Identification of Cold-tolerance During Germination Stage and Genetic Diversity of SSR Markers in Peanut Landraces of Shanxi Province
BAI Dong-Mei,1,*, XUE Yun-Yun1, ZHAO Jiao-Jiao2, HUANG Li2, TIAN Yue-Xia1, QUAN Bao-Quan1, JIANG Hui-Fang,2,*通讯作者:
收稿日期:2018-02-24接受日期:2018-06-12网络出版日期:2018-07-03
基金资助: |
Received:2018-02-24Accepted:2018-06-12Online:2018-07-03
Fund supported: |
摘要
关键词:
Abstract
Keywords:
PDF (1933KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
白冬梅, 薛云云, 赵姣姣, 黄莉, 田跃霞, 权宝全, 姜慧芳. 山西花生地方品种芽期耐寒性鉴定及SSR遗传多样性[J]. 作物学报, 2018, 44(10): 1459-1467. doi:10.3724/SP.J.1006.2018.01459
BAI Dong-Mei, XUE Yun-Yun, ZHAO Jiao-Jiao, HUANG Li, TIAN Yue-Xia, QUAN Bao-Quan, JIANG Hui-Fang.
花生(Arachis hypogaea L.)是我国重要的油料和经济作物, 在国内大宗油料作物中, 单位面积产量、产油量、种植效益以及国际市场竞争力等均具有明显优势[1]。目前国内食用油过度依赖进口, 油脂供给安全问题凸显, 进一步发展我国花生生产, 拓宽花生种植区域, 是满足不断增长的市场需求、提高农业生产效益、增加农民收入的迫切需要[2]。然而, 在花生播种后常常遭遇低温寒害, 种子活力受到损害, 出苗率明显降低, 轻者延缓花生萌发和幼苗生长发育, 重者发生大面积低温烂种, 缺苗断垄, 导致严重减产。高耐寒性种质的缺乏和耐寒性鉴定的困难, 是限制耐寒性育种取得突破的主要原因之一。
山西省地处黄土高原, 大部分地区海拔在1500 m以上, 年平均气温3~14℃。山西省花生种植历史悠久, 经过漫长的自然训化和人工选择, 孕育了丰富的变异类型和较强的抗逆性[3]。我们对山西省地方品种的农艺性状和品质性状详细分析表明, 山西省花生地方品种具有丰富的遗传多样性[4,5]。本研究对72份山西省地方花生品种进行了芽期耐寒性鉴定及SSR多态性检测, 分析研究其耐寒性遗传多样性, 为花生耐寒性育种及其相关研究提供了丰富的遗传资源和重要的理论依据。
1 材料与方法
1.1 参试花生品种
本试验选取山西省农业科学院经济作物研究所花生课题组征集的72份山西花生地方品种, 其中普通型51份、多粒型11份、珍珠豆型10份, 其编号、品名、类型见表1。Table 1
表1
表172份山西供试花生地方品种编号、品名、类型
Table 1
编号 Code | 品种 Cultiver | 植物学类型 Botanical type | 编号 Code | 品种 Cultiver | 植物学类型 Botanical type |
---|---|---|---|---|---|
1 | 汾西小粒Fenxixiaoli | 珍珠豆型vulgaris | 37 | 洪洞花生4 Hongtonghuasheng 4 | 普通型hypogaea |
2 | 襄汾油花生Xiangfenyouhuasheng | 多粒型fastigiata | 38 | 洪洞大粒Hongtongdali | 普通型hypogaea |
3 | 隰县一把抓Xixianyibazhua | 普通型hypogaea | 39 | 乡宁花生Xiangninghuasheng | 普通型hypogaea |
4 | 洪洞花生5 Hongtonghuasheng 5 | 多粒型fastigiata | 40 | 临汾小粒Linfenxiaoli | 普通型hypogaea |
5 | 难山小粒 Nanshanxiaoli | 珍珠豆型vulgaris | 41 | 临汾一窝蜂Linfenyiwofeng | 多粒型fastigiata |
6 | 吉县大花生Jixiandahuasheng | 普通型hypogaea | 42 | 高平花生Gaopinghuasheng | 普通型hypogaea |
7 | 大宁大花生Daningdahuasheng | 普通型hypogaea | 43 | 黎城花生Lichenghuasheng | 普通型hypogaea |
8 | 太谷二粒Taiguerli | 珍珠豆型vulgaris | 44 | 长子花生Zhangzihuasheng | 多粒型fastigiata |
9 | 石楼小粒Shilouxiaoli | 珍珠豆型vulgaris | 45 | 运城花生 Yunchenghuasheng | 普通型hypogaea |
10 | 临县多粒Linxianduoli | 珍珠豆型vulgaris | 46 | 新绛大花生Xinjiangdahuasheng | 普通型hypogaea |
11 | 安泽落花生Anzeluohuasheng | 多粒型fastigiata | 47 | 永济爬地垄Yongjipadilong | 普通型hypogaea |
12 | 吉县大粒秧Jixiandaliyang | 普通型hypogaea | 48 | 平陆大粒Pingludali | 普通型hypogaea |
13 | 翼城花生Yichenghuasheng | 珍珠豆型vulgaris | 49 | 稷山花生Jishanhuasheng | 普通型hypogaea |
14 | 浮山一把抓Fushanyibazhua | 普通型hypogaea | 50 | 榆次花生Yucihuasheng | 普通型hypogaea |
15 | 中阳花生Zhongyanghuasheng | 普通型hypogaea | 51 | 榆次伏花生Yucifuhuasheng | 普通型hypogaea |
16 | 沁水花生Qinshuihuasheng | 普通型hypogaea | 52 | 灵石小花生Lingshixiaohuasheng | 珍珠豆型vulgaris |
17 | 黎城花生Lichenghuasheng | 普通型hypogaea | 53 | 太谷大粒Taigudali | 普通型hypogaea |
18 | 运城小角花Yunchengxiaojiaohuasheng | 普通型hypogaea | 54 | 阳曲花生Yangquhuasheng | 普通型hypogaea |
19 | 运城大蔓花生Yunchengdamanhuasheng | 普通型hypogaea | 55 | 文水大花生Wenshuidahuasheng | 普通型hypogaea |
20 | 稷山小蔓Jishanxiaoman | 普通型hypogaea | 56 | 文水多粒Wenshuiduoli | 多粒型fastigiata |
21 | 垣曲长蔓Yuanquchangman | 普通型hypogaea | 57 | 汾阳大粒Fenyangdali | 普通型hypogaea |
22 | 祁县小花生Qixianxiaohuasheng | 珍珠豆型vulgaris | 58 | 汾阳多粒Fenyangduoli | 多粒型fastigiata |
