摘要第一代抗草甘膦转 CP4-EPSPs基因大豆GTS40-3-2是国际上应用时间最长、种植面积最大的转基因作物。本文以6份GTS40-3-2衍生的抗草甘膦转基因大豆新品系为亲本, 配制4个杂交组合, 利用抗性分级法和相对株高法鉴定杂交亲本及其F2:3子代对草甘膦的耐受性差异, 分析其抗性水平与遗传背景的相关性。结果表明, 以1230 g a.i. hm-2草甘膦喷施处理时, 转基因亲本及其F2:3子代的苗期生长受草甘膦抑制不显著, 而当喷施浓度提高至3690 g a.i. hm-2和4920 g a.i. hm-2时则抑制作用显著。供试的6个杂交亲本中以ZLHJ06-1568、ZLHJ10-713和ZLHJ06-698对草甘膦的耐受性相对较强, 而4个F2:3组合中以ZLHJ10-713 × ZLHJ06-698后代在草甘膦喷施后株高受抑制最小, 对草甘膦耐受性最强。不同组合后代对草甘膦的耐受性普遍优于其双亲, 呈现出杂种优势。各组合后代与亲本之间对草甘膦的耐受性均呈正相关, 但由于亲本间互作效应的不同, 导致后代抗性水平产生差异。本研究表明草甘膦抗性基因 CP4-EPSPs在大豆中的表达水平与其遗传背景相关联, 为利用转基因大豆新种质培育转基因大豆新品种过程中目标基因的定向选择提供了参考依据。
关键词:转基因大豆; 抗草甘膦特性; 遗传规律 Correlation between Resistance to Glyphosate and Genetic Background in Transgenic CP4-EPSPsGene Soybean Progeny SUN Ru-Jian1,2,3, SUN Bin-Cheng1, ZHANG Qi1, HU Xing-Guo1, GUO Rong-Qi1, GUO Bing-Fu2, MA Yan-Song2,3, YU Ping1, ZHANG Xiao-Li1, CHAI Shen1, ZHANG Wan-Hai1,*, QIU Li-Juan2,* 1 Hulun Buir Institution of Agricultural Sciences, Zhalantun 162650, Inner Mongolia
2The National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Soybean Biology (Beijing) / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
3 Northeast Agricultural University, Harbin 150030, China
4Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
Fund:This study was supported by the Major Project of China on New Varieties of GMO Cultivation (ZX2008004-001, ZX2011004-001, ZX2013004-001, ZX2014004-001). AbstractThe first Roundup Ready (RR) soybean (GTS40-3-2) carrying CP4-EPSPsis one of the transgenic crops that have the longest application time and largest planting acreage worldwide. However, it has not been commercialized and has less report in China. In this study, six RR soybean lines derived from GTS40-3-2 were hybridized to create four combinations. We used resistance grading and relative plant height in identifying the resistance to glyphosate of parents and F2:3 progeny, to investigate the correlation between resistance of the progeny and genetic background. The growth inhibition of transgenic parents and progeny at seeding stage was not significant when the glyphosate treatment concentration was 1230 g a.i. hm-2, while it was significant when the glyphosate concentration was 3690 g a.i. hm-2 and 4920 g a.i. hm-2. ZLHJ06-1568, ZLHJ10-713, and ZLHJ06-698 among the six parents had the more glyphosate resistance relatively. The progeny of ZLHJ10-713 × ZLHJ06-698 combination had the least inhibition of plant height showing highest resistance to glyphosate in all four F2:3 combinations. The progeny had better resistance to glyphosate than their parents showing better heterosis. The glyphosate resistance of progeny was positively correlated with that of parents. Difference of glyphosate resistance was found in progeny among different combinations because of the interaction between parents. Our study indicates that the expression of glyphosate resistance gene is closely related to the genetic background in soybean, providing a theoretical evidence for target gene selection in developing new varieties by using transgenic germplasm.
