删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

外源NO供体对水分亏缺下玉米叶片碳同化关键酶及抗氧化系统的影响

本站小编 Free考研考试/2021-12-26

闂傚倸鍊烽懗鍓佸垝椤栫偛绀夋俊銈呮噹缁犵娀鏌熼幑鎰靛殭闁告俺顫夐妵鍕棘閸喒鎸冮梺鍛婎殕瀹€鎼佸箖濡ゅ懏鏅查幖瀛樼箘閻╁海绱撴担椋庤窗闁革綇缍佸濠氭偄閻撳海顦ч梺鍏肩ゴ閺呮繈鎮¢崒鐐粹拺缂佸娉曢悞鍧楁煙閸戙倖瀚�2濠电姷鏁搁崑鐐哄垂閸洖绠扮紒瀣紩濞差亜惟闁冲搫顑囩粙蹇涙⒑閸︻厼鍔嬫い銊ユ瀹曠敻鍩€椤掑嫭鈷戦柛娑橈工婵箑霉濠婂懎浠辩€规洘妞介弫鎾绘偐瀹曞洤骞楅梻渚€娼х换鍫ュ磹閺嵮€妲堢憸鏃堝蓟閿濆鐒洪柛鎰典簼閸d即姊虹拠鈥虫殭闁搞儜鍥ф暪闂備焦瀵х换鍌毭洪姀銈呯;闁圭儤顨嗛埛鎴︽煕濠靛棗顏╅柍褜鍓欑紞濠囧箖闁垮缍囬柍鍝勫亞濞肩喖姊虹捄銊ユ珢闁瑰嚖鎷�
濠电姷鏁告慨浼村垂瑜版帗鍋夐柕蹇嬪€曢悙濠勬喐瀹ュ棙鍙忛柕鍫濐槹閳锋垿鏌涘☉姗堝伐缂佹甯楁穱濠囶敃閿濆洦鍒涘銈冨灪濡啯鎱ㄩ埀顒勬煏閸繃锛嶆俊顐㈠閺岋絾鎯旈婊呅i梺鍝ュУ閻楃姴鐣烽姀銈呯妞ゆ梻鏅崢鎼佹⒑閸涘﹥绀嬫繛浣冲洦鍊堕柨婵嗘娴滄粓鏌熺€涙ḿ绠栧璺哄缁辨帞鈧綆浜跺Ο鈧梺绯曟杹閸嬫挸顪冮妶鍡楀潑闁稿鎹囬弻宥囨嫚閺屻儱寮板┑锟犵畺娴滃爼寮诲鍫闂佸憡鎸婚悷鈺佺暦椤栨稑顕遍悗娑櫭禍顖氣攽閻愬弶鈻曞ù婊勭箞瀵煡顢楅崟顒€鈧爼鏌i幇顔芥毄闁硅棄鍊块弻娑㈠Χ閸ヮ灝銏ゆ婢跺绡€濠电姴鍊搁弳锝嗐亜鎼淬埄娈曢柕鍥у閸╃偤顢橀悙宸痪婵犳鍨遍幐鎶藉蓟閿熺姴鐐婇柍杞扮劍閻忎線姊洪崨濠勬喛闁稿鎹囧缁樻媴閸濄儳楔濠电偘鍖犻崱鎰睏闂佺粯鍔楅弫鍝ョ不閺冨牊鐓欓柟顖嗗苯娈堕梺宕囩帛濮婂綊骞堥妸銉庣喓鎷犻幓鎺濇浇闂備焦鎮堕崐褏绮婚幘璇茶摕闁绘棁娅i惌娆撴煙缁嬪灝顒㈤柟顔界懇濮婄儤瀵煎▎鎴犘滅紓浣哄У閻楁洟顢氶敐澶樻晝闁冲灈鏅滈悗濠氭⒑瑜版帒浜伴柛妯哄⒔缁瑩宕熼娑掓嫼闂佸湱枪濞寸兘鍩ユ径鎰厸闁割偒鍋勬晶瀵糕偓瑙勬礀缂嶅﹥淇婂宀婃Ъ婵犳鍨伴妶鎼佸蓟濞戞ǚ妲堟慨妤€鐗婇弫鍓х磽娴e搫校閻㈩垳鍋ら崺鈧い鎺嗗亾闁诲繑鑹鹃…鍨潨閳ь剟骞冭瀹曞崬霉閺夋寧鍠樼€规洜枪铻栧ù锝夋櫜閻ヮ亪姊绘担渚敯闁规椿浜浠嬪礋椤栨稒娅栭梺鍝勭▉閸樹粙鎮¤箛娑欑厱闁斥晛鍟粈鈧銈忕岛閺嗘竼e濠电姷鏁告慨浼村垂閸︻厾绀婂┑鐘叉搐閻掑灚銇勯幒宥堝厡闁愁垱娲熼弻鏇㈠幢濡も偓閺嗭綁鏌$仦鍓ф创妤犵偞甯¢獮瀣倻閸℃﹩妫у┑锛勫亼閸婃牜鏁悙鍝勭獥闁归偊鍠氶惌娆忊攽閻樺弶澶勯柛瀣姍閺岋綁濮€閵忊剝姣勯柡浣哥墦濮婄粯鎷呯粙鎸庡€┑鐘灪閿曘垹鐣烽娑橆嚤閻庢稒锚娴滎垶姊洪崨濠勭畵濠殿垵椴搁幆鏃堝閿涘嫮肖婵$偑鍊栭崝妤呭窗鎼淬垻顩插Δ锝呭暞閻撴盯鏌涢妷锝呭闁汇劍鍨块弻锝夋偄閸欏鐝旈梺瀹犳椤︾敻鐛Ο鑲╃闁绘ê宕銏′繆閻愵亜鈧牕煤濠靛棌鏋嶉柡鍥╁亶缂傛岸鐓崶銊р槈鐎瑰憡绻冮妵鍕箻濡も偓閸燁垶顢欓敓锟�20婵犲痉鏉库偓妤佹叏閻戣棄纾婚柣妯款嚙缁犲灚銇勮箛鎾搭棡妞ゎ偅娲樼换婵嬫濞戝崬鍓扮紓浣哄У閸ㄥ潡寮婚妶鍡樺弿闁归偊鍏橀崑鎾澄旈埀顒勫煝閺冨牆顫呴柣妯烘閹虫捇銈导鏉戠闁冲搫锕ラ敍鍛磽閸屾瑧顦︽い锔诲灦椤㈡岸顢橀姀鐘靛姦濡炪倖宸婚崑鎾寸節閳ь剟鏌嗗鍛紱闂佺粯姊婚崢褔寮告笟鈧弻鏇㈠醇濠垫劖效闂佺ǹ楠哥粔褰掑蓟濞戙垹鍗抽柕濞垮劚椤晠姊烘导娆戠暠缂傚秴锕獮鍐ㄎ旈崘鈺佹瀭闂佸憡娲﹂崣搴ㄥ汲閿熺姵鈷戦柛婵嗗椤ユ垿鏌涚€n偅宕屾慨濠冩そ瀹曨偊宕熼崹顐嵮囨⒑閸涘﹥鈷愰柣妤冨█楠炲啴鏁撻悩铏珫闂佸憡娲﹂崜娆撴偟娴煎瓨鈷戦梻鍫熺〒缁犳岸鏌涢幘瀵哥疄闁诡喒鈧枼鏋庨柟閭﹀枤椤旀洘绻濋姀锝嗙【妞ゆ垵妫涚划鍫ュ焵椤掑嫭鍊垫繛鍫濈仢濞呭秹鏌¢埀顒勫础閻戝棗娈梺鍛婃处閸嬫帡宕ョ€n喗鐓曢柡鍥ュ妼楠炴ɑ淇婇崣澶婄伌婵﹥妞藉畷顐﹀礋椤愮喎浜惧ù鐘差儜缂嶆牕顭跨捄鐑樻拱闁稿繑绮撻弻娑㈩敃閿濆棛顦ㄩ梺鍝勬媼閸撶喖骞冨鈧幃娆撴濞戞顥氱紓鍌欒兌婵數鏁垾鎰佹綎濠电姵鑹鹃悙濠囨煥濠靛棙鍣稿瑙勬礋濮婃椽鎳¢妶鍛€惧┑鐐插级閸ㄥ潡骞婂Δ鍐╁磯閻炴稈鍓濋悘渚€姊虹涵鍛涧闂傚嫬瀚板畷鏇㈠箣閿旇棄鈧敻鏌ㄥ┑鍡涱€楁鐐瘁缚缁辨帡鎮╁畷鍥р拰闂佸搫澶囬崜婵嗩嚗閸曨偀妲堟繛鍡楁禋娴硷拷
杨青华,, 郑博元, 李蕾蕾, 贾双杰, 韩心培, 郭家萌, 王泳超, 邵瑞鑫,*河南农业大学农学院, 河南郑州450046