23 | 兴县大花生Xingxiandahuasheng | 普通型hypogaea | 59 | 汾阳四粒红Fenyangsilihong | 多粒型fastigiata |
24 | 文水花生Wenshuihuasheng | 普通型hypogaea | 60 | 柳林二粒Liulinerli | 普通型hypogaea |
25 | 孝义花生Xiaoyihuasheng | 普通型hypogaea | 61 | 榆社花生Yushehuasheng | 珍珠豆型vulgaris |
26 | 临县大粒Linxiandali | 普通型hypogaea | 62 | 榆社红花生Yushehonghuasheng | 多粒型fastigiata |
27 | 临县小粒Linxianxiaoli | 普通型hypogaea | 63 | 榆社大粒Yushedali | 普通型hypogaea |
28 | 交口花生Jiaokouhuasheng | 普通型hypogaea | 64 | 曲沃一窝蜂Quwoyiwofeng | 多粒型fastigiata |
29 | 汾阳小粒Fenyangxiaoli | 普通型hypogaea | 65 | 洪洞花生1 Hongtonghuasheng 1 | 普通型hypogaea |
30 | 柳林花生Liulinhuasheng | 普通型hypogaea | 66 | 武乡花生Wuxianghuasheng | 普通型hypogaea |
31 | 侯马大粒 Houmadali | 普通型hypogaea | 67 | 武乡白花生Wuxiangbaihuasheng | 珍珠豆型vulgaris |
32 | 吉县大粒1 Jixiandali 1 | 普通型hypogaea | 68 | 武乡黑花生Wuxiangheihuasheng | 普通型hypogaea |
33 | 吉县大粒蔓Jixiandaliman | 普通型hypogaea | 69 | 武乡多粒Wuxiangduoli | 多粒型fastigiata |
34 | 曲沃小花生Quwoxiaohuasheng | 普通型hypogaea | 70 | 武乡彩粒Wuxiangcaili | 普通型hypogaea |
35 | 曲沃一把抓Quwoyibazhua | 普通型hypogaea | 71 | 河曲大粒Hequdali | 普通型hypogaea |
36 | 大宁一把抓Daningyibazhua | 普通型hypogaea | 72 | 柳林小粒Liulinxiaoli | 普通型hypogaea |
新窗口打开|下载CSV
1.2 芽期耐寒性鉴定
采用BIC-300人工气候箱模拟大田气象条件, 进行芽期耐寒性筛选鉴定。选取2016年和2017年成熟饱满、种皮完整、大小一致的种子20粒, 采用纸间发芽, 3次重复, 常温浸种8 h后放入12℃人工气候箱培养72 h, 然后2℃低温胁迫暗培养96 h, 再调到10℃暗培养72 h, 最后置于25℃人工气候箱恒温发芽, 以常温浸种8 h后在25℃发芽为对照, 每天计录发芽种子数, 18 d后计算各品种的相对发芽率(%)和相对发芽指数(GI), GI = ∑(Gt/Dt)。Gt为第t天的发芽种子数, Dt为相对应的发芽日数。1.3 SSR引物及PCR扩增
本研究在中国农业科学院油料作物研究所花生生物技术实验室进行, 所用的154对SSR引物由该实验室提供。选取花生健壮幼叶, 采用优化的CTAB法[6]提取基因组DNA, 用1.0%琼脂糖凝胶电泳检测DNA质量, 紫外分光光度计测定其浓度并统一调整DNA浓度至100 ng L-1。PCR反应体系为10 μL, 含Mix 2.5 μL (由北京全式金生物技术有限公司生产)、ddH2O 5 μL、10~40 pmol L-1引物对0.5 μL、10~20 ng模板DNA 2 μL。扩增条件为94℃预变性3 min; 93℃变性30 s, 55~65℃ (不同引物退火温度不同)退火30 s, 72℃延伸1 min, 共32个循环; 72℃延伸10 min。PCR产物经6%变性聚丙烯酰胺凝胶电泳检测, 硝酸银染色, 显影, 扫描保存。1.4 数据统计分析
根据PCR扩增结果, 以0、1、C统计SSR扩增带型, 在相同迁移率位置上, 有带记为“1”, 无带记为“0”, 缺失记为“C”, 建立相应的数据库, 用Microsoft Excel 2013处理基本数据。再根据不同分析软件的格式要求作相应转换。用Powermarker-V 3.25 软件[7,8,9,10,11]计算每对引物的多样性参数, 包括等位基因数(Na)、主基因频率(MAF)、基因多样性指数(H)、多态性信息含量指数(PIC), 利用非加权组平均法(UPGMA)进行聚类分析, 生成聚类图; 用Popgene Ver.1.32 分析Shannon’s信息指数(I)。2 结果与分析
2.1 芽期耐寒性品种分析
吸胀后突遇低温胁迫, 各种质材料间表现出明显的差异, 有的材料受低温影响小, 能正常发芽, 生长状况良好。有的材料耐低温能力很差, 低温胁迫后, 种子霉烂, 不能正常发芽生长。其他材料介于这两种类型之间, 萌发情况参差不齐(图1)。图1
新窗口打开|下载原图ZIP|生成PPT图1低温胁迫后部分花生品种萌发情况
Fig. 1Germination of part peanut seeds under low temperature stress
由表2可见, 72份材料相对发芽率变幅范围为6.86%~96.50%, 相对发芽指数变幅范围为12.87%~ 94.46%, 表现最好的临县多粒、新降大花生、榆次花生3份材料的相对发芽率与相对发芽指数均>90%, 可作为高耐寒材料; 而表现最差的2份材料侯马大粒和文水多粒的相对发芽率低于10%, 相对发芽指数低于20%, 可作为高感材料。按照相对发芽率和相对发芽指数的变幅范围, 将参试的72份材料耐寒性分为5级。一级为高耐寒材料, 相对发芽率与相对发芽指数均>90%, 有3份, 占总材料的4.17%, 其中珍珠豆型1份, 普通型2份; 二级为耐寒材料, 相对发芽率>90%, 80%<相对发芽指数<90%, 有7份, 占总材料的9.72%, 其中珍珠豆型1份, 多粒型3份, 普通型3份; 三级为中间材料, 50%<相对发芽率<90%, 50%<相对发芽指数<80%, 有17份, 占总材料的23.61%, 其中有珍珠豆型1份, 多粒型2份, 普通型14份; 四级为敏感材料, 10%<相对发芽率<50%, 20%<相对发芽指数<50%, 有43份, 占总材料的59.72%, 其中珍珠豆型7份, 多粒型5份, 普通型31份; 五级为高感材料, 相对发芽率<10%, 相对发芽指数<20%, 有2份, 占总材料的2.78%, 其中多粒型1份, 普通型1份。四级和五级材料受低温胁迫, 种子霉烂, 活力丧失, 不能正常发芽生长, 严重影响出苗, 形成田间缺苗断垄影响产量。鉴定筛选出的高耐寒和耐寒材料中, 包括2份珍珠豆型, 3份多粒型, 5份普通型, 说明花生耐寒性与品种植物学属性关系不大。
Table 2
表2
表2供试品种的耐寒性鉴定
Table 2
基因型 Gene type | 编号 Code | 相对发芽率 Relative germination rate (%) | 相对发芽指数 Relative germination index (%) | ||||
---|---|---|---|---|---|---|---|
2016 | 2017 | Mean | 2016 | 2017 | Mean | ||
