删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

钾肥用量对甬优籼粳杂交稻物质积累及其产量的影响

本站小编 Free考研考试/2021-12-26

韦还和1, 孟天瑶1, 李超1, 史天宇1, 马荣荣2, 王晓燕3, 杨筠文4, 戴其根1,*, 霍中洋1, 许轲1, 魏海燕1, 郭保卫1
1扬州大学农业部长江流域稻作技术创新中心 / 江苏省作物遗传生理重点实验室/ 粮食作物现代产业技术协同创新中心, 江苏扬州 225009

2浙江省宁波市农业科学院作物研究所, 浙江宁波 315101

3浙江省宁波市种子公司, 浙江宁波315101

4浙江省宁波市鄞州区农业技术服务站, 浙江宁波 315100

*通讯作者(Corresponding authors): 戴其根, E-mail:qgdai@yzu.edu.cn; 张洪程, E-mail:hczhang@yzu.edu.cn 第一作者联系方式: E-mail:920964110@qq.com
收稿日期:2015-10-29 接受日期:2016-04-26网络出版日期:2016-05-23基金:本研究由国家公益性行业(农业)科研专项(201303102), 农业部超级稻专项(02318802013231), 宁波市重大科技项目(2013C11001), 江苏省重点研发项目(BE2015340), 扬州大学研究生创新培养计划项目(KYLX15_1371), 扬州大学科技创新培育基金(2015CXJ042)和基于模型与GIS的高邮市小麦精确管理和诊断调控技术的开发与示范推广项目(SXGC[2013]248)资助

摘要为探究甬优籼粳杂交稻的适宜钾肥用量及其对产量的影响, 以籼粳杂交稻甬优12和甬优538为试材, 设不同钾肥用量(0、75、150、225、300 kg hm-2)的大田试验。结果表明: (1)与对照(0 kg hm-2)相比, 两年中施钾处理使甬优12增产9.2%~14.0%, 甬优538增产9.8%~15.0%, 以钾肥用量225 kg hm-2处理的产量最高。施钾处理显著增加了群体有效穗数和每穗粒数。(2)随钾肥用量的增加, 拔节、抽穗和成熟期的植株干物重和叶面积指数均增加, 拔节至抽穗期阶段的干物质积累量和光合势、抽穗至成熟期阶段光合势亦递增; 抽穗至成熟期干物重呈先增后降趋势, 以钾肥用量225 kg hm-2处理最高。(3)与对照(0 kg hm-2)相比, 施钾处理显著增加了花后各时期的剑叶叶绿素含量、光合速率以及根系伤流强度。(4)与对照(0 kg hm-2)相比, 施钾处理显著增加了拔节、抽穗和成熟期氮素和钾素吸收量。随钾肥用量增加, 植株抽穗至成熟期的氮素和钾素积累量呈先增后降趋势, 以钾肥用量225 kg hm-2处理下最高。施钾处理下, 钾素偏生产力、钾素籽粒生产率和钾素农艺效率均随钾素用量的增加而降低。

关键词:钾肥; 甬优籼粳交杂交稻; 产量
Effects of Potassium Fertilizer Rate on Biomass Accumulation and Grain Yield of Yongyou Japonica/indica Hybrids Series
WEI Huan-He1, MENG Tian-Yao1, LI Chao1, SHI Tian-Yu1, MA Rong-Rong2, WANG Xiao-Yan3, YANG Jun-Wen4, ZHANG Hong-Cheng1,*, DAI Qi-Gen1,*, HUO Zhong-Yang1, XU Ke1, WEI Hai-Yan1, GUO Bao-Wei1, 张洪程1,*
1 Innovation Center of Rice Cultivation Technology in Yangtze River Valley, Ministry of Agriculture / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/ Co-innovation Center of Modern Production Technology for Grain Crops, Yangzhou University, Yangzhou 225009, China

2 Crop Research Institute, Ningbo Academy of Agricultural Sciences of Zhejiang Province, Ningbo 315101, China

3Ningbo Seed Company of Zhejiang Province, Ningbo 315101, China

4Agricultural Technology Extension and Service, Yinzhou District, Ningbo City, Zhejiang Province, Ningbo 315100, China

