Effects of Plastic Film Mulching on Grain Yield and Sulfur Concentration of Winter Wheat in Dryland of Loess Plateau
LUO Lai-Chao1, WANG Zhao-Hui,1,2,*, HUI Xiao-Li1, ZHANG Xiang1, MA Qing-Xia1, BAO Ming1, ZHAO Yue1, HUANG Ming1, WANG Sen1通讯作者:
第一联系人:
收稿日期:2017-09-5接受日期:2018-03-20网络出版日期:2018-06-12
基金资助: |
Received:2017-09-5Accepted:2018-03-20Online:2018-06-12
Fund supported: |
摘要
关键词:
Abstract
Keywords:
PDF (815KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
罗来超, 王朝辉, 惠晓丽, 张翔, 马清霞, 包明, 赵岳, 黄明, 王森. 覆膜栽培对旱地小麦籽粒产量及硫含量的影响[J]. 作物学报, 2018, 44(6): 886-896. doi:10.3724/SP.J.1006.2018.00886
LUO Lai-Chao, WANG Zhao-Hui, HUI Xiao-Li, ZHANG Xiang, MA Qing-Xia, BAO Ming, ZHAO Yue, HUANG Ming, WANG Sen.
旱地面积约占世界耕地的80%, 提供60%的粮食供给[1]。据统计, 21世纪末旱地面积将增加23%, 其中78%在发展中国家[2]。我国西北旱地是典型雨养农作区, 种植面积达1.6亿公顷[3]。这些地区降水数量少且分配不均, 常年降水量在300~600 mm, 主要(70%以上)集中在7月至9月。为最大限度地保蓄降水和提高作物对土壤水分的吸收和利用效率, 覆膜栽培得到广泛应用[4,5,6]。研究表明, 覆膜栽培可增加旱地麦田播前土壤贮水量35~72 mm[7,8]和作物水分利用效率0.2~1.0 kg hm-2 mm [9,10]。同时覆膜能有效提高耕层土壤温度2~9oC [11,12], 改善作物苗期农田微环境, 使出苗提前, 生育期延长[13,14], 促进籽粒发育和灌浆。此外, 覆膜也显著增加土壤微生物数量, 可分别提高细菌、真菌和放线菌16.3%~ 22.6%、29.3%和19.7%~58.0%[15,16], 促进土壤养分活化和作物有效吸收, 提高作物养分利用率和产量[17,18]。在西北旱区, 小麦生育期覆膜的增产效果非常明显, 甘肃、陕西和山西的试验表明增产率可分别达55.4% [19]、28.5% [20]和11.7% [9]。
小麦是我国的主要粮食作物, 每年生产1260万吨小麦产品[21], 随着人们生活水平不断提高, 食品加工业迅速发展, 小麦品质也显得越来越重要。硫是作物必需的第四大矿质营养元素, 也是含硫蛋白质的重要组分, 对小麦籽粒蛋白质积累及品质改善有重要作用[22,23]。Zhao等[24,25]的多点研究表明, 籽粒硫含量在1.2~1.9 mg g-1之间, 硫含量每增加1 mg g-1, 面团延伸距离增加5 cm, 面包体积会增加237 mL; 白金顺等[26]试验表明, 小麦籽粒硫含量每增加1 mg g-1, 蛋白质含量增加1.7%。小麦生育期内, 土壤水分条件影响作物吸收和利用土壤营养元素, 硫元素也不例外。刘超等[27]报道, 华北平原冬小麦拔节期灌水75 mm, 籽粒吸硫量提高19.3%。籽粒硫来源于花前营养器官累积和花后吸收。在澳大利亚新南威尔士州的研究发现, 籽粒硫48%来自开花前累积[28]。在中国山东灌区的试验表明, 小麦籽粒硫34.5%来自花前营养器官积累, 65.5%来自花后吸收[29]。在中国河南的试验表明, 拔节和开花期灌水使穗轴和颖壳的硫含量增加47.6%~55.0% [30]。目前, 尚缺乏土壤水分对作物硫吸收与利用影响的系统研究, 尤其在旱地雨养条件下。
西北旱地覆膜栽培改变了土壤水分状况, 促进了作物产量提升, 但尚不清楚对作物硫含量及硫吸收利用的影响。2014—2015和2015—2016年度, 本课题组通过在山西、陕西和甘肃的多点田间试验, 研究了覆膜栽培对冬小麦籽粒产量、硫吸收累积和转运及籽粒硫含量的影响, 为旱地小麦高产优质栽培提供理论依据和技术支持。
1 材料与方法
1.1 田间试验设计
选择黄土高原典型雨养区的3个省份7个试验点(34o43′~36o23′N, 107o07~111o35′E, 海拔500~1760 m), 即山西闻喜县桐城镇和洪洞县刘家垣镇, 陕西永寿县御驾宫镇和长武县丁家镇, 甘肃清水县永清镇、通渭县常河镇和平襄镇。试验区域属半湿润易旱区, 年均气温7.4~14.0°C, 降雨量550 mm, 其中夏闲期(7月至9月)的降雨量占全年的60%~70%, 自然降水是农业的唯一水源。农业生产一年一熟制, 主要作物为小麦。各试验点小麦生育期和夏闲期的雨量分布见图1, 试验田块0~20 cm土壤的基本理化性质见表1。图1
新窗口打开|下载原图ZIP|生成PPT图1各试验点全年降雨量在夏闲期和小麦生育期的分布
试验共7个试验点,分别是山西省(SX)的桐城(TC)和刘家垣(LJY), 陕西省(SAX)的御驾宫(YJG)和丁家(DJ),甘肃省(GS)的永清(YQ)、常河(CH)和平襄(PX)。A: 2014-2015冬小麦生长季;B: 2015-2016冬小麦生长季。
Fig. 1Distribution of whole-year precipitation between summer fallow and winter wheat growing season in each experimental location
The seven experimental locations were Tongcheng (TC) and Liujiayuan (LJY) of Shanxi province (SX), Yujiagong (YJG) and Dingjia (DJ) of Shaanxi province (SAX), and Yongqing (YQ), Changhe (CH) and Pingxiang (PX) of Gansu province (GS). A: the winter wheat growing season of 2014-2015; B: the winter wheat growing season of 2015-2016.
Table 1
表1
表1各试验点冬小麦播前耕层0~20 cm土壤基础肥力
Table 1
试验点 Location | 有机质 Organic matter (g kg-1) | 全氮 Total N (g kg-1) | 硝态氮 NO3--N (mg kg-1) | 铵态氮 NH4+-N (mg kg-1) | 速效磷 Available P (mg kg-1) | 速效钾 Available K (mg kg-1) | 有效硫 Available S (mg kg-1) | pH (2.5:1.0) |
---|---|---|---|---|---|---|---|---|
山西桐城 SX-TC | 7.8 | 0.84 | 11.5 | 1.1 | 17.6 | 160.0 | 46.65 | 8.1 |
山西刘家垣 SX-LJY | 10.8 | 0.80 | 22.6 | 0.4 | 10.7 | 202.4 | 36.68 | 7.9 |
陕西御驾宫 SAX-YJG | 10.2 | 0.75 | 3.5 | 0.3 | 13.4 | 83.9 | 20.01 | 8.5 |
陕西丁家 SAX-DJ | 8.5 | 0.77 | 13.1 | 2.6 | 4.5 | 130.0 | 9.89 | 8.2 |
甘肃永清 GS-YQ | 7.9 | 0.90 | 16.8 | 0.8 | 12.0 | 102.2 | 2.14 | 8.4 |
甘肃常河 GS-CH | 6.1 | 0.95 | 12.2 | 0.5 | 11.3 | 122.7 | 2.54 | 8.6 |
甘肃平襄 GS-PX | 7.7 | 0.93 | 5.5 | 0.3 | 12.5 | 117.3 | 2.99 | 8.7 |
新窗口打开|下载CSV
田间试验采用裂区设计, 主区为栽培模式, 副区为施肥处理, 小区面积40~470 m2, 重复3~4次。主区包括不覆膜和覆膜两种模式。其中, 不覆膜为当地农户传统栽培方式, 常规平作, 机械条播, 行距20 cm, 小麦收获后秸秆全部移走, 雨后机械深翻30~40 cm, 夏闲期地表裸露。覆膜栽培又分为垄覆沟播(山西、陕西)和全膜覆土穴播(甘肃)。其中, 垄覆沟播为播前起垄覆膜播种, 垄高8 cm、垄宽30 cm、沟宽30 cm, 垄上覆地膜, 膜宽40 cm、厚0.008 mm, 垄沟内种植2行小麦, 行距20 cm, 小麦收获后秸秆还于垄沟内, 夏闲期不翻耕、不揭膜, 以蓄水保墒; 下季小麦播前的9月初揭膜、清理残膜、深翻整地; 全膜覆土穴播为平作不起垄, 地面全部覆膜, 膜宽120 cm、厚0.008 mm, 膜上铺1 cm厚的土壤, 用穴播机播种, 行距20 cm、穴距15 cm、每穴播8~10粒种子, 小麦收获后秸秆均匀覆盖在膜面上, 夏闲期不翻耕、不揭膜, 以蓄水保墒; 小麦播前的9月初揭膜、清理残膜、旋耕。供试品种为当地主栽高产品种, 播种量和播种日期见附表1。小麦生育期内无灌溉, 其他田间管理与当地农户一致。
在山西桐城, 施磷(P2O5) 150 kg hm-2的基础上设120、150 kg hm-2两个施氮(N)水平; 在山西刘家垣, 氮(N)、磷(P2O5)和钾(K2O)用量分别为60、60和37.5 kg hm-2。在陕西御驾宫, 施P2O5 100 kg hm-2的基础上设0、60、120、180和240 kg hm-2 5个N水平; 在陕西丁家, N和P2O5用量分别为150 kg hm-2和105 kg hm-2。在甘肃永清和甘肃常河, 均施N 150 kg hm-2和P2O5 120 kg hm-2; 在甘肃平襄, 施P2O5 120 kg hm-2的基础上设90、120和150 kg hm-2 3个施氮水平。所有肥料均作基肥于播前结合旋耕一次施用。
1.2 小麦生物量与产量测定方法
于小麦开花期和成熟期采集植物样品, 采样日期见附表1。在每个小区内避开边行, 随机抽取100穗的植株, 从分蘖节基部剪掉根系, 地上部再分成若干器官样品, 其中开花期分茎叶和穗两部分, 分别称鲜重; 成熟期分为茎叶、颖壳和籽粒, 风干后分别称重。取每器官样品50 g, 其中茎叶剪成0.5~1.0 cm小段, 用自来水快速清洗2~3次, 去离子水洗2~3次, 105°C杀青30 min, 65~75°C烘至恒重, 然后称干重。先计算单穗植株干重, 再利用单位面积穗数计算各器官生物量和总生物量。避开边行选取每小区4个1 m2样方, 人工收割, 风干后机械脱粒、称重; 取100~150 g籽粒, 烘干后称取干重, 计算籽粒含水量, 籽粒产量以烘干重表示。用数粒板数1000粒籽粒, 烘干后称千粒重; 随机抽取100穗, 其籽粒烘干重与穗数的比值为穗粒数。
1.3 硫素积累和运转指标测定方法
用组织混合研磨仪、氧化锆罐(MM400, Retsch, Germany)粉碎不同器官的烘干样, 称取籽粒粉碎样0.2 g、茎叶和颖壳粉碎样0.25 g, 利用高通量微波消解仪(Multiwave PRO, Anton Paar, Austria), 以HNO3-H2O2法消解。每个消解罐加HNO3 5 mL, 120°C预消解30 min, 冷却后加H2O2 2 mL, 微波消解60 min, 用ICP-MS (ICAP Qc, Thermo Fisher Scientific, USA)测定消解液中的硫含量。每批次消解样中加标准样品(GBW10011-小麦)以校验操作流程。籽粒硫含量以干重表示。用氯化钙浸提土壤有效硫, 水土比为5:1, 振荡1 h后过滤, 滤液经双氧水-电热分解有机物后, 加盐酸(1:4) 1 mL和阿拉伯胶水溶液2 mL, 定容至25 mL, 用硫酸钡比浊法在紫外可见分光光度计(UV-2450, Shimadzu, Japan)上测定透光度。