Effect of Exogenous Nitric Oxide Donor on Carbon Assimilation and Antioxidant System in Leaves of Maize Seedlings under PEG-induced Water Deficit Stress

YANG Qing-Hua,, ZHENG Bo-Yuan, LI Lei-Lei, JIA Shuang-Jie, HAN Xin-Pei, GUO Jia-Meng, WANG Yong-Chao, SHAO Rui-Xin,*College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China

通讯作者: * 通信作者(Corresponding author): 邵瑞鑫, E-mail: shao_rui_xin@126.com, Tel: 0371-56990239

第一联系人: 第一作者联系方式:E-mail: yangqh2010@163.com, Tel: 0371-56990239
收稿日期:2017-12-22接受日期:2018-06-12网络出版日期:2018-07-02
基金资助:本研究由国家自然科学基金项目(31401304)资助.


Received:2017-12-22Accepted:2018-06-12Online:2018-07-02
Fund supported: This study was supported by the National Natural Science Foundation of China (31401304).


摘要
为了探讨外源NO供体(硝普钠, SNP)对水分亏缺下玉米叶片碳同化关键酶及抗氧化系统的影响及其调控机制, 在20% PEG-6000模拟水分亏缺胁迫下, 研究了SNP对玉米品种驻玉309幼苗叶片光合碳同化核酮糖-1,5-二磷酸羧化/加氧酶(Rubisco)和Rubisco活化酶(RCA)活性及其基因表达、抗氧化酶活性及其同工酶谱变化的影响。结果表明, 在水分亏缺胁迫下, SNP显著上调玉米叶片rbc L、rbc S、rca β基因的相对表达量, 尤其是叶片rbc S基因的相对表达量增加1.86倍, 叶片Rubisco、RCA活性分别提高32.7%和14.67%; 叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性及其同工酶谱带的宽度和亮度显著增强, 而ROS积累量明显降低。说明在PEG水分亏缺胁迫下, SNP能显著提升玉米幼苗叶片光合碳同化能力及抗氧化酶活性, 降低ROS积累及其对细胞膜造成的损伤, 提高玉米的抗干旱性。
关键词: 外源一氧化氮;水分亏缺;玉米幼苗;光合碳同化;抗氧化系统同工酶

Abstract
The objective of this study was to explore the effect of exogenous nitric oxide (NO) donor (sodium nitroprusside, SNP) on key enzymes of carbon assimilation and antioxidant system of maize leaves under water deficit and its regulation mechanism. In this experiment, 20% PEG-6000 was used to stimulate water deficit stress, exogenous SNP was added into root rhizosphere of seedlings in maize variety Zhuyu 309. After three days of stresses, the changes of Rubisco and RCA activities and their gene level, antioxidase activity and their isoenzyme spectrum level were investigated. The expression levels of rbc L, rbc S, rca β were increased significantly, especially for rbc S that was increased the most by 1.86 fold, which resulted in up-regulation of Rubisco and RCA activities by 32.7% and 14.67% under exogenous SNP plus PEG stress. In addition, SNP enhanced the activity of SOD, POD, CAT, and the width in their isoenzyme spectrum, resulting in significant reduction of ROS accumulation. These results suggested that NO could increase photosynthetic carbon assimilation capacity and antioxidase activity, alleviate the damage of ROS burst on the cell membrane, which enhances PEG-simulated water deficit resistance of maize seedlings.
Keywords:exogenous nitric oxide;water deficit;maize seedlings;carbon assimilation;antioxidant system


PDF (1883KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
杨青华, 郑博元, 李蕾蕾, 贾双杰, 韩心培, 郭家萌, 王泳超, 邵瑞鑫. 外源NO供体对水分亏缺下玉米叶片碳同化关键酶及抗氧化系统的影响[J]. 作物学报, 2018, 44(9): 1393-1399. doi:10.3724/SP.J.1006.2018.01393
YANG Qing-Hua, ZHENG Bo-Yuan, LI Lei-Lei, JIA Shuang-Jie, HAN Xin-Pei, GUO Jia-Meng, WANG Yong-Chao, SHAO Rui-Xin. Effect of Exogenous Nitric Oxide Donor on Carbon Assimilation and Antioxidant System in Leaves of Maize Seedlings under PEG-induced Water Deficit Stress[J]. Acta Crops Sinica, 2018, 44(9): 1393-1399. doi:10.3724/SP.J.1006.2018.01393


水资源短缺是制约全球农业生产发展的一个严峻生态问题[1], 目前我国水资源已成为限制粮食持续增产的主要瓶颈。玉米作为我国第一大粮食作物, 在国家粮食安全中起着重要作用。近年来, 由于气候的变化, 我国约有60%的玉米面积受到干旱影响, 每年因旱灾减产15%~20%, 干旱灾害已成为制约玉米持续增产的关键生态因素[2]。因此, 提高玉米的抗旱性, 对实现玉米可持续生产及保障国家粮食安全具有十分重要的现实意义。

光合作用作为植物生长发育关键的代谢过程, 对干旱胁迫反应非常敏感[3,4]。在水分亏缺下, 光合作用的下调与叶绿体内的核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)、Rubisco活化酶(RCA)、磷酸烯醇丙酮酸羧化酶、丙酮酸磷酸激酶、NADP-苹果酸脱氢酶等光合酶活性的变化有关[5]。其中, Rubisco和RCA是在光合作用中固定CO2的关键酶, 研究表明耐旱型植株在干旱胁迫后Rubisco和RCA具有相对较高的酶活性和转录水平[6,7]。光合碳同化对干旱胁迫的适应性主要通过调节其基因表达来实现, 已表明Rubisco大亚基rbc L由叶绿体基因编码, 小亚基rbc S由核基因编码, 二者在受到干旱胁迫时的表达量明显影响着植物对胁迫的适应性[3]。此外, 植物抵御不利环境的能力还与其细胞具有较强的抗氧化能力密切相关, 因为生物体处于逆境下时, 体内的抗氧化酶同工酶表达会发生显著的变化, 若维持较高的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性及类胡萝卜素(Car)、抗坏血酸(AsA)含量, 以降低膜质过氧化程度, 可提高植物的抗逆性[8]