Fund:This study was supported by the China Special Fund for Agro-scientific Research in the Public Interest (201303102), Special Program of Super Rice of the Ministry of Agriculture (02318802013231), the Great Technology Project of Ningbo City (2013C11001), the Key Projects of Jiangsu Province (BE2015340), Innovative Training Program of Yangzhou University (KYLX15_1371), Science and Technology Innovation Fund of Yangzhou University (2015CXJ042), and Precise Diagnosis and Management of Control Technology Based On Modeling and GIS of Gaoyou City (SXGC[2013]248)
AbstractIn order to investigate proper potassium application rate and its effects on growth and grain yield for Yongyou japonica/indica hybrids series, a field experiment was conducted using Yongyou 12 and Yongyou 538 with five treatments of 0, 75, 150, 225, and 300 kg ha-1 potassium application. Results indicated that compared with check treatment (0 kg ha-1), potassium application increased yield by 9.2-14.0% for Yongyou 12, and 9.8-15.0% for Yongyou 538. In both years, the highest yield of Yongyou 12 and Yongyou 538 was both achieved at potassium application rate of 225 kg ha-1. Potassium application significantly increased number of panicles and spikelets per panicle. With the increase of potassium application rate, leaf area index and plant dry matter weight at jointing, heading, and maturity stages, as well as leaf area duration and dry matter accumulation from jointing to heading, and leaf area duration from heading to maturity were increased synchronously. Dry matter accumulation of plant from heading to maturity increased firstly and decreased then with the increase of potassium application rate, and the highest dry matter accumulation was achieved at potassium application rate of 225 kg ha-1. Compared with check treatment (0 kg ha-1), potassium application increased SPAD value, photosynthetic rate, and root blending rate from heading to maturity. Compared with check treatment (0 kg ha-1), potassium application increased significantly nitrogen and potassium absorption at jointing, heading, and maturity stage. Nitrogen and potassium accumulation from heading to maturity was increased firstly and decreased then with the increase of potassium application rate, and the highest nitrogen and potassium accumulation was achieved at potassium application rate of 225 kg ha-1. K partial productivity, internal nutrient efficiency in K, and K agronomy efficiency all decreased with the increase of potassium application rate.

Keyword:Potassium fertilizer; Super rice of Yongyou japonica/indica hybrids series; Grain yield
Show Figures
Show Figures










合理施用钾肥是水稻高产栽培的重要一环, 有利于促进水稻光合作用、增强抗逆性以及改善稻米品质[1, 2, 3]。在水稻生产上往往重视氮磷肥而忽视钾肥的施用, 水稻收获时带走钾素增多, 土壤钾素逐渐缺乏, 尤其在我国长江以南稻区, 土壤缺钾问题更为普遍[4, 5]。近年来, 甬优系列籼粳杂交稻在长江中下游地区种植面积不断扩大, 在生产上表现出较高的产量潜力[6, 7], 甬优2640、甬优12等相继创造13.5 t hm-2以上高产记录[8, 9]。与常规粳稻和杂交籼稻相比, 甬优系列籼粳杂交稻一般具有10%以上的产量增幅[10, 11], 姜元华等[11, 12, 13]和孟天瑶等[14]从产量构成因素[11]、根系形态生理特征[12]、冠层结构[13]、光合物质生产[14]等角度分析其产量优势形成的生理基础。近些年, 有关土壤钾素缺乏对水稻产量的负面影响已有相关研究报道[15, 16], 因此, 在甬优籼粳杂交稻的高产栽培管理上应重视钾肥的合理施用, 但其适宜钾肥用量及其对产量影响的报道较少。本研究在缺钾土壤中探究甬优籼粳杂交稻代表性品种的适宜钾肥施用量及其对产量的影响, 以期为充分发挥品种产量潜力配套高产栽培技术提供理论与实践依据。
1 材料与方法1.1 试验材料与栽培管理概况2013— 2014年在浙江省宁波市鄞州区洞桥镇百梁桥村水稻田中(29.45° N, 121.31° E)进行试验。以籼粳杂交稻甬优12、甬优538为试材, 2个品种2年主要生育期见表1
表1
Table 1
表1(Table 1)
表1 主要生育期以及生育阶段天数 Table 1 Development stages of the tested varieties
品种
Variety
播种期
Sowing date
(Month/day)
拔节期
Jointing date
(Month/day)
抽穗期
Heading date
(Month/day)
成熟期
Maturity date
(Month/day)
全生育期天数
Growth period duration
(d)
2013年
甬优12 Yongyou 125/187/259/411/16182
甬优538 Yongyou 5385/187/208/2710/31166
2014年
甬优12 Yongyou 125/197/309/811/18183
甬优538 Yongyou 5385/197/248/3011/2167

