摘要旨在探明东北春玉米不同类型杂交种物质生产及氮素利用特征及其与产量的关系。本文以不同类型杂交种代表性品种郑单958 (ZD958, Reid×唐四平头模式)和先玉335 (XY335, Reid×Lancaster模式)为试验材料, 2014年和2015年设置5个氮肥水平[0 kg hm-2(N0)、100 kg hm-2 (N1)、200 kg hm-2 (N2)、300 kg hm-2(N3)和400 kg hm-2(N4)]和2个种植密度(67 500株 hm-2和90 000株 hm-2)试验, 比较研究了不同类型玉米杂交种干物质与氮素积累、运转及氮素利用的差异规律。结果表明, 两年XY335品种的最高籽粒产量均高于ZD958, 最优氮肥施用量明显降低4.8%~10.6%; 相比ZD958, 不施氮处理, 两种种植密度下XY335品种干物质积累能力及物质运转效率都明显降低, 而施氮条件下XY335品种的干物质积累量、花后干物质量及干物质运转效率均增加, 同时增幅随着施氮量增加逐步提高, 且在高密度条件下优势更为明显。开花期XY335叶片与茎鞘氮素含量显著高于ZD958 ( P<0.05), 而成熟期由于其较高物质的运转效率表现出明显较低的数值, 籽粒氮素含量在高密度下差异较小, 而低密度条件下相对ZD958显著提高( P<0.05)。施氮条件下XY335品种花前、花后氮素积累量和氮素积累总量均高于ZD958, 其中叶片中氮素的转运对籽粒的贡献率显著较高( P<0.05)。两种种植密度处理最优施氮条件下XY335氮素利用效率和氮素吸收效率均显著高于ZD958 ( P<0.05), 而氮农学利用率和氮肥偏生产力差异不显著。可见, 高密度条件下XY335类型品种表现出明显较高的物质积累能力以及花后物质运转对籽粒的贡献率, 获得较高的氮素利用效率, 表现出明显高氮高效的品种特征, 因此生产上建议, 东北春玉米区高密度种植条件下该类型品种在较高氮肥施用量时易获得高产高效。
关键词:玉米杂交种; 氮肥; 物质生产; 氮素利用 Effects of Nitrogen Application Rates on Dry Matter Productivity and Nitrogen Utilization of Different Type Maize Hybrids ZHOU Pei-Lu1, REN Hong2, QI Hua2, ZHAO Ming1,*, LI Cong-Feng1,* 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
2 Shenyang Agricultural University, Shenyang 110161, China
Fund:This study was supported by the National Natural Science Foundation of China (31401342), the National Key Research and Developing Program of China (2016YFD0300103), and the China Agriculture Research System (NYCYTX-02) AbstractTo understand the relationship between dry matter productivity, nitrogen utilization and grain yield of spring maize hybrids in Northeast China, we conducted a field experiment in 2014 and 2015. Using two maize hybrids (Xianyu 335 and Zhangdan 958), under two planting densities (90 000 plants ha-1 and 67 500 plants ha-1) and five N application rates [0 kg ha-1(N0); 100 kg ha-1 (N1); 200 kg ha-1 (N2); 300 kg ha-1 (N3); and 400 kg ha-1 (N4)]. The average maximum grain yield in two years was higher in Xianyu 335 (XY335), while, the optimum N application rate was 4.8%-10.6% lower than that in Zhengdan 958 (ZD958). Compared with ZD958, total dry matter accumulation, dry matter accumulation after flowering, and dry matter translocation efficiency of XY335 were higher in nitrogen treatments, but lower in treatments without nitrogen application. At the same time, dry matter accumulation and dry matter translocation efficiency were increased gradually with increasing N application in XY335, especially under high density plantation. N concentration in leaf and stem of XY335 was different, showing higher at silking ( P<0.05) and lower at harvest, which was due to better translocation efficiency in XY335 than in ZD958 after silking. The grain N content had small difference between two cultivars under high plant density, and significantly increased in XY335 under lower plant density ( P < 0.05). In nitrogen treatments, XY335 had higher N accumulation at pre-silking and post-silking and significantly higher ( P < 0.05) contribution of leaf N translocation to grain yield was than ZD958. At optimal nitrogen application rate, N use efficiency(NUE) and N recovery efficiency(NRE) were significantly higher ( P < 0.05) in XY335 under both planting densities, while agronomic nitrogen efficiency (ANUE) and partial factor productivity from applied N (PFPN) were not significantly different between XY335 and ZD958. In XY335, NUE was significantly higher under high planting density due to higher dry matter production and better translocation efficiency during filling stage. Our results suggest that XY335 is a high nitrogen efficient (HNE) spring maize variety in the northeast of China, and can be better used to obtain high yield and high efficiency in intensive farming.
