Evaluation of drought tolerance and screening for drought-tolerant indicators in sweetpotato cultivars
ZHANG Hai-Yan1,**, XIE Bei-Tao1,**, WANG Bao-Qing1, DONG Shun-Xu1, DUAN Wen-Xue,1,*, ZHANG Li-Ming,2,*通讯作者:
第一联系人:
收稿日期:2018-06-26接受日期:2018-10-8网络出版日期:2018-11-07
基金资助: |
Received:2018-06-26Accepted:2018-10-8Online:2018-11-07
Fund supported: |
作者简介 About authors
张海燕,E-mail:zhang_haiyan02@163.com。
解备涛,E-mail:279151695@qq.com。
摘要
关键词:
Abstract
Keywords:
PDF (268KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
张海燕, 解备涛, 汪宝卿, 董顺旭, 段文学, 张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430. doi:10.3724/SP.J.1006.2019.84087
ZHANG Hai-Yan, XIE Bei-Tao, WANG Bao-Qing, DONG Shun-Xu, DUAN Wen-Xue, ZHANG Li-Ming.
我国是世界上甘薯种植面积最大、总产最高的国家, 种植面积328.15万公顷, 总产7057.09万吨, 平均单产21.51 t hm-2, 种植面积和总产分别占世界的38.05%和67.09%, 单产为世界平均单产的1.76倍(FAO, 2016)。甘薯作为耐瘠薄作物, 70%以上种植在丘陵山区, 年际间降雨量不均使甘薯生长季经常遭遇干旱, 已成为限制产量提高的主要因素[1]。选育抗旱品种是提高旱地甘薯产量最有效的技术途径, 研究不同甘薯品种的抗旱性, 鉴定抗旱相关性状及不同品种的抗旱机制, 可为甘薯抗旱育种提供种质及理论参考。
作物抗旱适应性是复杂的数量性状, 受多因素控制, 合理筛选抗旱指标是抗旱性鉴定的关键。在抗旱性鉴定分析方法和抗旱指标筛选方面, 前人做了大量工作, 主要利用综合抗旱系数[2]、隶属性函数值[3]、聚类分析[4]、主成分分析[5]、灰色关联度[6]、广义遗传力分析[7]等方法进行品种抗旱性分级。抗旱鉴定指标包括产量性状、生长发育、形态学和生理生化指标[8,9]。近年来, 国内外研究者从群体、个体、器官、细胞、亚细胞以及分子水平上针对多种作物的抗旱适应性深入研究, 提出了抗旱鉴定方法、指标选择、评价方法以及抗旱性分级等抗旱性综合评价方法[10,11,12]。
前人在甘薯抗旱指标及其与品种抗旱性关系研究的基础上, 对甘薯品种抗旱适应性进行了较为全面、系统的综合评价[13,14,15], 提出了直接鉴定、间接鉴定和综合鉴定等甘薯品种抗旱性鉴定方法[16,17], 并筛选获得了一系列抗旱性较强的甘薯品种[13,16]。作为无性繁殖作物, 甘薯品种在种植过程中, 种性退化严重, 前人抗旱性鉴定过的甘薯品种大多已被淘汰, 目前生产中推广应用的甘薯品种尚未有人进行系统的抗旱性评价。近年来, 国内研究者利用大田自然干旱鉴定法对部分甘薯品种进行了抗旱性鉴定评价, 而对于抗旱指标的研究多见于盆栽试验[18,19], 针对整个生育期综合评价甘薯品种抗旱性的研究未见报道。本研究在人工控水条件下, 对近年来生产中广泛应用的淀粉型、鲜食型和色素型甘薯品种进行全生育期抗旱性综合评价, 以期为甘薯抗旱育种提供优异种质, 并为甘薯抗旱机制研究提供理论依据。
1 材料与方法
1.1 试验设计
选取当前生产中种植的甘薯栽培种3个类型共15个品种为供试材料(表1), 于2012—2013年在山东省农业科学院试验场防雨旱棚内进行试验, 抗旱池长6 m、宽4 m、深2 m, 四周为水泥墙, 底部未封闭。抗旱池土壤类型为沙壤土, 含有机质1.26%、碱解氮43.99 mg kg-1、速效磷18.03 mg kg-1、速效钾103.16 mg kg-1。分别于2012年6月12日和2013年6月10日栽插, 栽插密度为57,145株hm-2, 2012年10月11日和2013年10月9日收获。对每个品种设置正常灌水(土壤相对含水量75%±5%)和干旱胁迫(土壤相对含水量35%±5%) 2个处理。采用测墒补灌的方法, 保证抗旱池内土壤水分含量保持在目标含水量范围。随机区组设计, 重复3次。Table 1
表1
表1试验材料名称、类型及选育单位
Table 1
品种类型 Cultivar type | 序号 No. | 品种名称 Cultivar name | 选育单位 Breeding organization |
---|---|---|---|
淀粉型 | 1 | 徐薯18 Xushu 18 | 江苏徐州甘薯研究中心 Xuzhou Sweetpotato Research Center |
High-starch | 2 | 济薯15 Jishu 15 | 山东省农业科学院作物研究所 Crop Research Institute of SAAS |
3 | 济薯21 Jishu 21 | 山东省农业科学院作物研究所 Crop Research Institute of SAAS | |
4 | 济徐23 Jixu 23 | 山东省农业科学院作物研究所 Crop Research Institute of SAAS | |
5 | 济薯25 Jishu 25 | 山东省农业科学院作物研究所 Crop Research Institute of SAAS | |
鲜食型 | 6 | 北京553 Beijing 553 | 原华北农业科学研究所 North China Institute of Agricultural Sciences |
Table-used | 7 | 郑薯20 Zhengshu 20 | 河南省农业科学院粮食作物研究所 Crop Research Institute of HAAS |
8 | 烟薯25 Yanshu 25 | 烟台市农业科学研究院 Yantai Academy of Agricultural Sciences | |
9 | 济薯22 Jishu 22 | 山东省农业科学院作物研究所 Crop Research Institute of SAAS | |
10 | 济薯26 Jishu 26 | 山东省农业科学院作物研究所 Crop Research Institute of SAAS | |
色素型 | 11 | 凌紫Ayamaraski | 日本品种 Japanese Genotype |
Rich in pigment | 12 | 济薯18 Jishu 18 | 山东省农业科学院作物研究所 Crop Research Institute of SAAS |
13 | 济紫薯1号 Jizishu 1 | 山东省农业科学院作物研究所 Crop Research Institute of SAAS | |
14 | 济紫薯2号 Jizishu 2 | 山东省农业科学院作物研究所 Crop Research Institute of SAAS | |
15 | 济紫薯3号 Jizishu 3 | 山东省农业科学院作物研究所 Crop Research Institute of SAAS |
新窗口打开|下载CSV
1.2 测定项目及方法
1.2.1 鲜薯产量 收获时进行小区测产, 获得鲜薯产量, 计算单位面积的鲜薯产量(kg hm-2)。1.2.2 抗旱系数 参照张明生等[20]的方法计算抗旱系数(drought resistance coefficient, DC), DC=干旱胁迫处理鲜薯产量/正常灌水处理鲜薯产量。
1.2.3 农艺性状 栽后40 d开始田间标记代表性植株5株, 用于叶片数、叶面积和蔓长的跟踪调查, 每隔20 d调查一次。调查后进行田间取样, 每处理选5株, 称量其地上部叶片、叶柄、茎蔓和地下部根系及块根的鲜重, 烘干后称取干重, 取平均值。地上部生物量(g plant-1)=叶片干重+叶柄干重+茎蔓干重, 地下部生物量(g plant-1)=根系干重+块根干重。
1.2.4 叶面积和叶面积系数 从田间选有代表性植株, 测量所有叶片的长和宽(沿叶脉测量叶片长, 最宽处测量叶片宽), 长乘以宽得出叶片虚叶面积, 测算出整株虚叶面积, 再乘以矫正系数0.6即可得出整株叶面积[21]。叶面积系数=单株虚叶面积×0.6×栽插密度(株数 666.7 m-2)/666.7。
1.3 数据处理与分析
用Microsoft Excel 2010处理数据及制图, 用DPS v8.01版数据处理系统进行方差分析和差异显著性检验。2年试验结果趋势基本一致, 方差分析结果表明, 各指标及其与年份间的互作不显著(P < 0.05), 因此, 均采用2年的平均值进行分析。2 结果与分析
2.1 甘薯品种抗旱性评价
由表2可见, 干旱胁迫导致各甘薯品种鲜薯产量下降, 不同品种对干旱胁迫的响应存在显著差异。15个品种的抗旱系数年份间略有差异, 但两年度品种间抗旱性结果趋势基本一致。2012年15个品种的抗旱系数在0.34~0.71之间; 2013年抗旱系数在0.33~0.73之间。按照抗旱评价标准, 对15个甘薯品种进行了抗旱性分级排序, 抗旱品种(抗旱系数≥0.6)包括济薯21>济薯25>济徐23>济薯15>烟薯25; 中等抗旱品种(0.4≤抗旱系数<0.6)包括徐薯18>济薯26>北京553>济紫薯2号>济薯18; 不抗旱品种(抗旱系数<0.4)包括郑薯20>济紫薯3号>济薯22>济紫薯1号>凌紫。徐薯18作为中等抗旱品种, 可用作甘薯品种抗旱性综合评价的标准品种。从抗旱性分级结果来看, 甘薯品种抗旱性强弱与品种类型没有必然关联, 同一类型的甘薯品种中既有抗旱品种和中等抗旱品种, 又有不抗旱品种。Table 2
表2
表2甘薯品种抗旱性评价
Table 2
品种 Cultivar | 2012 | 2013 | 抗旱评价 DE | ||||
---|---|---|---|---|---|---|---|
鲜薯产量 Fresh weight (kg hm-2) | 抗旱系数 DC | 鲜薯产量 Fresh weight (kg hm-2) | 抗旱系数 DC | ||||
对照Control | 干旱Drought | 对照 Control | 干旱 Drought | ||||
徐薯18 Xushu 18 | 18735 fg | 10305 d | 0.55 ef | 20970 d | 11955 d | 0.57 e | 中抗Medium resistance |
济薯15 Jishu 15 | 20205 de | 13530 c | 0.67 bc | 22740 c | 14325 c | 0.63 d | 抗Resistance |
济薯21 Jishu 21 | 19200 ef | 13635 b | 0.71 a | 21525 d | 15720 b | 0.73 a | 抗Resistance |
济徐23 Jixu 23 | 22950 b | 15840 a | 0.69 ab | 24540 b | 15945 b | 0.65 c | 抗Resistance |
济薯25 Jishu 25 | 25080 a | 17550 a | 0.70 a | 27090 a | 18420 a | 0.68 b | 抗Resistance |
北京553 Beijing 553 | 16350 hi | 9315 e | 0.57 de | 18570 e | 9840 e | 0.53 fg | 中抗Medium resistance |
郑薯20 Zhengshu 20 | 20250 cd | 7890 f | 0.39 h | 23400 c | 8430 f | 0.36 h | 不抗Not resistance |
烟薯25 Yanshu 25 | 21600 c | 14040 b | 0.65 c | 22920 c | 14445 c | 0.63 cd | 抗Resistance |
济薯22 Jishu 22 | 16875 h | 6405 g | 0.38 h | 18525 e | 6480 h | 0.35 hi | 不抗Not resistance |
济薯26 Jishu 26 | 23520 b | 13635 bc | 0.58 d | 26820 a | 14490 c | 0.54 ef | 中抗Medium resistance |
凌紫Ayamaraski | 13140 k | 4590 i | 0.35 i | 13530 h | 4470 j | 0.33 i | 不抗Not resistance |
济薯18 Jishu18 | 17550 g | 8595 e | 0.49 g | 15600 g | 7950 g | 0.51 ef | 中抗Medium resistance |
济紫薯1号 Jizishu 1 | 15450 ij | 5250 h | 0.34 i | 16845 f | 5895 i | 0.35 i | 不抗Not resistance |
济紫薯2号 Jizishu 2 | 14640 j | 7470 f | 0.51 f | 16065 fg | 8520 f | 0.53 g | 中抗Medium resistance |
济紫薯3号 Jizishu 3 | 16200 hi | 5985 gh | 0.37 hi | 16935 f | 6435 h | 0.38 h | 不抗Not resistance |
新窗口打开|下载CSV
2.2 干旱胁迫对不同甘薯品种农艺性状和生物量的影响
2.2.1 叶片数 由表3可见, 15个甘薯品种的单株叶片数两年度变化趋势基本一致, 干旱胁迫条件下, 甘薯的单株叶片数显著低于对照, 栽后60 d叶片数相对值变幅在0.40~0.60之间, 栽后100 d变幅在0.25~0.43之间。品种间降幅不同反映了抗旱性的差异, 抗旱性强的品种叶片数相对值高, 栽后100 d, 济薯21、济薯25和济徐23的叶片数相对值2012年分别为0.41、0.40和0.39, 2013年分别为0.43、0.40和0.40, 均高于其他品种。淀粉型、鲜食型和色素型3种类型甘薯品种均表现出抗旱性强的单株叶片数相对值高, 单株叶片数相对值反映了品种的抗旱性, 品种类型间无特异性差别, 栽后100 d, 单株叶片数相对值较高的甘薯品种中, 既有淀粉型甘薯品种济薯21、济徐23, 又有鲜食型甘薯品种北京553和济薯22号; 相对值较低的甘薯品种中, 既有鲜食型甘薯品种烟薯25和郑薯20, 又有色素型甘薯品种济紫薯1号和济紫薯2号。Table 3