硫素积累和转运指标计算公式如下, 其中器官硫含量单位为g kg-1, 器官生物量、硫累积量、硫转运量和花后硫吸收单位均为kg hm-2。
器官硫累积量=器官生物量×器官硫含量[31]
花前硫累积量=开花期茎叶硫累积量+开花期穗硫累积量[31]
花后硫转运量=开花期营养器官(茎叶+穗)硫累积量-成熟期营养器官(茎叶+颖壳)硫累积量[29]
硫转运率(%)=花后硫转运量/花前硫累积量×100 [32]
硫收获指数(%)=籽粒硫累积量/成熟期地上部硫累积量×100 [31]
花后硫吸收=籽粒硫累积量-花后硫转移量[29]
1.4 统计分析
利用SPSS Statistics 22软件进行方差同质性检验, 结果见附表2, 然后运行多因素统计分析程序, 比较各测定指标在两种栽培模式之间的差异显著性(t测验), 显著水平为0.05。用SigmaPlot 12.5绘制盒子图。2 结果与分析
2.1 覆膜栽培降低冬小麦籽粒硫含量
冬小麦籽粒硫含量因地点和栽培模式而异(图2)。覆膜与不覆膜处理的平均籽粒硫含量, 山西分别为1.76 g kg-1和1.98 g kg-1, 陕西为1.66 g kg-1和1.81 g kg-1, 甘肃为1.77 g kg-1和1.92 g kg-1, 三省平均为1.71 g kg-1和1.88 g kg-1; 总体来看, 在山西、陕西和甘肃, 覆膜处理的小麦籽粒硫含量比不覆膜处理分别低11.1%、8.3%和7.8%, 三省平均降低9.0%。不同年份各地覆膜小麦籽粒硫含量也降低, 其中2014—2015年度三省的下降百分率依次为8.7%、8.4%和11.3%, 2015—2016年度依次为13.0%、8.2%和9.3% (附表3)。图2
新窗口打开|下载原图ZIP|生成PPT图2覆膜栽培对小麦籽粒硫含量的影响
盒内黑色实线和红色虚线分别表示中位数和平均数; 盒子的上、下边缘线分别表示数据集的75%和25%分位数; 上、下T形棒分别表示95%和5%分位数; “?”代表小于5%或大于95%分位数的数据; “*”表示同一地点覆膜与不覆膜2种栽培模式间差异显著(P < 0.05)。
Fig. 2Effects of plastic film mulching on grain sulfur concentration of winter wheat
The median and mean values are marked with the solid and red dashed lines inside the box, respectively. The lower and upper edges of the box represent the 25th and 75th percentile, respectively. The lower and upper T-bars represent the 5th and 95th percentile, respectively. The symbols “?” above and below the box represent the <5th and >95th percentile of all data, respectively. Significant difference (P < 0.05) between no mulching and plastic film mulching treatments in one location is marked with * above a pair of boxes.
2.2 覆膜栽培增加冬小麦生物量和籽粒产量
与不覆膜相比, 陕西和甘肃覆膜小麦分别增产8.5%和28.6%, 山西无显著增加(图3)。三省平均的覆膜与不覆膜产量分别为5246 kg hm-2和4612 kghm-2, 覆膜提高13.7%。不同年份分析表明, 2015年山西和陕西覆膜小麦产量分别提高17.2%和15.5%, 甘肃增产不显著, 但三省平均提高12.3%; 2016年甘肃提高77.2%, 山西、陕西均无显著差异, 平均提高14.0% (附表3)。图3
新窗口打开|下载原图ZIP|生成PPT图3覆膜栽培对小麦产量、生物量和收获指数的影响
盒内黑色实线和红色虚线分别表示中位数和平均数; 盒子的上、下边缘线分别表示数据集的75%和25%分位数; 上、下T形棒分别表示95%和5%分位数; “?”代表小于5%或大于95%分位数的数据; “*”表示同一地点覆膜与不覆膜两种栽培模式间差异显著(P < 0.05)。
Fig. 3Effects of plastic film mulching on grain yield, biomass and harvest index of winter wheat
The median and mean values are marked with the solid and red dashed lines inside the box, respectively. The lower and upper edges of the box represent the 25th and 75th percentile, respectively. The lower and upper T-bars represent the 5th and 95th percentile, respectively. The symbols “?” above and below the box represent the <5th and >95th percentile of all data, respectively. Significant difference (P < 0.05)
between no mulching and plastic film mulching treatments in one location is marked with * above a pair of boxes.
三省覆膜小麦生物量依次分别提高12.6%、8.2%和27.4%, 平均提高13.7% (图3)。2015年山西和陕西生物量分别提高18.1%和12.4%, 甘肃无显著增加, 三省平均提高12.2%; 2016年仅甘肃提高59.1%, 山西和陕西无显著提高, 三省平均提高15.4% (附表3)。
山西覆膜小麦的收获指数降低4.1%, 陕西、甘肃及三省平均均无显著变化(图3)。2015年甘肃的收获指数降低4.1%; 2016年山西降低6.9%, 甘肃则提高11.2%。在不同年份, 三省覆膜与不覆膜的平均收获指数差异也不显著(附表3)。
可见, 虽然增产的效果因地点和年份而异, 但在西北旱地覆膜栽培可以提高小麦产量和生物量, 但对收获指数无显著影响。
2.3 覆膜栽培提高冬小麦单位面积穗数
总体来看, 覆膜对旱地小麦的穗粒数和千粒重没有显著影响, 却使小麦的穗数显著提高。山西和陕西覆膜小麦穗数提高13.5%和12.6%, 甘肃无显著差异, 三省平均提高9.2% (图4)。覆膜对旱地小麦产量构成要素的影响也因地区和年份而异。与不覆膜相比, 2015年山西覆膜小麦穗数提高13.8%, 穗粒数无显著变化, 千粒重提高5.8%, 陕西覆膜小麦穗数提高16.5%, 穗粒数和千粒重均无显著差异, 甘肃覆膜小麦产量构成要素均无显著差异, 三省平均穗数提高11.8%, 穗粒数和千粒重无显著差异; 2016年山西覆膜小麦穗数提高13.0%, 穗粒数则降低13.5%, 千粒重无显著差异, 陕西覆膜小麦穗数提高8.0%, 穗数和千粒重无显著差异, 甘肃除穗粒数提高62.5%外, 穗数和千粒重均无显著差异, 三省平均仅穗数提高6.8%, 穗粒数和千粒重则无显著差异(附表4)。图4
新窗口打开|下载原图ZIP|生成PPT图4覆膜栽培对小麦穗数、穗粒数和千粒重的影响
盒内黑色实线和红色虚线分别表示中位数和平均数; 盒子的上、下边缘线分别表示数据集的75%和25%分位数; 上、下T形棒分别表示95%和5%分位数; “?”代表小于5%或大于95%分位数的数据; “*”表示同一地点覆膜与不覆膜两种栽培模式间差异显著(P < 0.05)。
Fig. 4Effects of plastic film mulching on spike number, grain number per spike and 1000-grain weight of winter wheat
The median and mean values are marked with the solid and red dashed lines inside the box, respectively. The lower and upper edges of the box represent the 25th and 75th percentile, respectively. The lower and upper T-bars represent the 5th and 95th percentile, respectively. The symbols “?” above and below the box represent the <5th and >95th percentile of all data, respectively. Significant difference (P < 0.05) between no mulching and plastic film mulching treatments in one location is marked with * above a pair of boxes.
2.4 覆膜栽培降低开花期土壤有效硫含量
与不覆膜相比, 山西和甘肃覆膜小麦开花期土壤有效硫含量分别降低36.1%和18.8%, 陕西无显著降低。覆膜与不覆膜土壤的三省平均有效硫含量分别为16.05和21.26 mg kg-1, 覆膜降低24.5%(图5)。不同年份分析表明, 2015年山西和甘肃分别降低33.0%和26.7%, 陕西无显著降低, 三省平均降低25.4%; 2016年山西降低39.3%, 陕西和甘肃均无显著降低, 平均降低27.6% (附表5)。图5
新窗口打开|下载原图ZIP|生成PPT图5覆膜栽培对冬小麦开花期0~20 cm土壤有效硫含量的影响
盒内黑色实线和红色虚线分别表示中位数和平均数; 盒子的上、下边缘线分别表示数据集的75%和25%分位数; 上、下T形棒分别表示95%和5%分位数; “?”代表小于5%或大于95%分位数的数据; “*”表示同一地点覆膜与不覆膜两种栽培模式间差异显著(P < 0.05)。
Fig. 5Effects of plastic film mulching on available sulfur content in 0-20 cm soil at anthesis of winter wheat
The median and mean values are marked with the solid and red dashed lines inside the box, respectively. The lower and upper edges of the box represent the 25th and 75th percentile, respectively. The lower and upper T-bars represent the 5th and 95th percentile, respectively. The symbols “?” above and below the box represent the <5th and >95th percentile of all data, respectively. Significant difference (P < 0.05) between no mulching and plastic film mulching treatments in one location is marked with * above a pair of boxes.