Keyword:Maize Hybrids; Nitrogen; Dry matter productivity; Nitrogen utilization Show Figures Show Figures
图2 2014年和2015年不同类型玉米杂交种产量与氮肥施用量的关系 2014年, 图A和图C密度分别为D1和D2; 2015年, 图B和图D密度分别为D1和D2。Fig. 2 Grain yield as a function of N application rate in two hybrids in 2014 and 2015 Panels A and C present D1 and D2, respectively, in 2014; Panels B and D present D1 and D2, respectively, in 2015.
表1 不同类型玉米杂交种的开花期、成熟期及花后干物质积累的差异 Table 1 Dry weight (DW) accumulation of two maize hybrids at silking, maturity and post silking
密度 Density (plant hm-2)
品种 Hybrid
处理 Treat.
开花期 Silking (g m-2)
籽粒 Grain (g m-2)
成熟期 Maturity (g m-2)
花后干物 质积累量 DW after silking (g m-2)
干物质转运量 DW remobilization (g m-2)
干物质转运率 Remobilization efficiency (%)
籽粒贡献率 CGDDR (%)
2014
67500
郑单958
N0
732.7 e
580.0 d
1169.8 d
437.2 c
142.8 c
23.8 a
24.9 a
Zhengdan 958
N1
869.0 d
982.7 c
1734.5 c
865.5 b
117.2 c
16.6 b
11.9 c
N2
1066.0 c
1181.0 b
2051.5 b
985.5 a
195.5 b
21.8 a
16.6 bc
N3
1132.6 b
1243.5 a
2157.3 a
1024.7 a
218.8 ab
23.5 a
17.6 b
N4
1180.2 a
1243.5 a
2193.5 a
1013.3 a
230.2 a
23.8 a
18.5 b
先玉335
N0
767.7 d
535.3 c
1107.4 c
339.8 b
195.6 ab
27.3 a
36.5 a
Xianyu 335
N1
1021.3 c
1062.5 b
1937.8 b
916.4 a
146.1 b
18.9 b
13.7 b
N2
1148.1 b
1232.6 a
2149.2 a
1001.1 a
231.5 a
24.5 ab
18.9 b
N3
1204.8 a
1232.3 a
2212.9 a
1008.1 a
224.2 ab
22.8 ab
18.3 b
N4
1195.9 a
1254.8 a
2228.7 a
1032.8 a
222.1 ab
22.2 ab
17.7 b
90000
郑单958
N0
1039.0 d
646.2 d
1459.8 d
420.8 d
225.4 b
25.3 a
34.9 a
Zhengdan 958
N1
1207.9 c
1328.8 c
2289.8 c
1082.0 c
246.8 a
24.4 a
18.6 b
N2
1352.3 b
1629.9 b
2787.8 b
1435.6 b
194.4 d
17.1 b
12.0 c
N3
1460.7 a
1765.7 a
3027.7 a
1567.0 a
198.8 d
16.2 b
11.3 d
N4
1476.4 a
1710.2 ab
2969.0 a
1492.6 ab
217.6 c
17.7 b
12.8 c
先玉335
N0
939.5 c
523.8 d
1268.8 d
329.3 e
194.5 d
24.1 a
37.1 a
Xianyu 335
N1
1247.9 b
1190.3 c
2202.9 c
955.0 d
235.4 c
23.0 a
19.8 b
N2
1520.6 a
1831.6 b
3071.6 b
1551.0 c
280.7 a
21.8 ab
15.3 c
N3
1558.3 a
1957.6 a
3245.9 a
1687.6 b
270.0 b
20.1 b
13.8 d
N4
1521.3 a
1949.0 a
3233.1 a
1711.8 a
237.1 c
18.5 c
12.2 e
2015
67500
郑单958
N0
758.6 d
620.0 d
1265.7 d
507.2 d
112.8 b
17.1 b
18.2 a
Zhengdan 958
N1
989.4 c
930.0 c
1749.8 c
760.4 c
169.6 a
20.5 a
18.2 a
N2
1197.2 b
1210.3 a
2235.0 a
1037.8 a
172.4 a
18.3 ab
14.3 b
N3
1234.4 a
1128.0 b
2170.4 b
935.9 b