一氧化氮(NO)调节植物的生长和发育, 是逆境胁迫下植物防御响应的信号分子, 被确认为是一种新的植物生长调节物质[9,10]。近年来, 较多研究报道了外源NO供体(硝普钠, SNP)提高植物的抗旱性。SNP可诱导小麦D1蛋白快速周转以激活失去活性的PSII反应中心, 维持较高的PSII最大光化学效率, 保护叶绿体结构不受干旱胁迫下ROS积累的破坏[11,12]; 能促进红芸豆叶片SOD、CAT、POD同工酶的表达, 提高干旱胁迫下小麦、水稻叶片保护酶的活性, 从而增强细胞膜的稳定性[13,14,15]。但这些研究主要集中在小麦、水稻、拟南芥等作物, 而关于SNP对水分亏缺下玉米叶片碳同化关键酶及抗氧化系统的影响及其调控机制研究还未见报道。本文在前期试验基础上, 深入探讨了SNP在PEG模拟水分亏缺胁迫下对玉米叶片碳同化相关酶Rubisco、RCA及其基因表达和抗氧化酶系统活性及其同工酶谱的影响, 旨在明确SNP的调控机制, 并为生产上利用SNP提高玉米抗旱性提供理论依据。

1 材料与方法

1.1 试验材料

精选水分敏感玉米品种驻玉309 [16]的种子, 用1.8% (v/v)次氯酸钠表面消毒5 min, 蒸馏水反复冲洗后, 浸种10 h, 在25°C恒温培养箱内暗催芽4 d, 转入1/2 Hoagland 营养液中培养至三叶一心, 改用全营养液培养, 同时用100 μmol L-1的SNP预处理3 d (四叶一心), 20% PEG-6000 (-0.8 MPa)模拟中度水分亏缺胁迫处理3 d, 处理期间每天更换营养液。幼苗生长的昼/夜温度为(27 ± 1) °C /(22 ± 1) °C, 光强为250 μmol m-2 s-1, 湿度为(60 ± 5)%。在前期试验的基础上设4个处理, 即CK (0% PEG, 对照)、SNP (100 μmol L-1 SNP)、PEG (20% PEG)、SNP + PEG (100 μmol L-1 SNP + 20% PEG), 每个处理重复3次, 每盆定苗12株[盆大小为21 cm ×16 cm × 13 cm (长×宽×高)]。在胁迫后第3天选取完全展开的倒二叶于液氮中保存, 选取叶片中部, 除去叶脉, 进行生理生化指标和Real time PCR检测。

1.2 测定项目与方法

1.2.1 活性氧含量、抗氧化系统、Rubisco和RCA活性的测定 根据李忠光和龚明方法测定O2-产生速率[17]。采用硫酸钛比色法测定H2O2含量[18]。参照邹琦[19]的方法略加改进测定SOD、POD、CAT的活性。

采用植物酶联免疫分析试剂盒(苏州科铭生物技术有限公司生产)测定Rubisco、RCA活性。取叶片中部0.1 g, 置研钵中加液氮及1%不溶性PVP研磨, 加入1.9 mL预冷提取液(50 mmol L-1 HEPES- KOH pH 7.0, 1 mmol L-1 EDTA, 5 mmol L-1 MgCl2, 0.4 mmol L-1 ATP, 15 mmol L-1 DTT, 1 mmol L-1 PMSF, 2 mmol L-1 Benzamidine, 0.01 mmol L-1 Leupeptin), 磨成均浆, 15 000 × g离心10 min, 上清液用于测定酶活性。

1.2.2 Rubisco和RCA基因的Real-time PCR分析

根据GenBank已上传编码D1蛋白的编码Rubisco的小亚基蛋白rbc S基因序列、编码Rubisco大亚基蛋白rbc L基因序列、编码RCA蛋白的rca β基因序列同源性设计Real-time PCR的引物, 选其内参基因为actin, 利用DNAMAN和Premier 5.0软件依据GenBank 已上传的序列(GI: 1498383; GI: 1498383)的同源性设计引物序列(表1)。

Table 1
表1
表1本实验引物序列
Table 1Primers used in this study
引物名称
Primer name
序列
Sequence (5'-3')
Tm
(°C)
actin-FCTGAACCCCAAGGCAAACA59.0
actin-RACTGGCGTACAGGGAAAGAA57.3
rca β-FTCCTTGAGACCTTCTTGACGG59.8
rca β-RATCGCCTTGAACCTGCTGT57.8
rbc L-FCCGTTTCGTCTTTTGTGCC58.9
rbc L-RTGCGGTGAATCCTCCTGTT58.3
rbc S-FCGCTACTGGACCATGTGGAA59.1
rbc S-RACTGCGTCTGCTTGATGTTGT58.1

新窗口打开|下载CSV

在20 μL反应体系中包含10 μL SYBR Green QPK-201、0.8 μL正义及反义端的引物、1 μL cDNA模板以及7.4 μL ddH2O。PCR条件为95°C预变性3min; 95°C变性7 s, 57°C退火10 s, 72°C延伸10 s, 40个循环; 72°C延伸10 min, 65~95°C溶解曲线。

以actin基因作为内参, 采用相对定量方法, 通过比较CT值法(2-ΔΔCT法)进行荧光定量数据分析。

改变的倍数=2-ΔΔCT, ΔΔCT=(CT靶基因-CT内参)处理组-(CT靶基因-CT内参)未处理组

1.2.3 抗氧化酶同工酶的测定 准确称取1 g叶片, 加入少量提样缓冲液, 置冰浴研磨匀浆后定容至5 mL, 10 000×g离心15 min, 上清液为可溶性蛋白的粗提液, 用考马斯亮蓝染色法测定蛋白质含量, 粗提液贮于冰箱备用。参照李文鹤[20]的方法对SOD、POD、CAT的同工酶染色测定。

1.3 数据分析

采用SPSS 19.0软件对数据进行统计分析, 并用SigmaPlot 10.0软件作图。

2 结果与分析

2.1 NO对干旱胁迫下玉米叶片Rubisco活性以及RCA活性的影响

干旱条件下, 玉米叶片Rubisco及RCA活性与CK相比分别降低了42.3%和33.3% (图1)。SNP + PEG处理的幼苗, 其叶片Rubisco及RCA的活性分别较PEG胁迫处理上升32.70%和14.67%, 而单独的SNP处理之后, 其玉米幼苗叶片的RCA活性与CK无显著差异, 叶片Rubisco活性则较CK有所降低。

图1

新窗口打开|下载原图ZIP|生成PPT
图1外源NO对干旱胁迫下玉米幼苗Rubisco活性(A)及活化酶RCA活性(B)的影响
处理CK、SNP、PEG、SNP + PEG分别为0% PEG、100 μmol L-1 SNP、20% PEG和100 μmol L-1 SNP + 20% PEG。


Fig. 1Effects of exogenous NO on the Rubisco activity (A) and RCA activity (B) in leaves of maize seedlings under drought stress
Treatments including CK, SNP, PEG, and SNP + PEG indicate 0% PEG, 100 μmol L-1 SNP, 20% PEG, and 100 μmol L-1 SNP + 20% PEG, respectively.