表1 主要生育期以及生育阶段天数 Table 1 Development stages of the tested varieties

试验地前茬为小麦, 供试土壤类型为黄化青紫泥田, pH 5.51, 含有机质38.37 g kg-1、全氮0.16%、碱解氮82.45 mg kg-1、速效磷20.14 mg kg-1、速效钾78.45 mg kg-1、有效硅88.64 mg kg-1、水溶性盐总量0.13 g kg-1。两年中水稻生长期间的平均温度、日照时数、降雨量见图1
设0 (对照)、75、150、225、300 kg hm-2共5个钾肥(含60% K2O)处理, 3次重复, 随机区组设计, 小区面积20 m2 (5 m × 4 m)。小区间作埂隔离, 并用塑料薄膜覆盖田埂, 单独排灌。毯苗育秧, 2年播种期见表1, 秧龄20 d。栽插行株距为30.0 cm × 13.2 cm, 每穴2苗, 人工栽插。施纯氮270 kg hm-2, 按基蘖肥∶ 穗肥= 6∶ 4施用。各小区磷肥施用量一致, 即过磷酸钙(含12% P2O5) 1125 kg hm-2, 全部基施。钾肥按基蘖肥∶ 穗粒肥 = 5∶ 5施用。秧苗移栽后采用湿润灌溉为主, 建立浅水层; 群体达到目标穗数的80%时搁田, 控制无效分蘖发生; 抽穗扬花期田间保持3 cm水层, 灌浆结实期间歇灌溉, 干湿交替, 收割前7 d断水搁田。
图1
Fig. 1
Figure OptionViewDownloadNew Window
图1 两年中水稻品种生育期间的日最高温度、最低温度和平均温度Fig. 1 Highest temperature, lowest temperature, and mean temperature of the tested variety during rice growing periods in 2013 and 2014