192.1 a
19.0 ab
17.0 ab
N4
1245.2 a
1085.4 b
2159.8 b
914.6 b
170.8 a
17.4 b
15.7 ab
先玉335
N0
744.5 d
563.1 d
1211.5 d
467.0 b
96.1 c
16.4 c
17.1 b
Xianyu 335
N1
916.5 c
1052.6 c
1864.4 c
947.9 a
104.7 c
14.7 c
10.0 c
N2
1123.3 b
1119.6 b
2046.0 b
922.7 a
196.9 b
21.4 b
17.6 b
N3
1227.6 a
1184.7 a
2152.2 a
924.6 a
260.0 a
24.6 a
21.9 a
N4
1229.4 a
1203.1 a
2184.6 a
955.2 a
247.9 a
24.0 a
20.6 a
90000
郑单958
N0
993.1 e
722.4 c
1549.8 d
556.7 e
150.7 bc
17.4 a
21.2 a
Zhengdan 958
N1
1166.1 d
1196.9 b
2151.3 c
985.2 d
177.4 a
17.5 a
15.1 b
N2
1278.3 c
1312.7 b
2401.6 b
1123.3 c
156.4 b
14.2 b
12.0 c
N3
1459.9 b
1608.9 a
2835.0 a
1375.1 b
173.8 a
14.8 b
10.8 d
N4
1387.7 a
1753.0 a
2958.8 a
1571.1 a
145.9 c
13.1 d
8.4 e
先玉335
N0
991.1 d
748.6 d
1535.3 d
544.2 d
204.3 a
24.1 a
27.3 a
Xianyu 335
N1
1127.9 c
1149.9 c
2116.1 c
988.2 c
182.8 b
18.6 b
16.1 b
N2
1301.5 b
1544.8 b
2677.3 b
1375.8 b
172.0 c
15.3 c
11.2 c
N3
1470.6 a
1847.1 a
3157.8 a
1687.2 a
165.9 d
13.0 d
9.0 d
N4
1456.5 a
1833.7 a
3111.2 a
1654.7 a
167.0 cd
13.2 d
9.1 d
In each cultivar, means followed by a different letter within columns are significantly different at 0.05 probability level (n=5). N0: 0 kg hm-2 N; N1: 100 kg hm-2 N; N2: 200 kg hm-2 N; N3: 300 kg hm-2 N; N4: 400 kg hm-2 N. CGDDR: contribution to grain DW by DW remobilization. 同一列内同一品种数据后不同字母表示处理间差异显著(n=5)。N0: 0 kg hm-2纯氮; N1: 100 kg hm-2纯氮; N2: 200 kg hm-2纯氮; N3: 300 kg hm-2纯氮; N4: 400 kg hm-2纯氮。
表1 不同类型玉米杂交种的开花期、成熟期及花后干物质积累的差异 Table 1 Dry weight (DW) accumulation of two maize hybrids at silking, maturity and post silking
表2 不同类型玉米杂交种各器官开花期和成熟期的氮素含量 Table 2 N concentration of two maize hybrids at silking and maturity
密度 Density (Plant hm-2)
品种 Hybrid
处理 Treatment
开花期氮素含量 N content at silking (%)
成熟期氮素含量 N content at maturity (%)
茎鞘 Stalk
叶 Leaf
茎鞘 Stalk
叶 Leaf
籽粒 Grain
2014
67500
郑单958
N0
0.6 d
1.2 d
0.4 d
0.8 d
0.9 c
Zhengdan 958
N1
0.6 d
1.8 c
0.5 c
1.1 c
1.2 b
N2
0.8 c
2.1 b
0.5 c
1.3 b
1.4 a
N3
1.0 b
2.2 a
0.7 b
1.7 a
1.3 a
N4
1.1 a
2.3 a
0.8 a
1.8 a
1.4 a
先玉335
N0
0.3 c
1.6 d
0.4 c
0.7 c
1.1 d
Xianyu 335
N1
0.6 b
1.9 c
0.4 bc
1.1 b
1.3 c
N2
0.7 b
2.3 b
0.5 ab
1.1 b
1.5 b
N3
1.0 a
2.3 ab
0.5 ab
1.4 a
1.6 b
N4
1.1 a
2.3 a
0.6 a
1.5 a
1.7 a
90000
郑单958
N0
0.5 d
1.2 e
0.4 e
0.8 e
1.1 c
Zhengdan 958
N1
0.8 c
1.5 d
0.4 d