表3
表3干旱胁迫对甘薯单株叶片数的影响
Table 3
品种 Cultivar | 栽后60 d 60 DAP | 栽后100 d 100 DAP | |||||
---|---|---|---|---|---|---|---|
对照Control | 干旱Drought | 相对值RV | 对照Control | 干旱Drought | 相对值RV | ||
2012 | |||||||
徐薯18 Xushu 18 | 123 ab | 59 b | 0.48 bc | 197 b | 72 cd | 0.37 b | |
济薯15 Jishu 15 | 121 b | 62 a | 0.51 bc | 203 b | 80 b | 0.39 ab | |
济薯21 Jishu 21 | 110 d | 57 b | 0.52 b | 185 c | 75 c | 0.41 a | |
济徐23 Jixu 23 | 118 bc | 61 ab | 0.52 b | 194 b | 76 c | 0.39 ab | |
济薯25 Jishu 25 | 129 a | 65 a | 0.50 bc | 213 a | 85 a | 0.40 a | |
北京553 Beijing 553 | 109 d | 65 a | 0.60 a | 178 d | 68 de | 0.38 ab | |
郑薯20 Zhengshu 20 | 107 d | 45 d | 0.42 cd | 168 e | 56 f | 0.33 c | |
烟薯25 Yanshu 25 | 127 a | 58 b | 0.46 bc | 201 b | 65 e | 0.32 c | |
济薯22 Jishu 22 | 118 bc | 59 b | 0.50 bc | 178 d | 69 de | 0.39 ab | |
济薯26 Jishu 26 | 128 a | 60 b | 0.47 bc | 215 a | 79 bc | 0.37 b | |
凌紫Ayamaraski | 98 e | 39 e | 0.40 d | 199 b | 49 g | 0.25 d | |
济薯18 Jishu 18 | 114 c | 51 c | 0.45 c | 187 c | 63 e | 0.34 c | |
济紫薯1号 Jizishu 1 | 125 ab | 60 b | 0.48 bc | 200 b | 70 d | 0.35 bc | |
济紫薯2号 Jizishu 2 | 107 d | 49 cd | 0.46 bc | 178 d | 64 e | 0.36 bc | |
济紫薯3号 Jizishu 3 | 112 cd | 48 cd | 0.43 cd | 184 c | 59 f | 0.32 c | |
2013 | |||||||
徐薯18 Xushu 18 | 134 a | 65 ab | 0.49 ab | 213 b | 79 b | 0.37 bc | |
济薯15 Jishu 15 | 110 d | 51 c | 0.46 bc | 187 ef | 62 e | 0.33 d | |
济薯21 Jishu 21 | 128 b | 70 a | 0.55 a | 209 bc | 89 a | 0.43 a | |
济徐23 Jixu 23 | 124 bc | 65 ab | 0.53 a | 202 cd | 80 b | 0.40 ab | |
济薯25 Jishu 25 | 125 bc | 63 b | 0.50 ab | 207 c | 82 b | 0.40 ab | |
北京553 Beijing 553 | 113 d | 55 c | 0.49 ab | 182 f | 68 d | 0.37 bc | |
郑薯20 Zhengshu 20 | 126 b | 63 b | 0.50 ab | 191 e | 73 c | 0.38 bc | |
烟薯25 Yanshu 25 | 131 ab | 65 ab | 0.50 ab | 207 c | 78 b | 0.38 bc | |
济薯22 Jishu 22 | 135 a | 69 a | 0.51 ab | 198 d | 79 b | 0.40 ab | |
济薯26 Jishu 26 | 121 c | 53 c | 0.44 c | 208 c | 72 c | 0.35 cd | |
凌紫Ayamaraski | 87 g | 35 e | 0.40 d | 213 b | 53 f | 0.25 e | |
济薯18 Jishu 18 | 130 ab | 63 b | 0.48 bc | 221 a | 75 bc | 0.34 cd | |
济紫薯1号 Jizishu 1 | 98 f | 47 d | 0.48 bc | 156 g | 55 f | 0.35 cd | |
济紫薯2号 Jizishu 2 | 114 d | 54 c | 0.47 bc | 189 e | 69 d | 0.37 bc | |
济紫薯3号 Jizishu 3 | 104 e | 45 d | 0.43 cd | 171 | 55 f | 0.32 d |
新窗口打开|下载CSV
2.2.2 蔓长 由表4可见, 随着甘薯生长发育, 对照和干旱胁迫处理的蔓长均呈逐渐升高的趋势, 两年度变化趋势基本一致。干旱胁迫导致蔓长降低, 品种间降幅不同, 抗旱性强的品种降幅小, 抗旱性弱的品种降幅大; 各生育期蔓长的降低幅度不同, 生育后期降低幅度大于前期, 表现为蔓长相对值随着生育进程逐渐降低, 栽后60 d在0.53~0.68之间, 栽后100 d在0.43~0.57之间。从淀粉型、鲜食型和色素型甘薯品种蔓长相对值来看, 品种类型间无特异性差别, 均表现出蔓长相对值高的品种抗旱性强。
Table 4
表4
表4干旱胁迫对甘薯蔓长的影响
Table 4
品种 Cultivar | 栽后60 d 60 DAP | 栽后100 d 100 DAP | |||||||
---|---|---|---|---|---|---|---|---|---|
对照Control | 干旱Drought | 相对值RV | 对照Control | 干旱Drought | 相对值RV | ||||
2012 | |||||||||
徐薯18 Xushu 18 | 105.64 c | 69.56 cd | 0.66 a | 148.95 f | 81.89 c | 0.55 ab | |||
济薯15 Jishu 15 | 91.75 d | 59.45 g | 0.65 ab | 163.79 e | 81.45 c | 0.50 cd | |||
济薯21 Jishu 21 | 119.34 b | 78.13 b | 0.65 ab | 157.57 e | 90.32 b | 0.57 a | |||
济徐23 Jixu 23 | 117.56 b | 73.56 bc | 0.63 b | 164.32 e | 92.31 b | 0.56 ab | |||
济薯25 Jishu 25 | 114.56 b | 77.45 b | 0.68 a | 185.64 c | 104.53 a | 0.56 ab | |||
北京553 Beijing 553 | 98.46 d | 64.13 ef | 0.65 ab | 138.45 g | 75.88 d | 0.55 ab | |||
郑薯20 Zhengshu 20 | 107.23 c | 64.12 ef | 0.60 cd | 142.56 fg | 74.79 d | 0.52 bc | |||
烟薯25 Yanshu 25 | 131.89 a | 78.56 b | 0.60 cd | 201.76 b | 91.86 b | 0.46 de | |||
济薯22 Jishu 22 | 108.76 c | 67.26 de | 0.62 cd | 158.29 e | 84.56 c | 0.53 bc | |||
济薯26 Jishu 26 | 134.56 a | 84.56 a | 0.63 b | 213.22 a | 101.23 a | 0.47 d | |||
凌紫 Ayamaraski | 97.56 d | 56.46 g | 0.58 d | 119.56 h | 63.56 e | 0.53 bc | |||
济薯18 Jishu 18 | 105.46 c | 61.23 fg | 0.58 d | 188.45 c | 81.46 c | 0.43 e | |||
济紫薯1号 Jizishu 1 | 112.67 bc | 66.76 de | 0.59 d | 165.45 e | 86.35 bc | 0.52 bc | |||
济紫薯2号 Jizishu 2 | 106.87 c | 63.58 ef | 0.59 d | 138.45 g | 73.69 d | 0.53 bc | |||
济紫薯3号 Jizishu 3 | 112.46 bc | 69.56 cd | 0.62 cd | 176.45 d | 90.23 b | 0.51 bc | |||
2013 | |||||||||
徐薯18 Xushu 18 | 91.81 e | 57.18 cd | 0.62 b | 133.39 e | 70.69 de | 0.53 bc | |||
济薯15 Jishu 15 | 88.08 ef | 50.35 e | 0.57 cd | 147.64 c | 68.59 de | 0.46 e | |||
济薯21 Jishu 21 | 94.97 de | 63.48 bc | 0.67 a | 141.67 d | 79.11 b | 0.56 ab | |||
济徐23 Jixu 23 | 103.26 bc | 70.02 a | 0.68 a | 152.15 c | 87.02 a | 0.57 a | |||
济薯25 Jishu 25 | 104.92 bc | 60.04 bc | 0.57 cd | 148.91 c | 78.24 b | 0.53 bc | |||
北京553 Beijing 553 | 109.98 b | 65.71 ab | 0.60 bc | 158.61 b | 78.75 b | 0.50 cd | |||
郑薯20 Zhengshu 20 | 83.34 f | 48.12 f | 0.58 bc | 127.26 f | 62.20 e | 0.49 d | |||
烟薯25 Yanshu 25 | 121.39 a | 63.90 bc | 0.53 d | 184.09 a | 78.59 b | 0.43 f | |||
济薯22 Jishu 22 | 94.81 de | 54.97 de | 0.58 bc | 139.88 d | 71.58 d | 0.51 c | |||
济薯26 Jishu 26 | 99.58 cd | 59.58 cd | 0.60 bc | 135.09 e | 74.58 cd | 0.55 ab | |||
凌紫 Ayamaraski | 84.06 f | 44.60 f | 0.53 d | 105.18 g | 51.42 f | 0.49 d | |||
济薯18 Jishu 18 | 101.24 c | 58.78 cd | 0.58 bc | 151.31 c | 69.60 de | 0.46 e | |||
济紫薯1号 Jizishu 1 | 98.56 cd | 52.57 e | 0.53 d | 149.23 c | 73.30 cd | 0.49 d | |||
济紫薯2号 Jizishu 2 | 93.00 de | 56.24 de | 0.60 bc | 127.55 f | 65.94 e | 0.52 bc | |||
济紫薯3号 Jizishu 3 | 98.36 cd | 61.02 bc | 0.62 bc | 159.79 b | 77.02 bc | 0.48 de |
新窗口打开|下载CSV
2.2.3 叶面积系数 由表5可以看出, 叶面积系数两年度变化趋势基本一致, 在各生育时期, 干旱胁迫处理的叶面积系数均低于对照, 品种间降幅不同, 抗旱性强的品种降幅小, 抗旱性弱的品种降幅大。栽后100 d, 济薯21、济薯25和济徐23的叶面积系数相对值2012年分别为0.66、0.58和0.57, 2013年分别为0.64、0.62和0.62, 均高于其他参试品种。各生育期叶面积系数的降低幅度也不同, 生育后期降低幅度大于前期, 表现为叶面积系数相对值随着生育进程逐渐降低, 栽后60 d在0.53~0.72之间, 栽后100 d在0.32~0.64之间。叶面积系数相对值反映了品种抗旱性的强弱, 抗旱性强的品种叶面积系数相对值高, 各品种类型表现出相同的趋势, 其间无特异性差异。
Table 5
表5
表5干旱胁迫对甘薯叶面积系数的影响
Table 5
品种 Cultivar | 栽后60 d 60 DAP | 栽后100 d 100 DAP | |||||
---|---|---|---|---|---|---|---|
对照Control | 干旱Drought | 相对值RV | 对照Control | 干旱Drought | 相对值RV | ||
2012 | |||||||
徐薯18 Xushu 18 | 4.23 e | 2.45 cd | 0.58 de | 4.03 e | 2.07 d | 0.51 bc | |
济薯15 Jishu 15 | 3.98 e | 2.64 cd | 0.66 b | 3.96 e | 2.14 cd | 0.54 b | |
济薯21 Jishu 21 | 6.01 cd | 4.34 ab | 0.72 a | 5.86 c | 3.84 a | 0.66 a | |