2.5 覆膜栽培提高开花期小麦地上部硫累积量
栽培模式对开花期小麦地上不同部位硫累积量影响显著(图6)。与不覆膜相比, 山西覆膜小麦茎叶硫累积量提高18.3%, 穗部硫累积量无显著增加, 地上部硫累积总量提高16.2%, 陕西分别提高18.4%、18.5%和18.4%, 甘肃提高25.4%、19.3%和24.1%, 三省平均提高19.9%、16.1%和19.2%。图6
新窗口打开|下载原图ZIP|生成PPT图6覆膜栽培对冬小麦开花期茎叶、穗和地上部硫累积量的影响
盒内黑色实线和红色虚线分别表示中位数和平均数; 盒子的上、下边缘线分别表示数据集的75%和25%分位数; 上、下T形棒分别表示95%和5%分位数;“?”代表小于5%或大于95%分位数的数据; “*”表示同一地点覆膜与不覆膜两种栽培模式间差异显著(P < 0.05)。
Fig. 6Effects of plastic film mulching on sulfur accumulation in stem leaves, ear and aboveground part at anthesis of winter wheat
The median and mean values are marked with the solid and red dashed lines inside the box, respectively. The lower and upper edges of the box represent the 25th and 75th percentile, respectively. The lower and upper T-bars represent the 5th and 95th percentile, respectively. The symbols “?” above and below the box represent the <5th and >95th percentile of all data, respectively. Significant difference (P < 0.05) between no mulching and plastic film mulching treatments in one location is marked with * above a pair of boxes.
不同年份的结果表明, 2015年山西覆膜小麦茎叶、穗和地上部硫累积总量分别提高29.6%、34.1%和11.5%, 陕西分别提高26.6%、26.4%和27.4%, 甘肃无显著增加, 三省平均分别提高22.5%、24.7%和13.9%; 2016年甘肃分别提高40.1%、38.1%和48.6%, 陕西除地上部硫累积总量提高10.0%外, 茎叶和穗硫累积量无显著增加, 山西三者亦无显著增加, 三省平均分别提高16.2%、15.6%和18.1% (附表5)。可见, 虽然地点间有差异, 但覆膜栽培能显著提高旱地小麦开花期各器官及地上部硫累积总量。
2.6 覆膜栽培不影响成熟期小麦地上部硫累积量和硫收获指数
总体来看, 覆膜对成熟期小麦地上部硫积累量无显著影响。与不覆膜相比, 仅甘肃覆膜小麦茎叶和地上部硫累积总量提高19.8%和22.9%, 山西和陕西覆膜小麦茎叶、颖壳、籽粒和地上部硫累积总量均无显著提高(图7)。从不同年份各地结果来看, 2015年山西、陕西、甘肃和三省平均各器官和地上部硫累积总量均无显著差异; 2016年山西覆膜小麦除籽粒硫累积量降低12.9%外, 茎叶、颖壳和地上部硫累积总量无显著差异, 陕西各器官和地上部硫累积总量均无显著差异, 甘肃覆膜小麦茎叶、颖壳、籽粒和地上部硫累积总量分别提高44.3%、29.3%、50.6%和46.2%, 三省小麦各器官和地上部硫平均累积总量均无显著增加(附表6)。图7
新窗口打开|下载原图ZIP|生成PPT图7覆膜栽培对冬小麦成熟期茎叶、颖壳、籽粒和地上部硫累积量及硫收获指数的影响
盒内黑色实线和红色虚线分别表示中位数和平均数; 盒子的上、下边缘线分别表示数据集的75%和25%分位数; 上、下T形棒分别表示95%和5%分位数; “?”代表小于5%或大于95%分位数的数据; “*”表示同一地点覆膜与不覆膜两种栽培模式间差异显著(P < 0.05)。
Fig. 7Effects of plastic film mulching on sulfur accumulation in stem leaves, glumes, grain and aboveground part and sulfur harvest index at maturity of winter wheat
The median and mean values are marked with the solid and red dashed lines inside the box, respectively. The lower and upper edges of the box represent the 25th and 75th percentile, respectively. The lower and upper T-bars represent the 5th and 95th percentile, respectively. The symbols “?” above and below the box represent the <5th and >95th percentile of all data, respectively. Significant difference (P < 0.05) between no mulching and plastic film mulching treatments in one location is marked with * above a pair of boxes.
覆膜栽培小麦的硫收获指数除山西降低4.9%外, 陕西、甘肃无显著变化, 三省平均覆膜与否也无显著差异, 平均分别为49.0%和48.7% (图7)。不同年份之间, 也只有山西2016年的覆膜小麦硫收获指数降低(附表7)。
可见, 覆膜栽培对旱地小麦成熟期各器官及地上部硫累积总量和硫收获指数无显著影响。
2.7 覆膜栽培提高小麦花后硫素转运
栽培模式显著影响旱地冬小麦花后的硫素转运(图8)。与不覆膜相比, 山西覆膜小麦硫转运量和转运率分别提高24.9%和17.2%; 陕西分别提高54.0%和34.1%; 甘肃小麦仅转运量提高22.0%, 三省平均分别提高36.2%和17.9%。不同年份分析表明, 2015 年陕西覆膜小麦硫转运量和转运率分别提高70.3%和35.5%, 山西、甘肃无显著增加, 三省平均提高49.6%和25.5%; 2016年除山西无明显变化外, 陕西分别提高34.4%和41.8%, 甘肃仅硫转运量提高38.3%, 三省平均提高25.0%和12.5% (附表7)。图8
新窗口打开|下载原图ZIP|生成PPT图8覆膜栽培对冬小麦硫转运量、转运率和花后硫吸收的影响
盒内黑色实线和红色虚线分别表示中位数和平均数; 盒子的上、下边缘线分别表示数据集的75%和25%分位数; 上、下T形棒分别表示95%和5%分位数; “?”代表小于5%或大于95%分位数的数据; “*”表示同一地点覆膜与不覆膜两种栽培模式间差异显著(P < 0.05)。
Fig. 8Effects of plastic film mulching on sulfur remobilization, remobilization efficiency and post-anthesis sulfur uptake of winter wheat
The median and mean values are marked with the solid and red dashed lines inside the box, respectively. The lower and upper edges of the box represent the 25th and 75th percentile, respectively. The lower and upper T-bars represent the 5th and 95th percentile, respectively. The symbols “?” above and below the box represent the <5th and >95th percentile of all data, respectively. Significant difference (P < 0.05) between no mulching and plastic film mulching treatments in one location is marked with * above a pair of boxes.
覆膜栽培显著降低冬小麦的花后硫吸收量(图8)。山西小麦花后硫吸收量降低88.8%, 陕西降低79.8%, 甘肃虽降低5.5%, 但差异不显著, 三省平均降低77.9%。2015年三省分别降低36.3%、34.6%和33.1%, 平均降低29.5%; 2016年山西和陕西分别降低9.8%和51.0%, 甘肃无明显变化, 三省平均降低43.2% (附表7)。
可见, 覆膜栽培可提高旱地小麦花后硫转运量和转运率, 降低花后硫吸收。
3 讨论
3.1 覆膜对冬小麦籽粒产量的影响
本试验表明, 覆膜栽培小麦籽粒产量三省平均提高13.7%, 在甘肃表现更为明显, 产量提高58.6%。覆膜栽培能增加耕层土壤温度, 减少作物生育期土壤水分无效损耗, 提高土壤贮水量, 促进作物对水分的吸收和高效利用, 从而提高作物产量[7,8,9,10]。从作物的产量构成看增产原因, 在肯尼亚[8]及我国的陕西[33]和甘肃[34]的田间试验结果显示, 覆膜小麦穗数提高38.1%~41.9%, 从而使产量增加53.9%~146.5%。本研究中, 覆膜小麦产量的提高与生物量增加13.7%和穗数增加9.2%有很大关系。但是, 覆膜栽培并不总是提高雨养旱作小麦的产量, 本试验中一些试验点个别年份存在减产的现象, 类似问题也被其他研究者报道过, 如李凤民等[35]在甘肃春小麦覆膜试验中发现减产率为42.5%, 王淑娟等[36]在陕西长期定位试验中也证实个别年份减产可达7.1%。一般认为, 小麦减产的主要原因是覆膜虽改善了耕层水温条件, 但小麦生育前期生长过旺, 耗水量增加, 当后期降水及土壤供水不足时会引起穗发育不良,不孕小花数增多, 灌浆持续时间缩短或受阻等[35,37]。本研究2016年山西桐城试点, 播前底墒不足(夏闲期降水仅95 mm), 在低施氮量(120 kg N hm-2)条件下, 覆膜小麦穗粒数和收获指数降低, 籽粒产量下降8.4%, 这与孟晓瑜等[38]在陕西杨凌的研究结果一致。本研究2015年甘肃平襄试点, 播前底墒较好(夏闲期降水204 mm), 施氮量120 kg N hm-2和150 kg N hm-2时, 冬前和拔节前期地上部生物量大量增加, 致使拔节后期与花后土壤供水不足, 分蘖大量死亡, 成穗率降低, 最终减产。可见, 覆膜栽培虽是西北旱地蓄水保墒增产的有效措施, 但也有减产风险。3.2 覆膜对冬小麦籽粒硫含量的影响
本研究发现, 覆膜栽培显著降低了小麦籽粒硫含量。与不覆膜相比, 开花期茎叶、穗和地上部硫累积总量分别提高19.9%、16.1%和19.2%, 说明覆膜栽培并不影响开花期地上部硫的累积。分析原因首先可能是由于覆膜改善了土壤水分和养分条件, 促进了土壤养分活化[39,40,41]; 覆膜还能促进根系发育, 使分蘖期和孕穗期小麦根系长度分别提高22.6%和5.0%, 开花期根干重提高18.4%[42], 从而促进作物对养分的吸收利用和生长发育。同位素标记34S试验发现, 籽粒中的硫14%来自出苗-拔节期, 30%来自拔节期-挑旗期, 6%来自挑旗-开花期地上部的硫累积, 即花前累积对小麦籽粒硫贡献占50%[43]。王东和于振文[29]在山东的田间试验也发现, 开花期叶片和穗的硫累积量与转运量呈显著正相关, 单茎叶片和穗每增加1 mg硫累积量, 硫转运量相应提高0.16~0.17 mg和0.09~0.15 mg。因此, 在覆膜改善土壤水分和温度下, 小麦花前硫累积状况并不是籽粒硫累积的限制因素, 甚至还得到加强, 能为花后向籽粒转运和累积提供更多的硫源; 覆膜栽培条件下, 花后地上部硫转运量和转运率显著提高36.2%和17.9%, 对保证籽粒硫累积有积极作用。另外, 覆膜小麦硫收获指数无显著变化, 也说明覆膜也没有影响地上部硫向籽粒的分配。覆膜对旱地小麦成熟期籽粒的硫累积总量无显著影响, 而籽粒产量提高13.7%, 稀释效应使籽粒硫含量(籽粒硫吸收量和籽粒产量的比值)下降9.0%。为什么籽粒硫吸收量没有随其产量同步提高?比较两种栽培模式的花后硫吸收, 发现覆膜栽培模式下尽管具有较高的花后硫转运量和转移率, 但花后硫吸收显著降低。山西、陕西和三省覆膜小麦花后平均硫吸收量分别为0.38、0.82和0.62 kg hm-2, 比不覆膜低88.8%、79.8%和77.9%, 下降非常明显。花后硫吸收对籽粒硫的贡献不可忽视, 正常情况下籽粒应有50%以上来自花后吸收[28,43]。但本试验条件下, 覆膜栽培小麦籽粒硫仅有5.4%来源于花后吸收。因此, 覆膜降低了小麦花后或灌浆期对硫的吸收, 是引起籽粒硫含量下降的主要原因。另外, 土壤有效硫对作物硫素营养及生长发育至关重要。在东北地区连续18年覆膜种植玉米, 0~20 cm土层有效硫较不覆膜降低4.3%, 20~40 cm土层有效硫降低32.7%[44]。本研究也表明, 开花期覆膜耕层土壤有效硫含量与不覆膜相比, 降低5.21 mg kg-1, 降幅为24.5%, 说明开花期土壤有效硫减少, 供硫不足, 应是花后小麦硫吸收减少的原因。覆膜后土壤有效硫降低的原因首先是覆膜在改善土壤水分和养分的基础上, 促进花前地上部对土壤硫的吸收和累积, 在无硫肥投入, 归还量减少情况下, 导致土壤硫含量下降; 其次是硫酸根不易被土壤胶体吸附, 易淋失或累积在深层土壤中, 表层土壤有效硫含量下降[45,46], 不利于作物花后或灌浆期间有效地吸收利用。有关覆膜后土壤硫的淋失和累积以及有效形态转变有待进一步研究。
本试验中三省试验田块耕层土壤有效硫含量平均为17.3 mg kg-1, 远低于华东平原和东北平原的42.4~61.0 mg kg-1 [31,47], 属于缺硫或潜在性缺硫地区, 覆膜会引起花后土壤有效硫降低, 影响作物硫吸收利用。因此, 旱地小麦覆膜栽培中要注意加强对土壤硫的补充, 改善小麦籽粒硫营养, 提高小麦的营养和加工品质。
4 结论
覆膜栽培可以提高旱地小麦生物量和籽粒产量, 却降低了小麦籽粒硫含量。覆膜促进小麦开花前各器官和地上部硫累积及其在花后向籽粒的转运, 却降低了开花期耕层土壤有效硫含量和花后硫吸收, 导致覆膜小麦籽粒硫含量降低。因此, 在西北旱地小麦覆膜栽培中要注意加强土壤硫的补充, 以改善旱地小麦籽粒硫营养, 提高小麦的营养品质和加工品质。致谢: 感谢山西农业大学农学院高志强教授、孙敏教授和资源环境学院谢英荷教授和李廷亮副教授,甘肃农业大学农学院柴守玺教授和常磊副教授,甘肃农业科学院小麦研究所鲁清林研究员和白玉龙助理研究员在试验样品采集方面提供的支持与帮助。
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
DOI:10.1016/j.apcbee.2013.05.073URL [本文引用: 1]
Water is a precious natural resource, a basic human need and prime national asset. Fresh water is the natural resource on which food security and the sustainability of eco systems depend. Rapid urbanization, large scale industrialization and population growth have affected the net availability of water in India & abroad. In order to attain food security, Rainwater harvesting by Watershed management practices is the need of the hour.
