摘要本研究旨在了解我国黄淮和北部冬麦区不同施氮量和施氮模式对氮高效吸收和利用的影响, 以及中麦175和京冬17产量对不同施氮处理的响应。2013—2014和2014—2015连续两年在河北吴桥和北京顺义两地种植两品种, 观测不同施氮量和基追比处理下, 冬小麦的群体特性、产量相关性状, 以及氮素吸收效率(NUpE)和氮素利用效率(NUtE)。在吴桥点设0、60+0、120+0、120+60、120+120、120+180 kg hm-2 (基肥+拔节肥) 6个处理, 在顺义点仅设前5个处理。在总施氮量0~240 kg hm-2 (吴桥)和0~180 kg hm-2 (顺义)范围内, 随施氮量增加, 归一化植被指数(NDVI)和气冠温差(CTD)提高, 群体总粒数和成熟期生物量增加, 进而产量提高; 但继续增加施氮量会导致粒重、开花前干物质向籽粒转运量、转运率、对籽粒贡献率、收获指数、氮肥偏生产力、氮素吸收和利用效率降低。在不同施氮水平下, 中麦175的产量和稳定性均优于京冬17, 表现出穗数多、穗粒重稳定性好、群体活力持久、生物量和收获指数高、花前干物质积累量高和花后干物质转运能力强、氮素吸收效率高, 这可能是其高产高效的重要基础。考虑到产量回报和经济效益, 推荐中麦175和京冬17在黄淮麦区(北片)施氮量为180~240 kg hm-2, 在北部冬麦区施氮量为120~180 kg hm-2。灌浆中后期, NDVI和CTD与穗数、产量和生物量相关性高, 可作为快速评价品种氮肥敏感性的指标。
关键词:冬小麦; 氮素利用效率; 干物质; 高产; 稳产 Effect of Nitrogen on Yield Related Traits and Nitrogen Utilization Efficiency in Zhongmai 175 and Jingdong 17 LI Fa-Ji1, XU Xue-Xin2, XIAO Yong-Gui1, HE Zhong-Hu1,3, WANG Zhi-Min2,* 1Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS) / National Wheat Improvement Center, Beijing 100081, China
2 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
3CIMMYT-China Office, c/o CAAS, Beijing 100081, China
Fund:This study was supported by the Agricultural Science and Technology Innovation Program of CAAS, the China Special Fund for Agro-scientific Research in the Public Interest (201203033-2), and the China Agriculture Research System (CARS-03). AbstractThe objective of this study was to understand the effects of different nitrogen (N) application amounts and split ratios on high efficiency of N uptake and utilization, as well as the response to different N treatments of Zhongmai 175 and Jingdong 17 planted in Wuqiao, Hebei, and Shunyi, Beijing in 2013-2014 and 2014-2015 cropping seasons. Nitrogen fertilizer was applied in different total and split (basal + jointing stage) amounts, namely 0, 60+0, 120+0, 120+60, 120+120, and 120+180 kg ha-1. In the N range of 0-240 kg ha-1 in Wuqiao and 0-180 kg ha-1 in Shunyi, the canopy temperature depression (CTD), normalized difference vegetation index (NDVI), biomass of wheat population, and population spikelets increased with the increase of N application amount, as a result, higher yield at maturity was obtained; however, further more N application had a negative effect, showing decreased thousand-kernel weight (TKW), translocation amount (TA) and efficiency (TE) of dry matter accumulated before flowering to grain, contribution efficiency (CE), harvest index (HI), partial factor productivity from applied N (PFPN), N uptake efficiency (NUpE) and N utilization efficiency (NUtE). Zhongmai 175 had higher yield and yield stability than Jingdong 17 in different N application treatments, showing higher levels of spike number (SN), stability of kernel number per spike (KNS), kernel weight, population vitality, biomass, HI, dry matter accumulation before flowering, TA, and NUpE. These characters might be the physiological basis of high yield and high efficiency in Zhongmai 175. Considering the return from yield and economic benefits, we suggest that the recommended N application amounts for Zhongmai 175 and Jingdong 17 should be 180-240 kg ha-1 in the northern part of Huang-Huai Rivers Valley Wheat Zone and 120-180 kg ha-1 in the Northern Winter Wheat Zone. NDVI and CTD at middle to late grain filling stage can be used for rapid evaluation of varietal sensitivity to nitrogen because they are highly correlated with SN, yield, and biomass of wheat.