济徐23 Jixu 23 | 6.54 bc | 3.98 b | 0.61 bcd | 6.31 b | 3.57 a | 0.57 b | |
济薯25 Jishu 25 | 6.78 bc | 4.32 ab | 0.64 bc | 6.52 b | 3.79 a | 0.58 b | |
北京553 Beijing 553 | 3.65 ef | 2.13 d | 0.58 de | 3.61 ef | 1.82 de | 0.50 bc | |
郑薯20 Zhengshu 20 | 3.78 ef | 2.34 d | 0.62 bcd | 3.71 ef | 1.41 ef | 0.38 e | |
烟薯25 Yanshu 25 | 7.12 ab | 4.72 a | 0.66 b | 6.89 b | 3.62 a | 0.53 b | |
济薯22 Jishu 22 | 4.03 e | 2.45 cd | 0.61 bcd | 4.06 e | 1.72 de | 0.42 de | |
济薯26 Jishu 26 | 7.86 a | 4.19 b | 0.53 e | 7.48 a | 3.84 a | 0.51 bc | |
凌紫 Ayamaraski | 2.98 f | 1.65 e | 0.55 e | 2.87 g | 1.13 f | 0.39 e | |
济薯18 Jishu 18 | 3.59 ef | 2.11 d | 0.59 cde | 3.87 e | 1.79 de | 0.46 cd | |
济紫薯1号 Jizishu 1 | 7.21 ab | 4.37 ab | 0.61 bcd | 6.76 b | 2.67 b | 0.40 de | |
济紫薯2号 Jizishu 2 | 3.45 f | 2.14 d | 0.62 bcd | 3.33 f | 1.69 de | 0.51 bc | |
济紫薯3号 Jizishu 3 | 5.35 d | 2.98 c | 0.56 e | 4.97 d | 2.58 bc | 0.52 b | |
2013 | |||||||
徐薯18 Xushu 18 | 3.61 c | 1.93 cd | 0.53 c | 3.16 bc | 1.49 de | 0.47 c | |
济薯15 Jishu 15 | 3.96 c | 2.28 c | 0.57 bc | 3.74 b | 1.89 cd | 0.51 bc | |
济薯21 Jishu 21 | 3.98 c | 2.72 c | 0.68 a | 3.46 bc | 2.23 c | 0.64 a | |
济徐23 Jixu 23 | 6.20 b | 4.34 a | 0.70 a | 5.97 a | 3.71 a | 0.62 a | |
济薯25 Jishu 25 | 6.45 b | 4.29 a | 0.67 a | 6.19 a | 3.86 a | 0.62 a | |
北京553 Beijing 553 | 3.43 c | 2.10 cd | 0.61 b | 3.39 bc | 1.79 cd | 0.53 b | |
郑薯20 Zhengshu 20 | 3.57 c | 2.03 cd | 0.57 bc | 3.50 b | 1.49 de | 0.43 d | |
烟薯25 Yanshu 25 | 6.56 b | 4.08 ab | 0.62 b | 6.02 a | 3.08 b | 0.51 bc | |
济薯22 Jishu 22 | 3.81 c | 2.32 c | 0.61 b | 3.03 bc | 1.29 e | 0.43 d | |
济薯26 Jishu 26 | 7.58 a | 4.42 a | 0.58 bc | 6.20 a | 3.17 b | 0.51 bc | |
凌紫 Ayamaraski | 2.80 d | 1.64 d | 0.59 bc | 2.09 d | 1.06 e | 0.51 bc | |
济薯18 Jishu 18 | 3.83 c | 2.25 c | 0.59 bc | 3.11 bc | 1.63 d | 0.52 b | |
济紫薯1号 Jizishu 1 | 6.86 b | 3.72 b | 0.54 c | 6.41 a | 2.03 c | 0.32 e | |
济紫薯2号 Jizishu 2 | 3.72 c | 2.21 c | 0.59 bc | 3.10 bc | 1.56 de | 0.50 bc | |
济紫薯3号 Jizishu 3 | 3.45 c | 2.09 cd | 0.61 b | 2.91 c | 1.49 de | 0.51 bc |
新窗口打开|下载CSV
2.2.4 地上部生物量 随着甘薯生长发育, 对照和干旱胁迫处理的地上部生物量均呈逐渐升高的趋势, 两年度变化趋势基本一致。干旱胁迫导致甘薯地上部生物量下降, 品种间降幅不同, 抗旱性强的品种降幅小, 抗旱性弱的品种降幅大, 栽后60 d, 抗旱性强的济薯21地上部生物量相对值2012年和2013年分别为0.66和0.67, 栽后100 d, 分别为0.57和0.58, 均高于其他参试品种。各生育期地上部生物量的降低幅度也不同, 生育后期降低幅度大于前期, 表现为地上部生物量相对值随着生育进程逐渐降低, 栽后60 d在0.51~0.66之间, 栽后100 d在0.37~0.58之间(表6)。地上部生物量相对值反映了品种的抗旱性, 淀粉型、鲜食型和色素型甘薯品种表现出相同的趋势, 品种类型间无特异性差异。
Table 6
表6
表6干旱胁迫对甘薯地上部生物量的影响
Table 6
品种 Cultivar | 栽后60 d 60 DAP | 栽后100 d 100 DAP | |||||
---|---|---|---|---|---|---|---|
对照Control | 干旱Drought | 相对值RV | 对照Control | 干旱Drought | 相对值RV | ||
2012 | |||||||
徐薯18 Xushu 18 | 59.24 c | 35.48 c | 0.60 ab | 85.97 d | 44.53 c | 0.52 bcde | |
济薯15 Jishu 15 | 50.13 cd | 30.83 cd | 0.62 ab | 82.17 d | 42.25 cd | 0.51 cdef | |
济薯21 Jishu 21 | 58.78 c | 38.69 bc | 0.66 a | 85.24 d | 48.52 bc | 0.57 a | |
济徐23 Jixu 23 | 65.49 b | 41.19 ab | 0.63 a | 93.53 c | 51.61 ab | 0.55 ab | |
济薯25 Jishu 25 | 72.43 a | 44.31 ab | 0.61 ab | 99.89 b | 53.97 a | 0.54 abc | |
北京553 Beijing 553 | 47.63 de | 26.65 de | 0.56 cd | 75.83 e | 38.70 d | 0.51 cdef | |
郑薯20 Zhengshu 20 | 42.22 e | 23.17 e | 0.55 cd | 67.22 f | 30.08 e | 0.45 g | |
烟薯25 Yanshu 25 | 73.84 a | 45.41 a | 0.61 ab | 107.65 a | 54.49 a | 0.51 cdef | |
济薯22 Jishu 22 | 45.47 e | 24.26 e | 0.53 d | 72.39 e | 32.85 e | 0.45 g | |
济薯26 Jishu 26 | 65.32 b | 40.48 ab | 0.62 ab | 91.68 c | 49.27 b | 0.54 abc | |
凌紫 Ayamaraski | 31.99 f | 18.50 f | 0.58 bc | 57.39 g | 22.75 f | 0.40 h | |
济薯18 Jishu 18 | 53.12 c | 30.17 cd | 0.57 bc | 75.57 e | 35.76 de | 0.47 fg | |
济紫薯1号 Jizishu 1 | 65.33 b | 38.80 bc | 0.59 bc | 83.80 d | 40.99 cd | 0.49 ef | |
济紫薯2号 Jizishu 2 | 45.69 e | 27.33 de | 0.60 ab | 63.66 f | 31.81 e | 0.50 def | |
济紫薯3号 Jizishu 3 | 78.26 a | 49.07 a | 0.63 a | 105.02 a | 54.99 a | 0.52 bcde | |
2013 | |||||||
徐薯18 Xushu 18 | 65.18 c | 37.15 c | 0.57 cdef | 96.72 d | 47.82 c | 0.49 cde | |
济薯15 Jishu 15 | 55.61 de | 32.84 d | 0.59 bcd | 93.43 de | 46.32 c | 0.50 bcde | |
济薯21 Jishu 21 | 66.10 c | 44.61 b | 0.67 a | 94.42 de | 55.13 b | 0.58 a | |
济徐23 Jixu 23 | 67.93 c | 41.93 bc | 0.62 bc | 97.94 d | 53.08 b | 0.54 b | |
济薯25 Jishu 25 | 80.99 a | 48.65 a | 0.60 bc | 112.57 b | 59.76 a | 0.53 bc | |
北京553 Beijing 553 | 57.04 d | 30.81 de | 0.54 efg | 92.29 de | 45.88 c | 0.50 bcde | |
郑薯20 Zhengshu 20 | 50.27 e | 26.46 e | 0.53 fg | 81.52 f | 35.09 d | 0.43 g | |
烟薯25 Yanshu 25 | 82.62 a | 49.92 a | 0.60 bc | 121.50 a | 60.36 a | 0.50 bcde | |
济薯22 Jishu 22 | 55.20 d | 28.27 e | 0.51 g | 89.39 e | 39.18 d | 0.44 fg | |
济薯26 Jishu 26 | 74.08 b | 45.02 ab | 0.61 bc | 104.93 c | 55.31 b | 0.53 bc | |
凌紫 Ayamaraski | 41.09 f | 22.60 f | 0.55 efg | 75.88 g | 28.43 e | 0.37 h | |
济薯18 Jishu 18 | 54.70 de | 30.14 d | 0.55 efg | 78.72 fg | 36.13 d | 0.46 efg | |
济紫薯1号 Jizishu 1 | 74.10 b | 43.06 b | 0.58 cde | 95.71 d | 45.62 c | 0.48 defg | |
济紫薯2号 Jizishu 2 | 64.23 c | 37.24 c | 0.58 cde | 90.64 de | 43.82 c | 0.48 defg | |
济紫薯3号 Jizishu 3 | 81.60 a | 45.36 ab | 0.56 def | 110.23 b | 57.70 ab | 0.52 bcd |
新窗口打开|下载CSV
2.2.5 地下部生物量 由表7可见, 地下部生物量2年度变化趋势基本一致, 随着甘薯生长发育, 对照和干旱胁迫处理的地下部生物量均呈逐渐升高的趋势。干旱胁迫导致甘薯地下部生物量下降, 品种间降幅不同, 抗旱性强的品种降幅小, 抗旱性弱的品种降幅大, 栽后60 d, 抗旱性强的济薯21地下部生物量相对值2012年和2013年分别为0.65和0.66, 栽后100 d, 分别为0.59和0.53, 均高于其他参试品种。各生育期地下部生物量的降低幅度也不同, 生育后期降低幅度大于前期, 表现为地下部生物量相对值随着生育进程逐渐降低, 栽后60 d在0.45~0.66之间, 栽后100 d在0.34~ 0.59之间。从淀粉型、鲜食型和色素型甘薯品种地下部生物量相对值来看, 品种类型间无特异性差别, 均表现出地下部生物量相对值高的品种抗旱性强。
Table 7
表7
表7干旱胁迫对甘薯地下部生物量的影响
Table 7
品种 Cultivar | 栽后60 d 60 DAP | 栽后100 d 100 DAP | |||||
---|---|---|---|---|---|---|---|
对照Control | 干旱Drought | 相对值RV | 对照Control | 干旱Drought | 相对值RV | ||
2012 | |||||||
徐薯18 Xushu 18 | 5.60 de | 3.08 d | 0.55 de | 24.03 cd | 10.79 de | 0.45 d | |
济薯15 Jishu 15 | 5.23 ef | 2.74 de | 0.52 ef | 22.34 de | 9.87 de | 0.44 d | |
济薯21 Jishu 21 | 6.14 cd | 3.98 bc | 0.65 a | 29.59 b | 17.42 ab | 0.59 a | |
济徐23 Jixu 23 | 7.45 b | 4.54 b | 0.61 abc | 31.43 ab | 17.49 ab | 0.56 a | |
济薯25 Jishu 25 | 9.78 a | 5.76 a | 0.59 bcd | 34.56 a | 19.73 a | 0.57 a | |
北京553 Beijing 553 | 6.25 c | 3.58 cd | 0.57 cd | 29.76 b | 15.43 bc | 0.52 bc | |
郑薯20 Zhengshu 20 | 5.98 d | 2.76 de | 0.46 g | 24.89 cd | 9.67 de | 0.39 e | |