,
DOI:10.1038/nclimate2837URL [本文引用: 1]
Drylands are home to more than 38% of the total global population and are one of the most sensitive areas to climate change and human activities. Projecting the areal change in drylands is essential for taking early action to prevent the aggravation of global desertification. However, dryland expansion has been underestimated in the Fifth Coupled Model Intercomparison Project (CMIP5) simulations considering the past 58 years (1948-2005). Here, using historical data to bias-correct CMIP5 projections, we show an increase in dryland expansion rate resulting in the drylands covering half of the global land surface by the end of this century. Dryland area, projected under representative concentration pathways (RCPs) RCP8.5 and RCP4.5, will increase by 23% and 11%, respectively, relative to 1961-1990 baseline, equalling 56% and 50%, respectively, of total land surface. Such an expansion of drylands would lead to reduced carbon sequestration and enhanced regional warming, resulting in warming trends over the present drylands that are double those over humid regions. The increasing aridity, enhanced warming and rapidly growing human population will exacerbate the risk of land degradation and desertification in the near future in the drylands of developing countries, where 78% of dryland expansion and 50% of the population growth will occur under RCP8.5.
,
DOI:10.1007/978-1-4612-2844-8_4URL [本文引用: 1]
The drylands, referred to in this review as arid and semiarid lands, as well as subhumid lands prone to drought, are widely distributed in China. The arid and semiarid areas cover 52.2% of its total (arid area 30.8% and semiarid area 21.4%), based on either precipitation of 400mm as the rainfall line or 1.5 aridity (defined as evaporation/precipitation). Although the arid and semiarid areas occupy a wide range of the total lands, the arable portion of these areas is much less, only 30 million ha, about 30% of the total arable land in China. Together with the subhumid area, 74.24% of the total area of the country falls into this category of drylands (Working Committee of Natural Regionalization, Academia Sinica, 1959); these are mainly distributed in north China, including 15 provinces, municipalities, and autonomous regions with a population of 140 million, representing 17% of the total population of the country. As the lands in most of these areas cannot be irrigated, rainfed agriculture remains the main system of farming. The development of agriculture in these vast areas is very important for the national economy.
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/j.agwat.2004.12.014URL [本文引用: 1]
,
DOI:10.1016/j.agwat.2008.09.012URL [本文引用: 1]
,
DOI:10.3864/j.issn.0578-1752.2011.21.008URL [本文引用: 2]
[目的]研究不同施肥和覆盖栽培模式对渭北旱塬旱地冬小麦产量和 水分利用的影响.[方法]通过田间试验,研究测土推荐施氮、顶凌追肥、垄覆沟播、秸秆还田覆盖等措施对冬小麦产量、生物量、收获指数、水分利用效率及土壤 水分周年变化的影响.[结果]旱地早春追肥使冬小麦增产6%-14%,水分利用效率提高7%-10%,达到12.2-13.6 kg.hm-2.mm-1;“减氮+垄覆沟播”增产达15%-41%,水分利用率提高10%-30%,达到12.2-16.5kg.hm-2.mm-1. 主要原因是,通过测土优化氮肥用量,采用基肥:追肥(3:1)方式,并与起垄覆膜栽培措施相结合可促进冬小麦利用深层土壤水分,提高冬小麦抽穗开花期植株 含水量和成熟期的生物量及收获指数;虽然生育期耗水增加,但水分利用效率也提高.而单纯减少氮肥用量,不利于水分利用效率的提高;夏季垄上覆膜沟内覆盖作 物秸秆可提高休闲效率,利于土壤水分恢复,实现土壤水分周年平衡和旱地小麦可持续增产.[结论]优化施氮结合垄覆沟播是黄土高原渭北旱地小麦增产增效的栽 培模式.
DOI:10.3864/j.issn.0578-1752.2011.21.008URL [本文引用: 2]
[目的]研究不同施肥和覆盖栽培模式对渭北旱塬旱地冬小麦产量和 水分利用的影响.[方法]通过田间试验,研究测土推荐施氮、顶凌追肥、垄覆沟播、秸秆还田覆盖等措施对冬小麦产量、生物量、收获指数、水分利用效率及土壤 水分周年变化的影响.[结果]旱地早春追肥使冬小麦增产6%-14%,水分利用效率提高7%-10%,达到12.2-13.6 kg.hm-2.mm-1;“减氮+垄覆沟播”增产达15%-41%,水分利用率提高10%-30%,达到12.2-16.5kg.hm-2.mm-1. 主要原因是,通过测土优化氮肥用量,采用基肥:追肥(3:1)方式,并与起垄覆膜栽培措施相结合可促进冬小麦利用深层土壤水分,提高冬小麦抽穗开花期植株 含水量和成熟期的生物量及收获指数;虽然生育期耗水增加,但水分利用效率也提高.而单纯减少氮肥用量,不利于水分利用效率的提高;夏季垄上覆膜沟内覆盖作 物秸秆可提高休闲效率,利于土壤水分恢复,实现土壤水分周年平衡和旱地小麦可持续增产.[结论]优化施氮结合垄覆沟播是黄土高原渭北旱地小麦增产增效的栽 培模式.
,
DOI:10.1016/j.fcr.2016.07.001URL [本文引用: 3]
Micro-field rain-harvesting farming system (MRFS) has demonstrated great potentials to enhance field productivity and profitability of dryland wheat ( Triticum aestivum L.) in semiarid eastern Asia, yet little is known whether this system results in desired effects in semiarid Africa such as Kenya. A two-year field experiment was conducted during 2012 and 2013 growing seasons to evaluate the effects of introduced MRFS on water availability, field productivity and economic benefits using a local wheat ( T. aestivum L.) cultivar DUMA in a semiarid site of Kenya. Five treatments were designed as: 1) ridge and furrow with transparent plastic mulching (RFT); 2) ridge and furrow with black plastic mulching (RFB); 3) ridge and furrow with grass straw mulching (RFS); 4) ridge and furrow without mulching (RF); and 5) traditional flat planting (CK). The results showed that mulching treatments (RFT, RFB and RFS) significantly decreased the evapotranspiration (ET) by 11.4–88.502mm, increased wheat grain yield by 60%–163%, above-ground biomass by 58%–104% and water use efficiency for grain by 68%–271%, compared with CK over two growing seasons. RFT and RFB treatments resulted in maximal soil water storage at 1-m depth and the greatest harvest index among all treatments. Linkage analyses indicated that grain yield showed significantly positive correlation with plant height, leaf area and major spike components ( P 02≤020.05), suggesting that plant type of wheat was altered for better yield production as a result of MRFS operation. More importantly, economic ratios of output to input were also calculated and compared. The average ratio of output to input for CK was 3.86, slightly lower than 4.28, 4.06, 5.86 and 5.34 for RFT, RFB, RFS and RF, respectively across two growing seasons. In particular, net incomes in MRFS (RFT, RFB, RFS and RF) were increased by 145%, 128%, 117% and 82% respectively, compared with that of CK. In conclusion, on-field rain-harvesting farming system provides an innovative management to boost the productivity and profitability of dryland wheat, and a potential solution to cope with food security in semiarid Kenya.