高耐寒 | 10 | 92.27 | 94.44 | 93.36 | 93.01 | 91.29 | 92.15 |
High cold-tolerant | 46 | 96.64 | 96.36 | 96.50 | 94.20 | 94.71 | 94.46 |
50 | 94.64 | 93.10 | 93.87 | 90.15 | 94.03 | 92.09 | |
耐寒 | 1 | 94.44 | 92.72 | 93.58 | 86.14 | 85.09 | 85.62 |
Cold-tolerant | 2 | 90.60 | 92.30 | 91.45 | 81.47 | 81.70 | 81.59 |
24 | 94.64 | 92.47 | 93.56 | 85.93 | 86.23 | 86.08 | |
44 | 98.56 | 92.72 | 95.64 | 81.42 | 86.81 | 84.12 | |
47 | 94.34 | 92.98 | 93.66 | 87.55 | 88.87 | 88.21 | |
63 | 93.57 | 92.72 | 93.15 | 87.07 | 89.59 | 88.33 | |
64 | 98.18 | 94.23 | 96.21 | 84.00 | 82.08 | 83.04 | |
中间 | 9 | 64.78 | 76.47 | 70.63 | 51.18 | 53.20 | 52.19 |
Middle | 15 | 55.12 | 60.34 | 57.73 | 51.69 | 51.45 | 51.57 |
23 | 71.69 | 68.52 | 70.11 | 55.64 | 54.34 | 54.99 | |
25 | 51.77 | 54.54 | 53.16 | 53.91 | 55.52 | 54.72 | |
32 | 86.50 | 78.42 | 82.46 | 62.95 | 61.72 | 62.34 | |
33 | 86.60 | 78.97 | 82.79 | 68.64 | 62.15 | 65.40 | |
34 | 77.35 | 76.36 | 76.86 | 55.80 | 55.15 | 55.48 | |
36 | 62.71 | 74.54 | 68.63 | 52.54 | 52.14 | 52.34 | |
37 | 70.33 | 66.67 | 68.50 | 50.73 | 52.31 | 51.52 | |
38 | 77.35 | 70.59 | 73.97 | 52.35 | 54.28 | 53.32 | |
39 | 63.00 | 55.36 | 59.18 | 50.13 | 50.20 | 50.17 | |
40 | 88.47 | 79.25 | 83.86 | 51.72 | 57.93 | 54.83 | |
41 | 59.22 | 64.81 | 62.02 | 50.27 | 53.71 | 51.99 | |
49 | 82.95 | 80.36 | 81.66 | 58.19 | 58.06 | 58.13 | |
57 | 54.70 | 50.00 | 52.35 | 51.67 | 52.61 | 52.14 | |
60 | 55.12 | 52.63 | 53.88 | 50.33 | 50.68 | 50.51 | |
69 | 73.01 | 72.22 | 72.62 | 51.90 | 60.75 | 56.33 | |
基因型 Gene type | 编号 Code | 相对发芽率 Relative germination rate (%) | 相对发芽指数 Relative germination index (%) | ||||
2016 | 2017 | Mean | 2016 | 2017 | Mean | ||
敏感 | 3 | 28.55 | 31.47 | 30.01 | 33.36 | 31.33 | 32.35 |
Sensitive | 4 | 31.41 | 32.73 | 32.07 | 40.62 | 34.00 | 37.31 |
5 | 48.11 | 37.50 | 42.81 | 42.97 | 40.00 | 41.49 | |
6 | 43.18 | 43.63 | 43.41 | 31.59 | 29.32 | 30.46 | |
7 | 16.67 | 21.81 | 19.24 | 36.85 | 27.72 | 32.29 | |
8 | 29.27 | 29.82 | 29.55 | 31.91 | 32.17 | 32.04 | |
11 | 41.18 | 33.33 | 37.26 | 20.61 | 23.27 | 21.94 | |
12 | 40.37 | 38.89 | 39.63 | 36.89 | 34.07 | 35.48 | |
13 | 30.68 | 29.63 | 30.16 | 23.95 | 24.78 | 24.37 | |
14 | 33.93 | 41.81 | 37.87 | 49.76 | 47.43 | 48.60 | |
16 | 36.01 | 33.93 | 34.97 | 38.36 | 35.65 | 37.01 | |
17 | 28.84 | 27.78 | 28.31 | 35.59 | 34.87 | 35.23 | |
18 | 30.80 | 32.73 | 31.77 | 23.17 | 27.10 | 25.14 | |
19 | 29.41 | 32.68 | 31.05 | 35.57 | 33.08 | 34.33 | |
20 | 22.88 | 28.84 | 25.86 | 37.53 | 38.47 | 38.00 | |
21 | 22.22 | 21.82 | 22.02 | 29.78 | 28.45 | 29.12 | |
22 | 26.39 | 25.92 | 26.16 | 25.62 | 27.28 | 26.45 | |
26 | 37.71 | 35.71 | 36.71 | 23.47 | 23.72 | 23.60 | |
27 | 36.19 | 36.84 | 36.52 | 31.32 | 29.26 | 30.29 | |
28 | 35.69 | 29.82 | 32.76 | 20.67 | 21.30 | 20.99 | |
29 | 35.90 | 34.55 | 35.23 | 21.16 | 21.12 | 21.14 | |
30 | 49.95 | 46.55 | 48.25 | 27.91 | 30.77 | 29.34 | |
35 | 41.18 | 31.48 | 36.33 | 34.88 | 31.58 | 33.23 | |
42 | 39.34 | 33.93 | 36.64 | 31.05 | 32.78 | 31.92 | |
43 | 47.51 | 48.28 | 47.90 | 40.62 | 39.76 | 40.19 | |
45 | 21.05 | 38.18 | 29.62 | 21.64 | 25.45 | 23.55 | |
48 | 39.64 | 33.33 | 36.49 | 29.29 | 30.76 | 30.03 | |
51 | 29.67 | 30.35 | 30.01 | 28.36 | 25.78 | 27.07 | |
52 | 26.32 | 21.43 | 23.88 | 25.14 | 24.19 | 24.67 | |
