关键词:小麦; 株高; 突变体; 内源激素 Effects of Dwarf Gene Rht_NM9 on Contents of Endogenous Hormone Regulating Plant Height of Common Wheat LU Yuan1,2, CUI Chao-Fan2, HU Ping2, CHEN Pei-Du2, SHEN Xue-Fang1, HAN Qing1, WANG Yi-Fa1, XING Li-Ping2,*, CAO Ai-Zhong2,* 1 Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
2State Key Laboratory of Crop Genetics and Germplasm Enhancement / Cytogenetics Institute, Nanjing Agricultural University / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
Fund:This study was supported by the Fundamental Research Funds for the Central Universities (KYZ201601, KYYJ201602, KYZ201401) AbstractA dwarf wheat mutant (NM9) with additional tillers and elongated spikes was obtained by treating NAU9918 seeds with ethyl methanesulfonate (EMS). The decreased plant height in NM9 was controlled by a novel dwarf gene Rht_NM9. The endogenous plant hormones play important roles in regulating plant height of common wheat. To understand the dwarfing mechanism of Rht_NM9 and the relationship between endogenous hormone contents and plant height, measured contents of endogenous gibberellic acid (GA), auxin (IAA), abscisic acid (ABA) and zeatin riboside (ZR) in internodes of NM9 and NAU9918 at different stages by enzyme-linked immunosorbent assays (ELISA). Our study indicated that contents of GA and ABA in NM9 were significantly higher than there in NAU9918, and ZR content in NM9 was significantly lower than that in NAU9918 at both booting and heading stages. Nevertheless, no difference of IAA content was observed between the mutant and the wild-type. In addition, the GA/ABA ratio in internodes of the mutant was significantly higher than that of the wild-type, however, the ratios of IAA/ABA, (IAA + GA)/ABA and ZR/ABA were significantly lower than there of the wild-type. All these results indicated that plant height in wheat was regulated by multiple hormones. Plant height would be inhibited with increasing content of endogenous ABA and decreasing ratios of IAA/ABA and ZR/ABA in wheat.
图1 孕穗期和抽穗期矮秆突变体NM9及其野生型南农9918各节间内源激素含量变化A: GA含量; B: ABA含量; C: ZR含量; D: IAA含量; 1IU~4IU: 顶端第1~第4节间。* 和* * 分别表示突变体和野生型在P < 0.05 和 P < 0.01水平差异显著。Fig. 1 Changes of endogenous phytohormone contents in different internodes of dwarf mutant NM9 and its wild-type NAU9918 at booting and heading stageA: GA content; B: ABA content; C: ZR content; D: IAA content; 1IU-4IU: the first, second, third, and forth internode from the top, respectively. * and * * indicate significant difference between the mutant and the wild-type at the 0.05 and 0.01 probability level, respectively.