1.0 d
1.1 c
N2
1.1 b
2.1 c
0.5 c
1.2 c
1.3 b
N3
1.4 a
2.3 b
0.6 b
1.4 b
1.4 a
N4
1.5 a
2.5 a
0.7 a
1.5 a
1.5 a
先玉335
N0
0.6 e
1.2 d
0.4 b
0.8 e
1.0 e
Xianyu 335
N1
0.8 d
1.8 c
0.4 b
1.1 d
1.1 d
N2
1.2 c
2.1 b
0.4 b
1.1 c
1.4 c
N3
1.3 b
2.4 a
0.6 a
1.3 b
1.5 b
N4
1.4 a
2.4 a
0.6 a
1.4 a
1.5 a
2015
67500
郑单958
N0
0.6 d
1.0 e
0.4 d
0.7 d
0.9 c
Zhengdan 958
N1
0.7 c
1.6 d
0.5 c
1.1 c
1.2 b
N2
0.7 c
1.8 c
0.6 b
1.3 b
1.3 ab
N3
0.8 b
2.0 b
0.7 a
1.5 a
1.3 a
N4
0.9 a
2.2 a
0.6 a
1.5 a
1.4 a
先玉335
N0
0.5 d
1.1 d
0.4 a
0.6 c
0.8 c
Xianyu 335
N1
0.6 c
1.8 c
0.5 a
1.1 b
1.1 b
N2
0.7 c
2.0 b
0.4 a
1.0 b
1.4 a
N3
0.8 b
2.1 ab
0.4 a
1.4 a
1.4 a
N4
0.9 a
2.1 a
0.5 a
1.5 a
1.4 a
90000
郑单958
N0
0.5 e
1.3 e
0.2 c
0.7 e
0.9 c
Zhengdan 958
N1
0.7 d
1.8 d
0.5 bc
0.9 d
1.1 b
N2
0.8 c
1.9 c
0.5 b
1.1 c
1.3 a
N3
0.9 b
2.2 b
0.6 a
1.5 b
1.3 a
N4
0.9 a
2.3 a
0.6 a
1.6 a
1.3 a
先玉335
N0
0.5 e
1.5 d
0.3 d
0.6 c
0.8 d
Xianyu 335
N1
0.7 d
1.8 c
0.5 c
1.1 b
1.1 c
N2
0.7 c
2.0 b
0.5 b
1.0 b
1.2 b
N3
0.9 b
2.0 a
0.5 a
1.3 a
1.3 a
N4
0.9 a
2.4 a
0.6 a
1.2 a
1.3 a
In each cultivar, means followed by a different letter within columns are significantly different at 0.05 probability level (n=5). N0: 0 kg hm-2 N; N1: 100 kg hm-2 N; N2: 200 kg hm-2 N; N3: 300 kg hm-2 N; N4: 400 kg hm-2 N. 同一列内同一品种数据后不同字母表示处理间差异显著(n=5)。N0: 0 kg hm-2纯氮; N1: 100 kg hm-2纯氮; N2: 200 kg hm-2纯氮; N3: 300 kg hm-2纯氮; N4: 400 kg hm-2纯氮。
表2 不同类型玉米杂交种各器官开花期和成熟期的氮素含量 Table 2 N concentration of two maize hybrids at silking and maturity
表5 不同类型玉米杂交种的氮素利用效率、氮农学利用效率、氮吸收效率和氮肥偏生产力 Table 5 Nitrogen use efficiency (NUE), N agronomic efficiency (ANUE), N recovery efficiency (NRE), and partial factor productivity from applied N (PFPN)
密度 Density (Plant hm-2)
品种 Hybrid
处理 Treatment
氮素利用效率 NUE (kg kg-1)
氮农学利用效率 ANUE (kg kg-1)
氮吸收效率 NRE (%)
氮肥偏生产力 PFPN (kg kg-1)
2014
67500
郑单958
N0
59.3 b
—
—
—
Zhengdan 958
N1
65.5 a
83.4 a
36.6 a
83.4 a
N2
53.8 b
52.7 b
29.1 b
52.7 b
N3
48.9 c
39.8 c
27.9 c
39.8 c
N4
46.6 c
28.5 d
25.2 c
28.5 d
先玉335
N0
55.1 b
—
—
—
Xianyu 335
N1
61.4 a
84.3 a
31.0 a
84.3 a
N2
55.0 b
56.1 b
30.2 a
56.1 b
N3
49.8 c
40.8 c
27.5 b
40.8 c
N4
48.1 c
29.9 d
25.5 c
29.9 d
90000
郑单958
N0
59.3 b
—
—
—
Zhengdan 958
N1
65.5 a
93.8 a
47.6 a
93.8 a
N2
53.8 b
58.5 b
35.0 b
58.5 b
N3
48.9 c
42.3 c
30.9 c
42.3 c
N4
46.6 c
32.0 d