,
[本文引用: 3]
[本文引用: 3]
,
DOI:10.3724/SP.J.1006.2017.00899URL [本文引用: 2]
覆膜栽培能提高旱地小麦产量,但降低了籽粒蛋白质含量,优化施肥是解决这一问题的有效措施之一。2013年9月至2016年9月,在黄土高原中部典型旱地进行田间定位试验,比较传统平作(不覆盖+均匀施肥)、垄覆沟播(垄上覆膜+垄间沟播+均匀施肥)和膜侧施肥(垄上覆膜+垄间沟播+播种行侧膜下定位施肥)栽培模式下,0~40 cm土层硝态氮含量和0~200 cm土壤水分,以及膜侧施肥对小麦氮素吸收利用、产量、籽粒蛋白质含量和水分利用的影响。与传统平作相比,在偏旱的2013—2014和2015—2016年度,垄覆沟播的小麦产量分别提高9.5%和6.3%,籽粒蛋白质含量降低7.1%和9.9%,水分利用效率提高5.8%和8.7%,而膜侧施肥的小麦产量提高18.8%和22.8%,籽粒蛋白质含量无显著变化,水分利用效率提高13.2%和19.6%;在偏湿润的2014—2015年度,垄覆沟播和膜侧施肥对小麦产量无影响,但膜侧施肥的籽粒蛋白质含量和水分利用效率分别提高6.0%和17.0%。与垄覆沟播相比,膜侧施肥在偏湿润年份使生长季内100~200 cm土壤水分消耗显著减少,而在偏旱年份使夏休闲季土壤蓄水显著增加,开花和收获期0~40 cm土壤硝态氮、根系全氮以及开花期茎叶全氮含量升高,促进了小麦营养器官氮素吸收、积累及其向籽粒的转运,提高了旱地小麦产量,籽粒蛋白质含量和水分利用效率。在偏干旱的2013—2014和2015—2016年度,膜侧施肥较垄覆沟播产量分别提高8.4%和15.5%,籽粒蛋白质含量提高9.9%和8.7%,水分利用效率提高7.0%和10.0%;在偏湿润的2014—2015年度,两处理产量无显著差异,但膜侧施肥的籽粒蛋白质含量提高6.0%。因此,膜侧施肥可维持旱地小麦生育后期的土壤氮供应,提高小麦产量、籽粒蛋白质含量和水分利用效率,增加下季播前深层土壤贮水,是适宜于旱区推广的小麦栽培模式。
DOI:10.3724/SP.J.1006.2017.00899URL [本文引用: 2]
覆膜栽培能提高旱地小麦产量,但降低了籽粒蛋白质含量,优化施肥是解决这一问题的有效措施之一。2013年9月至2016年9月,在黄土高原中部典型旱地进行田间定位试验,比较传统平作(不覆盖+均匀施肥)、垄覆沟播(垄上覆膜+垄间沟播+均匀施肥)和膜侧施肥(垄上覆膜+垄间沟播+播种行侧膜下定位施肥)栽培模式下,0~40 cm土层硝态氮含量和0~200 cm土壤水分,以及膜侧施肥对小麦氮素吸收利用、产量、籽粒蛋白质含量和水分利用的影响。与传统平作相比,在偏旱的2013—2014和2015—2016年度,垄覆沟播的小麦产量分别提高9.5%和6.3%,籽粒蛋白质含量降低7.1%和9.9%,水分利用效率提高5.8%和8.7%,而膜侧施肥的小麦产量提高18.8%和22.8%,籽粒蛋白质含量无显著变化,水分利用效率提高13.2%和19.6%;在偏湿润的2014—2015年度,垄覆沟播和膜侧施肥对小麦产量无影响,但膜侧施肥的籽粒蛋白质含量和水分利用效率分别提高6.0%和17.0%。与垄覆沟播相比,膜侧施肥在偏湿润年份使生长季内100~200 cm土壤水分消耗显著减少,而在偏旱年份使夏休闲季土壤蓄水显著增加,开花和收获期0~40 cm土壤硝态氮、根系全氮以及开花期茎叶全氮含量升高,促进了小麦营养器官氮素吸收、积累及其向籽粒的转运,提高了旱地小麦产量,籽粒蛋白质含量和水分利用效率。在偏干旱的2013—2014和2015—2016年度,膜侧施肥较垄覆沟播产量分别提高8.4%和15.5%,籽粒蛋白质含量提高9.9%和8.7%,水分利用效率提高7.0%和10.0%;在偏湿润的2014—2015年度,两处理产量无显著差异,但膜侧施肥的籽粒蛋白质含量提高6.0%。因此,膜侧施肥可维持旱地小麦生育后期的土壤氮供应,提高小麦产量、籽粒蛋白质含量和水分利用效率,增加下季播前深层土壤贮水,是适宜于旱区推广的小麦栽培模式。
,
DOI:10.1016/j.still.2006.05.010URL [本文引用: 1]
Five field experiments were conducted to study the effects of continuous plastic film mulching on rice yield, water use efficiency and soil properties on different soils with great environmental variabilities in Zhejiang Province, China, under non-flooding condition. The experiment started in 2001 at five sites and ended in 2003 with one rice crop annually. Three treatments included plastic film mulching with no flooding (PM), no plastic film mulching and no flooding (UM), and traditional flooding management (TF). Soil samples were collected after the third year of the experimentation and were analyzed for soil properties. PM increased soil temperature, accelerated decomposition of organic carbon and root growth, there was a slight but statistically insignificant trend of decline in soil bulk density. PM produced the similar rice grain yield as TF at two sites, significantly higher grain yield (5.8% and 20.0% higher) at other two sites, but significantly lower (34.3% lower) yield at one site where no irrigation water was applied and rainfall was the sole water source for rice growth. PM increased water use efficiency by 69.6–106.0% and irrigation water use efficiency by 273.7–519.6%. Compared to TF, PM decreased soil organic matter content by 8.3–24.5%, soil total N by 5.2–22.0%, and available K by 9.6–50.4% at all sites. PM treatment also reduced soil available N by 8.5–26.5% at four sites. Soil total P content in PM treatments reduced by 13.5–27.8% at three sites, and increased by 6.6–8.2% at other two sites. However, PM increased soil available P by 20.9–64.7% at all sites. Systematic cluster analysis indicated the PM treatment distinctively clustered from the other treatment. These results suggested PM could gain higher yield under appropriate water condition and PM may change soil nutrient cycle.
,
DOI:10.1016/j.fcr.2008.07.014URL [本文引用: 1]
,
DOI:10.1016/S0378-4290(99)00027-1URL [本文引用: 1]
This paper explores the possibility of improving yields of spring wheat ( Triticum aestivum ) by using plastic film mulching. Field experiments compared three mulching treatments viz. for 2002d (M1), 4002d (M2), and 6002d (M3) after sowing (DAS), with a non-mulch control (CK). Mulching increased temperature and moisture in the upper 502cm of soil, and shoots emerged 802d earlier than in CK. Mulching also increased number of tillers, length of the growing period, spikelet and grain numbers per spike, and the duration from flowering to harvest. In the mulched treatments, photosynthesis rate and soluble sugar content were higher in the vegetative period, but soluble sugar content was lower in the grain filling period relative to CK. Grain yield following 2002d mulching was greatest (820702kg02ha 611 ), and decreased gradually as the mulching period increased (7847 and 670202kg02ha 611 for M2 and M3, respectively). Plastic film removed after 2002d maximizes yield and minimizes soil pollution.
,
DOI:10.3724/SP.J.1006.2016.01530URL [本文引用: 1]
针对华北平原北部冬春温度变化与冬小麦生长发育所需适宜温度间的矛盾,以及由此造成的冬小麦相对低产问题,于2012—2013和2013—2014连续2个生长季,通过大田试验研究了晚冬早春搭建棚室阶段性升高田间温度对小麦产量的影响。结果表明,2月20日前后麦田塑膜覆盖每提前1周积温提高23.0~49.7℃,1月下旬至3月上旬的整个升温阶段内可增加积温167.7~176.8℃,从而小麦生长发育提前。塑膜揭除后形成的相对低温环境使后续各生育阶段持续时间延长4~10 d。与常规种植(对照)相比,最早增温处理的开花期干物质产量提高18.8%,叶面积指数提高14.7%,花后光合势增加43.6%,花后净光合速率高值持续期延长10 d以上;返青后各生育阶段的延长促进了干物质积累和向籽粒转移,有效穗数增加48~98万hm?2、单穗粒数增加3.9~4.5粒、千粒重增加2.5~5.6 g。在全生长季积温较少的2012—2013年度,最早增温处理的籽粒产量提高37.5%,在积温较多的2013—2014年度增产18.2%,并提前5 d成熟。晚冬早春农田阶段性覆膜增温是有效提高小麦籽粒产量的新型方法,提前并延长了生长发育和干物质累积的时间是改善小麦产量构成因素和获得高产的原因。
DOI:10.3724/SP.J.1006.2016.01530URL [本文引用: 1]
针对华北平原北部冬春温度变化与冬小麦生长发育所需适宜温度间的矛盾,以及由此造成的冬小麦相对低产问题,于2012—2013和2013—2014连续2个生长季,通过大田试验研究了晚冬早春搭建棚室阶段性升高田间温度对小麦产量的影响。结果表明,2月20日前后麦田塑膜覆盖每提前1周积温提高23.0~49.7℃,1月下旬至3月上旬的整个升温阶段内可增加积温167.7~176.8℃,从而小麦生长发育提前。塑膜揭除后形成的相对低温环境使后续各生育阶段持续时间延长4~10 d。与常规种植(对照)相比,最早增温处理的开花期干物质产量提高18.8%,叶面积指数提高14.7%,花后光合势增加43.6%,花后净光合速率高值持续期延长10 d以上;返青后各生育阶段的延长促进了干物质积累和向籽粒转移,有效穗数增加48~98万hm?2、单穗粒数增加3.9~4.5粒、千粒重增加2.5~5.6 g。在全生长季积温较少的2012—2013年度,最早增温处理的籽粒产量提高37.5%,在积温较多的2013—2014年度增产18.2%,并提前5 d成熟。晚冬早春农田阶段性覆膜增温是有效提高小麦籽粒产量的新型方法,提前并延长了生长发育和干物质累积的时间是改善小麦产量构成因素和获得高产的原因。
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/j.fcr.2011.10.010URL [本文引用: 1]
Understanding plant鈥搒oil relationships may help maximize crop productivity while maintaining and improving soil quality. Field experiments were conducted in 2006 and 2007 at the Dryland Agricultural Experimental Station of the Loess Plateau, Lanzhou University, China, to determine the effects of various ridge-furrow and plastic-mulching techniques on the growth and yield of maize ( Zea mays L.) and soil biochemical properties. Five treatments were designed: (1) flat-plot sowing without ridge-furrow mulching (CK), (2) large (80 cm) and small (40 cm) ridges alternated and fully mulched with plastic (DRM), (3) on-furrow sowing with plastic mulch applied only on the ridge at a row spacing of 60 cm and 40 cm alternatively (RM), (4) flat-plot sowing with plastic mulch at a row spacing of 60 cm and 40 cm alternatively (NM), and (5) flat-plot sowing with plastic mulch at a row spacing of 80 cm and 40 cm alternatively (WM). The results showed that film mulching enhanced soil microbial biomass; where microbial biomass carbon (MBC) in the DRM treatment reached 633 mg kg 1 at harvest in 2007, three times the MBC of the CK. The MBC:SOC ratios were 8.8%, 7.1%, 5.7% and 5.4% in DRM, RM, NM and WM, respectively. The ridge-furrow with plastic-mulching increased soil light fraction carbon (LFOC) in both years, averaging up to 1.04 g kg 1 at harvest. Underground plant biomass increased substantially in the mulching treatments, especially in DRM. Positive correlations were found between total biomass and LFOC, between MBC and LFOC, and between MBC and available phosphorus (AP), but a negative correlation between SOC and soil mineral nitrogen (MN). The carbon to phosphorus (C/P) ratio was highest in DRM among treatments, but the content of SOC, MN, and C/N ratio in DRM was lowest, suggesting that the DRM treatment strengthened the interactions between maize and soil, and that the increased content of LFOC with time provides a basis for increasing productivity in future years. In conclusion, the ridge-furrow and plastic-mulching technique brought about a challenge in maintaining soil fertility, but this technology provides a potential opportunity of substantially increasing crop yields in semiarid rainfed regions.