1.2 测定项目与方法1.2.1 叶面积、干物重和光合势 于拔节期、抽穗期、成熟期, 按每小区茎蘖数的平均值取10穴测定叶面积和干物重。按长宽系数法测定叶面积。样株分器官放在105℃杀青30 min, 80℃烘干至恒重, 测定干物重, 并样品粉碎过80目筛保存以备测定养分等。光合势(m2 d hm-2) = 1/2× (L1+L2)× (t2-t1)。式中, L1和L2为前后2次测定的叶面积(m2 hm-2), t1和t2为前后2次测定的时间(d)。
1.2.2 叶绿素含量测定 于抽穗期当天、抽穗后15 d、30 d、45 d、60 d选每重复10张生长基本一致的剑叶, 测定各小区叶绿素含量, 各小区4次重复。用SPAD-502型叶绿素测定仪测定剑叶中部SPAD值, 每张叶片测定3次, 取平均值。
1.2.3 光合速率测定 于抽穗期当天、抽穗后12 d、24 d、36 d、48 d、60 d选每重复10张生长基本一致的剑叶, 于晴天上午9:00— 11:00之间, 用LI-6400光合仪测定各小区剑叶的光合速率, 各小区3次重复。
1.2.4 根系伤流强度 于抽穗、抽穗后20 d、40 d、60 d, 每小区以6穴为1个样本, 于18:00在各茎离地面约12 cm处(取样前排干田间水)剪去地上部分植株, 将预先称重的脱脂棉放于茎剪口处, 包上塑料薄膜, 于第2天8:00取回带有伤流液的脱脂棉并称重, 计算伤流强度。
1.2.5 植株氮素含量、氮素积累量及氮素利用效率
将各小区拔节、抽穗和成熟期植株样本烘干, 以万能粉碎机粉碎, 过80目筛。采用H2SO4-H2O2消化, 以半微量凯氏定氮法测定氮含量。某生育时期的干物重与该时期植株氮素含量乘积为该时期氮素吸收量。某时期的氮素吸收量减去前一个生育期的氮素吸收量为这2个生育期之间的氮素积累量;
氮素籽粒生产率(kg grain kg-1) = 籽粒产量/成熟期植株氮素吸收量;
氮素偏生产力(kg kg-1) = 籽粒产量/氮肥施用量。
1.2.6 植株钾素含量, 钾素积累量及钾素利用效率
将各小区拔节、抽穗和成熟期植株样本烘干, 以万能粉碎机粉碎, 过80目筛。采用H2SO4-H2O2消化, 及火焰分光光度法测定植株中的钾素含量。某生育时期的干物重与该时期植株钾素含量乘积为该时期钾素吸收量。某时期的钾素吸收量减去前一个生育期的钾素吸收量为这2个生育期之间的钾素积累量;
钾素籽粒生产率(kg grain kg-1) = 籽粒产量/成熟期植株钾素吸收量;
钾素农艺效率(kg kg-1) = (施钾处理产量-对照产量)/施钾量;
钾素偏生产力(kg kg-1) = 籽粒产量/钾肥施用量。
1.2.7 产量 成熟期调查每小区100穴, 计算有效穗数, 取25穴调查每穗粒数、结实率, 测定千粒重及理论产量; 每小区实产收割面积8 m2, 脱粒后晾晒, 并称重。
1.3 数据处理运用Microsoft Excel软件录入数据、计算, 用DPS软件统计分析。因2年试验趋势基本一致, 若无特殊说明, 部分数据以2014年为主。

2 结果与分析2.1 产量及其构成与对照(0 kg hm-2)相比, 施钾处理对2个甬优品种均有显著增产作用。甬优12增产9.2%~14.0%, 甬优538增产9.8%~15.0%。增产幅度随施钾肥量的增加而减小, 钾肥用量300 kg hm-2处理下甬优12和甬优538的产量与225 kg hm-2处理下的产量持平或略有降低。产量在品种、钾肥处理间差异极显著。分析产量构成因素, 施钾处理显著增加了群体穗数和每穗粒数, 结实率和千粒重则随钾肥用量的增加而呈下降趋势。产量构成因素在年份、品种、钾肥处理间差异极显著(表2)。
表2
Table 2
表2(Table 2)
表2 各处理产量及其构成因素 Table 2 Grain yield and yield components of each treatment
品种
Variety
钾肥处理
Treatment
(kg hm-2)
穗数
No. of panicles
(× 104 hm-2)
每穗粒数
Spikelets per panicle
颖花量
Total spikelets
(× 104 hm-2)
结实率