30.6 c
32.0 d
先玉335
N0
55.1 b
—
—
—
Xianyu 335
N1
61.4 a
93.1 a
31.0 b
93.1 a
N2
55.0 b
59.1 b
32.7 a
59.1 b
N3
49.8 c
45.0 c
31.8 b
45.0 c
N4
48.1 c
33.4 d
30.0 c
33.4 d
2015
67500
郑单958
N0
76.9 a
—
—
—
Zhengdan 958
N1
68.4 b
90.8 a
29.6 a
90.8 a
N2
53.8 c
53.1 b
26.2 b
53.1 b
N3
50.4 c
38.4 c
21.4 c
38.4 c
N4
51.3 c
27.2 d
17.0 d
27.2 d
先玉335
N0
81.4 a
—
—
—
Xianyu 335
N1
60.5 b
86.7 a
33.0 a
86.7 a
N2
58.3 bc
53.8 b
31.0 b
53.8 b
N3
53.5 c
39.2 c
26.7 c
39.2 c
N4
53.6 c
28.4 d
25.3 d
28.4 d
90000
郑单958
N0
69.5 a
—
—
—
Zhengdan 958
N1
68.4 a
83.3 a
20.3 b
83.3 a
N2
53.8 b
52.6 b
25.6 a
52.6 b
N3
50.4 c
37.3 c
20.0 b
37.3 c
N4
51.3 c
28.2 d
18.5 c
28.2 d
先玉335
N0
81.4 a
—
—
—
Xianyu 335
N1
60.5 b
84.2 a
33.0 a
84.2 a
N2
58.3 b
55.1 b
31.0 b
55.1 b
N3
53.5 c
40.3 c
28.0 c
40.3 c
N4
53.6 c
30.0 d
27.9 c
30.0 d
In each cultivar, means followed by a different letter within columns are significantly different at the 0.05 probability level (n=5). N0: 0 kg hm-2 N; N1: 100 kg hm-2 N; N2: 200 kg hm-2 N; N3: 300 kg hm-2 N; N4: 400 kg hm-2 N. 同一列内同一品种数据后不同字母表示处理间差异显著(n=5)。N0: 0 kg hm-2纯氮; N1: 100 kg hm-2纯氮; N2: 200 kg hm-2纯氮; N3: 300 kg hm-2纯氮; N4: 400 kg hm-2纯氮。
表5 不同类型玉米杂交种的氮素利用效率、氮农学利用效率、氮吸收效率和氮肥偏生产力 Table 5 Nitrogen use efficiency (NUE), N agronomic efficiency (ANUE), N recovery efficiency (NRE), and partial factor productivity from applied N (PFPN)
刘建安, 米国华, 张福锁. 不同基因型玉米氮效率差异的比较研究. , 1999, 7: 248-254Liu JA, Mi GH, Zhang FS. Difference in nitrogen efficiency among maize genotypes. , 1999, 7: 248-254 (in Chinese with English abstract)[本文引用:2]
[2]
Chen FJ, Fang ZG, GaoQ, Ye YL, Jia LL, Yuan LX, Mi GH, Zhang FS. Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in North and Northeast China. , 2013, 43: 342-350[本文引用:1]
[3]
刘宗华, 卫晓轶, 胡彦民, 谭晓军, 汤继华. 低氮胁迫对不同基因型玉米生物产量和氮吸收率动态变化的影响. , 2010, 18(5): 53-59. Liu ZH, Wei XY, Hu YM, Tan XJ, Tang JH. Dynamic variation of biomass and nitrogen absorption ratio of different genotypes in maize under low nitrogen stress. , 2010, 18(5): 53-59 (in Chinese with English abstract)[本文引用:1]
[4]
张世煌, 彭泽斌, 李新海. 玉米杂种优势与种质扩增、改良和创新. , 2000, 33(增刊-1): 34-39Zhang SH, Peng ZB, Li XH. Heterosis and germplasm enhancement, improvement and development of maize. , 2000, 33(suppl-1): 34-39 (in Chinese with English abstract)[本文引用:1]
[5]