53 | 16.67 | 30.90 | 23.79 | 36.80 | 34.28 | 35.54 | |
54 | 28.79 | 29.82 | 29.31 | 19.77 | 19.86 | 19.82 | |
55 | 24.97 | 36.36 | 30.67 | 20.66 | 22.69 | 21.68 | |
58 | 48.23 | 49.13 | 48.68 | 32.72 | 38.17 | 35.45 | |
59 | 24.53 | 29.82 | 27.18 | 40.78 | 34.90 | 37.84 | |
61 | 35.69 | 34.55 | 35.12 | 35.37 | 34.58 | 34.98 | |
62 | 15.79 | 15.25 | 15.52 | 36.80 | 21.39 | 29.10 | |
65 | 33.37 | 35.71 | 34.54 | 29.35 | 30.18 | 29.77 | |
66 | 32.64 | 30.90 | 31.77 | 29.48 | 23.86 | 26.67 | |
67 | 43.18 | 47.26 | 45.22 | 34.22 | 28.71 | 31.47 | |
68 | 33.33 | 33.93 | 33.63 | 27.82 | 31.45 | 29.64 | |
70 | 36.19 | 33.90 | 35.05 | 25.21 | 26.44 | 25.83 | |
71 | 48.23 | 50.00 | 49.12 | 37.68 | 37.61 | 37.65 | |
72 | 16.08 | 21.82 | 18.95 | 30.50 | 30.58 | 30.54 | |
高感 | 31 | 8.20 | 11.76 | 9.98 | 18.20 | 16.90 | 17.55 |
High-sensitive | 56 | 6.82 | 6.90 | 6.86 | 16.09 | 9.64 | 12.87 |
新窗口打开|下载CSV
2.2 SSR标记多态性分析
选用8份不同地理来源、不同类型的花生品种基因组DNA, 用154对SSR引物进行PCR扩增。有101对引物扩增出稳定、清晰可辨的谱带, 有效扩增比率为47.3%, 其中90对具有多态性, 多态性引物比率为89.1% (图2)。最终确定了谱带清晰稳定且具多态性的90对SSR引物用于本研究。图2
新窗口打开|下载原图ZIP|生成PPT图2引物A06B209在72份花生品种中的扩增
Fig. 2Amplified bands using primer A06B209 in 72 peanuts materials
从表3可以看出, 72份山西省地方品种在90个SSR标记中扩增出317个等位基因数(Na), 每对引物平均扩增出3.5222个等位基因, 不同引物每个位点等位基因数差异很大, 变化范围2~8个, 检测到的等位基因最多的引物是A07B516和A08A90A。主基因频率(MAF)变化幅度为0.2917 (A07B34)~ 0.8986 (A02B62), 平均0.6834。基因多样性指数(GD)变化幅度为0.1823 (A02B62)~0.7711 (A08A90), 平均0.4537; 多态信息含量指数(PIC)变异范围为0.1657 (A02B62)~0.7378 (A08A90), 平均0.4047; Shannon’s信息指数(I)变异范围为0.3283 (A02B62)~ 1.6734 (A08A90), 平均0.8092。表明本研究所用的SSR位点的遗传多样性丰富, 显示山西省花生地方品种遗传多样性方面存在较大差异。其中16对引物最有效, Shannon’s信息指数均在1以上, 综合比较各参数, 等位基因数值多的SSR位点, 基因多样性指数、多态信息含量指数和Shannon’s信息指数的值也大, 三者变化趋势一致, 因此, 基因多样性指数、多态信息含量指数和Shannon’s信息指数对于遗传多样性分析, 更具有可靠的实际意义。
Table 3
表3
表390个SSR标记的遗传参数
Table 3
项目 Item | 等位基因数Allele number (Na) | 主基因频率 Major allele frequency (MAF) | 基因多样性指数 Gene diversity (GD) | 多态信息含量指数 Polymorphism information content (PIC) | Shannon’s信息指数 Shannon’s information index (I) |
---|---|---|---|---|---|
最大值 Max | 8 | 0.8986 | 0.7711 | 0.7378 | 1.6734 |
最小值 Min | 2 | 0.2917 | 0.1823 | 0.1657 | 0.3283 |
合计 Total | 317 | ||||
平均值 Mean | 3.5222 | 0.6834 | 0.4537 | 0.4047 | 0.8092 |
新窗口打开|下载CSV
2.3 不同耐寒性花生品种的遗传多样性
根据SSR标记数据, 利用Powermarker-V3.25软件, 采用非加权组平均法(UPGMA)聚类分析表明, 72份参试材料在遗传距离为0.4时, 被分为三大类群。第I类群是以多粒型为主的10个品种, 其中包括2份耐寒材料; 第II类是以普通型为主51个品种, 其中包括2份高耐寒材料和3份耐寒材料; 第III类是以珍珠豆型为主的11个品种, 其中包括1份高耐寒材料和2份耐寒材料, 说明花生耐寒性遗传多样性丰富(图3)。耐寒品种汾西小粒和长子花生亲缘关系最远, 而高耐寒品种新降大花生和高感品种侯马大粒亲缘关系最近, 说明高耐品种和高感品种并不是亲缘关系最远, 耐寒品种间也不是亲缘关系最近。图3
新窗口打开|下载原图ZIP|生成PPT图3基于SSR标记的72份山西花生地方品种的聚类分析图
Fig. 3Dendrogram of 72 peanut landraces in Shanxi province based on SSR markers
3 讨论
花生芽期寒害是引起花生产量和品质下降的主要因素之一, 山西地处黄土高原高海拨区, 其地方品种具有丰富的遗传多样性, 可能蕴含着高耐寒型基因。因此, 本研究以山西花生地方品种为试验材料, 采用人工气候箱中模拟大田气象条件, 可以不受季节气候条件等因素的限制而开展鉴定工作, 从而加快鉴定进度。而且人工气候箱设备的培养条件(光照、温度、水分等)易于控制且重复性好, 鉴定出的耐寒性花生品种在田间更具有适应性。本研究中耐寒性鉴定设置了2℃低温胁迫, 这是经过多次的、几个温度梯度的试验得出来的结果, 温度低于2℃, 多数试材会被淘汰, 温度高会出现大部分材料的正常发芽出苗而达不到选择的目的, 这与封海胜[12]所做的花生种子吸胀期间耐低温性鉴定是一致的。刘海龙等[13]利用花生种质资源耐低温表型方法鉴定花生种质资源耐低温属性。吕建伟等[14]以花生相对出苗率将花生种质资源划分为不耐、低耐、中耐、高耐4个等级。唐月异等[15]以露白率及芽长/种长作为鉴定花生吸胀期耐寒性的指标。目前对于花生不同阶段耐寒性评价没有统一的标准, 本研究结合前人研究基础, 把相对发芽率和相对发芽指数作为鉴定花生品种芽期耐寒性的指标, 初步将72份花生品种耐寒性分为高耐寒、耐寒、中感、敏感、高感5级。本研究鉴定筛选出的高耐寒和耐寒材料中, 包括2份珍珠豆型、3份多粒型和5份普通型, 表明花生耐寒性与品种植物学属性关系不大, 这与唐月异等[15]研究得出的结论一致。