Keyword:Transgenic soybean; Glyphosate-resistant characteristics; Inheritance Show Figures Show Figures
表4 不同处理、不同组合的株高相对变化 Table 4 Relative variation of plant height for each treatment combination
处理浓度 Treatment concentration (g a.i. hm-2)
组合 Combination
株高相对变化(Hx) Relative plant height (%)
组合 Combination
处理 Treatment
株高相对变化(Hx) Relative plant height (%)
T1 (0)
ZLHJ11-140 × ZLHJ10-625
100.00 aA
ZLHJ11-140 × ZLHJ10-625
1
100.00 aA
ZLHJ11-142 × ZLHJ10-625
100.00 aA
2
95.24 aA
ZLHJ10-713 × ZLHJ06-698
100.00 aA
3
67.02 bB
ZLHJ10-713 × ZLHJ06-1568
100.00 aA
4
65.12 bB
T2 (1230)
ZLHJ11-142 × ZLHJ10-625
95.70 aA
ZLHJ11-142 × ZLHJ10-625
1
100.00 aA
ZLHJ11-140 × ZLHJ10-625
95.20 aA
2
95.66 bA
ZLHJ10-713 × ZLHJ06-698
92.64 aA
3
76.83 bB
ZLHJ10-713 × ZLHJ06-1568
86.63 aA
4
74.29 bB
T3 (3690)
ZLHJ10-713 × ZLHJ06-698
83.28 aA
ZLHJ10-713 × ZLHJ06-698
1
100.00 aA
ZLHJ11-142 × ZLHJ10-625
76.83 aAB
2
92.64 aAB
ZLHJ10-713 × ZLHJ06-1568
68.83 bBC
3
83.28 bBC
ZLHJ11-140 × ZLHJ10-625
67.02 bC
4
76.45 bBC
T4 (4920)
ZLHJ10-713 × ZLHJ06-698
76.45 aA
ZLHJ10-713 × ZLHJ06-698
1
100.00 aA
ZLHJ11-142 × ZLHJ10-625
74.29 abA
2
86.63 bA
ZLHJ10-713 × ZLHJ06-1568
66.38 bA
3
68.83 cB
ZLHJ11-140 × ZLHJ10-625
65.12 bA
4
66.38 cB
Values followed by different letters are significantly different at the 0.05 (small letter) and 0.01 (capital letter) probability levels. 株高相对变化值后的小写字母和大写字母分别表示该项目在0.05和0.01差异达显著水平。
表4 不同处理、不同组合的株高相对变化 Table 4 Relative variation of plant height for each treatment combination
Phillip AC. RAPD analysis of seed purity in a commercial hybrid cabbage (, 2000, 43: 317[本文引用:1]
[3]
HungriaM, Mendes IC, Nakatani AS, Reis-Junior F B, Morais J Z, Oliveira M C N, Fernand es M F. Effects of the glyphosate- resistance gene and herbicides on soybean: Field trials monitoring biological nitrogen fixation and yield. , 2014, 158: 43-54[本文引用:1]
[4]
Norsworthy JK. Use of soybean production surveys to determine weed management needs of south carolina farmers. , 2003, 17: 195-201[本文引用:1]
[5]
JamesC. Global biotechnology GM crops commercialization development trend in 2014. , 2015, 35: 1-14[本文引用:1]
[6]
Dun BQ, Wang XJ, LuW, ChenM, ZhangW, Ping SZ, Wang ZX, Zhang BM, LinM. Development of highly glyphosate- tolerant tobacco by coexpression for glyphosate acetyltransferase gat and , 2014, 2: 164-169[本文引用:1]
[7]
Moldes CA, Medici LO, Abrahao OS, Tsai SM, Azevedo RA. Biochemical responses of glyphosate resistant and susceptible soybean plants exposed to glyphosate. , 2008, 30: 469-479[本文引用:1]
[8]
王秀丽, 王留明, 王家宝, 杨静, 陈莹, 赵军胜, 高明伟. 转基因抗草甘膦棉花鉴定方法研究. , 2008, (9): 79-80Wang XL, Wang LM, Wang JB, YangJ, ChenY, Zhao JS, Gao MW. Study on identification method of transgenic glyphosate resistant cotton. , 2008, (9): 79-80 (in Chinese)[本文引用:2]
[9]
张庆贺, 王斌, 蒋凌雪, 邱丽娟, 陶波. 抗草甘膦转基因大豆生物测定方法的研究. , 2010, (3): 20-22Zhang QH, WangB, Jiang LX, Qiu LJ, TaoB. The research of biological and biochemical method to detect the roundup ready soybean. , 2010, (3): 20-22 (in Chinese)[本文引用:1]