烟薯25 Yanshu 25 | 6.56 c | 3.87 c | 0.59 bcd | 29.78 b | 16.45 abc | 0.55 ab | |
济薯22 Jishu 22 | 7.00 b | 4.31 b | 0.62 ab | 33.33 a | 16.28 abc | 0.49 c | |
济薯26 Jishu 26 | 9.56 a | 5.43 a | 0.57 cd | 33.54 a | 17.56 ab | 0.52 bc | |
凌紫 Ayamaraski | 4.37 f | 2.10 e | 0.48 fg | 18.75 e | 7.73 e | 0.41 de | |
济薯18 Jishu 18 | 5.86 d | 2.89 de | 0.49 fg | 25.02 cd | 10.78 de | 0.43 de | |
济紫薯1号 Jizishu 1 | 7.56 b | 3.66 c | 0.48 fg | 28.67 bc | 9.70 de | 0.34 f | |
济紫薯2号 Jizishu 2 | 4.65 f | 2.39 e | 0.51 ef | 19.88 e | 8.73 e | 0.44 d | |
济紫薯3号 Jizishu 3 | 6.08 cd | 3.08 d | 0.51 ef | 29.09 b | 13.21 cd | 0.45 d | |
2013 | |||||||
徐薯18 Xushu 18 | 4.67 e | 2.48 d | 0.53 de | 20.71 cd | 9.19 cd | 0.44 d | |
济薯15 Jishu 15 | 4.95 de | 2.53 d | 0.51 ef | 21.54 cd | 9.45 cd | 0.44 d | |
济薯21 Jishu 21 | 4.64 e | 3.06 c | 0.66 a | 29.41 ab | 15.51 ab | 0.53 abc | |
济徐23 Jixu 23 | 6.91 b | 4.08 b | 0.59 bc | 30.17 a | 16.65 ab | 0.55 ab | |
济薯25 Jishu 25 | 9.07 a | 5.17 a | 0.57 bcd | 33.11 a | 18.72 a | 0.57 a | |
北京553 Beijing 553 | 4.99 de | 2.93 cd | 0.59 bc | 23.09 c | 12.06 bc | 0.52 bc | |
郑薯20 Zhengshu 20 | 5.58 cd | 2.45 d | 0.44 g | 23.92 c | 9.16 cd | 0.38 e | |
烟薯25 Yanshu 25 | 5.46 cd | 3.12 c | 0.57 bcd | 25.67 bc | 14.07 abc | 0.55 ab | |
济薯22 Jishu 22 | 6.11 bc | 3.72 b | 0.61 b | 29.55 ab | 14.37 abc | 0.49 c | |
济薯26 Jishu 26 | 9.24 a | 5.19 a | 0.56 cd | 32.74 a | 17.08 a | 0.52 a | |
凌紫 Ayamaraski | 3.43 f | 1.60 e | 0.47 fg | 15.08 e | 6.16 d | 0.41 d | |
济薯18 Jishu 18 | 4.18 e | 1.89 e | 0.45 g | 18.93 de | 7.97 d | 0.42 d | |
济紫薯1号 Jizishu 1 | 6.08 bc | 2.71 d | 0.45 g | 28.67 ab | 10.45 cd | 0.36 e | |
济紫薯2号 Jizishu 2 | 3.75 f | 1.77 e | 0.47 fg | 16.99 e | 7.29 d | 0.43 d | |
济紫薯3号 Jizishu 3 | 4.50 e | 2.20 de | 0.49 ef | 22.22 cd | 9.99 cd | 0.45 cd |
新窗口打开|下载CSV
2.3 农艺性状与甘薯品种抗旱性的相关性
淀粉型、鲜食型和色素型3种类型甘薯品种的农艺性状与产量抗旱系数的相关性表现出相同的趋势。从表8可以看出, 正常灌水条件下, 甘薯的叶片数、蔓长、叶面积系数、生物量与品种抗旱系数的相关性未达显著水平。说明正常灌水条件下, 甘薯的叶片数、蔓长、叶面积系数和生物量等指标不能反映品种的抗旱性。Table 8
表8
表8农艺性状与抗旱系数的相关系数(正常灌水条件下)
Table 8
年份Year | 生育期 Growth stage | 叶片数 Leaf number | 蔓长 Vine length | 叶面积系数 Leaf area index | 生物量 Biomass | |
---|---|---|---|---|---|---|
地上部 Aboveground | 地下部 Underground | |||||
2012 | 40 DAP | 0.13 | 0.46 | 0.39 | 0.28 | 0.30 |
60 DAP | 0.41 | 0.29 | 0.38 | 0.36 | 0.30 | |
80 DAP | 0.48 | 0.35 | 0.35 | 0.49 | 0.46 | |
100 DAP | 0.40 | 0.35 | 0.41 | 0.47 | 0.31 | |
2013 | 40 DAP | 0.43 | 0.42 | 0.28 | 0.15 | 0.30 |
60 DAP | 0.45 | 0.43 | 0.36 | 0.21 | 0.35 | |
80 DAP | 0.38 | 0.46 | 0.35 | 0.31 | 0.50 | |
100 DAP | 0.40 | 0.39 | 0.41 | 0.27 | 0.39 |
新窗口打开|下载CSV
从表9可见, 干旱胁迫条件下, 甘薯的叶片数、蔓长、叶面积系数与品种抗旱系数呈显著正相关, 甘薯生育前期(40~60 d)生物量与抗旱系数的相关性不显著, 生育后期(80~100 d)则呈显著正相关。说明干旱胁迫条件下甘薯的叶片数、蔓长、叶面积系数和生物量等农艺性状可以反映品种抗旱性的强弱, 可用于甘薯品种抗旱性鉴定和评价, 品种类型间无特异性差别。
Table 9
表9
表9农艺性状与抗旱系数的相关系数(干旱胁迫条件下)
Table 9
年份Year | 生育期 Growth stage | 叶片数 Leaf number | 蔓长 Vine length | 叶面积系数 Leaf area index | 生物量 Biomass | |
---|---|---|---|---|---|---|
地上部 Aboveground | 地下部 Underground | |||||
2012 | 40 DAP | 0.61* | 0.59* | 0.53* | 0.37 | 0.50 |
60 DAP | 0.62* | 0.53* | 0.49 | 0.42 | 0.48 | |
80 DAP | 0.69** | 0.65** | 0.52* | 0.60* | 0.63* | |
100 DAP | 0.73** | 0.52* | 0.67** | 0.60* | 0.61* | |
2013 | 40 DAP | 0.56* | 0.61* | 0.56* | 0.46 | 0.42 |
60 DAP | 0.50 | 0.61* | 0.49 | 0.51 | 0.50 | |
80 DAP | 0.59* | 0.59* | 0.53* | 0.64* | 0.65** | |
100 DAP | 0.65** | 0.60* | 0.71** | 0.63* | 0.61* |
新窗口打开|下载CSV
3 讨论
3.1 甘薯品种抗旱性鉴定及综合评价
干旱胁迫对不同作物造成的影响差异很大, 作物之间抗旱指标也存在差异[8,9]。作物抗旱性是受多基因控制的复杂性状, 是多个抗旱性状的综合反映, 作物抗旱性鉴定需要将形态、生理生化、产量等指标相结合, 且对各个时期的抗旱性进行综合评价[22]。干旱胁迫条件下, 作物的生长发育指标、形态指标和生理指标均可用来评价品种的抗旱性, 而根据产量表现来判定作物品种的抗旱性是抗旱性鉴定的传统方法[2]。前人利用抗旱系数法对小麦[23]、玉米[24]、水稻[25]、花生[26]等作物进行了抗旱性筛选, 甘薯品种抗旱性存在遗传性差异, 这是许多研究者得出的一致结论[17,19,27]。本研究发现, 农艺性状的相对值与产量抗旱系数基本一致, 2年的产量抗旱系数分别为0.34~0.71和0.33~0.73, 试验结果基本一致, 并表明品种间的抗旱性存在遗传差异。品种类型在抗旱性分级方面无特异性差异, 同一类型的甘薯品种中既有抗旱品种和中等抗旱品种, 又有不抗旱品种, 根据2年的试验结果平均值分析, 将3个类型15个甘薯品种进行了抗旱性分级, 抗旱系数≥0.6的为抗旱品种, 包括济薯21、济薯25、济徐23、济薯15和烟薯25; 抗旱系数在0.4~0.6之间的为中等抗旱品种, 包括徐薯18、济薯26、北京553、济紫薯2号和济薯18; 抗旱系数<0.4的为不抗旱品种, 包括郑薯20、济紫薯3号、济薯22号、济紫薯1号和凌紫。3.2 抗旱指标筛选与标准品种的选用
作物种类和品种不同抗旱机制也不同, 同一作物或品种通常存在几种机制共同决定抗旱性[28], 因此研究作物的抗旱机制对鉴定抗旱性具有重要意义。前人关于甘薯抗旱性的研究较多, 张明生等[20]研究认为, 25% PEG处理下甘薯幼苗叶片的相对含水量可作为抗旱性快速鉴定的指标。袁振等[17]采用室内PEG模拟连续干旱法对22个甘薯品种研究认为, 根系持水力、薯苗质量和含水量、根系活力等可作为苗期抗旱性筛选的重要指标。干旱胁迫条件下, 甘薯幼苗成活率下降, 干旱胁迫时间越长, 地上部生长受伤害的程度越大[29], 叶片数和叶面积与土壤湿度呈显著正相关[30]。可见, 干旱胁迫条件下, 甘薯的农艺性状和生理指标均可用于抗旱性鉴定, 但是仅用单一指标或某一生育期的指标, 均不能综合评价品种的抗旱性。前人对抗旱指标的筛选多是在模拟干旱胁迫条件下进行的, 本研究在人工控水条件下, 针对甘薯整个生育期进行了抗旱性综合评价, 同时对抗旱指标进行了筛选, 结果表明, 不同生育时期干旱胁迫均导致甘薯的单株叶片数、蔓长、叶面积系数和生物量下降, 且降幅随着生育进程逐渐增加, 品种间降幅不同, 抗旱性强的品种济薯21、济薯25和济徐23的叶片数、蔓长、叶面积系数和生物量相对值均显著高于其他品种。淀粉型、鲜食型和色素型甘薯品种在抗旱指标方面无特异性差别, 均表现出抗旱性强的甘薯品种农艺性状相对值高。3种类型甘薯品种的农艺性状与产量抗旱系数呈显著正相关, 可作为甘薯品种抗旱性评价的主要指标。作物品种间抗旱机制存在差异, 就甘薯而言, 淀粉型、鲜食型和色素型3种类型的甘薯品种仅是在生产中的用途不同, 品种类型间在抗旱机制方面无显著差异, 但仅以农艺性状难以确定品种间的抗旱性及抗旱机制。作物抗旱性受干旱胁迫时期、干旱胁迫程度和干旱胁迫持续时间的影响, 难以准确评价品种的抗旱性及抗旱性划分标准。前人[31,32]通过确定标准品种来进行抗旱综合评价, 消除了品种间因试验环境不同而产生的性状差异。本研究认为, 徐薯18不仅具有稳定的抗旱性, 而且具有较强的综合适应性, 在全国甘薯主产区广泛种植, 可作为甘薯品种抗旱性综合鉴定的标准品种。
4 结论
利用产量抗旱系数法对15个甘薯品种进行了抗旱性分级, 其中抗旱品种(抗旱系数≥0.6)包括济薯21、济薯25、济徐23、济薯15和烟薯25; 中等抗旱品种(0.4≤抗旱系数<0.6)包括徐薯18、济薯26、北京553、济紫薯2号和济薯18; 不抗旱品种(抗旱系数<0.4)包括郑薯20、济紫薯3号、济薯22、济紫薯1号和凌紫。徐薯18可作为甘薯品种抗旱性综合鉴定的标准品种。干旱胁迫条件下的单株叶片数、蔓长、叶面积系数和生物量可作为甘薯品种抗旱性评价的主要指标。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.13430/j.cnki.jpgr.2014.04.010URL [本文引用: 2]
采用PEG6000胁迫处理对国内不同地区育成的56个糜子品种的芽期抗旱性进行了鉴定,并用直接评价和 综合评价法对其抗旱性进行了评价.结果表明:经20% (W/V) PEG6000处理的56个品种与对照相比性状之间差异显著,品种抗旱性存在较大差异.用直接评价法和综合评价法相结合鉴定出强抗旱性品种3份,分别是晋 黍2号、陇糜5号和陇糜8号.相对发芽率、相对芽干重、相对根干重、贮藏物质相对转运率4项指标可作为糜子芽期抗旱性鉴定评价指标,相对发芽率法和加权隶 属函数值法是比较理想的糜子芽期抗旱性评价方法.
DOI:10.13430/j.cnki.jpgr.2014.04.010URL [本文引用: 2]
采用PEG6000胁迫处理对国内不同地区育成的56个糜子品种的芽期抗旱性进行了鉴定,并用直接评价和 综合评价法对其抗旱性进行了评价.结果表明:经20% (W/V) PEG6000处理的56个品种与对照相比性状之间差异显著,品种抗旱性存在较大差异.用直接评价法和综合评价法相结合鉴定出强抗旱性品种3份,分别是晋 黍2号、陇糜5号和陇糜8号.相对发芽率、相对芽干重、相对根干重、贮藏物质相对转运率4项指标可作为糜子芽期抗旱性鉴定评价指标,相对发芽率法和加权隶 属函数值法是比较理想的糜子芽期抗旱性评价方法.
,
DOI:10.3321/j.issn:0496-3490.2007.09.020URL [本文引用: 1]
为探索水稻苗期抗旱性形态和生理机制,筛选苗期抗旱性指标,以15个水稻品种为试验材料,在干旱棚内系统研究了水、旱条件下苗期形态和生理指标的变化.结果表明,叶龄、心叶下倒数第1叶叶面积、叶鲜重、根长4个指标的相对值与反复干旱存活率显著或极显著相关,可作为苗期抗旱性的形态指标;超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性,氨基酸(AA)、抗坏血酸(AsA)、还原性谷甘肽(GSH)、可溶性蛋白质、丙二醛(MDA)含量8个指标的相对值与反复干旱存活率显著或极显著相关,可作为苗期抗旱性的生理指标.通过主成分分析确立了SOD酶活性、GSH含量、叶鲜重和叶龄4个指标相对值为水稻苗期抗旱性的综合指标,以反复干旱存活率为因变量,4个综合指标为自变量建立的回归方程对供试品种的抗旱性进行预测效果较好.