常硕其等[16]对杂交品种亲本及后代进行耐寒性鉴定时, 发现水稻的耐寒性是可以通过杂交稳定遗传的, 后代与亲本的耐寒性呈正相关。康旭梅等[17]提出, 在综合考虑后代优良性状的同时, 只要保证亲本之一的耐寒性较强, 就有可能保证F1耐寒性强且具有优良的综合性状。这些研究足以证明筛选耐寒性资源作为杂交亲本培育耐寒性杂交后代的育种方法是完全可行的。本研究筛选出的临县多粒、新降大花生、榆次花生等耐寒品种可以作为亲本进行杂交培养耐寒性后代, 为选育高产高油酸耐寒性强新品种及其相关研究提供材料基础和理论依据。分子标记是揭示花生遗传多样性的有效手段, 国内外研究者曾用RAPD[18]、SSR[19,20,21,22,23,24,25,26]、AFLP[27,28]等分子标记对花生种质资源遗传多样性广泛研究。其中, SSR 以共显性好、多态性丰富成为花生最实用的检测标记。本研究所用的SSR位点的遗传多样性丰富, 显示出山西省花生地方种质资源遗传多样性方面存在较大差异。综合比较各遗传参数, 等位基因数值多的SSR位点, 基因多样性指数(GD)、多态信息含量指数(PIC)和Shannon’s信息指数(I)的值也大, 三者变化趋势一致。因此, 基因多样性指数、多态信息含量指数和Shannon’s信息指数对于遗传多样性分析, 更具有可靠的实际意义, 这一结果与花生[11]、豌豆[10,29-30]和小扁豆[31]上的研究结果一致。在遗传距离为0.4时, 参试品种被聚为三个类群, 类群I以多粒型为主, 类群II以普通型为主, 类群III是珍珠豆型为主, 说明SSR 标记的聚类与花生植物属性关系密切, 与花生耐寒性特性和地域特性关系不大, 3份高耐寒品种和7份耐寒品种分布于3个不同的类群中, 这可能与控制耐寒性的遗传因子在不同品种间存在差异有关。本研究所用材料仅限于山西省花生地方品种, 分析花生耐寒性遗传特性的分子基础, 还需要更多的验证分析和丰富的育种材料, 以取得更加可靠的结果, 从而为花生耐寒性育种及其相关研究提供理论依据和材料基础。
4 结论
通过对72份山西地方品种芽期耐寒性鉴定, 初步筛选出3份高耐寒品种和7份耐寒品种, 分布在三个不同的类群中, 说明花生耐寒品种遗传多样性丰富。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
In order to explore the use value of 90 samples of peanut collected from Shanxi province and select high-quality varieties, this studymeasured and analyzed their quality traits in laboratory, including protein content, oil content, content of oleic acid and linoleic acid, and discussed the relationship between the quality traits and geographic origin and different groups. The results showed that the diversity indexes of five quality traits were 2.04, 2.02, 2.02, 1.99, 1.93, indicating that the quality traits of peanut germplasm resources in Shanxi showed rich genetic diversity. The coefficient variation of the 5 quality traits were 0.06, 0.09, 0.11, 0.11, 0.23, indicating that there was a significant difference between the quality traits among the resources. The 90 samples were divided into 4 categories by cluster analysis. High-quality resources were screened, for example Wuxiang red peanuts, Linxian multigerm, Yongji small wasp waist. The results provided a scientific theoretical basis for rational utilization of local germplasm resources and breeding of new peanut varieties with high quality in Shanxi province.
URL [本文引用: 1]
In order to explore the use value of 90 samples of peanut collected from Shanxi province and select high-quality varieties, this studymeasured and analyzed their quality traits in laboratory, including protein content, oil content, content of oleic acid and linoleic acid, and discussed the relationship between the quality traits and geographic origin and different groups. The results showed that the diversity indexes of five quality traits were 2.04, 2.02, 2.02, 1.99, 1.93, indicating that the quality traits of peanut germplasm resources in Shanxi showed rich genetic diversity. The coefficient variation of the 5 quality traits were 0.06, 0.09, 0.11, 0.11, 0.23, indicating that there was a significant difference between the quality traits among the resources. The 90 samples were divided into 4 categories by cluster analysis. High-quality resources were screened, for example Wuxiang red peanuts, Linxian multigerm, Yongji small wasp waist. The results provided a scientific theoretical basis for rational utilization of local germplasm resources and breeding of new peanut varieties with high quality in Shanxi province.