2.1.2 突变体和野生型ABA含量变化 在孕穗期和抽穗期, 突变体各节间内源ABA含量极显著高于野生型的对应节间(图1-B)。突变体中, 孕穗期顶端第2节间的ABA含量最高, 为809.25± 50.31 ng g-1, 在抽穗期顶端第1节间的ABA含量最低, 为183.44± 7.77 ng g-1; 而在野生型中, 在孕穗期顶端第3节间ABA含量最高, 仅为152.96± 9.18 ng g-1, 显著低于突变体各节间ABA最低含量(图1-B), 可见突变体茎秆中ABA含量远高于野生型。 2.1.3 突变体和野生型ZR含量变化 在孕穗期和抽穗期, 突变体和野生型內源ZR含量变化趋势相同, 均呈先上升后下降(图1-C)。突变体和野生型ZR含量在各节间的分布相同, 孕穗期突变体(25.87± 1.67 ng g-1)和野生型(32.71± 0.38 ng g-1)顶端第2节间的ZR含量最高, 抽穗期突变体(21.51± 2.05 ng g-1)和野生型(41.51± 2.10 ng g-1)顶端第3节间的ZR含量最高(图1-C)。比较发现, 孕穗期和抽穗期突变体各节间内源ZR含量均显著低于野生型对应节间(图1-C)。 2.1.4 突变体和野生型IAA含量变化 在孕穗期和抽穗期, 突变体和野生型各节间中IAA含量变化趋势相同, 表现为从形态学上端节间(顶端第1节间)至形态学基部节间(孕穗期顶端第3节间, 抽穗期顶端第4节间) IAA含量呈逐渐上升趋势, 在基部节间IAA含量达到最大值(图1-D), 在突变体和野生型各节间之间形成了IAA浓度梯度。然而, 将突变体各节间内源IAA含量和野生型对应节间相比, 均无显著差异(图1-D)。 2.2 突变体NM9和野生型各节间内源激素含量比值变化突变体孕穗期顶端第3节间以及抽穗期各节间的GA/ABA比值均显著高于野生型(图2-A)。除了抽穗期顶端第1节间中(IAA+GA)/ABA比值在突变体和野生型之间无显著差异外, 突变体各节间的IAA/ABA、(IAA+GA)/ABA、ZR/ABA比值均极显著低于野生型对应节间(图2-B, C, D)。 图2 Fig. 2
图2 孕穗期和抽穗期矮秆突变体NM9及其野生型南农9918各节间激素含量比值变化A: GA/ABA比值; B: IAA/ABA比值; C: (IAA + GA)/ABA比值; D: ZR/ABA比值; 1IU~4IU: 顶端第1~第4节间。* 和* * 分别表示突变体和野生型在P < 0.05 和P < 0.01水平差异显著。Fig. 2 Changes of phytohormone content ratio in different internodes of dwarf mutant NM9 and its wild-type NAU9918 at booting and heading stageA: GA/ABA ratio; B: IAA/ABA ratio; C: (IAA + GA)/ABA ratio; D: ZR/ABA ratio; 1IU-4IU: the first, second, third, and forth internode from the top, respectively. * and * * indicate significant difference between the mutant and the wild-type at the 0.05 and 0.01 probability level, respectively.
4 结论小麦矮秆突变体NM9的矮化是多种激素相互作用、综合调控的结果。矮秆基因Rht_NM9对GA不敏感, 导致突变体茎秆GA含量较野生型极显著提高, 进而降低株高。此外, ABA含量提高和IAA/ABA、ZR/ABA比值降低均会抑制植物株高的增长。 The authors have declared that no competing interests exist.
姚瑞亮, 朱文祥. 小麦形态性状与倒伏的相关分析. , 1998, 17(增刊): 16-18Yao RL, Zhu WX. The correlation analysis of the stem traits and lodging in wheat. , 1998, 17(suppl): 16-18 (in Chinese with English abstract)[本文引用:1]
[2]
Foulkes MJ, Slafer GA, Davies WJ, Berry PM, Sylvester-BradleyR, MartreP, Calderini DF, GriffithsS, Reynolds MP. Raising yield potential of wheat: III. Optimizing partitioning to grain while maintaining lodging resistance. , 2011, 62: 469-486[本文引用:1]
[3]
Wiersma DW, Oplinger ES, Guy SO. Environment and cultivar effects on winter wheat response to ethephon plant growth regulator1. , 1986, 78: 761-764[本文引用:1]
[4]
KashiwagiT, IshimaruK. Identification and functional analysis of a locus for improvement of lodging resistance in rice. , 2004, 134: 676-683[本文引用:1]
[5]
Davies PJ. Plant hormones and their role in plant growth and development. , 2012. pp 3-10[本文引用:2]
[6]
WangL, MuC, Du MW, ChenY, Tian XL, Zhang MC, Li ZH. The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L. ) internode is associated with low concentration of gibberellic acid. , 2014, 225: 15-23[本文引用:1]
[7]
SrinivasanC, Liu ZR, ScorzaR. Ectopic expression of class 1 KNOX genes induce adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L. ) and European plum (Prunus domestica L. ). , 2011, 30: 655-664[本文引用:1]
[8]
Chen YN, Fan XR, Song WJ, Zhang YL, Xu GH. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. , 2012, 10: 139-149[本文引用:1]
[9]
AgeharaS, Leskovar DI. Age-dependent effectiveness of exogenous abscisic acid in height control of bell pepper and jalapeño transplants. , 2014, 175: 193-200[本文引用:1]