2.2 NO对干旱胁迫下玉米叶片rbc L、rbc S、rca β基因表达水平的影响

干旱胁迫后, 玉米叶片rbc L基因的相对转录水平下降, 而rbc S基因的相对转录水平略有上升(图2), rcaβ基因的相对表达量较CK降低了77.1%; SNP + PEG处理的幼苗, 其叶片rbc L、rbc S和rca β基因的转录水平较PEG处理分别提高73.4%、78.1%和109.1%; 单独SNP处理之后的幼苗, 其叶片rbc L、rbc S和rca β基因的相对表达量与CK无显著差异。

图2

新窗口打开|下载原图ZIP|生成PPT
图2外源NO对干旱胁迫下玉米rbc S (A)、rbc L (B)和rca β (C)的影响
处理CK、SNP、PEG、SNP + PEG分别为0% PEG、100 μmol L-1 SNP、20% PEG和100 μmol L-1 SNP + 20% PEG。


Fig. 2Effects of exogenous NO on the expression of rbc S (A), rbc L (B), and rca β (C) in leaves of maize seedlings under drought stress
Treatments including CK, SNP, PEG, and SNP + PEG indicate 0% PEG, 100 μmol L-1 SNP, 20% PEG, and 100 μmol L-1 SNP + 20% PEG, respectively.




2.3 NO对干旱胁迫下玉米叶片ROS积累的影响

干旱条件下, 玉米幼苗叶片的O2-和H2O2含量均显著升高(图3), 与CK相比分别上升284.3%和21.0%。SNP + PEG处理的幼苗, 其叶片O2-、H2O2含量比干旱处理分别降低了27.4%和17.9%, 而单独的SNP处理之后, 其叶片O2-、H2O2含量与CK无显著差异。这表明NO预处理可明显改善干旱胁迫条件下玉米幼苗叶片活性氧的积累。

图3

新窗口打开|下载原图ZIP|生成PPT
图3外源NO处理对干旱胁迫下玉米幼苗O2-(A)和H2O2(B)含量的影响
处理CK、SNP、PEG、SNP + PEG分别为0% PEG、100 μmol L-1 SNP、20% PEG和100 μmol L-1 SNP + 20% PEG。


Fig. 3Effects of exogenous NO on O2-(A) and H2O2(B) contents in leaves of maize seedlings under drought stress
Treatments including CK, SNP, PEG, and SNP + PEG indicate 0% PEG, 100 μmol L-1 SNP, 20% PEG, and 100 μmol L-1 SNP + 20% PEG, respectively.




2.4 NO对干旱胁迫下玉米叶片抗氧化酶活性及其同工酶的影响

干旱胁迫和单独SNP处理与CK相比, 玉米幼苗叶片SOD活性分别提高66.5%和108.1%。SNP预处理之后进行干旱胁迫, 其活性进一步增加, 较PEG处理提升37.7% (图4-A)。SNP 处理和PEG胁迫后SOD同工酶谱带(图4-B)的宽度和亮度都高于CK, 尤其是SNP处理。

图4

新窗口打开|下载原图ZIP|生成PPT
图4外源NO处理对干旱胁迫下玉米幼苗SOD活性(A)及SOD同工酶(B)的影响
处理CK、SNP、PEG、SNP + PEG分别为0% PEG、100 μmol L-1 SNP、20% PEG和100 μmol L-1 SNP + 20% PEG。


Fig. 4Effects of exogenous NO on SOD activity (A) and SOD isoenzyme (B) in leaves of maize seedlings under drought stress
Treatments including CK, SNP, PEG, and SNP + PEG indicate 0% PEG, 100 μmol L-1 SNP, 20% PEG, and 100 μmol L-1 SNP + 20% PEG, respectively.




玉米幼苗叶片的POD和CAT活性在PEG胁迫后分别较CK降低33.3%和56.0% (图5-A, 6-A)。单独SNP处理之后, 其叶片的POD活性较CK提高10.8%, 而叶片CAT酶活性与CK差异不显著。SNP + PEG处理的幼苗, 其叶片的POD、CAT活性与PEG处理相比分别提高25.0%和67.9%。图5-B和图6-B结果显示, PEG胁迫处理叶片的POD、CAT同工酶谱带在宽度和亮度上弱于CK, 单独SNP预处理之后, 增强不显著, 而SNP + PEG处理的幼苗叶片POD、CAT同工酶谱带, 较PEG胁迫处理的宽度和亮度明显增强。

图5

新窗口打开|下载原图ZIP|生成PPT
图5外源NO处理对干旱胁迫下玉米幼苗POD活性(A)及POD同工酶(B)的影响
处理CK、SNP、PEG、SNP + PEG分别为0% PEG、100 μmol L-1 SNP、20% PEG和100 μmol L-1 SNP + 20% PEG。


Fig. 5Effects of exogenous NO on POD activity (A) and POD isoenzyme (B) in leaves of maize seedlings under drought stress
Treatments including CK, SNP, PEG, and SNP + PEG indicate 0% PEG, 100 μmol L-1 SNP, 20% PEG, and 100 μmol L-1 SNP + 20% PEG, respectively.




图6

新窗口打开|下载原图ZIP|生成PPT
图6外源NO处理对干旱胁迫下玉米幼苗CAT活性(A)及CAT同工酶(B)的影响
处理CK、SNP、PEG、SNP + PEG分别为0% PEG、100 μmol L-1 SNP、20% PEG和100 μmol L-1 SNP + 20% PEG。


Fig. 6Effects of exogenous NO on CAT activity (A) and CAT isoenzyme (B) in leaves of maize seedlings under drought stress
Treatments including CK, SNP, PEG, and SNP + PEG indicate 0% PEG, 100 μmol L-1 SNP, 20% PEG, and 100 μmol L-1 SNP + 20% PEG, respectively.




3 讨论

光合作用是植物生命活动过程中的重要组成部分, 已有的研究结果表明, 水分亏缺胁迫引起光合作用能力下降主要是因为非气孔因素限制[16], 与Rubisco活性和激活状态有关, 而Rubisco在植物体内的活性取决于RCA对它的活化[5]。在水分亏缺胁迫下, Rubisco和RCA的活性下降会影响叶片的气体交换和光合作用的正常进行[21]。Rubisco由8个大亚基和8个小亚基组成, 大亚基由叶绿体基因rbc L编码, 小亚基由细胞核中的多基因家族rbc S编码[22]。而且不同植物RCA亚基的数量和种类也不相同, 但玉米中只发现了β亚基[23]。本试验结果表明, 玉米叶片Rubisco和RCA的活性及rbc L、rca β基因表达量在水分亏缺时均显著降低, 而rbc S基因的表达量略有上升, 这与前人对水分亏缺胁迫下番茄、水稻、拟南芥等植物叶片rbc S基因表达量急剧下降的研究结果不一致, 说明rbc S基因对环境的敏感程度可能因植物种类不同而异。NO作为新型的植物生长调节物质, 研究表明外源NO可通过上调光合碳同化过程中相关酶基因的mRNA表达水平, 提高NaCl胁迫下番茄Rubisco和RCA活性[24]。本试验结果也证明了外源NO能上调Rubisco和 RCA的活性及rbc L、rbc S、rca β基因表达, 有利于增强CO2的同化效率和光合电子传递效率, 并促进光反应同化力(NADPH和ATP)的积累, 增加 RuBP固定CO2的量, 从而提高 Rubisco的羧化效率。