,
[本文引用: 1]
,
DOI:10.3969/j.issn.1005-3395.2008.04.002URL [本文引用: 1]
以花生属(Arachis)6个区组24种(包括栽培种)84份种质为材料,用SSR技术对其亲缘关系和遗传多样性进行了分析。从206对SSR引物中筛选到59对能扩增出稳定的多态性条带的引物,这些引物能在花生属基因组DNA中扩增出1~6个DNA片段。结果表明,84份种质的遗传距离为0.04~0.93,平均为0.64,其中匍匐区组的A.appressipila的2份种质(G4与G5)的遗传距离最小(0.04),匍匐区组的A.rigonii(G14)与根茎区组的A.glabrata(G28)的遗传距离最大(0.93)。聚类分析结果与花生属的区组分类基本一致,栽培种花生被聚在花生区组中,而且7份栽培种被聚在同一亚亚组中,相同植物学类型(相当于变种)的材料均被分别聚在一起。异形花区组与直立区组的亲缘关系最近,与花生区组的亲缘关系较近的是匍匐区组。花生区组的二倍体野生种A.villosa、A.duranensis和A.benensis与栽培种花生关系较近,可以作为桥梁物种来转移其他野生花生的优良基因。
DOI:10.3969/j.issn.1005-3395.2008.04.002URL [本文引用: 1]
以花生属(Arachis)6个区组24种(包括栽培种)84份种质为材料,用SSR技术对其亲缘关系和遗传多样性进行了分析。从206对SSR引物中筛选到59对能扩增出稳定的多态性条带的引物,这些引物能在花生属基因组DNA中扩增出1~6个DNA片段。结果表明,84份种质的遗传距离为0.04~0.93,平均为0.64,其中匍匐区组的A.appressipila的2份种质(G4与G5)的遗传距离最小(0.04),匍匐区组的A.rigonii(G14)与根茎区组的A.glabrata(G28)的遗传距离最大(0.93)。聚类分析结果与花生属的区组分类基本一致,栽培种花生被聚在花生区组中,而且7份栽培种被聚在同一亚亚组中,相同植物学类型(相当于变种)的材料均被分别聚在一起。异形花区组与直立区组的亲缘关系最近,与花生区组的亲缘关系较近的是匍匐区组。花生区组的二倍体野生种A.villosa、A.duranensis和A.benensis与栽培种花生关系较近,可以作为桥梁物种来转移其他野生花生的优良基因。
,
DOI:10.1093/bioinformatics/bti282URLPMID:15705655 [本文引用: 1]
PowerMarker delivers a data-driven, integrated analysis environment (IAE) for genetic data. The IAE integrates data management, analysis and visualization in a user-friendly graphical user interface. It accelerates the analysis lifecycle and enables users to maintain data integrity throughout the process. An ever-growing list of more than 50 different statistical analyses for genetic markers has been implemented in PowerMarker.
,
DOI:10.1007/s00122-003-1535-2URLPMID:15067392 [本文引用: 1]
A major constraint to the application of biotechnology to the improvement of the allotetraploid peanut, or groundnut ( Arachis hypogaea L.), has been the paucity of polymorphism among germplasm lines using biochemical (seed proteins, isozymes) and DNA markers (RFLPs and RAPDs). Six sequence-tagged microsatellite (STMS) markers were previously available that revealed polymorphism in cultivated peanut. Here, we identify and characterize 110 STMS markers that reveal genetic variation in a diverse array of 24 peanut landraces. The simple-sequence repeats (SSRs) were identified with a probe of two 27,648-clone genomic libraries: one constructed using Pst I and the other using Sau 3AI/ Bam HI. The most frequent, repeat motifs identified were ATT and GA, which represented 29% and 28%, respectively, of all SSRs identified. These were followed by AT, CTT, and GT. Of the amplifiable primers, 81% of ATT and 70.8% of GA repeats were polymorphic in the cultivated peanut test array. The repeat motif AT showed the maximum number of alleles per locus (5.7). Motifs ATT, GT, and GA had a mean number of alleles per locus of 4.8, 3.8, and 3.6, respectively. The high mean number of alleles per polymorphic locus, combined with their relative frequency in the genome and amenability to probing, make ATT and GA the most useful and appropriate motifs to target to generate further SSR markers for peanut.
,
URL [本文引用: 2]
,
[本文引用: 2]
.