Seed-setting
rate (%)
千粒重
1000-grain weight (g)
实际产量
Actual yield
(t hm-2)
增产率
Rate of yield increase (%)
2013
甬优12
Yongyou 12
0161.4 b328.6 b53036.0 c87.2 a23.2 a10.7 c
75176.8 ab343.6 ab60748.5 b86.1 b23.0 ab11.8 b9.6
150180.3 a348.5 ab62834.6 ab85.7 bc22.9 bc12.1 ab11.9
225185.2 a355.1 ab65764.5 a85.4 bc22.7 cd12.4 a13.8
300184.6 a357.9 a66068.3 a85.0 c22.6 d12.4 a13.7
甬优538
Yongyou 538
0199.1 b311.3 b61979.8 b84.4 a21.1 a10.9 c
75218.3 ab324.4 ab70816.5 a83.5 ab20.9 ab12.1 b9.8
150224.5 a330.2 a74129.9 a82.9 ab20.8 ab12.3 ab11.6
225229.4 a334.6 a76757.2 a82.7 bc20.7 ab12.6 a13.2
300232.1 a336.2 a78032.0 a82.1 c20.5 b12.5 a13.0
2014
甬优12
Yongyou 12
0204.1 b251.5 b51331.2 b88.1a23.7 a10.6 d
75221.8 ab270.4 ab59974.7 ab87.6 ab23.7 a11.7 c9.2
150227.4 a275.8 a62716.9 a87.0 abc23.3 b12.0 bc11.7
225232.5 a279.1 a64890.8 a86.6 bc23.1 bc12.4 ab14.5
300233.1 a281.3 a65571.0 a86.2 c22.9 c12.3 a14.0
甬优538
Yongyou 538
0226.8 b243.4 b55203.1 b87.7 a21.9 a10.6 c
75242.5 ab258.6 ab62710.5 a87.4 a21.7 ab11.9 b11.0
150248.9 a264.6 a65858.9 a87.1 ab21.7 ab12.3 ab13.6
225253.1 a268.6 a67982.7 a86.8 ab21.5 bc12.5 a15.0
300255.3 a271.3 a69262.9 a86.0 b21.3 c12.5 a15.0
变异来源Sources of variance
年份 Year (Y)146.26* * 572.83* * 16.21* * 227.62* * 146.29* * 2.72 ns
品种 Variety (V)121.75* * 25.39* * 40.57* * 71.58* * 1289.28* * 8.83* *
钾肥处理 K treatment (K)12.45* * 11.44* * 22.13* * 16.58* * 18.89* * 115.53* *
年份× 品种 Y× V13.48* * 2.37 ns11.53* * 61.92* * 11.57* * 0.11 ns
年份× 钾肥处理 Y× K0.01 ns0.04 ns0.01 ns0.48 ns0.39 ns0.27 ns
品种× 钾肥处理V× K0.07 ns0.04 ns0.06 ns0.15 ns0.74 ns0.25 ns
年份× 品种× 钾肥处理Y× V× K0.09 ns0.02 ns0.08 ns0.11 ns0.50 ns0.25 ns
Values followed by different letters are significantly different at the 5% probability level in the same variety under the same year.
标以不同字母的值在同一年份同一品种5%水平差异显著。