王懿波, 王振华, 陆利行, 王永普, 张新, 田曾元. 中国玉米种质基础、杂种优势群划分与杂优模式研究. , 1998, 6(1): 9-13Wang YB, Wang ZH, Lu LX, Wang YP, ZhangX, Tian ZY. Studies on maize germplasm base, division of heterosis groups and utilizing models of heterosis in China. , 1998, 6(1): 9-13(in Chinese with English abstract)[本文引用:1]
[6]
丰光, 李妍妍, 邢锦丰, 黄长玲. 美国先锋玉米育种经验的启示. , 2010, 18(2): 133-135FengG, Li YY, Xing MF, Huang CL. Enlightenment of maize breeding from pioneer USA. , 2010, 18(2): 133-135 (in Chinese with English abstract)[本文引用:2]
[7]
TuberosaR, Gill BS, Quarrie SA. Cereal genomics: ushering in a brave new world. , 2002, 48: 445-449[本文引用:2]
[8]
杨晓钦, 张仁和, 薛吉全, 邰书静, 张兴华, 路海东, 郭艳萍, 郭德林. 非生物胁迫对玉米杂交种及其亲本自交系产量性状的影响. , 2013, 39: 1325-1329Yang XQ, Zhang RH, Xue JQ, Tai SJ, Zhang XH, Lu HD, Guo YP, Guo DL. Effects of abiotic stress on yield traits of maize hybrids and their parental inbred lines. , 2013, 39: 1325-1329 (in Chinese with English abstract)[本文引用:1]
[9]
YanP, Yue SC, Qiu ML, Chen XP, Cui ZL, Chen FJ. Using maize hybrids and in-season nitrogen management to improve grain yield and grain nitrogen concentrations. , 2014, 166: 38-45[本文引用:2]
[10]
彭云峰, 张吴平, 李春俭. 不同氮吸收效率玉米品种的根系构型差异比较: 模拟与应用. , 2009, 42: 843-853Peng YF, Zhang WP, Li CJ. Relationship between nitrogen efficiency and root architecture of maize plants: simulation and application. , 2009, 42: 843-853 (in Chinese with English abstract)[本文引用:1]
[11]
申丽霞, 王璞, 张软斌. 施氮对不同种植密度下夏玉米产量及子粒灌浆的影响. , 2005, 11: 314-319Shen LX, WangP, Zhang RB. Effect of nitrogen supply on yield and grain filling in summer maize with different crop density. , 2005, 11: 314-319 (in Chinese with English abstract)[本文引用:1]
[12]
米国华, 陈范骏, 春亮, 郭亚芬, 田秋英, 张福锁. 玉米氮高效品种的生物学特征. , 2007, 13: 155-159Mi GH, Chen FJ, ChunL, Guo YF, Tian QY, Zhang FS. Biological characteristics of nitrogen efficient maize genotypes. , 2007, 13: 155-159 (in Chinese with English abstract)[本文引用:2]
[13]
吕鹏, 张吉旺, 刘伟, 杨今胜, 苏凯, 刘鹏, 董树亭, 李登海. 施氮时期对超高产夏玉米产量及氮素吸收利用的影响. , 2011, 17: 1099-1107LyuP, Zhang JW, LiuW, Yang JS, SuK, LiuP, Dong ST, Li DH. Effects of nitrogen application dates on yield and nitrogen use efficiency of summer maize in super-high yield conditions. , 2011, 17: 1099-1107 (in Chinese with English abstract)[本文引用:1]
[14]