Keyword:Winter wheat; Nitrogen utilization efficiency; Dry matter; High yield; Stability Show Figures Show Figures
表1 小麦冠层温差、干物质积累、产量几氮利用相关性的均方值 Table 1 Mean squares of wheat traits related to canopy temperature, dry matter acculation, yield and nitrogen utilization
表1 小麦冠层温差、干物质积累、产量几氮利用相关性的均方值 Table 1 Mean squares of wheat traits related to canopy temperature, dry matter acculation, yield and nitrogen utilization
2.2 不同施氮量下的产量性状在0~240 kg hm-2 (吴桥)或0~180 kg hm-2 (顺义)施氮范围内, 随施氮量增加两品种的产量皆呈递增趋势, 且分别在240 kg hm-2和180 kg hm-2时产量最高, 过量施氮反而使产量降低。从产量三因素看, 两品种的穗数在吴桥和顺义均随施氮量增加而增加, 并分别在施氮240 kg hm-2和180 kg hm-2时最高; 穗粒数随施氮量增加呈递增趋势, 但施氮量超过180 kg hm-2后处理间差异不显著; 千粒重均在低氮条件下较高, 随施氮量的增加呈降低趋势。两品种在吴桥的穗数、千粒重和产量均高于顺义, 而穗粒数则低于顺义, 说明环境可通过影响穗数、穗粒数和千粒重进而影响产量。在吴桥, 中麦175的产量显著高于京冬17, 主要是其穗数显著较高, 其穗粒数和千粒重则低于京冬17; 在顺义, 中麦175的穗数、千粒重和产量均高于京冬17, 穗粒数无明显差异(表2)。从两地产量变异系数看, 中麦175为2.0%和4.2%, 京冬17为2.5%和5.1%, 说明中麦175的产量稳定性优于京冬17。 表2 Table 2 表2(Table 2)
表2 不同施氮处理对中麦175和京冬17产量相关性状的影响 Table 2 Effects of different N treatments on yield related traits in Zhongmai 175 and Jingdong 17
处理 Treatment
中麦 175 Zhongmai 175
京冬17 Jingdong 17
穗数 SN (m-2)
穗粒数 KNS
千粒重 TKW (g)
产量 Yield (kg hm-2)
穗数 SN (m-2)
穗粒数 KNS
千粒重 TKW (g)
产量 Yield (kg hm-2)
河北吴桥 Wuqiao, Hebei
N0
659.7 c
30.4 d
45.8 a
8126 d
608.0 c
30.9 d
47.0 a
7608 d
N60
687.6 b
30.9 cd
44.9 ab
8629 c
625.7 bc
31.9 c
46.5 ab
8014 c
N120
698.9 b
31.3 bc
44.3 bc
8810 bc
645.0 ab
32.6 bc
45.9 bc
8149 c
N120+60
723.8 a
31.7 ab
43.7 c
8966 b
650.3 a
33.4 ab
45.5 c
8552 ab
N120+120
729.5 a
31.9 a
43.4 c
9223 a
649.9 a
33.7 a
45.2 c
8757 a
N120+180
723.3 a
32.2 a
43.4 c
8888 b
647.1 ab
33.8 a
45.0 c
8502 b
平均值 Mean
703.8 A
31.4 B
44.2 B
8774 A
637.7 B
32.7 A
45.8 A
8264 B
北京顺义 Shunyi, Beijing
N0
546.0 d
32.6 b
40.3 a
6848 d
533.9 b
32.6 c
39.9 a
6479 c
N60
552.6 cd
33.7 a
40.3 a
6997 c
545.5 ab
33.4 ab
39.2 a
6716 b
N120
562.9 bc
33.0 ab
39.2 ab
7050 bc
549.6 a
33.1 bc
38.2 b
6788 ab
N120+60
583.3 a
33.7 a
38.6 b
7221 a
560.5 a
34.1 a
37.8 b
6915 a
N120+120
575.6 ab
33.6 a
38.0 b
7120 ab
557.2 a
33.5 ab
38.1 b
6838 ab
平均值 Mean
564.1 A
33.3 A
39.3 A
7047 A
549.3 A
33.3 A
38.6 A
6747 B
In each location, different lowercase and uppercase letters after data indicate significant difference among treatments and between cultivars at P< 0.05, respectively. SN: spike number; KNS: kernel number per spike; TKW: thousand-kernel weight. 同一试点, 数据后不同小写字母表示处理间有显著差异, 不同大写字母表示品种间差异显著(P< 0.05)。
表2 不同施氮处理对中麦175和京冬17产量相关性状的影响 Table 2 Effects of different N treatments on yield related traits in Zhongmai 175 and Jingdong 17