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.14001/j.issn.1002-4093.2017.03.004URL [本文引用: 1]
本研究目的是构建既可鉴定花生种质资源耐低温属性,又可进行耐低温性数量性状分析的表型鉴定方法。本方法构建公式相对发芽率=xi/yi×100%,花生耐低温性属性分级标准鉴定花生耐低温属性,及利用相对发芽率数据进行耐低温数量性状分析。利用此方法对94份花生种质资源进行鉴定,鉴定出相对发芽率≥85%耐低温型(R)6个,约占检测资源的6.38%,分别为山花8(A1)、豫花1(A38)、开农30(A10)、白沙1016(A37)、油4(A32)和泉花646(A42),从94份花生资源中选取20份材料进行田间耐低温验证,其结果与本研究构建的方法结果一致,证明花生种质资源耐低温表型方法可以鉴定花生种质资源耐低温属性;利用此方法鉴定出徐花13×中花6重组自交系群体(RIL)各家系及亲本,分析耐低温性主基因+多基因遗传模型,符合模型G-1,主基因的遗传率为91.21%,多基因的遗传率为8.34%,证明此方法可应用在耐低温性数量性状分析上。
DOI:10.14001/j.issn.1002-4093.2017.03.004URL [本文引用: 1]
本研究目的是构建既可鉴定花生种质资源耐低温属性,又可进行耐低温性数量性状分析的表型鉴定方法。本方法构建公式相对发芽率=xi/yi×100%,花生耐低温性属性分级标准鉴定花生耐低温属性,及利用相对发芽率数据进行耐低温数量性状分析。利用此方法对94份花生种质资源进行鉴定,鉴定出相对发芽率≥85%耐低温型(R)6个,约占检测资源的6.38%,分别为山花8(A1)、豫花1(A38)、开农30(A10)、白沙1016(A37)、油4(A32)和泉花646(A42),从94份花生资源中选取20份材料进行田间耐低温验证,其结果与本研究构建的方法结果一致,证明花生种质资源耐低温表型方法可以鉴定花生种质资源耐低温属性;利用此方法鉴定出徐花13×中花6重组自交系群体(RIL)各家系及亲本,分析耐低温性主基因+多基因遗传模型,符合模型G-1,主基因的遗传率为91.21%,多基因的遗传率为8.34%,证明此方法可应用在耐低温性数量性状分析上。
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 2]
Tolerance to low temperaterature during germination for fifty-five accessions of peanut germplasm were evaluated when the seeds were imbibed at 2℃ at 96h followed by 25℃ for 72h. Percentage of the number of seeds with radicals breaking through testa(PSWRBT) and ratio of the length of hypocotyls and radicals to the length of seeds(RHRS) were calculated. Main quality traits including oleic acid, linoleic acid, palmitic acid, oil, protein and sucrose contents were determined by near-infrared spectroscopy. Relationship between low temperature tolerance of peanut seed during imbibition and individual quality attributes was analyzed. The results showed that under low temperature stress condition, 3,3,5 and 43 accessions had the PSERTBT of ≥80%, 70%~80%, 60%~70% and0.5, 0.4~0.5, 0.4~0.3 and
URL [本文引用: 2]
Tolerance to low temperaterature during germination for fifty-five accessions of peanut germplasm were evaluated when the seeds were imbibed at 2℃ at 96h followed by 25℃ for 72h. Percentage of the number of seeds with radicals breaking through testa(PSWRBT) and ratio of the length of hypocotyls and radicals to the length of seeds(RHRS) were calculated. Main quality traits including oleic acid, linoleic acid, palmitic acid, oil, protein and sucrose contents were determined by near-infrared spectroscopy. Relationship between low temperature tolerance of peanut seed during imbibition and individual quality attributes was analyzed. The results showed that under low temperature stress condition, 3,3,5 and 43 accessions had the PSERTBT of ≥80%, 70%~80%, 60%~70% and0.5, 0.4~0.5, 0.4~0.3 and
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.16267/j.cnki.1005-3956.201702001URL [本文引用: 1]
普通野生稻是栽培稻的近缘种,含有许多特异基因,耐冷性突出,有利于耐冷性水稻品种的培育.综述了普通野生稻耐冷基因的定位与克隆、耐冷生理生化和分子机制及其在水稻耐冷性改良中的应用等研究进展,对今后普通野生稻耐冷性相关研究作了展望.
DOI:10.16267/j.cnki.1005-3956.201702001URL [本文引用: 1]
普通野生稻是栽培稻的近缘种,含有许多特异基因,耐冷性突出,有利于耐冷性水稻品种的培育.综述了普通野生稻耐冷基因的定位与克隆、耐冷生理生化和分子机制及其在水稻耐冷性改良中的应用等研究进展,对今后普通野生稻耐冷性相关研究作了展望.
,
DOI:10.1139/g00-034URL [本文引用: 1]
,
DOI:10.1016/S1673-8527(07)60049-6URLPMID:17560531 [本文引用: 1]
Peanut(Arachis hypogaea L.) is an important source crop for edible oil and protein. It is important to identify the genetic diversity of peanut genetic resources for cultivar development and evaluation of peanut accessions. Thirty-four SSR markers were used to assess the genetic variation of four sets of twenty-four accessions each from the four botanical varieties of the cultivated peanut. Among the tested accessions,ten to sixteen pairs of SSR primers showed polymorphisms. The maximum differentiation index,which was defined as the degree of genetic differentiation,was as high as 0.992 in the tested accessions. Each accession could be discriminated by a specific set of polymorphic SSR primers,and the intra-variety genetic distance was determined among accessions,with an average of 0.59 in var. fastigiata,0.46 in var. hypogaea,0.38 in var. vulgaris,and 0.17 in var. hirsuta. Dendro-grames based on genetic distances were constructed for the four botanical varieties,which revealed the existence of different clus-ters. It was concluded that there was abundant intra-variety SSR polymorphism,and with more and more SSR markers being de-veloped,the intrinsic genetic diversity would be detected and the development of genetic map and marker-assisted selection for cultivated peanut would be feasible.
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3724/SP.J.1006.2008.00025URL [本文引用: 1]
fastigiata as well as in plant height and number of total branches than Chinese peanut resource.
DOI:10.3724/SP.J.1006.2008.00025URL [本文引用: 1]
fastigiata as well as in plant height and number of total branches than Chinese peanut resource.