DOI:10.3321/j.issn:0496-3490.2007.09.020URL [本文引用: 1]
为探索水稻苗期抗旱性形态和生理机制,筛选苗期抗旱性指标,以15个水稻品种为试验材料,在干旱棚内系统研究了水、旱条件下苗期形态和生理指标的变化.结果表明,叶龄、心叶下倒数第1叶叶面积、叶鲜重、根长4个指标的相对值与反复干旱存活率显著或极显著相关,可作为苗期抗旱性的形态指标;超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性,氨基酸(AA)、抗坏血酸(AsA)、还原性谷甘肽(GSH)、可溶性蛋白质、丙二醛(MDA)含量8个指标的相对值与反复干旱存活率显著或极显著相关,可作为苗期抗旱性的生理指标.通过主成分分析确立了SOD酶活性、GSH含量、叶鲜重和叶龄4个指标相对值为水稻苗期抗旱性的综合指标,以反复干旱存活率为因变量,4个综合指标为自变量建立的回归方程对供试品种的抗旱性进行预测效果较好.
,
DOI:10.13430/j.cnki.jpgr.2016.01.009URL [本文引用: 1]
以90份国内棉花为材料,在大田采用花铃期胁迫,考察6个农艺性状和单株产量(Y值)指标,采用综合抗旱系数、因子分析、隶属性函数值、聚类分析、灰色关联度和广义遗传力分析相结合的方法,对其抗旱性进行综合评价、抗旱性划分和评价指标筛选。结果表明,基于D值相关性状指标对干旱胁迫关联度位次依次为:单株产量、有效铃数、有效果枝数、株高、单铃重、衣分、第一果枝节位。因子分析表明,3个公因子可代表棉花抗旱性72.45%的原始数据信息量。基于D值和加权抗旱系数(WDC值)的各品种抗旱性排序相近,位居前10位的抗旱品种基本相同。各品种D值与综合抗旱系数(CDC值)、WDC值之间均呈极显著正相关,广义遗传率分析表明D值的遗传率为55.4%,为最高,其次为CDC值、WDC值。各品种Y值与CDC、WDC值间极显著正相关;根据D值将试验材料划分为5个抗旱级别,可较好地反映品种的选育条件及适应地区。试验结果说明基于遗传力大小的综合抗旱指标中用D值为主要参数,WDC为辅助评价参数,评价以单株产量为主要考量目标的棉花抗旱性是适宜且必须的;以抗旱性综合评价方法进行棉花抗旱性综合评价、抗旱性划分和评价指标筛选是可行且有效的。
DOI:10.13430/j.cnki.jpgr.2016.01.009URL [本文引用: 1]
以90份国内棉花为材料,在大田采用花铃期胁迫,考察6个农艺性状和单株产量(Y值)指标,采用综合抗旱系数、因子分析、隶属性函数值、聚类分析、灰色关联度和广义遗传力分析相结合的方法,对其抗旱性进行综合评价、抗旱性划分和评价指标筛选。结果表明,基于D值相关性状指标对干旱胁迫关联度位次依次为:单株产量、有效铃数、有效果枝数、株高、单铃重、衣分、第一果枝节位。因子分析表明,3个公因子可代表棉花抗旱性72.45%的原始数据信息量。基于D值和加权抗旱系数(WDC值)的各品种抗旱性排序相近,位居前10位的抗旱品种基本相同。各品种D值与综合抗旱系数(CDC值)、WDC值之间均呈极显著正相关,广义遗传率分析表明D值的遗传率为55.4%,为最高,其次为CDC值、WDC值。各品种Y值与CDC、WDC值间极显著正相关;根据D值将试验材料划分为5个抗旱级别,可较好地反映品种的选育条件及适应地区。试验结果说明基于遗传力大小的综合抗旱指标中用D值为主要参数,WDC为辅助评价参数,评价以单株产量为主要考量目标的棉花抗旱性是适宜且必须的;以抗旱性综合评价方法进行棉花抗旱性综合评价、抗旱性划分和评价指标筛选是可行且有效的。
,
DOI:10.3969/j.issn.1007-8614.2011.03.006URL [本文引用: 1]
利用抗旱性不同的32个棉花品种,通过田间苗期水分胁迫,测定了与抗旱性有关的游离脯氨酸、 叶绿素、甜菜碱、丙二醛(MDA)的含量和保护性酶活性的变化等生理生化指标。结果表明,苗期水分胁迫增加了游离脯氨酸、甜菜碱、MDA、可溶性糖含量, 提高了超氧化物歧化酶(SOD)、过氧化物酶(POD)的活性,减少了叶绿素的含量,但各品种间的应对机制各有差异。通过主成分分析,将32个品种的7个 相互关联的单项指标综合成为3个独立的综合指标,并通过聚类分析,将32个品种划分为2大类,第Ⅰ大类可分为两个亚类,第1亚类中的鸡爪棉属于高度抗旱 型;第2亚类中的奎85-174等17个品种属中度抗旱类型;第Ⅱ大类也可分为两个亚类,第4亚类的新海20等8个品种属于高度不抗旱型,其余6个品种属 于不抗旱型。通过主成分分析和聚类分析,对32个棉花品种苗期抗旱性进行的分类和评价结果表明,胁迫条件下脯氨酸含量、甜菜碱含量、可溶性糖含量、MDA 含量、叶绿素含量、SOD活性和POD活性均可作为棉花苗期抗旱性鉴定指标,利用此7项值建立的D值抗旱评价体系对棉花品种苗期抗旱性的解释率为 34.49%。
DOI:10.3969/j.issn.1007-8614.2011.03.006URL [本文引用: 1]
利用抗旱性不同的32个棉花品种,通过田间苗期水分胁迫,测定了与抗旱性有关的游离脯氨酸、 叶绿素、甜菜碱、丙二醛(MDA)的含量和保护性酶活性的变化等生理生化指标。结果表明,苗期水分胁迫增加了游离脯氨酸、甜菜碱、MDA、可溶性糖含量, 提高了超氧化物歧化酶(SOD)、过氧化物酶(POD)的活性,减少了叶绿素的含量,但各品种间的应对机制各有差异。通过主成分分析,将32个品种的7个 相互关联的单项指标综合成为3个独立的综合指标,并通过聚类分析,将32个品种划分为2大类,第Ⅰ大类可分为两个亚类,第1亚类中的鸡爪棉属于高度抗旱 型;第2亚类中的奎85-174等17个品种属中度抗旱类型;第Ⅱ大类也可分为两个亚类,第4亚类的新海20等8个品种属于高度不抗旱型,其余6个品种属 于不抗旱型。通过主成分分析和聚类分析,对32个棉花品种苗期抗旱性进行的分类和评价结果表明,胁迫条件下脯氨酸含量、甜菜碱含量、可溶性糖含量、MDA 含量、叶绿素含量、SOD活性和POD活性均可作为棉花苗期抗旱性鉴定指标,利用此7项值建立的D值抗旱评价体系对棉花品种苗期抗旱性的解释率为 34.49%。
,
DOI:10.3724/SP.J.1006.2014.01259URL [本文引用: 1]
Seven main agronomic traits, eight physiological indices and yield index of 15 main flax cultivars in China were measured during maturity under the conditions of irrigation and natural rainfall. Comprehensive drought resistance coefficient (CDC value), factor analysis, subordinate function coefficients, clustering analysis, grey relational analysis were used to evaluate the drought resistance, classify drought resistance type and select evaluation indices in tested flax cultivars. The response to drought stress and correlations of tested traits and indices were different. Yield and photosynthesis factors as well as leaf antioxidant factors were closely associated with drought resistance, so could be used as priority indicator of drought resistance evaluation. Factor analysis showed that six common factors could represent 90.89% of the original information of flax drought resistance data. The ranks of drought resistance of tested flax cultivars based on drought resistance comprehensive evaluation values (D value) and weight drought resistance coefficient (WDC value) were similar, the drought resistance was the same for six flax cultivars, arranging from the first to third in drought resistance. D values of tested flax cultivars had significant and positive correlation with CDC value, WDC value and Y value. Y values of tested flax cultivars also had very significant and positive correlation with CDC value and WDC value. According to D value clustering analysis, tested cultivars were divided into five grades in drought resistance, reflecting the diffirence of cultivars in breeding condition and adaptive region growing well. Drought resistance evaluated mainly with yield by D value as index and WDC value as auxiliary index in flax were appropriate and accurate. Drought resistance comprehensive evaluation methods can be used in studying exactly drought resistance evaluation, classification of drought resistant type and screening evaluation indices in flax.
DOI:10.3724/SP.J.1006.2014.01259URL [本文引用: 1]
Seven main agronomic traits, eight physiological indices and yield index of 15 main flax cultivars in China were measured during maturity under the conditions of irrigation and natural rainfall. Comprehensive drought resistance coefficient (CDC value), factor analysis, subordinate function coefficients, clustering analysis, grey relational analysis were used to evaluate the drought resistance, classify drought resistance type and select evaluation indices in tested flax cultivars. The response to drought stress and correlations of tested traits and indices were different. Yield and photosynthesis factors as well as leaf antioxidant factors were closely associated with drought resistance, so could be used as priority indicator of drought resistance evaluation. Factor analysis showed that six common factors could represent 90.89% of the original information of flax drought resistance data. The ranks of drought resistance of tested flax cultivars based on drought resistance comprehensive evaluation values (D value) and weight drought resistance coefficient (WDC value) were similar, the drought resistance was the same for six flax cultivars, arranging from the first to third in drought resistance. D values of tested flax cultivars had significant and positive correlation with CDC value, WDC value and Y value. Y values of tested flax cultivars also had very significant and positive correlation with CDC value and WDC value. According to D value clustering analysis, tested cultivars were divided into five grades in drought resistance, reflecting the diffirence of cultivars in breeding condition and adaptive region growing well. Drought resistance evaluated mainly with yield by D value as index and WDC value as auxiliary index in flax were appropriate and accurate. Drought resistance comprehensive evaluation methods can be used in studying exactly drought resistance evaluation, classification of drought resistant type and screening evaluation indices in flax.
,
DOI:10.3969/j.issn.1001-4942.2014.01.006URL [本文引用: 1]
以12个抗虫棉品种(系)为亲本,采用6×6不完全双列杂交( NCⅡ),对所得F1代的8个农艺性状的配合力和遗传力进行分析。结果表明:单铃重与株高广义遗传力较高,其狭义遗传力也相对较高,可适当提早选择代数;而其余性状的广义遗传力高,狭力遗传力却较低,应适当延后选择代数;嘉星6号、中41和A48是综合性状良好的亲本;特殊配合力效应分析,较优组合为中41×A49、A1×A48、GK44×S08和嘉星6号×S08。
DOI:10.3969/j.issn.1001-4942.2014.01.006URL [本文引用: 1]
以12个抗虫棉品种(系)为亲本,采用6×6不完全双列杂交( NCⅡ),对所得F1代的8个农艺性状的配合力和遗传力进行分析。结果表明:单铃重与株高广义遗传力较高,其狭义遗传力也相对较高,可适当提早选择代数;而其余性状的广义遗传力高,狭力遗传力却较低,应适当延后选择代数;嘉星6号、中41和A48是综合性状良好的亲本;特殊配合力效应分析,较优组合为中41×A49、A1×A48、GK44×S08和嘉星6号×S08。
,
URL [本文引用: 2]
本文评述了目前用于抗旱鉴定的各种方法及各种指标,提出了指标选择的一般原则,并介绍了综合评价的一般方法。更多还原
URL [本文引用: 2]
本文评述了目前用于抗旱鉴定的各种方法及各种指标,提出了指标选择的一般原则,并介绍了综合评价的一般方法。更多还原
,
DOI:10.2307/1308996URL [本文引用: 2]
This book is composed of 16 chapters, the titles of which are as follows: Introduction: the human consequences of drought and crop research priorities for their alleviation; Mechanisms of drought resistance; Water collection by roots; Water relations during drought; Ion uptake; Solute accumulation and regulation of cell water activity; Nitrogen fixation; Nitrate reductase; Betaines; Proline acc...