ROS产生的主要部位是在叶绿体和线粒体, 研究表明干旱条件下光合作用的下调与抗氧化酶的活性有关[25]。SOD、POD和CAT是植物组织内重要的抗氧化酶, 它们通过清除O2-、·OH和H2O2来减少ROS对叶绿体细胞膜的伤害、减轻膜质过氧化和稳定膜的透性[26]。当植物处于逆境时, 体内的抗氧化酶活性及同工酶表达升高, 是保障植物光合作用正常进行的重要酶系统[27]。而在本试验中, 水分亏缺胁迫后, 玉米幼苗叶片仅SOD活性上升及同工酶谱带增宽, CAT、POD活性的下降引起了ROS类物质O2-和H2O2大量积累, 抗氧化防御系统作用减弱, 体内自由基不能被完全清除而造成玉米叶片膜脂过氧化损伤, 从而导致了玉米光合碳同化能力下降。NO本身是一个活性氮中间体(RNS), 低浓度NO可通过各种方式与ROS作用并发挥抗氧化胁迫功能[3,10,28]。外源NO处理后抗氧化酶SOD、CAT、POD活性的提高, 及其同工酶带宽度和亮度增强, 表明了NO对细胞内ROS的动态平衡和细胞膜稳定性的调控作用, 预示着NO对植物光合作用的调节作用与其对抗ROS代谢水平的调节也密切相关。

4 结论

水分亏缺诱导的NO调节物质在玉米抗旱机制中扮演着非常重要的角色, 外源NO预处理可以提高干旱胁迫条件下玉米幼苗叶片的光合碳同化能力和抗氧化酶活性, 缓解干旱胁迫对叶片光合作用的抑制。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。


参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

山仑 . 科学应对农业干旱
干旱地区农业研究, 2011,29(2):1-5

[本文引用: 1]

Shan L. To cope rationally with agricultural drought.
Agric Res Arid Areas, 2011 29(2):1-5 (in Chinese with English abstract)

[本文引用: 1]

付凤玲, 阎雨, 刘卫国, 李晚忱 . 玉米海藻糖含量测定及其合成酶(TPS)基因序列分析
核农学报, 2011,25:1107-1116

[本文引用: 1]

Fu F L, Yan Y, Liu W G, Li W Z . Test of trehalose content and sequence analysis of trehalosephosphate synthase gene (TPS) in maize
Acta Agric Nucl Sin, 2011,25:1107-1116 (in Chinese with English abstract)

[本文引用: 1]

Pinheiro C, Chaves M M . Photosynthesis and drought: can we make metabolic connections from available data?
J Exp Bot, 2011,62:869-882

DOI:10.1093/jxb/erq340URLPMID:21172816 [本文引用: 3]
Abstract Photosynthesis is one of the key processes to be affected by water deficits, via decreased CO2 diffusion to the chloroplast and metabolic constraints. The relative impact of those limitations varies with the intensity of the stress, the occurrence (or not) of superimposed stresses, and the species we are dealing with. Total plant carbon uptake is further reduced due to the concomitant or even earlier inhibition of growth. Leaf carbohydrate status, altered directly by water deficits or indirectly (via decreased growth), acts as a metabolic signal although its role is not totally clear. Other relevant signals acting under water deficits comprise: abscisic acid (ABA), with an impact on stomatal aperture and the regulation at the transcription level of a large number of genes related to plant stress response; other hormones that act either concurrently (brassinosteroids, jasmonates, and salycilic acid) or antagonistically (auxin, cytokinin, or ethylene) with ABA; and redox control of the energy balance of photosynthetic cells deprived of CO2 by stomatal closure. In an attempt to systematize current knowledge on the complex network of interactions and regulation of photosynthesis in plants subjected to water deficits, a meta-analysis has been performed covering >450 papers published in the last 15 years. This analysis shows the interplay of sugars, reactive oxygen species (ROS), and hormones with photosynthetic responses to drought, involving many metabolic events. However, more significantly it highlights (i) how fragmented and often non-comparable the results are and (ii) how hard it is to relate molecular events to plant physiological status, namely photosynthetic activity, and to stress intensity. Indeed, the same data set usually does not integrate these different levels of analysis. Considering these limitations, it was hard to find a general trend, particularly concerning molecular responses to drought, with the exception of the genes ABI1 and ABI3. These genes, irrespective of the stress type (acute versus chronic) and intensity, show a similar response to water shortage in the two plant systems analysed (Arabidopsis and barley). Both are associated with ABA-mediated metabolic responses to stress and the regulation of stomatal aperture. Under drought, ABI1 transcription is up-regulated while ABI3 is usually down-regulated. Recently ABI3 has been hypothesized to be essential for successful drought recovery.

张兴华, 高杰, 杜伟莉, 张仁和, 薛吉全 . 干旱胁迫对玉米品种苗期叶片光合特性的影响
作物学报, 2015,41:154-159

[本文引用: 1]

Zhang X H, Gao J, Du W L, Zhang R H, Xue J Q . Effects of drought stress on photosynthetic characteristics of maize hybrids at seedling stage
Acta Agron Sin, 2015,41:154-159 (in Chinese with English abstract)

[本文引用: 1]

Kaiser E, Morales A, Harbinson J, Kromdijk J, Heuvelink E, Marcelis L F . Dynamic photosynthesis in different environmental conditions
J Exp Bot, 2014,66:2415-2426

DOI:10.1093/jxb/eru406URLPMID:25324402 [本文引用: 2]
Abstract Incident irradiance on plant leaves often fluctuates, causing dynamic photosynthesis. Whereas steady-state photosynthetic responses to environmental factors have been extensively studied, knowledge of dynamic modulation of photosynthesis remains scarce and scattered. This review addresses this discrepancy by summarizing available data and identifying the research questions necessary to advance our understanding of interactions between environmental factors and dynamic behaviour of photosynthesis using a mechanistic framework. Firstly, dynamic photosynthesis is separated into sub-processes related to proton and electron transport, non-photochemical quenching, control of metabolite flux through the Calvin cycle (activation states of Rubisco and RuBP regeneration, and post-illumination metabolite turnover), and control of CO090202 supply to Rubisco (stomatal and mesophyll conductance changes). Secondly, the modulation of dynamic photosynthesis and its sub-processes by environmental factors is described. Increases in ambient CO090202 concentration and temperature (up to ~3500°C) enhance rates of photosynthetic induction and decrease its loss, facilitating more efficient dynamic photosynthesis. Depending on the sensitivity of stomatal conductance, dynamic photosynthesis may additionally be modulated by air humidity. Major knowledge gaps exist regarding environmental modulation of loss of photosynthetic induction, dynamic changes in mesophyll conductance, and the extent of limitations imposed by stomatal conductance for different species and environmental conditions. The study of mutants or genetic transformants for specific processes under various environmental conditions could provide significant progress in understanding the control of dynamic photosynthesis. 0008 The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