表3 不同施氮处理对中麦175和京冬17 NDVI和CTD的影响 Table 3 Effects of different N treatments on NDVI and CTD in Zhongmai 175 and Jingdong 17
处理 Treatment
中麦175 Zhongmai 175
京冬17 Jingdong 17
NDVI1
NDVI2
NDVI3
CTD1
CTD2
CTD3
NDVI1
NDVI2
NDVI3
CTD1
CTD2
CTD3
河北吴桥 Wuqiao, Hebei
N0
0.750 c
0.737 c
0.552 c
5.37 c
7.20 c
4.34 d
0.735 b
0.728 c
0.528 c
4.93 b
6.47 b
3.55 c
N60
0.767 b
0.772 b
0.591 b
5.55 bc
7.58 b
4.95 c
0.770 a
0.760 b
0.543 bc
5.07 ab
6.87 a
3.97 b
N120
0.781 b
0.791 a
0.608 ab
5.67 ab
7.65 ab
5.06 bc
0.773 a
0.774 ab
0.563 ab
5.25 a
6.87 a
4.17 ab
N120+60
0.796 a
0.796 a
0.616 ab
5.68 ab
7.85 a
5.37 ab
0.781 a
0.769 ab
0.577 a
5.25 a
6.92 a
4.35 a
N120+120
0.801 a
0.808 a
0.632 a
5.82 ab
7.73 ab
5.41 a
0.786 a
0.782 a
0.589 a
5.33 a
6.90 a
4.45 a
N120+180
0.799 a
0.804 a
0.624 a
5.92 a
7.63 ab
5.31 ab
0.789 a
0.789 a
0.579 a
5.35 a
7.17 a
4.30 a
平均值 Mean
0.782 A
0.784 A
0.604 A
5.67 A
7.61 A
5.08 A
0.772 B
0.767 B
0.563 B
5.20 B
6.86 B
4.13 B
北京顺义 Shunyi, Beijing
N0
0.835 b
0.822 c
0.603 c
6.05 b
6.75 b
3.43 c
0.822 b
0.810 c
0.584 d
6.39 b
6.53 b
3.15 c
N60
0.840 ab
0.827 c
0.622 b
6.08 ab
6.84 b
3.57 c
0.830 a
0.833 b
0.605 c
6.52 ab
6.69 b
3.35 c
N120
0.843 ab
0.837 b
0.628 b
6.15 ab
6.83 b
3.83 b
0.832 a
0.830 b
0.620 bc
6.74 ab
6.93 ab
3.67 b
N120+60
0.842 ab
0.850 a
0.655 a
6.37 ab
7.60 a
4.12 a
0.837 a
0.837 ab
0.642 a
6.78 ab
7.27 a
4.00 a
N120+120
0.848 a
0.852 a
0.647 a
6.39 a
7.60 a
4.02 a
0.837 a
0.847 a
0.633 ab
6.85 a
7.30 a
3.80 ab
平均值 Mean
0.842 A
0.837 A
0.631 A
6.20 A
7.12 A
3.79 A
0.831 B
0.831 B
0.617 B
6.65 A
6.94 A
3.59 B
NDVI1, NDVI2, and NDVI3 indicate normalized difference vegetation index in flowering stage, early stage of grain filling and middle to late stage of grain filling, respectively; CTD1, CTD2, and CTD3 indicate canopy temperature depression in flowering stage, early stage of grain filling and middle to late stage of grain filling, respectively. In each location, different lowercase and uppercase letters after data indicate significant difference among treatments and between cultivars at P< 0.05, respectively. NDVI1、NDVI2和NDVI3分别表示开花期、灌浆前期和灌浆中后期的归一化植被指数, CTD1、CTD2和CTD3分别表示开花期、灌浆前期和灌浆中后期的气冠温差。同一试点, 数据后不同小写字母表示处理间有显著差异, 不同大写字母表示品种间差异显著(P< 0.05)。
表3 不同施氮处理对中麦175和京冬17 NDVI和CTD的影响 Table 3 Effects of different N treatments on NDVI and CTD in Zhongmai 175 and Jingdong 17
表5 不同施氮处理对中麦175和京冬17物质转运的影响 Table 5 Effects of different N treatments on dry matter translocation in Zhongmai 175 and Jingdong 17
处理 Treatment
中麦 175 Zhongmai 175
京冬17 Jingdong 17
转运量 TA (kg m-2)
转运率 TE (%)
贡献率 CE (%)
转运量 TA (kg m-2)
转运率 TE (%)