[10]
IkedaA, Ueguchi-TanakaM, SonodaY, KitanoH, KoshiokaM, FutsuharaY, MatsuokaM, YamaguchiJ. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. , 2001, 13: 999-1010[本文引用:3]
[11]
MagomeH, YamaguchiS, HanadaA, KamiyaY, OdaK. Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. , 2004, 37: 720-729[本文引用:1]
[12]
Clay NK, NelsonT. Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport. , 2005, 138: 767-777[本文引用:1]
[13]
Quiroz-FigueroaF, Rodríguez-AcostaA, Salazar-BlasA, Hernández-DomínguezE, Campos ME, KitahataN, AsamiT, Galaz-Avalos R M, Cassab G I. Accumulation of high levels of ABA regulates the pleiotropic response of the nhr1 Arabidopsis mutant. , 2010, 53: 32-44[本文引用:1]
[14]
FuX, Richards DE, Ait-AliT, Hynes LW, OughamH, PengJ, Harberd NP. Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. , 2002, 14: 3191-3200[本文引用:1]
[15]
PengJ, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, BealesJ, Fish LJ, Worland AJ, PelicaF. “Green revolution” genes encode mutant gibberellin response modulators. , 1999, 400: 256-261[本文引用:1]
[16]
WuJ, Kong XY, Wan JM, Liu XY, ZhangX, Guo XP, Zhou RH, Zhao GY, Jing RL, Fu XD, Jia JZ. Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. , 2011, 157: 2120-2130[本文引用:1]
[17]
熊国胜, 李家洋, 王永红. 植物激素调控研究进展. , 2009, 54: 2718-2733Xiong GS, Li JY, Wang YH. Advances in the regulation and crosstalks of phytohomones. , 2009, 54: 2718-2733 (in Chinese)[本文引用:1]
[18]
张立军, 梁宗锁. . 北京: 科学出版社, 2007. pp 205-237Zhang LJ, Liang Z S. Beijing: Science Press, 2007. pp 205-237(in Chinese)[本文引用:1]
[19]
殷稳娜, 孔广超, 王雪玉, 高静涛, 何萱. 六倍体小黑麦株高形成中内源激素含量的变化. , 2011, 31: 953-958Yin WN, Kong GC, Wang XY, Gao JT, HeX. Dynamic changes of plant hormone contents in hexapoid triticale (× Triticosecale Wittmack) with different plant height. , 2011, 31: 953-958 (in Chinese with English abstract)[本文引用:3]
[20]
王成章, 潘晓建, 张春梅, 胡喜峰, 杨雨鑫. 外源ABA对不同秋眠型苜蓿品种植物激素含量的影响. , 2006, 15(2): 30-36Wang CZ, Pan XJ, Zhang CM, Hu XF, Yang YX. Effects of exogenous ABA on hormone content in different varieties of fall dormancy Medicago sativa varieties. , 2006, 15(2): 30-36 (in Chinese with English abstract)[本文引用:2]
[21]
DongQ, Wang JZ, Guo JM, HengZ. The relation between endogenous hormones and late-germination in buds of avrolles apple. , 2009, 8: 564-571[本文引用:1]
[22]
Hou JW, Guo SJ, Wang GY. Effects of in vitro subculture on the physiological characteristics of adventitious root formation in microshoots of Castanea mollissima cv. “Yanshanhong”. , 2010, 21: 155-160[本文引用:1]
[23]
Xie ZJ, JiangD, Cao WX, Dai TB, JingQ. Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statusses. , 2003, 41: 117-127[本文引用:1]
[24]
LuY, Xing LP, Xing SJ, HuP, Cui CF, Zhang MY, XiaoJ, Wang HY, Zhang RQ, Wang XE, Chen PD, Cao AZ. Characterization of a putative new semi-dominant reduced height gene, Rht_NM9, in wheat (Triticum aestivum L. ). , 2015, 42: 685-698[本文引用:4]
[25]