Chew J . I am kneeling on the outside, but I am standing on the inside: another look at the story of naaman through the lenses of Kraft
Asbury J, 2015,70:5

[本文引用: 1]

Zhang J, Du H, Chao M, Yin Z, Yang H, Li Y, Huang F, Yu D . Identification of two bZIP transcription factors interacting with the promoter of soybean rubisco activase gene (GmRCAα)
Front Plant Sci, 2016,7:628

[本文引用: 1]

Cao B, Ma Q, Zhao Q, Wang L, Xu K . Effects of silicon on absorbed light allocation, antioxidant enzymes and ultrastructure of chloroplasts in tomato leaves under simulated drought stress
Sci Hortic, 2015,194:53-62

[本文引用: 1]

Gonorazky G, Distéfano A M, García-Mata C, Lamattina L, Laxalt A M. Phospholipases in nitric oxide-mediated plant signaling. In: Phospholipases in Plant Signaling. Signaling and Communication in Plants
Berlin: Springer, 2014. pp 135-158

[本文引用: 1]

Khan M N, Mobin M, Mohammad F , Corpas F J, eds. Nitric Oxide Action in Abiotic Stress Responses in Plants.Springer International Publishing, 2015. pp 21-41
[本文引用: 2]

邵瑞鑫, 上官周平 . 外源一氧化氮供体SNP对受旱小麦光合色素含量和PSII光能利用能力的影响
作物学报, 2008,34:818-822

[本文引用: 1]

Shao R X , Shang-Guan Z P. Effects of exogenous nitric oxide donor sodium nitroprusside on photosynthetic pigment content and light use capability of PSII in wheat under water stress
Acta Agron Sin, 2008,34:818-822 (in Chinese with English abstract)

[本文引用: 1]

李利红 . 水杨酸、Ca 2+和 NO 对高温强光胁迫下小麦叶绿体 D1蛋白和PSII功能的调节作用. 河南农业大学博士学位论文,
河南郑州, 2010

[本文引用: 1]

Li L H . Regulation of Exogenous Salicylic Acid, Calcium and Nitric Oxide to D1 Protein and Function of Photosystem II in Wheat (Triticum asetinum L.) Leaves under Heat and High Irradiance Stress.
PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2010 ( in Chinese with English abstract)

[本文引用: 1]

Tan J, Zhao H, Hong J, Han Y, Li H, Zhao W . Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress
World J Agric Sci, 2008,4:307-313

[本文引用: 1]

Farooq M Basra S M A, Wahid A, Rehman H. , Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.).
J Agric Crop Sci, 2009,195:254-261

[本文引用: 1]

施溯筠, 陈翠云 . 外源一氧化氮供体SNP对UV-B辐射下红芸豆叶片中SOD、CAT和POD同工酶的影响
兰州大学学报(自科科学版), 2009,45(4):78-82

[本文引用: 1]

Shi S Y, Chen C Y . Effect of SNP: a NO donor on antioxidative enzymes of bean by UV-B irradiation
J Lanzhou Univ (Nat Sci), 2009,45(4):78-82 (in Chinese with English abstract)

[本文引用: 1]

邵瑞鑫, 李蕾蕾, 郑会芳, 张寄阳, 杨慎娇, 马野, 信龙飞, 苏小雨, 冉午玲, 毛俊, 郑博元, 杨青华 . 外源一氧化氮对干旱胁迫下玉米幼苗光合作用的影响
中国农业科学, 2016,49:251-259

[本文引用: 2]

Shao R X, Li L L, Zheng H F, Zhang J Y, Yang S J, Ma Y, Xin L F, Su X Y, Ran W L, Mao J, Zheng B Y, Yang Q H . Effects of exogenous nitric oxide on photosynthesis of maize seedlings under drought stress
Sci Agric Sin, 2016,49:251-259 (in Chinese with English abstract)

[本文引用: 2]

李忠光, 龚明 . 植物中超氧阴离子自由基测定方法的改进
云南植物研究, 2005,27:211-216

[本文引用: 1]

Li Z G, Gong M . Improvement of measurement method for superoxide anion radical in plant
Acta Bot Yunnan, 2005,27:211-216 (in Chinese with English abstract)

[本文引用: 1]

Zhao L, Shi L, Zhao L C, Shi LG . Metabolism of hydrogen peroxide between univoltine and polyvoltine strains of silkworm (Bombyx mori).
Comp Biochem Physiol B: Biochem Mol Biol, 2009,152:339-345

[本文引用: 1]

邹琦 . 植物生理学实验指导. 北京: 中国农业出版社, 2001. pp 166-170
[本文引用: 1]

Zou Q. Experimental Guide for Plant Physiology. Beijing: China Agriculture Press, 2001.pp 166-170(in Chinese)
[本文引用: 1]

李文鹤 . 干旱胁迫对野菊生理特性的影响. 东北林业大学硕士学位论文,
黑龙江哈尔滨, 2011

[本文引用: 1]

Li W H . Effect of Drought Stress on Physiological Characteristics of Dendrathema indicum L. MS Thesis of Northeast Forestry University,
Harbin, Heilongjiang,China, 2011 ( in Chinese with English abstract)

[本文引用: 1]

李翔, 桑勤勤, 束胜, 孙锦, 郭世荣 . 外源油菜素内酯对弱光下番茄幼苗光合碳同化关键酶及其基因的影响
园艺学报, 2016,43:2012-2020

[本文引用: 1]

Li X, Sang Q Q, Su S, Sun J, Guo S R . Effects of epibrassinolide on the activities and gene expression of photosynthetic enzymes in tomato seedlings under low light
Acta Hortic Sin, 2016,43:2012-2020 (in Chinese with English abstract)

[本文引用: 1]

徐思 . 利用Rubisco编码基因探究BBCC基因组四倍体的核质互作. 曲阜师范大学硕士学位论文,
山东曲阜, 2015

[本文引用: 1]

Xu S . Exploring Nuclear and Cytoplasmic Interaction of BBCC Genome Tetraploid Using Rubisco Coding Gene. MS Thesis of Qufu Normal University
Qufu, Shandong, China, 2011 ( in Chinese with English abstract)

[本文引用: 1]

Yin Z, Zhang Z, Deng D, Chao M, Gao Q, Wang Y, Yang Z, Bian Y, Hao D, Xu C . Characterization of rubisco activase genes in maize: an α-isoform gene functions alongside a β-isoform gene
Plant Physiol, 2014,4:2096-2106

[本文引用: 1]

王松 . 外源NO对盐胁迫下番茄光合碳同化的影响. 石河子大学硕士学位论文,
新疆石河子, 2016

[本文引用: 1]

Wang S . Effect of Exogenous NO on Photosynthetic Carbon Assimilation in Tomato Seedlings under NaCl Stress. MS Thesis of Shihezi University
Shihezi, Xinjiang, China, 2016 ( in Chinese with English abstract)

[本文引用: 1]

闻志彬, 张明理 . 干旱胁迫对2种光合类型C4荒漠植物叶片光合特征酶和抗氧化酶活性的影响
西北植物学报, 2015,35:1815-1822

[本文引用: 1]

Wen Z B, Zhang M L . C4 photosynthetic enzymes and antioxidant enzymes activities in two photosynthetic subtypes of C4 desert plants under soil drought stress
Acta Bot Boreali-Occident Sin, 2015,35:1815-1822 (in Chinese with English abstract)