贡献率 CE (%)
河北吴桥 Wuqiao, Hebei
N0
0.266 a
23.9 a
31.1 a
0.242 a
22.7 a
30.0 a
N60
0.261 ab
22.8 ab
30.1 a
0.238 ab
21.5 b
29.0 a
N120
0.259 abc
22.2 b
29.7 a
0.233 ab
20.8 bc
27.7 b
N120+60
0.247 bcd
21.0 c
28.1 b
0.233 ab
20.4 c
27.5 b
N120+120
0.245 cd
20.7 c
27.6 b
0.228 bc
20.0 cd
26.6 bc
N120+180
0.237 d
20.1 c
27.0 b
0.222 c
19.3 d
26.1 c
平均值 Mean
0.253 A
21.8 A
28.9 A
0.233 B
20.8 B
27.8 B
北京顺义 Shunyi, Beijing
N0
0.237 a
22.6 a
32.6 a
0.220 a
21.9 a
32.1 a
N60
0.227 b
21.2 b
30.9 b
0.212 ab
20.7 ab
30.4 a
N120
0.220 bc
20.3 bc
29.7 bc
0.211 ab
19.9 bc
30.1 ab
N120+60
0.224 bc
20.4 bc
29.2 c
0.200 b
18.7 c
27.6 b
N120+120
0.215 c
19.6 c
28.6 c
0.197 b
18.6 c
27.5 b
平均值 Mean
0.224 A
20.9 A
30.2 A
0.208 B
19.9 B
29.6 B
In each location, different lowercase and uppercase letters after data indicate significant difference among treatments and between cultivars at P< 0.05, respectively. TA: translocation amount; TE: translocation efficiency; CE: contribution efficiency. 同一试点, 数据后不同小写字母表示处理间有显著差异, 不同大写字母表示品种间差异显著(P< 0.05)。
表5 不同施氮处理对中麦175和京冬17物质转运的影响 Table 5 Effects of different N treatments on dry matter translocation in Zhongmai 175 and Jingdong 17
表6 不同施氮处理对中麦175和京冬17氮肥偏生产力、氮素吸收和利用效率的影响 Table 6 Effects of different N treatments on PFPN, NUpE, and NUtE in Zhongmai 175 and Jingdong 17 (kg kg-1)
处理 Treatment
氮肥偏生产力 PFPN
氮素吸收效率 NUpE
氮素利用效率 NUtE
中麦175 Zhongmai 175
京冬17 Jingdong 17
中麦175 Zhongmai 175
京冬17 Jingdong 17
中麦175 Zhongmai 175
京冬17 Jingdong 17
河北吴桥 Wuqiao, Hebei
N0
41.21 a
40.78 a
N60
144.65 a
133.56 a
3.51 a
3.40 a
41.07 a
39.31 ab
N120
73.69 b
67.91 b
1.88 b
1.83 b
39.03 b
37.10 c
N120+60
49.81 c
47.51 c
1.33 c
1.26 c
37.40 c
37.74 bc
N120+120
38.43 d
36.49 d
1.03 d
0.98 d
37.11 c
37.04 c
N120+180
31.30 e
29.33 e
0.85 e
0.82 e
34.91 d
34.63 d
平均值 Mean
67.58 A
62.96 B
1.72 A
1.66 B
38.46 A
37.77 A
北京顺义 Shunyi, Beijing
N0
36.37 a
36.44 a
N60
116.62 a
111.94 a
3.30 a
3.17 a
35.93 a
34.95 b
N120
58.75 b
56.57 b
1.73 b
1.66 b
34.35 b
34.28 b
N120+60
40.17 c
38.42 c
1.23 c
1.16 c
33.18 c
33.04 c
N120+120
29.67 d
28.49 d
0.95 d
0.89 d
32.17 d
32.29 c
平均值 Mean
61.29 A
58.85 B
1.80 A
1.72 B
34.40 A
34.20 A
In each location, different lowercase and uppercase letters after data indicate significant difference among treatments and between cultivars at P< 0.05, respectively. NUtE: N utilization efficiency; PFPN: partial factor productivity from applied N; NUpE: N uptake efficiency. 同一试点, 数据后不同小写字母表示处理间有显著差异, 不同大写字母表示品种间差异显著(P< 0.05)。
表6 不同施氮处理对中麦175和京冬17氮肥偏生产力、氮素吸收和利用效率的影响 Table 6 Effects of different N treatments on PFPN, NUpE, and NUtE in Zhongmai 175 and Jingdong 17 (kg kg-1)
