the cycled populations and single-spore isolates in the second experiment. These results underscore the importance of crop rotation in the management of clubroot in Alberta.]]>
,
[本文引用: 1]
,
[本文引用: 1]
石河子大学硕士学位论文, ,
[本文引用: 1]
MS Thesis of Shihezi University,
[本文引用: 1]
,
URLPMID:16673935 [本文引用: 2]
,
DOI:10.1016/j.plantsci.2007.10.002URL [本文引用: 1]
,
DOI:10.1007/s00344-009-9089-4URL [本文引用: 2]
Infection of Brassicaceae with the obligate biotrophic pathogen Plasmodiophora brassicae results in the development of root galls (clubroots). During the transformation of a healthy root to a root gall a plethora of changes in primary and secondary metabolism occur. The upper part of an infected plant is retarded in growth due to redirection of assimilates from the shoot to the root. In addition, changes in the levels of plant growth regulators, especially auxins and cytokinins, contribute to the hypertrophy of infected roots. Also, defense reactions are manipulated after inoculation of suitable host plants with P. brassicae. This review summarizes our current knowledge on the changes in these parameters. A model is presented for how primary metabolism and secondary metabolism, including plant hormones, interact to induce clubroot formation.]]>