崔超, 高聚林, 于晓芳, 王志刚, 孙继颖, 胡树平, 苏治军, 谢岷. 不同氮效率基因型高产春玉米花粒期干物质与氮素运移特性的研究. , 2013, 19: 1337-1345CuiC, Gao JL, Yu XF, Wang ZG. , Sun JY, Hu SP, Su ZJ, XieM. Dry matter accumulation and nitrogen migration of high-yielding spring maize for different nitrogen efficiency in the flowering and milking stages. , 2013, 19: 1337-1345 (in Chinese with English Abstract)[本文引用:4]
[15]
WorkuM, BanzigerM, Setal EG. Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. , 2007, 47: 519-28[本文引用:2]
[16]
陈新平, 周金池, 王兴仁, 张福锁, 宝德俊, 贾晓红. 小麦-玉米轮作制中氮肥效应模型的选择——经济和环境效益分析. , 2000, 37: 346-354Chen XP, Zhou JC, Wang XR, Zhang FS, Bao DJ, Jia XH. Economic and environmental evaluation on models for describing crop yield response to nitrogen fertilizers at winter-wheat and summer-corn rotation system. , 2000, 37: 346-354 (in Chinese with English Abstract)[本文引用:2]
[17]
Cerrato ME, Blackmer AM. Comparison of models for describing corn yield response to nitrogen fertilizer. , 1990, 82: 138-143[本文引用:1]
[18]
Despo KP, GagianasA. Nitrogen and dry matter accumulation remobilization and losses for Mediterranean wheat during grain filling. , 1991, 83: 864-870[本文引用:1]
[19]
Cassman KG, PengS, Olk DC, Ladhab JK, ReichardtW, DobermannA, SinghU. Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems. , 1998, 56: 7-38[本文引用:1]
[20]
郑洪建, 董树亭, 王空军, 郭玉秋, 胡昌浩, 张吉旺. 生态因素对玉米品种产量影响及调控的研究. , 2001, 27: 862-868Zheng HJ, Dong ST, Wang KJ, Guo YQ, Hu CH, Zhang JW. Effects of ecological factors on maize (Zea mays L. ) yield of different varieties and corresponding regulative measure. , 2001, 27: 862-868 (in Chinese with English abstract)[本文引用:1]
[21]
张福锁, 米国华, 刘建安. 玉米氮效率遗传改良及其应用. , 1997, 2(5): 112-117Zhang FS, Mi GH, Liu JA. Advances in the genetic improvement of nitrogen efficiency in maize. , 1997, 2(5): 112-117 (in Chinese with English abstract)[本文引用:1]
[22]
OsakiM, MorikawaK, ShinanoT, TadanoT. Productivity of high-yielding crops: II. Comparison of N, P, K, Ca and Mg accumulation and distribution among high-yielding crops. , 1991, 37: 445-454[本文引用:1]
[23]
马国胜, 薛吉全, 路海东, 张仁和. 密度对不同类型饲用玉米光合产物积累与转运的影响. , 2006, 21(3): 46-50Ma GS, Xue JQ, Lu HD, Zhang RH. Effect of density on accumulation and transformation of photosynthesis product of different type forage corn. , 2006, 21(3): 46-50 (in Chinese with English Abstract)[本文引用:1]
[24]