图1 中麦175和京冬17灌浆中后期NDVI和CTD与穗数、产量和生物量的线性关系Fig. 1 Correlation of CTD, NDVI in middle to late stage of grain filling with SN, yield and biomass in Zhongmai 175 and Jingdong 17
3 讨论3.1 不同施氮量对冬小麦产量相关性状的影响本研究表明, 适量增加施氮量可提高产量, 主要得益于单位面积穗数的提高。随施氮量的增加, 开花前干物质积累量向籽粒转运量、转运率、对籽粒的贡献率、收获指数、氮素吸收和利用效率均呈降低趋势, 这与张宏等[17]和Rampino等[18]的研究结果相符, 可能与作物自身调节能力有关。在土壤养分亏缺时, 作物通过提高肥料吸收和利用效率以满足自身需求, 并提高开花前干物质积累量向籽粒转运量和转运率以获得一定产量; 而在土壤养分充足时, 作物体内硝酸还原酶、谷氨酰胺合成酶和谷氨酸合成酶的活性增加[19], 从而促进地上部生物量积累, 为籽粒灌浆提供足够的养分储备, 最终增加产量。 NDVI反映了地表绿色植被的覆盖比例, 可用于评价作物生物量积累速率及叶片功能期长短。肖永贵等[13]发现冬小麦NDVI在不施氮和正常施氮处理间存在极显著差异, 李升东等[20]认为不同基因型冬小麦各生育期的NDVI存在显著差异, 抽穗期的NDVI值与其干旱产量指数呈正相关。本研究表明, 限水条件下在施氮量0~240 kg hm-2 (吴桥)或0~180 kg hm-2 (顺义)范围内, 增加施氮量可提高各时期干物质积累量并延缓衰老, 即增加NDVI值。CTD作为反映环境变化对作物生长发育作用的重要指标, 已越来越多地用于抗旱、耐热和养分亏缺的研究, 一般认为增加施氮量可降低冠层温度即提高CTD, 但不同时期结果有一定差异[21, 22]。本研究表明, 限水条件下在施用氮肥0~240 kg hm-2 (吴桥)或0~180 kg hm-2 (顺义)范围内, 增加施氮量可提高冬小麦开花期、灌浆前期和灌浆中后期的CTD, 并且随着时间的推移作用更为明显, 这可能是适宜的施氮量提高了群体叶片活性, 增加了单位面积生物量和叶片光合能力。NDVI和CTD在一定程度上反映了作物群体活性, 不同氮肥处理间二者变化趋势与产量趋势基本一致, NDVI和CTD的稳定性对品种高产稳产具有重要作用。 3.2 不同品种间产量与氮素利用效率的差异不同群体冠层结构对冠层氮素分布有明显影响, 叶片平展型群体中叶片氮素含量随叶层下移而下降的速度要快于紧凑型[23]。中麦175具有株型紧凑、叶片较小且直立、分蘖多、冠层结构合理等优良特性, 对促进氮素吸收、提高物质转运和增加产量形成具有重要作用。 中麦175穗数多, 穗粒数和千粒重在不同环境下稳定性好, 因而具有较高的丰产性和稳产性, 相对于京冬17, 在多数环境下的NDVI和CTD较高, 且在灌浆中后期不同氮素处理间稳定性较好, 即在灌浆前期群体活力高, 灌浆中后期对氮肥胁迫耐受性更好、活力更持久。小麦生物量积累可分为开花前、后2个时期, 开花前贮藏碳水化合物再转运及开花后光合产物积累是籽粒产量的主要来源[24]。有研究表明, 开花前的光合产物对籽粒产量的贡献占3%~30%, 对抵御后期高温、干旱胁迫、维持产量稳定具有重要作用[21]; 开花后光合产物对籽粒的贡献率占60%~80%, 是高产的主要物质来源[25]。中麦175的花前和花后干物质积累量及收获指数均高于京冬17, 且开花前干物质积累量向籽粒转运量、转运率、对籽粒的贡献率均更高, 说明中麦175具有更高的花前干物质积累量和更强的花后干物质转运能力, 对保证高产稳产具有重要作用。另外, 与京冬17相比, 中麦175在不同氮肥环境下氮素吸收效率皆较高, 氮素利用效率在施氮量0~120 kg hm-2的低氮范围内更高。氮素吸收效率高是其总体肥料利用效率高的关键, 这与肖永贵等[13]研究结果一致, 与我们之前认为中麦175苗期具有较强耐低肥能力的结果相佐证[26]。 3.3 氮高效型品种筛选指标及施肥策略对后代品系进行多点试验及抗旱、耐热、养分胁迫、抗病性鉴定已经成为国际玉米小麦改良中心(CIMMYT)小麦新品种选育的重要方式[22]。我国大多数育种单位还不能做到育种材料的多点鉴定和广泛筛选, 导致缺乏抗逆性强、适应性广的高产稳产品种。群体特性在一定程度上反映了作物对不同环境的适应性, 已有研究把幼苗早期活性、冠层温度、灌浆期叶片衰老等作为品种适应性和高世代育种选择标准[27, 28, 29, 30]。本研究表明, 灌浆中后期(开花后20 d左右)的NDVI和CTD与穗数、产量和生物量在所有环境下均呈显著或极显著正相关, 可作为快速评价品种肥料敏感性的指标。中麦175的育成及其在北部冬麦区水地、黄淮旱肥地及甘肃和青海春麦区的大面积推广表明, 培育高产且广适的品种是可行的, 其优良特性可为育种家培育新品种提供借鉴。 受地力、气候环境和种植模式等因素的影响, 不同地区小麦对氮肥需求量有所不同[31]。北方小麦氮肥施用量一般为180~250 kg hm-2, 淮北地区为195~225 kg hm-2, 晋南旱作地区为180 kg hm-2左右, 四川丘陵旱地为135~180 kg hm-2 [31, 32]。本研究表明, 在磷肥、钾肥一定的条件下, 中麦175和京冬17在基施氮肥120 kg hm-2+拔节期追施氮肥60~120 kg hm-2 (吴桥)或基施氮肥120 kg hm-2+拔节期追施氮肥60 kg hm-2 (顺义)可获得较高产量。考虑到施氮量超过240 kg hm-2 (吴桥)或180 kg hm-2 (顺义)不仅减产, 而且还显著减效的情况, 我们推荐中麦175和京冬17在黄淮麦区(北片)的施氮量为180~240 kg hm-2, 在北部冬麦区施氮量为120~180 kg hm-2。在此施氮量和采用春季浇2次水的节水栽培模式下, 适宜的施肥模式是基肥+拔节肥, 其施肥比例应根据土壤肥力适当调整, 如土壤肥力较差, 应适当增加基肥比例, 如土壤肥力较好, 则应减少基肥比例。