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3864/j.issn.0578-1752.2009.01.005URL [本文引用: 1]
【Objective】 Assessing the genetic diversity between wild and cultivated accessions of eight taxonomic groups in two species, five subspecies under Pisum genus, and analyzing the population structure and their genetic relationships among various groups of taxonomy, the study try to verify the fitness of traditionally botanical taxonomic system under Pisum genus and to provide essential information for the exploration and utilization of wild relatives of pea genetic resources. 【Method】 One hundred and ninety-seven Pisum accessions from 62 counties of five continents were employed for SSR analysis using 21 polymorphic primer pairs in this study. Except for cultivated field pea Pisum sativum subsp. sativum var. sativum (94 genotypes), also included were wild relative genotypes that were classified as P. fulvum, P. sativum subsp. abyssinicum, P. sativum subsp. asiaticum, P. sativum subsp. transcaucasicum, P. sativum subsp. elatius var. elatius, P. sativum subsp. elatius var. pumilio and P. sativum subsp. sativum var. arvense (103 genotypes). The PCA analyses and three-dimensional PCA graphs were conducted and drawn by NTSYSpc 2.2d statistical package. Nei78 genetic distances among groups of genetic resources were calculated, and cluster analysis using UPGMA method was carried out by using Popgene V1.32 statistical package, the dendrogram were drawn by MEGA3.1 statistical package. Allelic statistics were carried out by Popgene V1.32. The significance test between groups of genotypes was carried out by Fstat V2.9.3.2 statistical package.【Result】One hundred and four polymorphic bands were amplified using 21 SSR primer pairs with unambiguous unique polymorphic bands. 4.95 alleles were detected by each SSR primer pair in average, of which 65.56% were effective alleles for diversity. PSAD270, PSAC58, PSAA18, PSAC75, PSAA175 and PSAB72 were the most effective SSR pairs. SSR alleles were uniformly distributed among botanical taxon units under pisum genus, but significant difference appeared in most pairwise comparisons for genetic diversity between taxon unit based groups of genetic resources. Genetic diversity level of wild species P. fulvum was much lower than the cultivated species P. sativum. Under species P. sativum, P. sativum ssp. sativum var. sativum and P. sativum ssp. asiaticum were the highest in gentic diversity, followed by P. sativum ssp. elatius var. elatius and P. sativum ssp. transcaucasicum, P. sativum ssp. elatius var. pumilio, P. sativum ssp. sativum var. arvense and P. sativum ssp. abyssinicum were the lowest. Four gene pool clusters were detected under Pisum genus by using PCA analysis. Gene pool “fulvum” mainly consisted of wild species Pisum fulvum, gene pool “abyssinicum” mainly consisted of P. sativum ssp. abyssinicum, and gene pool “arvense” mainly consisted of P. sativum ssp. sativum var. arvense. While gene pool “sativum” were composed by five botanical taxon units, they are P. sativum ssp. asiaticum, P. sativum ssp. elatius var. elatius, P. sativum ssp. transcaucasicum, P. sativum ssp. elatius var. pumilio and P. sativum ssp. sativum var. sativum. “sativum” gene pool constructed the primary gene pool of cultivated genetic resources;“fulvum” gene pool, “abyssinicum” gene pool and “arvense” gene pool together constructed the secondary gene pool of cultivated genetic resources. Pairwise Nei78 genetic distance among botanical taxon based groups of pea genetic resources ranged from 7.531 to 35.956, three large cluster groups were identified based on the UPGMA dendrogram. Group I equals to “sativum” and “arvense” gene pools, Group II equals to “abyssinicum” gene pool, and Group III equals to “fulvum” gene pool. The UPGMA clustering results generally support the PCA clustering results.【Conclusion】 There were significant differences among most botanical groups under Pisum genus, with clear separation of four gene pools for genetic diversity structure. The research results partially support the traditional botanical taxonomy under Pisum genus, and point out its advantage and shortcoming. In order to broaden the genetic bases of pea varieties, the genetic potentials in the four gene pools should be thoroughly exploited.
DOI:10.3864/j.issn.0578-1752.2009.01.005URL [本文引用: 1]
【Objective】 Assessing the genetic diversity between wild and cultivated accessions of eight taxonomic groups in two species, five subspecies under Pisum genus, and analyzing the population structure and their genetic relationships among various groups of taxonomy, the study try to verify the fitness of traditionally botanical taxonomic system under Pisum genus and to provide essential information for the exploration and utilization of wild relatives of pea genetic resources. 【Method】 One hundred and ninety-seven Pisum accessions from 62 counties of five continents were employed for SSR analysis using 21 polymorphic primer pairs in this study. Except for cultivated field pea Pisum sativum subsp. sativum var. sativum (94 genotypes), also included were wild relative genotypes that were classified as P. fulvum, P. sativum subsp. abyssinicum, P. sativum subsp. asiaticum, P. sativum subsp. transcaucasicum, P. sativum subsp. elatius var. elatius, P. sativum subsp. elatius var. pumilio and P. sativum subsp. sativum var. arvense (103 genotypes). The PCA analyses and three-dimensional PCA graphs were conducted and drawn by NTSYSpc 2.2d statistical package. Nei78 genetic distances among groups of genetic resources were calculated, and cluster analysis using UPGMA method was carried out by using Popgene V1.32 statistical package, the dendrogram were drawn by MEGA3.1 statistical package. Allelic statistics were carried out by Popgene V1.32. The significance test between groups of genotypes was carried out by Fstat V2.9.3.2 statistical package.【Result】One hundred and four polymorphic bands were amplified using 21 SSR primer pairs with unambiguous unique polymorphic bands. 4.95 alleles were detected by each SSR primer pair in average, of which 65.56% were effective alleles for diversity. PSAD270, PSAC58, PSAA18, PSAC75, PSAA175 and PSAB72 were the most effective SSR pairs. SSR alleles were uniformly distributed among botanical taxon units under pisum genus, but significant difference appeared in most pairwise comparisons for genetic diversity between taxon unit based groups of genetic resources. Genetic diversity level of wild species P. fulvum was much lower than the cultivated species P. sativum. Under species P. sativum, P. sativum ssp. sativum var. sativum and P. sativum ssp. asiaticum were the highest in gentic diversity, followed by P. sativum ssp. elatius var. elatius and P. sativum ssp. transcaucasicum, P. sativum ssp. elatius var. pumilio, P. sativum ssp. sativum var. arvense and P. sativum ssp. abyssinicum were the lowest. Four gene pool clusters were detected under Pisum genus by using PCA analysis. Gene pool “fulvum” mainly consisted of wild species Pisum fulvum, gene pool “abyssinicum” mainly consisted of P. sativum ssp. abyssinicum, and gene pool “arvense” mainly consisted of P. sativum ssp. sativum var. arvense. While gene pool “sativum” were composed by five botanical taxon units, they are P. sativum ssp. asiaticum, P. sativum ssp. elatius var. elatius, P. sativum ssp. transcaucasicum, P. sativum ssp. elatius var. pumilio and P. sativum ssp. sativum var. sativum. “sativum” gene pool constructed the primary gene pool of cultivated genetic resources;“fulvum” gene pool, “abyssinicum” gene pool and “arvense” gene pool together constructed the secondary gene pool of cultivated genetic resources. Pairwise Nei78 genetic distance among botanical taxon based groups of pea genetic resources ranged from 7.531 to 35.956, three large cluster groups were identified based on the UPGMA dendrogram. Group I equals to “sativum” and “arvense” gene pools, Group II equals to “abyssinicum” gene pool, and Group III equals to “fulvum” gene pool. The UPGMA clustering results generally support the PCA clustering results.【Conclusion】 There were significant differences among most botanical groups under Pisum genus, with clear separation of four gene pools for genetic diversity structure. The research results partially support the traditional botanical taxonomy under Pisum genus, and point out its advantage and shortcoming. In order to broaden the genetic bases of pea varieties, the genetic potentials in the four gene pools should be thoroughly exploited.
.
[本文引用: 1]
[本文引用: 1]