,
DOI:10.1016/j.fcr.2016.11.005URL [本文引用: 1]
Inoculation of arbuscular mycorrhizal fungi (AMF) is an environment-friendly solution to improve field productivity and agro-ecosystem sustainability in semiarid rainfed agricultural areas. Yet, whether it can be incorporated into plastic-film mulching farming systems is an unanswered fundamental question. In 2014 and 2015, two relatively independent but closely related field trials were conducted to evaluate the inoculation effects of AMF species on grain yield, biomass accumulation, water use efficiency (WUE), soil organic carbon and economic profitability in field-grown wheat under plastic film mulching in a typical semiarid site of northwest China. Trial 1 included two treatments: traditional flat planting (CK-1) and plastic film mulching (PFM); while Trial 2 consisted of PFM treatment inoculated with three AMF species (Acaulospora laevis,Glomus monosporum, andGlomus intraradices) alone or in combination, or without inoculation as the control (CK-2). PFM resulted in significant increases in grain yield and WUE due to improved hydro-thermal balance in both growing seasons. Importantly, across all the species under PFM, the AMF inoculation increased grain yield and aboveground biomass by 46.6% and 56.5%, respectively, in wet year 2014, and 16.6% and 27.4%, respectively, in warm dry year 2015, comparing with the non-inoculation treatment. AMF symbiosis also significantly enhanced harvest index and population fitness, and higher inoculation rates generally led to greater increases in yield, biomass and WUE. We also quantitatively estimated the economic benefits among various treatments, and found that compared with CK-1, PFM significantly increased net economic income by 35.8% in 2014 and 245.0% in 2015, while AMF inoculation further promoted average net income by 72.9% in 2014 and 21.7% in 2015 compared with CK-2. Meanwhile, the output to input ratio in PFM or PFM-mulching treatment was generally boosted or remained unchanged in comparison with that of control groups over two growing seasons. Principal component analysis (PCA) demonstrated that hydrothermal balance (PFM and precipitation) acted as the major factors to determine the grouping pattern from group I into group II, and all AMF treatment clusters into group III. Critically, PFM led to small increases in soil organic carbon (SOC) content in both growing seasons, and AMF inoculation further significantly increased the SOC by 16.5% in 2014 and 1.9% in 2015. The AMF diversity in the rhizosphere was re-tested and identified, providing evidence that three exotic AMF species had been established efficiently in rhizosphere soil and become dominant species. For the first time, we found that an integrated AMF-mulching farming system improved field productivity, economic benefit and soil organic carbon, thereby providing as environment-friendly and high-yielding management solution for wheat production and ecosystem sustainability in dryland agriculture.
,
DOI:10.3864/j.issn.0578-1752.2016.09.003URL [本文引用: 1]
[目的]研究地表覆盖对黄土高原旱地冬小麦氮磷钾需求和生理效率的影响,为促进黄土高原旱地冬小麦高效优质生产提供可靠的理论依据和实践经验.[方法]通过田间试验,以裸地休闲为对照,研究地膜覆盖、秸秆覆盖、种植绿肥和秸秆覆盖+种植绿肥对冬小麦籽粒产量、籽粒养分含量、籽粒产量形成和籽粒养分含量形成的氮磷钾需求及生理效率的影响.[结果]地膜覆盖降低了籽粒产量形成的需氮量,提高了籽粒产量形成的氮生理效率,从而使冬小麦籽粒产量显著增加6%;秸秆覆盖降低了地上部吸氮量,使籽粒产量减少7%;种植绿肥和秸秆覆盖+种植绿肥提高了籽粒产量形成的氮磷钾养分需求量、降低了籽粒产量形成的养分生理效率,从而使籽粒产量均减少5%.地膜覆盖提高了籽粒氮含量形成的需氮量,降低了氮生理效率,从而使籽粒含氮量降低8%,地膜覆盖增加了地上部吸钾量,使籽粒含钾量增加4%;秸秆覆盖的籽粒含氮量降低4%,但它的籽粒磷和钾含量分别提高6%和4%,这与降低籽粒磷钾含量形成的养分需求量、提高磷钾生理效率有关;种植绿肥提高了籽粒氮含量形成的氮生理效率,从而使籽粒氮含量增加8%;秸秆覆盖+种植绿肥对籽粒氮和磷含量无显著影响,但籽粒含钾量增加4%,归因于提高了籽粒钾含量形成的钾生理效率.[结论]地膜覆盖降低籽粒产量形成的需氮量,提高籽粒产量形成的氮生理效率,从而提高籽粒产量;但增加了籽粒氮含量形成的需氮量、降低了籽粒氮形成的氮生理效率,不利于籽粒含氮量提高.秸秆覆盖不利于作物养分吸收,从而影响籽粒产量和养分含量形成.种植绿肥和秸秆覆盖+种植绿肥提高了籽粒氮磷钾养分需求量、降低它们的生理效率,从而降低籽粒产量.种植绿肥可提高籽粒氮含量形成的氮生理效率,从而提高籽粒氮含量.因此,旱地小麦生产中为保证籽粒产量和营养品质,需增加地膜覆盖和秸秆覆盖的氮肥用量;夏闲期种植绿肥是旱地土壤培肥的重要措施,但需注意其可能带来的减产风险,应结合区域降水情况因地制宜.
DOI:10.3864/j.issn.0578-1752.2016.09.003URL [本文引用: 1]
[目的]研究地表覆盖对黄土高原旱地冬小麦氮磷钾需求和生理效率的影响,为促进黄土高原旱地冬小麦高效优质生产提供可靠的理论依据和实践经验.[方法]通过田间试验,以裸地休闲为对照,研究地膜覆盖、秸秆覆盖、种植绿肥和秸秆覆盖+种植绿肥对冬小麦籽粒产量、籽粒养分含量、籽粒产量形成和籽粒养分含量形成的氮磷钾需求及生理效率的影响.[结果]地膜覆盖降低了籽粒产量形成的需氮量,提高了籽粒产量形成的氮生理效率,从而使冬小麦籽粒产量显著增加6%;秸秆覆盖降低了地上部吸氮量,使籽粒产量减少7%;种植绿肥和秸秆覆盖+种植绿肥提高了籽粒产量形成的氮磷钾养分需求量、降低了籽粒产量形成的养分生理效率,从而使籽粒产量均减少5%.地膜覆盖提高了籽粒氮含量形成的需氮量,降低了氮生理效率,从而使籽粒含氮量降低8%,地膜覆盖增加了地上部吸钾量,使籽粒含钾量增加4%;秸秆覆盖的籽粒含氮量降低4%,但它的籽粒磷和钾含量分别提高6%和4%,这与降低籽粒磷钾含量形成的养分需求量、提高磷钾生理效率有关;种植绿肥提高了籽粒氮含量形成的氮生理效率,从而使籽粒氮含量增加8%;秸秆覆盖+种植绿肥对籽粒氮和磷含量无显著影响,但籽粒含钾量增加4%,归因于提高了籽粒钾含量形成的钾生理效率.[结论]地膜覆盖降低籽粒产量形成的需氮量,提高籽粒产量形成的氮生理效率,从而提高籽粒产量;但增加了籽粒氮含量形成的需氮量、降低了籽粒氮形成的氮生理效率,不利于籽粒含氮量提高.秸秆覆盖不利于作物养分吸收,从而影响籽粒产量和养分含量形成.种植绿肥和秸秆覆盖+种植绿肥提高了籽粒氮磷钾养分需求量、降低它们的生理效率,从而降低籽粒产量.种植绿肥可提高籽粒氮含量形成的氮生理效率,从而提高籽粒氮含量.因此,旱地小麦生产中为保证籽粒产量和营养品质,需增加地膜覆盖和秸秆覆盖的氮肥用量;夏闲期种植绿肥是旱地土壤培肥的重要措施,但需注意其可能带来的减产风险,应结合区域降水情况因地制宜.
[本文引用: 1]
,
DOI:10.3321/j.issn:0496-3490.2003.06.014URL [本文引用: 1]
在 0~ 2 0cm土层有效硫含量为 5 .84mg kg地块上施硫 ,显著提高冬小麦根系和旗叶硝酸还原酶活性 ,增加旗叶总游离氨基酸和可溶性蛋白质含量 ,利于旗叶蛋白质的合成 ;施硫亦提高旗叶内肽酶和羧肽酶活性 ,加速旗叶蛋白质的降解。施硫 6 7.5kg hm2 促进籽粒谷蛋白积累 ,显著提高籽粒蛋白质含量 ,改善加工品质 ,增加籽粒和蛋白质产量 ,但对醇溶蛋白的积累影响较小 ;增加施硫量至 90kg hm2 对醇溶蛋白积累有促进作用而对谷蛋白积累不利 ,籽粒蛋白质含量不再显著提高 ,品质无显著改善 ,籽粒和蛋白质产量亦不再显著增加。
DOI:10.3321/j.issn:0496-3490.2003.06.014URL [本文引用: 1]
在 0~ 2 0cm土层有效硫含量为 5 .84mg kg地块上施硫 ,显著提高冬小麦根系和旗叶硝酸还原酶活性 ,增加旗叶总游离氨基酸和可溶性蛋白质含量 ,利于旗叶蛋白质的合成 ;施硫亦提高旗叶内肽酶和羧肽酶活性 ,加速旗叶蛋白质的降解。施硫 6 7.5kg hm2 促进籽粒谷蛋白积累 ,显著提高籽粒蛋白质含量 ,改善加工品质 ,增加籽粒和蛋白质产量 ,但对醇溶蛋白的积累影响较小 ;增加施硫量至 90kg hm2 对醇溶蛋白积累有促进作用而对谷蛋白积累不利 ,籽粒蛋白质含量不再显著提高 ,品质无显著改善 ,籽粒和蛋白质产量亦不再显著增加。
,
DOI:10.1016/j.jcs.2004.05.005URL [本文引用: 1]
Although different supplies of sulphur (S) during wheat growth are known to influence the quantitative composition of gluten proteins in flour, an effect on the amount and on the proportions of single protein types has yet not been determined. Therefore, wholemeal flours of the spring wheat ‘Star’ grown on two different soils and at four different levels of S fertilisation (0, 40, 80, 16002mg S per container) were analysed in detail using an extraction/HPLC procedure. The results demonstrated that the amount of total gluten proteins as well as of the crude protein content of flour was little influenced, whereas amounts and proportions of single protein types were strongly affected by the different S fertilisation. The changes were clearly dependent on the Cys and Met content of each protein type. The amount of S-free ω-gliadins increased drastically, and that of S-poor high-molecular-weight (HMW) glutenin subunits increased moderately in the case of S deficiency. In contrast, the amounts of S-rich γ-gliadins and low-molecular-weight (LMW) glutenin subunits decreased significantly, whereas the amount of α-gliadins was reduced only slightly. S deficiency resulted in a remarkable shift of protein proportions. The gliadin/glutenin ratio increased distinctly; ω-gliadins became major components, and γ-gliadins minor components, whereas the ratio of HMW to LMW glutenin subunits was well-balanced.