4 结论在不同地点和不同氮肥处理下, 中麦175产量和氮肥生产率皆高于京冬17。穗数多、穗粒重稳定性好、群体活力持久、生物量高、花前干物质积累和花后干物质转运能力强、氮素吸收效率高是中麦175在不同氮水平下高产高效的重要原因。灌浆中后期的NDVI和CTD与穗数、产量和生物量呈显著或极显著正相关, 二者可协同作为评价品种肥料敏感性的指标。 The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
Erisman JW, Galloway JA, Sutton MS, KlimontZ, WiniwaterW. How a century of ammonia synthesis changed the world. , 2008, 1: 636-639[本文引用:1]
[2]
霍中洋, 葛鑫, 张洪程, 戴其根, 许轲, 龚振凯. 施氮方式对不同专用小麦氮素吸收及氮肥利用率的影响. , 2004, 30: 449-454Huo ZY, GeX, Zhang HC, Dai QG, XuK, Gong ZK. Effect of different nitrogen application types on N-absorption and N-utilization rate of specific use cultivars of wheat. , 2004, 30: 449-454 (in Chinese with English abstract)[本文引用:1]
[3]
Goulding K WT. Minimising losses of nitrogen from UK agriculture. , 2004, 165: 1-11[本文引用:1]
[4]
张福锁, 崔振岭, 王激清, 李春俭, 陈新平. 中国土壤和植物养分管理现状与改进策略. , 2007, 24: 687-694Zhang FS, Cui ZL, Wang JQ, Li CJ, Chen XP. Current status of soil and plant nutrient management in China and improvement strategies. , 2007, 24: 687-694 (in Chinese with English abstract)[本文引用:1]
[5]
王志敏, 王璞, 李绪厚, 李建民, 鲁来清. 冬小麦节水省肥高产简化栽培理论与技术. , 2006, 8(5): 38-44Wang ZM, WangP, Li XH, Li JM, Lu LQ. Principle and technology of water-saving fertilizer-saving high-yielding and simple cultivation in winter wheat. , 2006, 8(5): 38-44 (in Chinese with English abstract)[本文引用:1]
[6]
潘庆民, 于振文, 王月福, 田奇卓. 公顷产9000 kg小麦氮素吸收分配的研究. , 1999, 25: 541-547Pan QM, Yu ZW, Wang YF, Tian QZ. Studies on uptake and distribution of nitrogen in wheat at the level of 9000 kg per hectare. , 1999, 25: 541-547 (in Chinese with English abstract)[本文引用:1]
[7]
王晨阳, 朱云集, 夏国军, 朱家永, 李久星, 王永华, 罗毅. 氮肥后移对超高产小麦产量及生理特性的影响. , 1998, 24: 978-983Wang CY, Zhu YJ, Xia GJ, Zhu JY, Li JX, Wang YH, LuoY. Effects of application nitrogen at the later stage on grain yield and plant physiological characteristics of super-high-yielding winter wheat. , 1998, 24: 978-983 (in Chinese with English abstract)[本文引用:1]
[8]
CormierF, FaureS, DubreuilP, HeumezE, BeaucheneK, LafargeS, PraudS, Gouis JL. A multi-environmental study of recent breeding progress on nitrogen use efficiency in wheat (, 2013, 126: 3035-3048[本文引用:1]
[9]
Celine MD, Francoise DV, JulieD, FabienC, LaureG, AkiraS. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. , 2010, 105: 1141-1157[本文引用:1]
[10]
Xu GH, Fan XR, Miller AJ. Plant nitrogen assimilation and use efficiency. , 2012, 63: 153-182[本文引用:4]
[11]
Masclaux-DaubresseC, Reisdorf-CrenM, OrselM. Leaf nitrogen remobilisation for plant development and grain filling. , 2008, 10: 23-36[本文引用:1]