李从锋, 赵明, 刘鹏, 张吉旺, 杨今胜, 董树亭. 中国不同年代玉米亲本自交系的灌浆特性与氮素运转. , 2014, 40(11): 1990-1998Li CF, ZhaoM, LiuP, Zhang JW, Yang JS, Dong ST. Characteristics of grain filling and nitrogen translocation of maize parent lines released in different eras in China. , 2014, 40(11): 1990-1998 (in Chinese with English abstract)[本文引用:1]
[25]
叶东靖, 高强, 何文天, 何萍. 施氮对春玉米氮素利用及农田氮素平衡的影响. , 2010, 16: 552-558Ye DJ, GaoQ, He WT, HeP. Effect of N application on N utilization and N balance in spring maize. , 2010, 16: 552-558 (in Chinese with English Abstract)[本文引用:2]
[26]
陈范骏, 米国华, 张福锁, 王艳, 刘向生, 春亮. 华北区部分主栽玉米杂交种的氮效率分析. , 2003, 11(2): 78-82Chen FJ, Mi GH, Zhang FS, WangY, Liu XS, ChunL. Nitrogen use efficiency in some of main maize hybrids grown in north China. , 2003, 11(2): 78-82 (in Chinese with English abstract)[本文引用:1]
[27]
王玲敏, 叶优良, 陈范骏, 尚云峰. 施氮对不同品种玉米产量、氮效率的影响. , 2012, 20: 529-535Wang LM, Ye YL, Chen FJ, Shang YF. Effect of nitrogen fertilization on maize yield and nitrogen efficiency of different maize varieties. , 2012, 20: 529-535 (in Chinese with English abstract)[本文引用:1]
[28]
周江明, 赵琳, 董越勇, 徐进, 边武英, 毛杨仓, 张秀福. 氮肥和栽植密度对水稻产量及氮肥利用率的影响. , 2010, 16: 274-281Zhou JM, ZhaoL, Dong YY, XuJ, Bian WY, Mao YC, Zhang XF. Nitrogen and transplanting density interactions on the rice yield and N use rate. , 2010, 16: 274-281 (in Chinese with English Abstract)[本文引用:1]
[29]
春亮, 陈范骏, 张福锁, 米国华. 不同氮效率玉米杂交种的根系生长?氮素吸收与产量形成. , 2005, 11: 615-619ChunL, Chen FJ, Zhang FS, Mi GH. Root growth, nitrogen uptake and yield formation of hybrid maize with different N efficiency. , 2005, 11: 615-619 (in Chinese with English abstract)[本文引用:1]
[30]
李淑文, 文宏达, 周彦珍, 李雁鸣, 肖凯. 不同氮效率小麦品种氮素吸收和物质生产特性. , 2006, 39: 1992-2000Li SW, Wen HD, Zhou YZ, Li YM, XiaoK. Characterization of nitrogen uptake and dry matter production. , 2006, 39: 1992-2000 (in Chinese with English abstract)[本文引用:1]
[31]
颜军, 杨德光. 4个玉米品种氮素利用效率的比较研究. , 2010, 18(2): 91-95YanJ, Yang DG. Comparison on N utilization efficiency of four maize varieties. , 2010, 18(2): 91-95 (in Chinese with English abstract)[本文引用:1]
[32]
李敏, 张洪程, 李国业, 魏海燕, 殷春渊, 马群, 杨雄. 水稻氮效率基因型差异及其机理研究进展. , 2011, 25: 1057-1063LiM, Zhang HC, Li GY, Wei HY, Yin CY, MaQ, YangX. Genotypic difference of nitrogen use efficiency in rice and its morphological and physiological mechanisms. , 2011, 25: 1057-1063 (in Chinese with English abstract)[本文引用:1]