,
DOI:10.1016/S0168-9452(00)00262-4URLPMID:10936532 [本文引用: 1]
The effect of water stress preconditioning was studied in 1-year-old apricot plants ( Prunus armeniaca L., cv. B lida). Plants were submitted to different treatments, T-0 (control treatment) and T-1, drip irrigated daily; T-2 and T-3, irrigated daily at 50% and 25% of T-0, respectively; T-4 and T-5, irrigated to field capacity every 3 and 6 days, respectively. After 30 days, irrigation was withheld for 10 days, maintaining the T-0 treatment irrigated daily. After this period, the plants were re-irrigated to run-off and treated as control treatment. The stomatal closure and epinasty observed in response to water stress represented adaptive mechanisms to drought, allowing the plants to regulate water loss more effectively and prevent leaf heating. A substantial reduction in the irrigation water supplied combined with a high frequency of application (T-3 treatment) promoted plant hardening; the plants enduring drought better, due to their greater osmotic adjustment (0.77 MPa), which prevented severe plant dehydration and leaf abscission. Such a preconditioning treatment may be valuable for young apricot plants in the nursery stage in order to improve their subsequent resistance to drought. A 50% reduction in daily irrigation (T-2 treatment) did not significantly affect either gas exchange rates or leaf turgor, which suggests that water should be applied frequently if deficit irrigation is to be implemented.
,
DOI:10.1016/S1161-0301(00)00050-2URL [本文引用: 1]
Osmotic adjustment (OA) is considered as an important physiological mechanism of drought adaptation in many crop plants. The present investigation was aimed at assessing the importance of OA in improving productivity under drought. Using two automated rain-out shelters, 26 extra-short-duration pigeonpea [ Cajanus cajan (L.) Millsp.] genotypes were grown with irrigation during the growth period or with water deficit imposed from flowering until maturity. Mean leaf s 100 (60 92 DAS) under drought correlated significantly ( r 2=0.72**; n=26) to the mean OA (60 92 DAS) and contributed 72% of the genotypic variation in OA. Significant genotypic variation was observed in the initiation of OA, the duration of OA and the degree of OA. Based on the measured OA at 72, 82, and 92 days after sowing (DAS), genotypes were grouped into five different clusters. Genotypic differences in total dry matter production under drought were positively associated with OA at 72 DAS ( r 2=0.36**, n=26). Significant positive relationship between OA at 72 DAS and grain yield under drought was found ( r 2=0.16*; n=26). However, OA towards the end of pod filling phase, i.e. at 92 DAS, had a significant negative relationship with grain yield under drought ( r 2=0.21*; n=26). Genotypic differences in grain yield under drought was best explained using stepwise multiple regression to account for differences in OA at 72, 82, and 92 DAS ( r 2=0.41**; n=78). The degree of OA at 72 and 82 DAS contributed positively to the grain yield, whereas OA at 92 DAS contributed negatively to this relationship.
,
DOI:10.1016/S0168-9452(03)00158-4URL [本文引用: 1]
A 7-kDa-proteinase inhibitor, designated SPLTI (S05weet P05otato 52eaf 54rypsin I05nhibitor) was partially purified from sweet potato ( Ipomoea batatas Lam.) leaves under water deficiency. The N-terminal amino acid sequence was determined and used to design two overlap degenerate primers for isolation of the SPLTI gene. Two full-length cDNA clones encoding proteinase inhibitor I (PI-I), designated SPLTI-a and SPLTI-b, were isolated. Both SPLTI-a and SPLTI-b are 98% identical to each other in both levels of nucleotide and amino acid sequence. Different from most of PI-Is that exhibit chymotrypsin-inhibitory activity, SPLTI from sweet potato and recombinant SPLTI-a overexpressed in Escherichia coli showed mainly trypsin-inhibitory activity. Furthermore, site-directed mutagenesis analysis of an Arg 46–G1u 47 motif of SPLTI-a, based on amino acid sequence alignment with other PI-Is, indicated that Arg 46–G1u 47 of SPLTI is a novel reactive site for PI-I family conferring the trypsin-specific inhibitory activity. Using SPLTI-a as a probe, we found that SPLTI gene exhibited a leaf-specific expression pattern. Additionally, this was the first report that the SPLTI genes were up-regulated by water deficiency and chilling as well as osmoticant treatments in the PI-I family in plants. As other PIs, the SPLTI transcripts were induced by wounding and also by exogenous applications of abscisic acid and methyl jasmonate; however, accumulation of the wound-induced transcripts were restricted locally in the injured leaves, but not systemically. These distinct expression patterns provided a new insight to the regulation of PI-I gene family in response to environmental stresses. Our results suggested that SPLTI could participate in defense systems against invasions of insects or bacteria as other PI-Is. Moreover, it may play a role against environmental stresses through regulation of endogenous proteolytic activities during leaf development.
,
DOI:10.3969/j.issn.1005-3395.2005.6.002URL [本文引用: 2]
The methods ofdrought coefficient, cluster analysis and subordinate function were used in comprehensive evaluation for drought resistance adaptability in sweet potato cultivars. The tested components included morphological characters, plant growth, economic traits, physiological and biochemical values in the cultivars grown under water stress. On the basis of correlation analysis between the drought resistance indices obtained from the above-mentioned components and the drought resistance in cultivars, it was shown that 15 tested cultivars could be divided into four classes of tolerance . Most tolerant cultivars were Y3 and Chaoshu 1, followed by 92-111-107, Yushu 34, Nanshu 88 and 92-103-30. Less tolerant were Suyu 1, 9318-58, Yusu 303, 89-1, 95-411-153 and Ximeng. The rest 3 cultivars were not tolerate at all. Above several comprehensive evaluation methods for drought resistance adaptability in sweet potato cultivars are well coincident.
DOI:10.3969/j.issn.1005-3395.2005.6.002URL [本文引用: 2]
The methods ofdrought coefficient, cluster analysis and subordinate function were used in comprehensive evaluation for drought resistance adaptability in sweet potato cultivars. The tested components included morphological characters, plant growth, economic traits, physiological and biochemical values in the cultivars grown under water stress. On the basis of correlation analysis between the drought resistance indices obtained from the above-mentioned components and the drought resistance in cultivars, it was shown that 15 tested cultivars could be divided into four classes of tolerance . Most tolerant cultivars were Y3 and Chaoshu 1, followed by 92-111-107, Yushu 34, Nanshu 88 and 92-103-30. Less tolerant were Suyu 1, 9318-58, Yusu 303, 89-1, 95-411-153 and Ximeng. The rest 3 cultivars were not tolerate at all. Above several comprehensive evaluation methods for drought resistance adaptability in sweet potato cultivars are well coincident.
,
DOI:10.3969/j.issn.1000-2561.2006.01.008URL [本文引用: 1]
对水分胁迫下甘薯 (IpomoeabatatasLam.)植株形态、生长势和产量性状等指标与品种抗旱性关系的研究结果表明,水分胁迫下不同甘薯品种叶片厚度(包括栅栏 组织、海绵组织的厚度及叶片总厚度)、藤叶和块根烘干率比对照均有所增加,叶片大小、叶面积指数(LAI)、比叶面积(SLA)、主蔓长、主蔓粗、节间 长、藤叶和块根重量(鲜、干重)均不同程度减小。栅栏组织厚度、经济系数、LAI、分枝数、块根干重及块根烘干率的相对值(占对照%)与品种抗旱性呈显著 或极显著正相关(r=0.5566~0.9352;P0.05,0.01),主蔓长、节间长及SLA的相对值与品种抗旱性呈显著或极显著负相关 (r=-0.5289
DOI:10.3969/j.issn.1000-2561.2006.01.008URL [本文引用: 1]
对水分胁迫下甘薯 (IpomoeabatatasLam.)植株形态、生长势和产量性状等指标与品种抗旱性关系的研究结果表明,水分胁迫下不同甘薯品种叶片厚度(包括栅栏 组织、海绵组织的厚度及叶片总厚度)、藤叶和块根烘干率比对照均有所增加,叶片大小、叶面积指数(LAI)、比叶面积(SLA)、主蔓长、主蔓粗、节间 长、藤叶和块根重量(鲜、干重)均不同程度减小。栅栏组织厚度、经济系数、LAI、分枝数、块根干重及块根烘干率的相对值(占对照%)与品种抗旱性呈显著 或极显著正相关(r=0.5566~0.9352;P0.05,0.01),主蔓长、节间长及SLA的相对值与品种抗旱性呈显著或极显著负相关 (r=-0.5289
,
DOI:10.3969/j.issn.1001-3601.2006.01.004URL [本文引用: 1]
对水分胁迫下甘薯形态、生长势、生理生化和产量性状等与品种抗旱性关系密切的指标进行主成分 分析。结果表明.甘薯品种抗旱适应性的形成,一是通过体内各生理生化指标(包括内源激素,渗透调节物质、水分状况、质膜相对透性、膜脂过氧化、膜保护系 统、同化力等)间的协调作用,使各项代谢活动得以顺利进行;二是借助于植株形态、生长势和抗脱水能力等的变化,实现其同化产物的正常积累。
DOI:10.3969/j.issn.1001-3601.2006.01.004URL [本文引用: 1]
对水分胁迫下甘薯形态、生长势、生理生化和产量性状等与品种抗旱性关系密切的指标进行主成分 分析。结果表明.甘薯品种抗旱适应性的形成,一是通过体内各生理生化指标(包括内源激素,渗透调节物质、水分状况、质膜相对透性、膜脂过氧化、膜保护系 统、同化力等)间的协调作用,使各项代谢活动得以顺利进行;二是借助于植株形态、生长势和抗脱水能力等的变化,实现其同化产物的正常积累。
,
URL [本文引用: 2]
It is an effectual measure to adopt varieties possessing drought resistant characters inarid regions for obtaining favorable vine growth and fair yields.As to drought resistance insweet potato plants,some ecological,morphological and physiological characters against droughtconditions had been studie
URL [本文引用: 2]
It is an effectual measure to adopt varieties possessing drought resistant characters inarid regions for obtaining favorable vine growth and fair yields.As to drought resistance insweet potato plants,some ecological,morphological and physiological characters against droughtconditions had been studie
,
DOI:10.14083/j.issn.1001-4942.2015.03.006URL [本文引用: 3]
为实现甘薯耐旱性品种的快速筛选,本试验采用室内PEG模拟连续干旱法对22个甘薯品种(系)进行了研究。结果表明:济薯21、12057、11001和零9281等品种(系)的根系持水力、根系活力和幼苗成活率较高,具有较强的苗期耐旱性;通过统计分析发现,根系持水力、薯苗质量和含水量、根系活力等可作为重要的苗期耐旱性筛选指标;干旱胁迫下根系的持水能力和采苗后薯苗状况是影响甘薯苗期耐旱性的重要因素。在生产上,选用耐旱性品种和采用壮苗是抵御干旱胁迫的重要措施。
DOI:10.14083/j.issn.1001-4942.2015.03.006URL [本文引用: 3]
为实现甘薯耐旱性品种的快速筛选,本试验采用室内PEG模拟连续干旱法对22个甘薯品种(系)进行了研究。结果表明:济薯21、12057、11001和零9281等品种(系)的根系持水力、根系活力和幼苗成活率较高,具有较强的苗期耐旱性;通过统计分析发现,根系持水力、薯苗质量和含水量、根系活力等可作为重要的苗期耐旱性筛选指标;干旱胁迫下根系的持水能力和采苗后薯苗状况是影响甘薯苗期耐旱性的重要因素。在生产上,选用耐旱性品种和采用壮苗是抵御干旱胁迫的重要措施。
,
DOI:10.6048/j.issn.1001-4330.2016.06.004URL [本文引用: 1]
【目的】通过引进国内外优异甘薯品种资源,研究自然干旱条件下甘薯的渗透条件能力和抗氧化酶活性指标,用于明确果实膨大期甘薯对抗旱的生理响应及抗旱性。【方法】在自然干旱条件下,果实膨大期进行持续性水分胁迫,对叶片细胞的POD、MDA进行胁迫鉴定。【结果】鉴定并筛选出抗旱性和产量兼顾的济26、商薯9号、徐106704可作为育种材料和生产用种。甘薯叶片细胞POD活性和MDA含量随胁迫时间的延长先增后降,均有较大幅度的变化;抗旱性好的品种POD活性一直较高,但其MDA含量在旱胁迫早期较高而在旱胁迫后期维持较低水平。【结论】POD活性和MDA含量与甘薯的抗旱性具有一定的相关性,可作为甘薯抗旱鉴定和筛选的辅助指标。
DOI:10.6048/j.issn.1001-4330.2016.06.004URL [本文引用: 1]
【目的】通过引进国内外优异甘薯品种资源,研究自然干旱条件下甘薯的渗透条件能力和抗氧化酶活性指标,用于明确果实膨大期甘薯对抗旱的生理响应及抗旱性。【方法】在自然干旱条件下,果实膨大期进行持续性水分胁迫,对叶片细胞的POD、MDA进行胁迫鉴定。【结果】鉴定并筛选出抗旱性和产量兼顾的济26、商薯9号、徐106704可作为育种材料和生产用种。甘薯叶片细胞POD活性和MDA含量随胁迫时间的延长先增后降,均有较大幅度的变化;抗旱性好的品种POD活性一直较高,但其MDA含量在旱胁迫早期较高而在旱胁迫后期维持较低水平。【结论】POD活性和MDA含量与甘薯的抗旱性具有一定的相关性,可作为甘薯抗旱鉴定和筛选的辅助指标。
,
DOI:10.16213/j.cnki.scjas.2016.05.011URL [本文引用: 2]