[12]
李兴茂, 倪胜利. 不同水分条件下广适性小麦品种中麦175的农艺和生理特性解析. , 2015, 48: 4374-4380Li XM, Ni SL. Agronomic and physiological characterization of the wide adaptable wheat cultivar Zhongmai 175 under two different irrigation conditions. , 2015, 48: 4374-4380 (in Chinese with English abstract)[本文引用:1]
[13]
肖永贵, 李思敏, 李法计, 张宏燕, 陈新民, 王德森, 夏先春, 何中虎. 两种施肥环境下冬小麦京411及其衍生系产量和生理性状的遗传分析. , 2015, 41: 1333-1342Xiao YG, Li SM, Li FJ, Zhang HY, Chen XM, Wang DS, Xia XC, He ZH. Genetic analysis of yield and physiological traits in elite parent Jing 411 and its derivatives under two fertilization environments. , 2015, 41: 1333-1342 (in Chinese with English abstract)[本文引用:3]
[14]
何中虎, 陈新民, 王德森, 张艳, 肖永贵, 李法计, 张勇, 李思敏, 夏先春, 张运宏, 庄巧生. 中麦175高产高效广适特性解析与育种方法思考. , 2015, 48: 3394-3403He ZH, Chen XM, Wang DS, ZhangY, Xiao YG, Li FJ, ZhangY, Li SM, Xia XC, Zhang YH, Zhuang QS. Characterization of wheat cultivar Zhongmai 175 with high yielding potential, high water and fertilizer use efficiency, and broad adaptability. , 2015, 48: 3394-3403 (in Chinese with English abstract)[本文引用:1]
Dordas CA, SioulasC. Dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower (, 2009, 110: 35-43[本文引用:4]
[17]
张宏, 周建斌, 刘瑞, 张鹏, 郑险峰, 李生秀. 不同栽培模式及施氮对半旱地冬小麦/夏玉米氮素累积、分配及氮肥利用率的影响. , 2011, 17: 1-8ZhangH, Zhou JB, LiuR, ZhangP, Zheng XF, Li SX. Effects of different cultivation patterns and nitrogen fertilizer on accumulation, distribution and use efficiency of nitrogen in winter wheat/summer maize rotation system on semi-dry land farming. , 2011, 17: 1-8 (in Chinese with English abstract)[本文引用:1]
[18]
RampinoP, StefanoPataleo, CarmelaGerardi, GinvanniMita, CarlaPerrotta. Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. , 2006, 29: 2143-2152[本文引用:1]
[19]
赵鹏, 何建国, 熊淑萍, 马新明, 张娟娟, 王志强. 氮素形态对专用小麦旗叶酶活性及自理蛋白质和产量的影响. , 2010, 15(3): 29-34ZhaoP, He JG, Xiong SP, Ma XM, Zhang JJ, Wang ZQ. Studies on the effects of different nitrogen forms on enzyme activity in flag leaves in wheat and protein and yield of grain for specialized end-uses. , 2010, 15(3): 29-34 (in Chinese with English abstract)[本文引用:1]
[20]
李升东, 王法宏, 司纪升, 孔令安, 冯波, 张宾. 不同基因型小麦NDVI值与产量的关系. , 2008, 26(6): 47-50Li SD, Wang FH, Si JS, Kong LA, FengB, ZhangB. The relationship between normalized difference vegetation index and yield of different genotype wheat varieties. , 2008, 26(6): 47-50 (in Chinese with English abstract)[本文引用:1]
[21]
Blad BL, BauerA, Hatfield JL, Hubbard KG, Kanemasu ET, ReginatoR. J. Influence of water and nitrogen levels on canopy temperatures of winter wheat grown in the North American Great Plains. , 1988, 44: 159-173[本文引用:2]