[本文引用: 1]

Fazeli F, Ghorbanli M, Niknam V . Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars
Biol Plant, 2007,51:98-103

[本文引用: 1]

赵丽英, 邓西平, 山仑 . 活性氧清除系统对干旱胁迫的响应机制
西北植物学报, 2005,25:413-418

[本文引用: 1]

Zhao L Y, Deng X P, Shan L . The response mechanism of active oxygen species removing system to drought stress
Acta Bot Boreali-Occident Sin, 2005,25:413-418 (in Chinese with English abstract)

[本文引用: 1]

Choudhury F K, Rivero R M, Blumwald E, Mittler R . Reactive oxygen species, abiotic stress and stress combination
Plant J, 2017,90:856-867

DOI:10.1111/tpj.13299URLPMID:27801967 [本文引用: 1]
Reactive oxygen species (ROS) play a key role in the acclimation process of plants to abiotic stress. They primarily function as signal transduction molecules that regulate different pathways during plant acclimation to stress, but are also toxic byproducts of stress metabolism. Because each subcellular compartment in plants contains its own set of ROS‐producing and ROS‐scavenging pathways, the steady‐state level of ROS, as well as the redox state of each compartment, is different at any given time giving rise to a distinct signature of ROS levels at the different compartments of the cell. Here we review recent studies on the role of ROS in abiotic stress in plants, and propose that different abiotic stresses, such as drought, heat, salinity and high light, result in different ROS signatures that determine the specificity of the acclimation response and help tailor it to the exact stress the plant encounters. We further address the role of ROS in the acclimation of plants to stress combination as well as the role of ROS in mediating rapid systemic signaling during abiotic stress. We conclude that as long as cells maintain high enough energy reserves to detoxify ROS, ROS is beneficial to plants during abiotic stress enabling them to adjust their metabolism and mount a proper acclimation response.
相关话题/基因 植物 系统 序列 单独