为挖掘抗旱甘薯基因资源,为甘薯抗旱育种及种植区域的拓宽提供科技支撑。本试验以全国各育种单位近年来选育的27个甘薯品种(系)为试验材料,在蒸发量远大于降雨量的新疆,设置正常灌水和干旱胁迫2个处理,采用抗旱指数法,对品种抗旱性进行鉴定评价。结果表明,根据抗旱指数及旱胁迫下鲜薯产量表现,筛选到抗旱指数高且产量高的种质材料6份(商薯9号、徐薯22、川薯20、湘薯15等),并且抗旱性好的品种随着旱胁迫时间的持续,具有较高的脯氨酸(Pro)含量、过氧化物酶(POD)活性、较低的丙二醛(MDA)含量;在本试验中,各品种抗旱指数与叶片Pro含量呈极显著正相关(r=0.83),与叶片POD活性呈显著正相关(r=0.65),与叶片MDA含量呈极显著负相关(r=-0.78)。利用抗旱指数进行甘薯抗旱鉴定评价,是一种简单实用的方法,可以有效评价甘薯抗旱性。
DOI:10.16213/j.cnki.scjas.2016.05.011URL [本文引用: 2]
为挖掘抗旱甘薯基因资源,为甘薯抗旱育种及种植区域的拓宽提供科技支撑。本试验以全国各育种单位近年来选育的27个甘薯品种(系)为试验材料,在蒸发量远大于降雨量的新疆,设置正常灌水和干旱胁迫2个处理,采用抗旱指数法,对品种抗旱性进行鉴定评价。结果表明,根据抗旱指数及旱胁迫下鲜薯产量表现,筛选到抗旱指数高且产量高的种质材料6份(商薯9号、徐薯22、川薯20、湘薯15等),并且抗旱性好的品种随着旱胁迫时间的持续,具有较高的脯氨酸(Pro)含量、过氧化物酶(POD)活性、较低的丙二醛(MDA)含量;在本试验中,各品种抗旱指数与叶片Pro含量呈极显著正相关(r=0.83),与叶片POD活性呈显著正相关(r=0.65),与叶片MDA含量呈极显著负相关(r=-0.78)。利用抗旱指数进行甘薯抗旱鉴定评价,是一种简单实用的方法,可以有效评价甘薯抗旱性。
,
DOI:10.3321/j.issn:0578-1752.2001.03.006URL [本文引用: 2]
用不同浓度的聚乙二醇(PEG)对甘薯进行根际水分胁迫处理,研究了叶片相对含水量(RWC)、丙二醛(MDA)含量、超氧物歧化酶(SOD)活性及游离脯氨酸(Pro)含量的变化与品种抗旱性的关系。结果表明,25%PEG处理下,叶片RWC与品种抗旱性呈极显著正相关(r=0.783,P<0.01),MDA含量与品种抗旱性呈极显著负相关r=-0.848,P<0.01),SOD活性与品种抗旱性呈极显著正相关(r=0.777,P<0.01),Pro含量与品种抗旱性的关系不大。品种抗旱性愈强,叶片 RWC下降幅度及MDA含量上升幅度愈小,SOD活性增加幅度愈大。因此,通过测定 25%PEG处理下甘薯幼苗叶片的这些生理指标可实现品种抗旱性的室内快速鉴定。
DOI:10.3321/j.issn:0578-1752.2001.03.006URL [本文引用: 2]
用不同浓度的聚乙二醇(PEG)对甘薯进行根际水分胁迫处理,研究了叶片相对含水量(RWC)、丙二醛(MDA)含量、超氧物歧化酶(SOD)活性及游离脯氨酸(Pro)含量的变化与品种抗旱性的关系。结果表明,25%PEG处理下,叶片RWC与品种抗旱性呈极显著正相关(r=0.783,P<0.01),MDA含量与品种抗旱性呈极显著负相关r=-0.848,P<0.01),SOD活性与品种抗旱性呈极显著正相关(r=0.777,P<0.01),Pro含量与品种抗旱性的关系不大。品种抗旱性愈强,叶片 RWC下降幅度及MDA含量上升幅度愈小,SOD活性增加幅度愈大。因此,通过测定 25%PEG处理下甘薯幼苗叶片的这些生理指标可实现品种抗旱性的室内快速鉴定。
. ,
DOI:10.3969/j.issn.1000-6850.2001.06.025URL [本文引用: 1]
通过对脱毒甘薯田间取样株,用测量法测算单株虚叶面积,用称重法测算单株实叶面积,求出甘薯单株虚叶面积折算为实叶面积的矫正系数,研究出了甘薯叶面积系数田间速测方法。
DOI:10.3969/j.issn.1000-6850.2001.06.025URL [本文引用: 1]
通过对脱毒甘薯田间取样株,用测量法测算单株虚叶面积,用称重法测算单株实叶面积,求出甘薯单株虚叶面积折算为实叶面积的矫正系数,研究出了甘薯叶面积系数田间速测方法。
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/j.fcr.2006.02.001URL [本文引用: 1]
Drought is a wide-spread problem seriously influencing wheat (Triticum aestivum L.) production and quality, but development of resistant cultivars is hampered by the lack of effective selection criteria. The objective of this study was to evaluate the ability of several selection indices to identify drought resistant cultivars under a variety of environmental conditions. Eleven bread wheat cultivars differing in yield performance were grown in separate experiments under rain-fed (non-irrigated) and irrigated conditions at two locations in 2001 2003. Non-irrigated experiments experienced different levels of water stress due to variable rainfall over the years and locations. Nine selection indices including stress susceptibility index (SSI), stress tolerance index (STI), tolerance (TOL), regression coefficient of cultivar yield on environmental index (b), yield index (YI), yield stability index (YSI), mean productivity (MP), geometric mean productivity (GMP), and superiority measure (P) were calculated based on grain yield under drought-stressed and irrigated conditions. The results showed that under moderate stress, MP, GMP and STI were more effective in identifying high yielding cultivars in both drought-stressed and irrigated conditions (group A cultivars). Under severe stress, none of the indices used were able to identify group A cultivars, although regression coefficient (b) and SSI were found to be more useful in discriminating resistant cultivars. It is concluded that the effectiveness of selection indices in differentiating resistant cultivars varies with the stress severity. Wheat breeders should, therefore, take the stress severity of the environment into account in choosing an index.
,
DOI:10.3864/j.issn.0578-1752.2009.01.009URL [本文引用: 1]
【Objective】 The present study was to choose drought-resistance indexes of maize in different growing period and establish a resistance evaluation system. 【Method】 Seven indexes were tested at seeding stage treated with different concentrations of solution PEG-6000, and twenty-four indexes were tested at growth stage treated with drought-stress and non-stress treatments in the PVC shed and drought shed.【Result】According to the results of simple relative analyses, nine indexes selected including germination drought resistance index of seed and relative germination energy under the condition of 20% PEG-6000 drought stress, GDRI and relative germination energy under the condition of 15% PEG-6000 drought stress, relative value of leaf water potential at seeding stage, leaf water conservation, kernel per row, axis weight per plant and 100-grain weight, they were correlated with drought resistance coefficient or drought resistance index at P≤0.05 and P≤0.01 level. Stepwise regression analysis was conducted between the relative value of nine indexes and drought resistance coefficient and drought resistance index. The result showed that relative germination energy under the condition of 20% PEG-6000 drought stress, relative value of leaf water potential at seeding stage, leaf water conservation, kernel per row and 100-grain weight significantly influenced the drought resistance. According to these indexes and partial relative coefficient, drought-resistance evaluation equation (D value) and evaluation system was established. 【Conclusion】 The five indexes could be selected as identification indexes for drought resistance in maize. Using D value equation to evaluate the drought resistance of maize is considered scientifically reliable.
DOI:10.3864/j.issn.0578-1752.2009.01.009URL [本文引用: 1]
【Objective】 The present study was to choose drought-resistance indexes of maize in different growing period and establish a resistance evaluation system. 【Method】 Seven indexes were tested at seeding stage treated with different concentrations of solution PEG-6000, and twenty-four indexes were tested at growth stage treated with drought-stress and non-stress treatments in the PVC shed and drought shed.【Result】According to the results of simple relative analyses, nine indexes selected including germination drought resistance index of seed and relative germination energy under the condition of 20% PEG-6000 drought stress, GDRI and relative germination energy under the condition of 15% PEG-6000 drought stress, relative value of leaf water potential at seeding stage, leaf water conservation, kernel per row, axis weight per plant and 100-grain weight, they were correlated with drought resistance coefficient or drought resistance index at P≤0.05 and P≤0.01 level. Stepwise regression analysis was conducted between the relative value of nine indexes and drought resistance coefficient and drought resistance index. The result showed that relative germination energy under the condition of 20% PEG-6000 drought stress, relative value of leaf water potential at seeding stage, leaf water conservation, kernel per row and 100-grain weight significantly influenced the drought resistance. According to these indexes and partial relative coefficient, drought-resistance evaluation equation (D value) and evaluation system was established. 【Conclusion】 The five indexes could be selected as identification indexes for drought resistance in maize. Using D value equation to evaluate the drought resistance of maize is considered scientifically reliable.
,
DOI:10.3321/j.issn:0496-3490.2007.03.012URL [本文引用: 1]
F, which were plant height (PH), tillers number per plant (TNP), effective tillers number per plant (ETNP), spikelets per panicle (SP), filled spikelets per panicle (FSP), length of panicle (LP), panicle density (PD), 1000-grain weight (TGW), seed setting rate (SR), grain weight per plant(GWP), leaf relative water content (LRWC), and level for rolling leaf (LRL). GWP is the most sensitive trait that is influenced by drought. Single variable stepwise regression, path analysis, gray correlative analysis, and multiple partial correlations analysis were conducted between the relative value of various traits and drought resistance coefficient. The results showed that six traits including LRWC, TNP, ETNP, TGW, PH, and ETNP significantly influenced the drought resistance and could be the indices to identify the drought resistance in rice. The D value of six traits elected was comprehensively used to evaluate the drought resistance by subordinate function values analysis, the results showed six index traits were feasible to predict the drought resistance in rice for whole growth stage. Four different drought resistance evaluated methods were compared, which indicated the drought resistance index is the best one for drought resistance direct evaluating.
DOI:10.3321/j.issn:0496-3490.2007.03.012URL [本文引用: 1]
F, which were plant height (PH), tillers number per plant (TNP), effective tillers number per plant (ETNP), spikelets per panicle (SP), filled spikelets per panicle (FSP), length of panicle (LP), panicle density (PD), 1000-grain weight (TGW), seed setting rate (SR), grain weight per plant(GWP), leaf relative water content (LRWC), and level for rolling leaf (LRL). GWP is the most sensitive trait that is influenced by drought. Single variable stepwise regression, path analysis, gray correlative analysis, and multiple partial correlations analysis were conducted between the relative value of various traits and drought resistance coefficient. The results showed that six traits including LRWC, TNP, ETNP, TGW, PH, and ETNP significantly influenced the drought resistance and could be the indices to identify the drought resistance in rice. The D value of six traits elected was comprehensively used to evaluate the drought resistance by subordinate function values analysis, the results showed six index traits were feasible to predict the drought resistance in rice for whole growth stage. Four different drought resistance evaluated methods were compared, which indicated the drought resistance index is the best one for drought resistance direct evaluating.
,
URL [本文引用: 1]
以12个花生品种为试验材料,在人工控水条件下,于结荚期设置0~80 cm土层相对含水量为70%和50%2个处理,研究与花生抗旱性相关的叶片生理生化性状及不同品种抗旱的叶片机制.结果表明:利用产量抗旱系数可将12个花生品种的抗旱性分为强、中、弱3级,抗旱性强的品种有A596、山花11号、如皋西洋生,中度抗旱品种有花育20、农大818、海花1号、山花9号和79266,抗旱性弱的品种有ICG6848、白沙1016、花17和蓬莱一窝猴.A596、山花11号、如皋西洋生的抗旱机制是具有较强的叶片抗氧化保护能力、较高的PSⅡ活性及光合速率(Pn).海花1号的叶片抗氧化保护能力较强,山花9号的PSⅡ活性有显著优势.相关分析表明,叶片Pn、气孔限制值(Ls)、最大光化学效率(Fv/Fm)、光化学猝灭系数(qP)、丙二醛(MDA)含量、相对电导率和超氧化物歧化酶(SOD)活性与花生品种的抗旱系数有显著的相关性,是花生结荚期的重要抗旱性状.SOD活性的抗旱级别需在干旱胁迫下鉴定,其他性状可在正常灌水条件下鉴定.山花11号和79266可分别作为花生强、弱抗旱性鉴定的标准品种,山花11号可作为花生叶片优异抗旱性状鉴定的标准品种.