[22]
Hegde DM. Effect of irrigation and N fertilization on water relation, canopy temperature, yield, N uptake and water use of onion. , 1986, 56: 858-867[本文引用:2]
[23]
Anten N PR, SchievingF, Werger M JA. Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono and dicotyledonous species. , 1995, 101: 504-513[本文引用:1]
[24]
EhdaieB, Alloush GA, Madore MA, Waines JG. Genotype variation for stem reserves and mobilization in wheat: II. Postanthesis changes in internode water-soluble carbohydrates. , 2006, 46: 2094-2104[本文引用:1]
[25]
Mullen RW, Freeman KW, Raun WL, Raun WR, Johnson GV, Stone ML, Solie JB. Identifying an in-season response index and the potential to increase wheat yield with nitrogen. , 2003, 95: 347-351[本文引用:1]
[26]
李法计, 肖永贵, 金松灿, 夏先春, 陈新民, 汪洪, 何中虎. 京411及其衍生系苗期氮和磷利用效率相关性状的遗传分析. , 2015, 35: 737-746Li FJ, Xiao YG, Jin SC, Xia XC, Chen XM, WangH, He ZH. Genetic analysis of nitrogen and phosphorus utilization efficiency related traits at seeding stage of Jing 411 and its derivatives. , 2015, 35: 737-746 (in Chinese with English abstract)[本文引用:1]
[27]
Babar MA, van GinkelM, Klatt AR, PrasadB, Reynolds MP. The potential of using spectral reflectance indices to estimate yield in wheat grown under reduced irrigation. , 2006, 150: 155-172[本文引用:1]
[28]
ChenJ, LiangY, HuX, WangX, TanF, ZhangH, RenZ, LuoP. Physiological characterization of stay green wheat cultivars during the grain filling stage under field growing conditions. , 2010, 32: 875-882[本文引用:1]
[29]
Christopher JT, Manschadi AM, HammerG, Borrell AK. Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. , 2008, 59: 354-364[本文引用:1]
[30]
FanT, BaltaM, RuddJ, Payne WA. Canopy temperature depression as a potential selection criterion for drought resistance in wheat. , 2005, 4: 793-800[本文引用:1]
[31]
吴中伟, 樊高琼, 王秀芳, 郑亭, 陈溢, 李金刚, 郭翔. 不同氮肥用量及其生育期分配比例对四川丘陵区带状种植小麦氮素利用的影响. , 2014, 20: 1338-1348Wu ZW, Fan GQ, Wang XF, ZhengT, ChenY, Li JG, GuoX. Effects of nitrogen fertilizer levels and application stages on nitrogen utilization of strip-relay-intercropping wheat in Sichuan Hilly Areas. , 2014, 20: 1338-1348 (in Chinese with English abstract)[本文引用:2]
[32]
李廷亮, 谢英荷, 洪坚平, 冯倩, 孙丞鸿, 王志伟. 施氮量对晋南旱地冬小麦光合特性、产量及氮素利用的影响. , 2013, 39: 704-711Li TL, Xie YH, Hong JP, FengQ, Sun CH, Wang ZW. Effects of nitrogen application rate on photosynthetic characteristics, yield and nitrogen utilization in rainfed winter wheat in southern Shanxi. , 2013, 39: 704-711 (in Chinese with English abstract)[本文引用:1]