,
DOI:10.1006/jcrs.1998.0241URL [本文引用: 1]
,
DOI:10.1006/jcrs.1998.0244URL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1080/01904169409364807URL [本文引用: 2]
A field study was made of the seasonal changes in dry090006matter production, and the uptake, distribution, and redistribution of 12 mineral nutrients in the semi090006dwarf spring wheat, Egret, grown under typical irrigation farming conditions. Most of the dry090006matter production and nutrient uptake had occurred by anthesis, with 75090009100% of the final content of magnesium (Mg), copper (Cu), chloride (Cl), sulfur (S), phosphorus (P), nitrogen (N), and potassium (K) being taken up in the pre090006anthesis period. The above090006ground dry090006matter harvest index was 37%, and grain made up 76% of the head dry matter. Redistributed dry matter from stems and leaves could have provided 29% of the grain dry matter. Concentrations of phloemmobile nutrients, such as N and P, decreased in the leaves and stems throughout the season, whereas concentrations of phloem090006immobile nutrients, such as calcium (Ca) and iron (Fe), generally increased. The decline in the N concentration in stems and leaves was not prevented by N fertilizer applied just before anthesis. Leaves had the major proportion of most nutrients in young plants, but stems had the major proportion of these nutrients at anthesis. Grain had over 70% of the N and P, and 3109000964% of the Mg, manganese (Mn), S, and zinc (Zn), but less than 20% of the K, Ca, sodium (Na), Cl, and Fe in the plant. Over 70% of the N and P, and from 15 to 51% of the Mg, K, Cu, S, and Zn was apparently redistributed from stems and leaves to developing grain. There was negligible redistribution of Ca, Na, Cl, Fe, and Mn from vegetative organs. Redistribution from stems and leaves could have provided 100% of the K, 6809000972% of the N and P, and 3309000948% of the Zn, Cu, Mg, and S accumulated by grain. It was concluded that the distribution patterns of some key nutrients such as N, P, and K have not changed much in the transition from tall to semi090006dwarf wheats, and that the capacity of wheat to redistribute dry matter and nutrients to grain is a valuable trait when nutrient uptake is severely restricted in the post090006anthesis period.
,
DOI:10.3321/j.issn:0496-3490.2007.09.008URL [本文引用: 4]
为了探讨施氮量对小麦籽粒加工品质调控的生理基础,选用强筋品种济麦20,在山东省龙口市前 诸留村和中村(在中村进行了连续两年定位试验),研究了田间高产条件下,小麦氮与硫积累和再分配与籽粒品质的关系及施氮量对其调控的效应。结果表明,随施 氮量由0增加至195~204kghm^-2,开化期营养器官中氮和硫的积累量及开花后吸收分配至籽粒的氮量和硫量增加,开化后各营养器官中的氮向籽粒的 再分配量及叶片和穗轴+颖壳中的硫向籽粒的再分配量增加,籽粒中氮和硫含量提高,氮、硫含量比(N/S比)南16.38~16.98降至 14.22~14.48,谷蛋白含量比例提高,籽粒品质改善;施氮量为276~285kghm^-2时,植株氮积累量无冠著变化,茎秆+叶鞘中氮转移量减 少,残留量增多,抑制了硫向籽粒的转移,导敛籽粒硫积累量和含量降低,N/S比升高至15.20~15.27,谷蛋白含量占总蛋白质含量的比例减少,籽粒 品质下降。说明施氮量影响了植株氮、硫积累量及向籽粒再分配的数量,调节了籽粒氮和硫含量及N/S比,导致籽粒蛋白质组分比例的差异,进而影响了籽粒的加 工品质。使品质改善的适宜籽粒N/S比为14.22~15.27.兼顾高产和优质的适宜施氮量为195~204kghm^-2。
DOI:10.3321/j.issn:0496-3490.2007.09.008URL [本文引用: 4]
为了探讨施氮量对小麦籽粒加工品质调控的生理基础,选用强筋品种济麦20,在山东省龙口市前 诸留村和中村(在中村进行了连续两年定位试验),研究了田间高产条件下,小麦氮与硫积累和再分配与籽粒品质的关系及施氮量对其调控的效应。结果表明,随施 氮量由0增加至195~204kghm^-2,开化期营养器官中氮和硫的积累量及开花后吸收分配至籽粒的氮量和硫量增加,开化后各营养器官中的氮向籽粒的 再分配量及叶片和穗轴+颖壳中的硫向籽粒的再分配量增加,籽粒中氮和硫含量提高,氮、硫含量比(N/S比)南16.38~16.98降至 14.22~14.48,谷蛋白含量比例提高,籽粒品质改善;施氮量为276~285kghm^-2时,植株氮积累量无冠著变化,茎秆+叶鞘中氮转移量减 少,残留量增多,抑制了硫向籽粒的转移,导敛籽粒硫积累量和含量降低,N/S比升高至15.20~15.27,谷蛋白含量占总蛋白质含量的比例减少,籽粒 品质下降。说明施氮量影响了植株氮、硫积累量及向籽粒再分配的数量,调节了籽粒氮和硫含量及N/S比,导致籽粒蛋白质组分比例的差异,进而影响了籽粒的加 工品质。使品质改善的适宜籽粒N/S比为14.22~15.27.兼顾高产和优质的适宜施氮量为195~204kghm^-2。
,
DOI:10.11674/zwyf.2011.0491URL [本文引用: 1]
2009~2010年在河南农业大学科教示范园区,以2个中筋小麦品种多穗型豫农949和大穗型兰考矮早8为供试材料,设置不同灌水次数(W0、W1和W2)和施硫(S0和S60)试验,研究不同灌水条件下施硫对冬小麦碳、氮、硫物质积累及产量的影响。结果表明,随灌水次数的增加,两品种小麦干物质积累量逐渐升高,且在开花期和成熟期干物质积累量表现为S60显著高于S0;施硫结合灌水1~2次可提高小麦干物质在各器官的积累量,以子粒干物质积累量最多,茎+叶、穗轴+颖壳次之,而各器官分配无显著差异;补施硫肥提高了子粒中氮和硫的含量,但随灌水次数的增加子粒和营养器官中氮含量呈下降趋势,以W 0处理含量最高。随着灌水次数的增加,两品种穗粒数、千粒重和产量呈升高趋势,且以S60W 2处理达到最大值,较S0W 0处理增幅达34.29%,品种间达显著差异,豫农949表现优于兰考矮早8。综上所述,本试验条件下,施用硫肥60 kg/hm2结合灌水1~2次有利于冬小麦干物质和碳、氮、硫积累分配及产量的提高,品种间对硫的响应有差异。
DOI:10.11674/zwyf.2011.0491URL [本文引用: 1]
2009~2010年在河南农业大学科教示范园区,以2个中筋小麦品种多穗型豫农949和大穗型兰考矮早8为供试材料,设置不同灌水次数(W0、W1和W2)和施硫(S0和S60)试验,研究不同灌水条件下施硫对冬小麦碳、氮、硫物质积累及产量的影响。结果表明,随灌水次数的增加,两品种小麦干物质积累量逐渐升高,且在开花期和成熟期干物质积累量表现为S60显著高于S0;施硫结合灌水1~2次可提高小麦干物质在各器官的积累量,以子粒干物质积累量最多,茎+叶、穗轴+颖壳次之,而各器官分配无显著差异;补施硫肥提高了子粒中氮和硫的含量,但随灌水次数的增加子粒和营养器官中氮含量呈下降趋势,以W 0处理含量最高。随着灌水次数的增加,两品种穗粒数、千粒重和产量呈升高趋势,且以S60W 2处理达到最大值,较S0W 0处理增幅达34.29%,品种间达显著差异,豫农949表现优于兰考矮早8。综上所述,本试验条件下,施用硫肥60 kg/hm2结合灌水1~2次有利于冬小麦干物质和碳、氮、硫积累分配及产量的提高,品种间对硫的响应有差异。
,
[本文引用: 4]
[本文引用: 4]
,
DOI:10.1080/01904167.2015.1077970URL [本文引用: 1]
,
DOI:10.1016/j.fcr.2016.01.013URL [本文引用: 1]
,
DOI:10.1016/j.fcr.2012.08.014URL [本文引用: 1]
Plastic film mulching (PFM) has been extensively used for crop production since the 1990s in the semi-arid Loess Plateau, Northwest China. The availability of soil inorganic P under PFM is poorly understood and hard to be predicted in this area. This paper determined the effects of PFM on P availability, soil P budget and topsoil P balance, and inorganic P fraction transformation on a calcareous soil with plastic-film-mulched spring wheat. This study was conducted in Zhonglianchuan, Yuzhong County, Gansu Province over two growing seasons in 2009 and 2010. There were two treatments of spring wheat either mulched with plastic film (M) or non-mulched/bare (B). Individual plots, 1002m long02×02602m wide, were replicated three times in a randomized complete block design. Compared to the B treatment, grain yield in the M treatment increased by 94.5% and 73.4% in 2009 and 2010, respectively; and straw biomass increased by 62.6% and 53.6%. P mass in aboveground spring wheat in the M treatment was significantly higher ( P 02≤020.05) than in the B treatment in both years. Moreover, P mass was significantly higher ( P 02≤020.05) in 2010 than the corresponding treatments in 2009. As a result, P remaining in the M treatment was significantly lower ( P 02≤020.05) than in the B treatment in both years. In the 2009 growing season with less rainfall, the balance of available P was positive, but negative in 2010 with more rainfall. This can be explained on the basis that high crop biomass requires more soil available P in wet years than in dry years, which may decrease actual soil available P content in the wheat-growing period. In this trial, inorganic P fraction contents increased in both treatments after two consecutive growing seasons, but decreased for O-P (occluded Fe/Al bound P). In the M treatment, a significant positive correlation existed between Olsen-P and Ca 2 -P (dicalcium bound P), Al-P (aluminum bound P), Fe-P (iron bound P), Ca 10 -P (phosphorite bound P) in 2009, and Ca 2 -P in 2010, but no significant correlation occurred in the B treatment. Therefore, we suggest that PFM is beneficial for reducing P remaining in soil and promoting inorganic P fraction availability to crops in semi-arid areas. Future research should focus on the mechanism for the effect of PFM with other crops on soil P availability and inorganic P fractions.