URL [本文引用: 1]
以12个花生品种为试验材料,在人工控水条件下,于结荚期设置0~80 cm土层相对含水量为70%和50%2个处理,研究与花生抗旱性相关的叶片生理生化性状及不同品种抗旱的叶片机制.结果表明:利用产量抗旱系数可将12个花生品种的抗旱性分为强、中、弱3级,抗旱性强的品种有A596、山花11号、如皋西洋生,中度抗旱品种有花育20、农大818、海花1号、山花9号和79266,抗旱性弱的品种有ICG6848、白沙1016、花17和蓬莱一窝猴.A596、山花11号、如皋西洋生的抗旱机制是具有较强的叶片抗氧化保护能力、较高的PSⅡ活性及光合速率(Pn).海花1号的叶片抗氧化保护能力较强,山花9号的PSⅡ活性有显著优势.相关分析表明,叶片Pn、气孔限制值(Ls)、最大光化学效率(Fv/Fm)、光化学猝灭系数(qP)、丙二醛(MDA)含量、相对电导率和超氧化物歧化酶(SOD)活性与花生品种的抗旱系数有显著的相关性,是花生结荚期的重要抗旱性状.SOD活性的抗旱级别需在干旱胁迫下鉴定,其他性状可在正常灌水条件下鉴定.山花11号和79266可分别作为花生强、弱抗旱性鉴定的标准品种,山花11号可作为花生叶片优异抗旱性状鉴定的标准品种.
,
URL [本文引用: 1]
通过对甘薯不同抗旱指数的比较,选用较能客观,反映出品种抗旱性的抗旱指数和模糊评判的方法,对50个甘薯品种抗旱性评价,初步筛选出17个抗旱性品种,其中有6个品种表现出极强的抗旱性。
URL [本文引用: 1]
通过对甘薯不同抗旱指数的比较,选用较能客观,反映出品种抗旱性的抗旱指数和模糊评判的方法,对50个甘薯品种抗旱性评价,初步筛选出17个抗旱性品种,其中有6个品种表现出极强的抗旱性。
,
DOI:10.1016/S0378-4290(99)00051-9URL [本文引用: 1]
Other than appropriate phenology, high potential yield and ability to maintain high leaf water potential, no specific physiological and morphological characters appear to contribute directly to higher yield under drought conditions in rainfed lowland rice in Thailand, where drought develops rather rapidly due to the prevailing coarse textured soils. It is thus appropriate to develop a breeding program that is primarily based on selection for grain yield. There are large genotype by environment interactions for yield in rainfed lowland rice and hence it is important that genotypes are selected for yield under appropriate target environments. Addition of a drought screening program that is conducted in the field in the wet-season to the overall breeding program would enhance the opportunity to select for drought resistance within the breeding materials and increase the chance of developing high yielding cultivars adapted to the drought-prone rainfed lowland environments.
,
URL [本文引用: 1]
甘薯抗旱性鉴定结果表明,栽后连续干旱70天,徐薯18的植存活率为30.0%,豫薯13号、遗306、豫薯10号、豫薯11号和辽薯44存活率高于40%、表明这些品种抗旱性较经;甘薯品种地上部民其抗旱性偏相关不显著。因此,不能以植株地上部生长作用甘薯品种抗旱性强弱的评价根据。
URL [本文引用: 1]
甘薯抗旱性鉴定结果表明,栽后连续干旱70天,徐薯18的植存活率为30.0%,豫薯13号、遗306、豫薯10号、豫薯11号和辽薯44存活率高于40%、表明这些品种抗旱性较经;甘薯品种地上部民其抗旱性偏相关不显著。因此,不能以植株地上部生长作用甘薯品种抗旱性强弱的评价根据。
,
DOI:10.3321/j.issn:1000-7091.1995.02.021URLMagsci [本文引用: 1]
利用甘薯品种郑红5号和徐薯18研究了土壤干旱对甘薯生育和产量的影响。结果表明,生长前期(栽后0~60天)叶片数、叶面积、茎长及其相应的干旱胁迫指数均随土壤干旱程度的加重而相应减少,薯块的形成和膨大也受到严重影响。当土壤含水率在6%~10%范围内,6~8月各月份进行的干旱处理与对照(全期湿润)相比,其鲜薯产量差异均达极显着水平。干旱指数为6月>7月>8月>9月。前期干旱比后期干旱对鲜薯产量影响较重。据此,提出了甘薯旱地栽培应充分利用自然降水及水浇地栽培经济用水的技术措施。
DOI:10.3321/j.issn:1000-7091.1995.02.021URLMagsci [本文引用: 1]
利用甘薯品种郑红5号和徐薯18研究了土壤干旱对甘薯生育和产量的影响。结果表明,生长前期(栽后0~60天)叶片数、叶面积、茎长及其相应的干旱胁迫指数均随土壤干旱程度的加重而相应减少,薯块的形成和膨大也受到严重影响。当土壤含水率在6%~10%范围内,6~8月各月份进行的干旱处理与对照(全期湿润)相比,其鲜薯产量差异均达极显着水平。干旱指数为6月>7月>8月>9月。前期干旱比后期干旱对鲜薯产量影响较重。据此,提出了甘薯旱地栽培应充分利用自然降水及水浇地栽培经济用水的技术措施。
,
DOI:10.3321/j.issn:0496-3490.2001.03.003URL [本文引用: 1]
根据北美13个熟期组大豆代表品种48份及我国各地地方品种256份在南京春播自然条件结合18小时长光照条件的试验,部分品种在石家庄、哈尔滨的春播试验,获得以下主要结果:(1)将我国大豆品种归属为相应的000-Ⅸ共12个熟期组,未发现熟期组X品种;(2)按同一熟期组品种生育前期变异的地理分布,0-Ⅲ熟期组内各划分为秦岭淮河线以北亚组与岭淮河线以南亚组,因此将我国大豆品种进一步划分为熟期组000、00、01、02、I1、I2…Ⅸ共12组16种熟期类型;(3)揭示我国大豆熟期组依品种生态地理分布特点;(4)提出我国大豆品种熟期组归属的鉴定方法和各地鉴定的标准品种名录。
DOI:10.3321/j.issn:0496-3490.2001.03.003URL [本文引用: 1]
根据北美13个熟期组大豆代表品种48份及我国各地地方品种256份在南京春播自然条件结合18小时长光照条件的试验,部分品种在石家庄、哈尔滨的春播试验,获得以下主要结果:(1)将我国大豆品种归属为相应的000-Ⅸ共12个熟期组,未发现熟期组X品种;(2)按同一熟期组品种生育前期变异的地理分布,0-Ⅲ熟期组内各划分为秦岭淮河线以北亚组与岭淮河线以南亚组,因此将我国大豆品种进一步划分为熟期组000、00、01、02、I1、I2…Ⅸ共12组16种熟期类型;(3)揭示我国大豆熟期组依品种生态地理分布特点;(4)提出我国大豆品种熟期组归属的鉴定方法和各地鉴定的标准品种名录。
,
DOI:10.3864/j.issn.0578-1752.2014.04.004URL [本文引用: 1]
【Objective】The main purpose of this paper was to screen leaf traits related to drought resistance, explore the methods of traits index evaluation, and to reveal drought resistance mechanisms of different peanut cultivars. 【Method】 The drought resistance was studied in twelve peanut cultivars under drought stress and normal irrigation in a pot experiment at seedling stage and a pool culture experiment at pod setting stage. Keeping the water treatments by using weighing at seedling stage and supplemental irrigation based on testing soil moisture at pod setting stage with rain-shedding during drought stress. Leaf morphological and physiological traits including organization structure, thickness, specific leaf weight (SLW), leaf area per plant (PLA), photosynthetic rate (Pn), chlorophyll content under the conditions of normal water supply and drought stress at seedling stage were tested, and the relationship between those traits and drought resistance was studied. Drought resistances of cultivars were scored with drought coefficient of biomass at seedling stage and yield at pod setting stage. Drought resistance mechanisms of leaf were evaluated by traits index. 【Result】 The results by two years experiments showed that, under drought stress, the drought resistance coefficients of different peanut cultivars were significantly different. Drought resistance at seedling and pod-setting stages was basically identical. According to yield-drought resistance coefficient, twelve peanut cultivars could be divided into 3 grads: high-resistance, including A596, Shanhua 11 and Rugaoxiyangsheng; mid-resistance, including Huayu 20, Nongda 818, Haihua 1, Shanhua 9 and 79266; weak-resistance, including ICG6848, Baisha1016, Hua17 and Penglaiyiwohou. Water stress changed organization structure in leaves, functional leaf area, PLA, Gs, Pn and Tr were reduced, but SLW of peanuts was increased under soil drought stress. A significant difference in leaf traits among peanut cultivars with different drought resistances was observed. Leaf thickness, ratio of palisade tissue to spongy tissue (PTT/STT), SLW, PLA and Pn were higher under both drought stress and normal irrigation in cultivars with high drought resistance. The drought resistance mechanism of twelve peanut cultivars was different, under drought stress, Rugaoxiyangsheng and Shanhua 11 presented as higher PTT/STT, SLW and Pn, Shanhua 9 and Huayu 20 had larger PLA, A596 was mainly higher in Pn. Correlation analysis between drought resistance coefficient and leaf PTT/STT, SLW, PLA and Pn under drought stress condition was significant. 【Conclusion】 Shanhua11 could be used as a standard variety for high drought resistance identification, and 79266 could be used as a standard variety for weak resistance identification. Treatment of 40% RWC drought stress at 10 d after germination, the leaf PTT/STT, SLW, PLA and Pn could be used to identify the drought resistance of peanuts leaf. PTT/STT, SLW and PLA also could be used to identify the drought resistance of peanuts leaf under normal water condition at anthesis stage. Shanhua 11 could be used as a suitable standard cultivar for leaf drought resistance traits identification in peanut.
DOI:10.3864/j.issn.0578-1752.2014.04.004URL [本文引用: 1]
【Objective】The main purpose of this paper was to screen leaf traits related to drought resistance, explore the methods of traits index evaluation, and to reveal drought resistance mechanisms of different peanut cultivars. 【Method】 The drought resistance was studied in twelve peanut cultivars under drought stress and normal irrigation in a pot experiment at seedling stage and a pool culture experiment at pod setting stage. Keeping the water treatments by using weighing at seedling stage and supplemental irrigation based on testing soil moisture at pod setting stage with rain-shedding during drought stress. Leaf morphological and physiological traits including organization structure, thickness, specific leaf weight (SLW), leaf area per plant (PLA), photosynthetic rate (Pn), chlorophyll content under the conditions of normal water supply and drought stress at seedling stage were tested, and the relationship between those traits and drought resistance was studied. Drought resistances of cultivars were scored with drought coefficient of biomass at seedling stage and yield at pod setting stage. Drought resistance mechanisms of leaf were evaluated by traits index. 【Result】 The results by two years experiments showed that, under drought stress, the drought resistance coefficients of different peanut cultivars were significantly different. Drought resistance at seedling and pod-setting stages was basically identical. According to yield-drought resistance coefficient, twelve peanut cultivars could be divided into 3 grads: high-resistance, including A596, Shanhua 11 and Rugaoxiyangsheng; mid-resistance, including Huayu 20, Nongda 818, Haihua 1, Shanhua 9 and 79266; weak-resistance, including ICG6848, Baisha1016, Hua17 and Penglaiyiwohou. Water stress changed organization structure in leaves, functional leaf area, PLA, Gs, Pn and Tr were reduced, but SLW of peanuts was increased under soil drought stress. A significant difference in leaf traits among peanut cultivars with different drought resistances was observed. Leaf thickness, ratio of palisade tissue to spongy tissue (PTT/STT), SLW, PLA and Pn were higher under both drought stress and normal irrigation in cultivars with high drought resistance. The drought resistance mechanism of twelve peanut cultivars was different, under drought stress, Rugaoxiyangsheng and Shanhua 11 presented as higher PTT/STT, SLW and Pn, Shanhua 9 and Huayu 20 had larger PLA, A596 was mainly higher in Pn. Correlation analysis between drought resistance coefficient and leaf PTT/STT, SLW, PLA and Pn under drought stress condition was significant. 【Conclusion】 Shanhua11 could be used as a standard variety for high drought resistance identification, and 79266 could be used as a standard variety for weak resistance identification. Treatment of 40% RWC drought stress at 10 d after germination, the leaf PTT/STT, SLW, PLA and Pn could be used to identify the drought resistance of peanuts leaf. PTT/STT, SLW and PLA also could be used to identify the drought resistance of peanuts leaf under normal water condition at anthesis stage. Shanhua 11 could be used as a suitable standard cultivar for leaf drought resistance traits identification in peanut.