[10]
吕山花, 常汝镇, 陶波, 李向华, 栾凤侠, 郭珊花, 邱丽娟. 抗草甘膦转基因大豆PCR检测方法的建立与应用. , 2003, 36: 883-887Lyu SH, Chang RZ, TaoB, Li XH, Luan FX, Guo SH, Qiu LJ. Methodological research on pcr based detection of genetically modified soybean resistant to glyphosate. , 2003, 36: 883-887 (in Chinese with English abstract)[本文引用:1]
[11]
邱丽娟, 刘明, 郭勇, 李脉泉, 张宪丽. 一种测定大豆对草甘膦耐性的方法及应用: 中国, 104280536A[P]. 2015 -01-14Qiu LJ, LiuM, GuoY, Li MQ, Zhang X L. Method for Determining Tolerance of Soybean to Glyphosate and Its Application: China, 104280536A[P]. 2015 -[本文引用:1]
[12]
Mueller TC, Massey JH, Hayes RM, Main CL, Stewart CN. Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed. , 2003, 51: 680-684[本文引用:1]
[13]
Zobiole L HS, Kremer RJ, de Oliveira Jr R S, ConstantinJ. Glyphosate affects photosynthesis in first and second generation of glyphosate-resistant soybeans. , 2010, 336: 251-265[本文引用:1]
[14]
Zobiole L HS, Kremer RJ, Oliveira RS, ConstantinJ. Glyphosate effects on photosynthesis, nutrient accumulation, and nodulation in glyphosate-resistant soybean. , 2012, 175: 319-330[本文引用:1]
[15]
刘文娟, 刘勇, 黄小琴, 周西全, 宋君, 尹全, 王东, 陶李, 张富丽, 常丽娟, 张蕾, 雷绍荣. 不同时期喷施草甘膦对抗草甘膦转基因大豆生长和产量构成的影响. , 2012, 45: 675-684Liu WJ, LiuY, Huang XQ, Zhou XQ, SongJ, YinQ, WangD, TaoL, Zhang FL, Chang LJ, ZhangL, Lei SR. Impact of spraying glyphosate on growth and yield component of glyphosate-tolerant soybean at different growth stages. , 2012, 45: 675-684 (in Chinese with English abstract)[本文引用:1]
[16]
刘文娟, 刘勇, 宋君, 郭灵安, 常丽娟, 张富丽, 王东, 尹全, 赵泓洋, 雷绍荣. 喷施草甘膦对转基因大豆产量构成和抗性遗传的影响. , 2013, 35: 697-703Liu WJ, LiuY, SongJ, Guo LA, Chang LJ, Zhang FL, WangD, YinQ, Zhao HY, Lei SR. Impact of spraying glyphosate on yield component and resistance genetics of glyphosate-tolerant soybean at two-trifoliolate leaf stage. , 2013, 35: 697-703 (in Chinese with English abstract)[本文引用:1]
[17]
刘敏, 朱洪德, 高中利. 抗除草剂转基因大豆遗传分析. , 2010, 29(1): 33-36LiuM, Zhu HD, Gao ZL. Inheritance analysis of herbicide- resistant transgenic soybean. , 2010, 29(1): 33-36 (in Chinese with English abstract)[本文引用:1]
[18]
杨鑫浩. 大豆对草甘膦耐受性检测方法研究. 中国农业科学院硕士学位论文, , 2014Yang XH, Detecting Methods of Soybean Tolerance to Glyphosate. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, , 2014 (in Chinese)[本文引用:3]
[19]
李儒海, 武怀恒, 褚世海, 万鹏, 黄民松, 吴金萍. 转基因抗草甘膦棉花与常规棉花对草甘膦耐受性的比较研究. , 2010, 37(12): 9-11Li RH, Wu HH, Chu SH, WanP, Huang MS, Wu JP. A comparative study of transgenic glyphosate-resistant cotton and conventional cotton glyphosate tolerance. , 2010, 37(12): 9-11 (in Chinese)[本文引用:1]
[20]
江荣昌, 姚秉琦. 化学除草技术手册. 上海: 上海科学技术出版社, 1989Jiang RC, Yao BQ. Chemical weed Technical Manual. Shanghai: Shanghai Scientific and Technical Publishers, 1989 (in Chinese)[本文引用:1]
[21]
Jiang LX, Jin LG, GuoY, TaoB, Qiu LJ. Glyphosate effects on the gene expression of the apical bud in soybean (, 2013, 437: 544-549[本文引用:1]