,
DOI:10.3321/j.issn:0578-1752.2001.03.019URL [本文引用: 2]
通过对地膜覆盖导致减产进行分析表明,施P处理的产量和水分利用效率最高.覆膜处理显著增加了根系生长,开花和灌浆期根系主要向下分布,但吸水量并没有按比例增加,导致同化产物的浪费.地上部分干物质量在播种70d之后不再增加,且繁殖器官发育不良.在本试验条件下,播前土壤底墒较好,地膜覆盖由于改善了地表水温条件,前期大量利用土壤水分,且后期降水不足,中下部丰富的根系不能发挥作用,导致产量下降.对照、耕作层施磷、覆膜、耕作层施磷加地膜覆盖4个处理的产量分别为2516.5,2734.1,1269.4和1625.1 kg/ha.
DOI:10.3321/j.issn:0578-1752.2001.03.019URL [本文引用: 2]
通过对地膜覆盖导致减产进行分析表明,施P处理的产量和水分利用效率最高.覆膜处理显著增加了根系生长,开花和灌浆期根系主要向下分布,但吸水量并没有按比例增加,导致同化产物的浪费.地上部分干物质量在播种70d之后不再增加,且繁殖器官发育不良.在本试验条件下,播前土壤底墒较好,地膜覆盖由于改善了地表水温条件,前期大量利用土壤水分,且后期降水不足,中下部丰富的根系不能发挥作用,导致产量下降.对照、耕作层施磷、覆膜、耕作层施磷加地膜覆盖4个处理的产量分别为2516.5,2734.1,1269.4和1625.1 kg/ha.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
URL [本文引用: 1]
通过西北典型旱地渭北旱塬5年定位试验,在施磷100kgP2O5·hm-2的基础上,设0、80、160、240、320kgN·hm-25个施氮水平,结合5年降水情况,研究了播前底墒与施用氮肥对旱地冬小麦产量及水分利用的影响.结果表明:夏季7—9月的降水与播前底墒呈线性相关,每增加1mm夏季降水,土壤贮水量增加0.6mm;要保持小麦稳产或高产,底墒应保持在550mm左右,夏季降水应有370~390mm.夏季降水充足(386mm)的年份,前季小麦施氮量增加造成的下季小麦播前底墒下降不明显;降水偏少(350mm)的年份,前季小麦每增施氮肥100kg·hm-2,可使下季小麦播前底墒减少9~17mm.除底墒外,关键生育期的充足降水也是保证旱地小麦产量的重要因素,每毫米播前底墒和关键生育期降水分别能形成10.6~11.4和30.6~33.1kg·hm-2小麦籽粒产量.变异分析表明,氮肥投入水平影响小麦对底墒的利用程度,底墒制约小麦植株干物质向籽粒转移的比例.
URL [本文引用: 1]
通过西北典型旱地渭北旱塬5年定位试验,在施磷100kgP2O5·hm-2的基础上,设0、80、160、240、320kgN·hm-25个施氮水平,结合5年降水情况,研究了播前底墒与施用氮肥对旱地冬小麦产量及水分利用的影响.结果表明:夏季7—9月的降水与播前底墒呈线性相关,每增加1mm夏季降水,土壤贮水量增加0.6mm;要保持小麦稳产或高产,底墒应保持在550mm左右,夏季降水应有370~390mm.夏季降水充足(386mm)的年份,前季小麦施氮量增加造成的下季小麦播前底墒下降不明显;降水偏少(350mm)的年份,前季小麦每增施氮肥100kg·hm-2,可使下季小麦播前底墒减少9~17mm.除底墒外,关键生育期的充足降水也是保证旱地小麦产量的重要因素,每毫米播前底墒和关键生育期降水分别能形成10.6~11.4和30.6~33.1kg·hm-2小麦籽粒产量.变异分析表明,氮肥投入水平影响小麦对底墒的利用程度,底墒制约小麦植株干物质向籽粒转移的比例.
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3321/j.issn:1000-0933.2009.05.036URL [本文引用: 1]
采集沈阳农业大学棕壤定位实验站(1987年设置)的土样,测定土壤pH、有机碳、全氮、碱解氮、速效磷、速效钾、微生物生物量碳、氮和BIOLOG碳源利用,结合地上部分生物量,系统分析了长期施肥与地膜覆盖对土壤肥力指标和微生物学性质的影响。结果表明,传统栽培条件下,土壤微生物群落平均吸光度(AWCD)与土壤有机碳含量、速效磷和有效钾显著相关(p0.01),表明施肥通过影响有机碳和速效磷、钾含量影响微生物功能。在覆膜栽培条件下,AWCD与土壤pH和土壤碳氮比显著相关(p0.01),表明覆膜通过影响土壤pH和土壤碳氮比影响微生物功能。覆膜引起玉米生育期的变化,影响有效碳的投入,从而直接影响土壤微生物功能。与相应的传统栽培相比,覆膜栽培后土壤pH的变化对微生物群落结构有一致影响。
DOI:10.3321/j.issn:1000-0933.2009.05.036URL [本文引用: 1]
采集沈阳农业大学棕壤定位实验站(1987年设置)的土样,测定土壤pH、有机碳、全氮、碱解氮、速效磷、速效钾、微生物生物量碳、氮和BIOLOG碳源利用,结合地上部分生物量,系统分析了长期施肥与地膜覆盖对土壤肥力指标和微生物学性质的影响。结果表明,传统栽培条件下,土壤微生物群落平均吸光度(AWCD)与土壤有机碳含量、速效磷和有效钾显著相关(p0.01),表明施肥通过影响有机碳和速效磷、钾含量影响微生物功能。在覆膜栽培条件下,AWCD与土壤pH和土壤碳氮比显著相关(p0.01),表明覆膜通过影响土壤pH和土壤碳氮比影响微生物功能。覆膜引起玉米生育期的变化,影响有效碳的投入,从而直接影响土壤微生物功能。与相应的传统栽培相比,覆膜栽培后土壤pH的变化对微生物群落结构有一致影响。
,
DOI:10.1016/j.still.2017.01.001URL [本文引用: 1]
,
DOI:10.2135/cropsci2004.1682URL [本文引用: 1]
Abstract Quantifying root growth can improve our understanding of the development of rhizoplane and rhizosphere structure of a crop and its relation to seed yield. A study was conducted in a semiarid environment in northwestern China to determine the seasonal and spatial patterns of root growth in spring wheat (Triticum aestivum L.) grown with and without plastic mulches. The seed of 'Lun-chun 20' was grown in polyvinyl chloride tubes filled with Yellow Mein sandy loam soil (Aridic Haplustoll). Mulched wheat had a greater (22%) root dry weight (DW) than unmulched wheat at Zadoks Growth Stage (GS) 22. Root DW increased rapidly from GS22 to GS73, with the rate of increase in root DW peaked at GS61. At a given GS during this period, the mulched wheat produced a significantly greater root DW than the unmulched wheat. For both mulched and unmulched wheat, the rate of increase in root DW declined after GS61 where roots penetrated down into the 100-cm soil layer. The greatest percentage of root DW was in the 10- to 20-cm soil depth, followed by the root DW in the 40- to 50-cm soil depth. At any given soil depth between 10 and 60 cm, the mulched wheat had a greater root DW than the unmulched plants. Root DW below 60-cm soil depth accounted for a small portion of the total weight and did not differ between the two mulch treatments. On average, the mulched wheat had 23% greater number of seeds per plant, 5% higher seed weight, and 28% higher grain yield than unmulched wheat. In semiarid northwestern China, the use of plastic mulches promoted spring wheat root development, root biomass production, and seed yield.
,
DOI:10.1046/j.1365-3040.1999.00445.xURL [本文引用: 2]
Abstract Top of page Abstract INTRODUCTION MATERIALS AND METHODS RESULTS DISCUSSION Acknowledgements References Wheat plants were grown hydroponically and fed with two sulphate sources differing in stable isotope composition, one having a δ 34 S of 13·7‰ and the other 4·1‰. Plant sulphur (S) isotope ratios were determined using an on-line continuous flow-isotope ratio mass spectrometer. This method greatly simplified the procedure for the measurement of S isotope ratios, and was found to be precise for samples containing > 1 mg S g –1 dry weight. The δ 34 S values of plant shoots, which had been grown on a single sulphate source, were very close to the source values, suggesting little isotope fractionation during sulphate uptake and transport from roots to shoots. By changing the sulphate sources at different growth stages, it was possible to estimate S accumulation and redistribution within different plant parts. At maturity, wheat grain derived 14, 30, 6 and 50% of its S from the accumulation during the following successive growth stages: between emergence and early stem extension, between stem extension and flag leaf emergence, between flag leaf emergence and anthesis, and after anthesis, respectively. It was estimated that 39, 32 and 52% of the S present in the flag leaves, older leaves and stems, respectively, at anthesis, was exported during the postanthesis period. These results demonstrate considerable cycling of S within wheat plants, and highlight the importance of S uptake after anthesis to the accumulation of S in grain under the experimental conditions employed.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.3321/j.issn:1008-505X.2002.01.016URL [本文引用: 1]
对设在黄土高原旱地黑垆土上不同N、P配比与用量的长期定位试验土壤剖面有效硫的分布与累积进行了研究.结果表明,长期施用不同量及不同配比的尿素与过磷酸钙肥料,对土壤剖面有效硫的含量影响明显,无硫投入的处理CK、N2、N4剖面有效硫含量低,平均分别为7.73、10.64、12.16mg/kg,分布均匀,而有硫投入的处理有效硫在剖面形成累积峰,最大含量可达95.42mg/kg.大量的硫素随过磷酸钙施入土壤之后,部分以可溶无机硫酸盐形式被下渗水淋溶到土体的深层累积,累积量随施硫量的增加而增加,由于投入硫量大,在同一硫水平上,产量随氮肥用量增加而增加,但累积硫的量减少不多.石灰性土壤有效硫的下淋累积受作物、土壤、施肥、降水等多种因素影响,是长期的累积过程.
DOI:10.3321/j.issn:1008-505X.2002.01.016URL [本文引用: 1]
对设在黄土高原旱地黑垆土上不同N、P配比与用量的长期定位试验土壤剖面有效硫的分布与累积进行了研究.结果表明,长期施用不同量及不同配比的尿素与过磷酸钙肥料,对土壤剖面有效硫的含量影响明显,无硫投入的处理CK、N2、N4剖面有效硫含量低,平均分别为7.73、10.64、12.16mg/kg,分布均匀,而有硫投入的处理有效硫在剖面形成累积峰,最大含量可达95.42mg/kg.大量的硫素随过磷酸钙施入土壤之后,部分以可溶无机硫酸盐形式被下渗水淋溶到土体的深层累积,累积量随施硫量的增加而增加,由于投入硫量大,在同一硫水平上,产量随氮肥用量增加而增加,但累积硫的量减少不多.石灰性土壤有效硫的下淋累积受作物、土壤、施肥、降水等多种因素影响,是长期的累积过程.
,
[本文引用: 1]
[本文引用: 1]