Teng NJ, WangJ, ChenT, Wu XQ, Wang YH, Lin JX. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. , 2006, 172: 92-103[本文引用:1]
[26]
HooleyR. Gibberellins: perception, transduction and responses. , 1994, 26: 1529-1555[本文引用:1]
[27]
Harberd NP, King KE, CarolP, Cowling RJ, Peng JR, Richards DE. Gibberellin: inhibitor of an inhibitor of. .?, 1998, 20: 1001-1008[本文引用:1]
[28]
SasakiA, AshikariM, Ueguchi-TanakaM, ItohH, NishimuraA, SwapanD, IshiyamaK, SaitoT, KobayashiM, Khush GS, KitanoH, MatsuokaM. Green revolution: a mutant gibberellin-synthesis gene in rice. , 2002, 416: 701-702[本文引用:1]
[29]
SakamotoT, KobayashiM, ItohH, TagiriA, KayanoT, TanakaH, IwahoriS, MatsuokaM. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. , 2001, 125: 1508-1516[本文引用:1]
[30]
AmadorV, MonteE, García-MartínezJ, PratS. Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. , 2001, 106: 343-354[本文引用:1]
[31]
Hoffmann-BenningS, KendeH. On the role of abscisic acid and gibberellin in the regulation of growth in rice. , 1992, 99: 1156-1161[本文引用:1]
[32]
宋平, 高红胜, 曹显祖, 谢迎兰. 不同籼稻品种的矮生性与内源ABA水平及其结合蛋白的关系. , 1998, 18: 380-385SongP, Gao HS, Cao XZ, Xie YL. The relationships between dwarfism of indica rice and ABA/ABA-binding proteins. , 1998, 18: 380-385 (in Chinese with English abstract)[本文引用:1]
[33]
WuK, Wang JY, Kong ZX, Ma ZQ. Characterization of a single recessive yield trait mutant with elevated endogenous ABA concentration and deformed grains, spikelets and leaves. , 2011, 180: 306-312[本文引用:1]
[34]
DuH, ChangY, HuangF, Xiong LZ. GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice. , 2015, 57: 954-968[本文引用:1]
[35]
Bailey-SerresJ, Voesenek LA. Life in the balance: a signaling network controlling survival of flooding. , 2010, 13: 489-494[本文引用:1]
[36]
FukaoT, Bailey-SerresJ. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. , 2008, 105: 16814-16819[本文引用:1]
[37]
FukaoT, YeungE, Bailey-SerresJ. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. , 2011, 23: 412-427[本文引用:1]
[38]
GazzarriniS, TsuchiyaY, LumbaS, OkamotoM, McCourt P. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. , 2004, 7: 373-385[本文引用:1]
[39]
CurabaJ, MoritzT, BlervaqueR, ParcyF, RazV, HerzogM, GillesV. AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. , 2004, 136: 3660-3669[本文引用:1]
[40]
Gómez-CadenasA, ZentellaR, Walker-Simmons M K, Ho T D. Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. , 2001, 13: 667-679[本文引用:1]
[41]
Hartweck LM, Olszewski NE. Rice GIBBERELLIN INSENSITIVE DWARF1 is a gibberellin receptor that illuminates and raises questions about GA signaling. , 2006, 18: 278-282[本文引用:1]
[42]
ZentellaR, Zhang ZL, ParkM, Thomas SG, EndoA, MuraseK, Fleet CM, JikumaruY, NambaraE, KamiyaY, Sun TP. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. , 2007, 10: 3037-3057[本文引用:1]
[43]
Chand ler PM, Harding CA. “Overgrowth” mutants in barley and wheat: new alleles and phenotypes of the “Green Revolution” DELLA gene. , 2013, 64: 1603-1613[本文引用:1]