闂傚倸鍊烽懗鍫曞箠閹剧粯鍋ら柕濞炬櫅缁€澶愭煙閻戞ɑ鈷愰悗姘煼閺岋綁寮崒姘闁诲孩纰嶅畝鎼佸蓟濞戞ǚ鏋庣€广儱鎳庢慨搴ㄦ⒑鏉炴媽顔夐柡鍛█楠炲啰鎹勭悰鈩冾潔闁哄鐗冮弲娑氭暜閵娧呯=濞达絼绮欓崫铏圭磼鐠囪尙澧曢柣锝呭槻椤繄鎹勯崫鍕偓鍧楁⒑閸濆嫭鍌ㄩ柛銊ヮ煼瀹曪綁骞囬悧鍫㈠幗闂佺粯锚瀵爼骞栭幇顒夌唵鐟滃瞼鍒掑▎鎾虫槬闁靛繈鍊栭崵鍐煃閸濆嫬鈧悂鎯冮锔解拺闁告稑锕ユ径鍕煕閹炬潙鍝洪柟顔斤耿楠炲洭鎮ч崼姘闂備礁鎲¢幐鍡涘礃瑜嶉ˉ姘舵⒑濮瑰洤鐒洪柛銊ゅ嵆椤㈡岸顢橀悢渚锤闂佸憡绋戦敃銉х礊閸ャ劊浜滈柟鎵虫櫅閻忊晜顨ラ悙宸剶婵﹥妞藉畷妤呮偂鎼粹€承戦梻浣规偠閸ㄨ偐浜搁鍫澪﹂柟鎵閺呮悂鏌ㄩ悤鍌涘40%闂傚倸鍊风粈浣革耿鏉堚晛鍨濇い鏍仜缁€澶愭煛瀹ュ骸骞栭柛銊ュ€归幈銊ノ熼崸妤€鎽甸柣蹇撶箰鐎涒晠骞堥妸銉庣喖宕归鎯у缚闂佽绻愬ù姘椤忓牆钃熼柕濞垮劗濡插牓鏌ц箛锝呬簻妞ゅ骏鎷�
闂傚倸鍊峰ù鍥綖婢跺顩插ù鐘差儏缁€澶屸偓鍏夊亾闁逞屽墰閸掓帞鎷犲顔兼倯闂佹悶鍎崝宀勬儍椤愨懇鏀芥い鏃囶潡瑜版帒鏄ラ柡宥庡亗閻掑﹥銇勮箛鎾跺闁绘挻绋戦…璺ㄦ崉閻氭潙浼愰梺鍝勬閸犳劗鎹㈠☉娆忕窞婵☆垰鎼猾宥嗙節绾版ê澧查柟绋垮暱閻g兘骞掗幋鏃€鏂€闂佸綊鍋婇崜姘额敊閺囩偐鏀介柣鎰▕閸ょ喎鈹戦姘煎殶缂佽京鍋ら崺鈧い鎺戝閻撳繘鏌涢埄鍐炬當闁哄棴绲块埀顒冾潐濞测晝绱炴笟鈧妴浣糕槈閵忊€斥偓鐑芥煃鏉炵増顦峰瑙勬礀閳规垿顢欓惌顐簽婢规洟顢橀悩鍏哥瑝闂佸搫绋侀悘鎰版偡閹靛啿鐗氶梺鍛婃处閸嬪棝顢栭崟顒傜閻庣數枪瀛濋梺缁橆殔缁绘帒危閹版澘绫嶉柛顐g箘椤撴椽姊虹紒妯忣亪鎮樺璺虹畾闁挎繂顦伴埛鎺戙€掑顒佹悙濞存粍绻堥弻锛勪沪鐠囨彃顬嬪┑鐐叉閸ㄤ粙骞冨▎鎴斿亾閻㈢數銆婇柡瀣墵濮婅櫣绱掑Ο铏逛桓闁藉啴浜堕弻鐔兼偪椤栨瑥鎯堢紓浣介哺鐢€愁嚕椤曗偓閸┾偓妞ゆ帒瀚崑锟犳煥閺冨倸浜鹃柡鍡樼矌閹叉悂鎮ч崼婵堫儌閻庤鎸风欢姘跺蓟濞戔懇鈧箓骞嬪┑鍥╁蒋闂備礁鎲¢懝楣冨箠鎼淬劍绠掗梻浣稿悑缁佹挳寮插☉婧惧彺闂傚倷绶氶埀顒傚仜閼活垱鏅堕鐐粹拺闁兼亽鍎遍埛濂濆┑鐘垫暩閸嬬偛岣垮▎鎾宠Е閻庯綆鍠楅崵灞轿旈敐鍛殭缂佺姷鍠栭弻鐔煎箚閻楀牜妫勯梺璇茬箺濞呮洜鎹㈠┑瀣瀭妞ゆ劧绲介弳妤冪磽娴f彃浜炬繝銏e煐閸旀牠鎮¢悢鍏肩厓鐟滄粓宕滃▎鎰箚濞寸姴顑嗛悡鏇㈡煃閸濆嫬鈧煤閹绢喗鐓涢悘鐐跺Г閸h銇勯锝囩畵闁伙絿鍏樺畷鍫曞煛閸愨晜鐦掗梻鍌欐祰瀹曞灚鎱ㄩ弶鎳ㄦ椽濡堕崼娑楁睏闂佺粯鍔曢幖顐︽嚋鐟欏嫨浜滈柟鐑樺灥閳ь剙缍婂畷鎴濐潨閳ь剟寮婚弴鐔虹鐟滃秶鈧凹鍣e鎶芥偐缂佹ǚ鎷洪梺鍛婄☉閿曘倗绮幒鎾茬箚妞ゆ劧绲鹃ˉ鍫熶繆椤愩垺鍤囬柛鈺嬬節瀹曘劑顢欓幆褍鍙婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鍔曠欢鐐碘偓骞垮劚椤︿即鎮″▎鎾村€垫繛鎴炵憽缂傛艾顭胯閸撶喖寮婚悢鍏煎剬闁告縿鍎宠ⅵ婵°倗濮烽崑娑㈡煀閿濆棔绻嗛柣鎴f鎯熼梺闈涱檧婵″洦绂嶅畡鎵虫斀闁绘劖娼欓悘锔芥叏婵犲嫭鍤€妞ゎ厼鐏濋~婊堝焵椤掑嫮宓侀柛鎰╁壆閺冨牆宸濇い鏃囧Г閻濐偊鏌f惔鈥冲辅闁稿鎹囬弻娑㈠箛椤撶偛濮㈠┑鐐茬墢閸嬫挾鎹㈠☉姘e亾閻㈢櫥褰掝敁閹惧墎纾界€广儰绀佹禍楣冩⒒娓氣偓濞佳兾涘Δ鍛柈闁圭虎鍠栫粻鐘绘煏韫囨洖啸闁哄棗顑夐弻鈩冨緞鎼淬垻銆婇梺璇″櫙閹凤拷40%闂傚倸鍊风粈浣革耿鏉堚晛鍨濇い鏍仜缁€澶愭煛瀹ュ骸骞栭柛銊ュ€归幈銊ノ熼幐搴c€愰弶鈺傜箞濮婅櫣绮欓幐搴㈡嫳缂備浇顕х粔鐟扮暦閻㈠憡鏅濋柍褜鍓熷﹢渚€姊虹紒妯兼噧闁硅櫕鍔楃划鏃堫敆閸曨剛鍘梺绯曞墲椤ㄥ懘寮抽悢鍏肩厵鐎瑰嫭澹嗙粔鐑樸亜閵忊埗顏堝煘閹达箑鐐婄憸婊勫閸℃稒鈷掑ù锝呮啞閹牓鏌eΔ浣虹煉鐎规洘绮岄埥澶愬閳ュ厖鎴锋俊鐐€栭悧妤冪矙閹炬眹鈧懘鎮滈懞銉ヤ化婵炶揪绲介幗婊堟晬瀹ュ洨纾煎璺猴功娴犮垽妫佹径瀣瘈鐟滃繑鎱ㄩ幘顔肩柈妞ゆ牜鍋涚粻姘舵煕瀹€鈧崑鐐烘偂閵夛妇绠鹃柟瀵稿€戦崷顓涘亾濮樺崬顣肩紒缁樼洴閹剝鎯旈埥鍡楀Ψ缂傚倷绀侀崐鍝ョ矓瑜版帇鈧線寮撮姀鐙€娼婇梺缁樶缚閺佹瓕鈪�9闂傚倸鍊烽懗鍫曘€佹繝鍥ф槬闁哄稁鍓欑紞姗€姊绘笟鈧埀顒傚仜閼活垱鏅堕鈧弻娑欑節閸愨晛鈧劙鏌熼姘殻濠殿喒鍋撻梺闈涚墕閹虫劙藝椤愶附鈷戠紒顖涙礀婢у弶绻涢懠顒€鏋涢柟顕嗙節閸╋繝宕ㄩ瑙勫闂備礁鎲¢幐鍡涘礃瑜嶉ˉ姘舵⒑濮瑰洤鐒洪柛銊╀憾楠炴劙鎼归锛勭畾闁诲孩绋掕摫濠殿垱鎸抽幃宄扳枎韫囨搩浠奸梻鍌氬亞閸ㄨ泛顫忛搹瑙勫厹闁告侗鍨伴悧姘舵⒑缁嬪潡顎楃€规洦鍓熷﹢浣糕攽椤斿浠滈柛瀣崌閺岀喖顢欓妸銉︽悙闁绘劕锕弻宥夊传閸曨偅娈查梺璇″灲缂嶄礁顫忓ú顏勭閹艰揪绲哄Σ鍫ユ⒑閸忓吋銇熼柛銊ф暬婵$敻骞囬弶璺紲闂佺粯鍔樼亸娆撍囬锔解拺闁告繂瀚峰Σ瑙勩亜閹寸偟鎳囩€规洘绻堝畷銊р偓娑欋缚閸樻悂鎮楃憴鍕鞍闁告繂閰e畷鎰板Χ婢跺﹦鏌堥梺鍓插亖閸庢煡鎮¢弴鐘冲枑閹艰揪绲块惌娆撶叓閸ャ劎鈽夐柣鎺戠仛閵囧嫰骞嬮敐鍛Х闂佺ǹ绻愰張顒傛崲濞戙垹宸濇い鎰╁灩椤姊虹拠鈥崇仭婵☆偄鍟村顐﹀礃閳哄倸顎撶紓浣割儓濞夋洘绂掗銏♀拻濞达絽鎲¢崯鐐烘煟閵婏妇鐭嬮柟宄版嚇楠炴捇骞掑鍜佹婵犵數鍋犻幓顏嗙礊娓氣偓瀵煡鎳犻鍐ㄐ¢梺瑙勫劶婵倝鎮¢弴鐔剁箚闁靛牆瀚ˇ锕傛煙閸忓吋鍊愰柡灞界Х椤т線鏌涜箛鏃傘€掔紒顔肩墛閹峰懘宕烽褎閿ら梻浣告惈濞层劑宕伴幘璇茬厴鐎广儱顦粻鎶芥煙閹増顥夐柣鎺戠仛閵囧嫰骞嬪┑鍫滆檸闂佺ǹ锕ュΣ瀣磽閸屾艾鈧绮堟笟鈧鐢割敆閳ь剟鈥旈崘顔藉癄濠㈠厜鏅滈惄顖氱暦缁嬭鏃堝焵椤掑啰绠芥繝鐢靛仩閹活亞绱為埀顒佺箾閸滃啰绉€规洩缍侀崺鈧い鎺嶈兌缁犻箖鏌熺€电ǹ浠﹂柣鎾卞劤缁辨帡濡搁敂濮愪虎闂佺硶鏂侀崑鎾愁渻閵堝棗鐏﹂悗绗涘懐鐭堝ù鐓庣摠閻撶喐銇勮箛鎾村櫤閻忓骏绠撻弻鐔碱敊閼恒儯浠㈤梺杞扮劍閸旀瑥鐣烽崼鏇炵厸闁稿本绋戦崝姗€姊婚崒娆戭槮闁硅绻濋幊婵嬪礈瑜夐崑鎾愁潩閻撳骸鈷嬫繝纰夌磿閺佽鐣烽崼鏇ㄦ晢闁稿本姘ㄩ妶锕傛⒒娴e憡鍟為柛鏃€鐗為妵鎰板礃椤旂晫鍘愰梻渚囧墮缁夌敻鎮¤箛娑欑厱闁宠棄妫楅獮妤呮倵濮樼偓瀚