表2 各处理产量及其构成因素 Table 2 Grain yield and yield components of each treatment

2.2 干物重及阶段积累量主要生育期群体干物重和生育阶段干物质积累量在品种、钾肥处理间差异显著或极显著。与对照(0 kg hm-2)相比, 施钾处理显著提高了拔节期、抽穗期和成熟期的干物重, 如2013年, 甬优12钾肥用量300 kg hm-2下拔节、抽穗和成熟期干物重分别较对照高出13.7%、12.1%和14.4%。甬优12和甬优538在拔节— 抽穗期、抽穗— 成熟期阶段干物重积累量则随钾肥用量的增加而呈先增加后下降趋势, 以钾肥用量225 kg hm-2为拐点。从关键生育阶段干物质积累比例来看, 2013年甬优12和甬优538的拔节— 抽穗期干物质积累比例随钾肥用量增加呈下降趋势; 2014年甬优538亦呈类似趋势(表3)。
表3
Table 3
表3(Table 3)
表3 各处理关键生育时期的干物重和关键生育阶段干物重积累量 Table 3 Dry matter weight at main growth stages and biomass accumulation during main growth periods of each treatment
品种
Variety
钾肥处理
Treatment
(kg hm-2)
干物重
Dry matter weight (t hm-2)
拔节-抽穗期
Jointing to heading
抽穗-成熟期
Heading to maturity
拔节期
Jointing
抽穗期
Heading
成熟期
Maturity
积累量
Accumulation (t hm-2)
比例
Ratio (%)
积累量
Accumulation (t hm-2)
比例
Ratio (%)
2013
甬优12
Yongyou 12
05.34 b11.42 c18.64 d6.08 a32.67.22 d38.7
755.81 ab12.46 b20.81 c6.65 a32.08.35 c40.1
1506.00 ab12.89 a21.43 b6.89 a32.28.54 b39.9
2256.12 a13.06 a21.89 a6.94 a31.78.83 a40.3
3006.19 a12.98 a21.78 a6.79 a31.28.81 a40.4
甬优538
Yongyou 538
04.88 d11.50 c19.01 d6.62 c34.87.51 b39.5
755.56 c12.63 b21.25 c7.07 b33.38.62 a40.6
1505.76 b13.06 a21.68 b7.30 a33.78.62 a39.8
2255.88 ab13.23 a22.07 a7.35 a33.38.84 a40.1
3005.93 a13.06 a21.84 ab7.13 b32.68.78 a40.2
2014
甬优12
Yongyou 12
05.26 e11.25 c18.82 d5.99 b31.87.58 c40.3
755.77 d12.37 b20.55 c6.60 a32.18.18 b39.8
1505.92 c12.72 ab21.19 b6.80 a32.18.47 ab40.0
2256.04 b12.89 a21.78 a6.85 a31.58.89 a40.8
3006.15 a12.80 ab21.62 ab6.65 a30.88.82 a40.8
甬优538
Yongyou 538
04.74 c11.16 c18.77 c6.42 b34.27.61 b40.5
755.56 b12.63 b20.99 b7.07 a33.78.36 a39.8
1505.69 ab12.89 ab21.68 a7.20 a33.28.79 a40.5
2255.72 ab12.98 a21.92 a7.26 a33.18.95 a40.8
3005.90 a13.06 a21.96 a7.16 a32.68.90 a40.5
变异来源Sources of variance
年份 Year (Y)1.46 ns10.35* * 2.65 ns1.33 ns0.48 ns
品种 Variety (V)25.08* * 8.08* * 14.95* * 37.20* * 4.64*
钾肥处理 K treatment (K)34.52* * 176.41* * 275.71* * 17.21* * 71.18* *
年份× 品种 Y× V0.02 ns0.01 ns0.01 ns0.02 ns0.01 ns
年份× 钾肥处理 Y× K0.11 ns0.65 ns0.40 ns0.08 ns1.40 ns
品种× 钾肥处理 V× K0.67 ns0.62 ns0.72 ns0.04 ns0.48 ns
年份× 品种× 钾肥处理
Y× V× K
0.04 ns0.41 ns0.83 ns0.10 ns0.48 ns
Values followed by different letters are significantly different at the 5% probability level in the same variety under the same year.
标以不同字母的值在同一年份同一品种5%水平差异显著。

表3 各处理关键生育时期的干物重和关键生育阶段干物重积累量 Table 3 Dry matter weight at main growth stages and biomass accumulation during main growth periods of each treatment

2.3 叶面积指数和光合势关键生育期群体叶面积指数在年份、品种和钾肥处理间差异极显著。随钾肥用量增加, 拔节、抽穗和成熟期的叶面积指数随之增加, 2014年, 甬优538钾肥用量225 kg hm-2下拔节、抽穗和成熟期的叶面积指数分别显著高于对照15.1%、6.8%和10.5%。此外, 随钾肥用量增加, 各处理拔节— 抽穗期、抽穗— 成熟期的光合势亦随之增加(表4)。
表4
Table 4
表4(Table 4)
表4 各处理关键生育时期的叶面积指数和阶段光合势 Table 4 Leaf area index and leaf area duration at the main stages of each treatment
品种
Variety
钾肥处理
Treatment
(kg hm-2)
叶面积指数 Leaf area index光合势Leaf area duration (m2 d hm-2)
拔节期
Jointing
抽穗期
Heading
成熟期
Maturity
拔节-抽穗期
Jointing to heading
抽穗-成熟期
Heading to maturity
2013
甬优12
Yongyou 12
04.3 c7.6 c3.7 c244.0 c412.5 c
754.5 bc7.9 bc3.9 bc254.2 bc430.7 bc
1504.7 ab8.1 ab4.2 ab262.4 ab449.0 ab
2254.9 a8.3 a4.4 a270.6 a463.6 a
3004.9 a8.3 a4.5 a271.6 a467.2 a
甬优538
Yongyou 538
04.2 c7.9 c3.6 d229.9 d373.8 d
754.6 b8.1 bc3.8 cd241.3 cd386.8 cd
1504.9 ab8.3 abc3.9 bc250.8 bc396.5 bc
2255.1 a8.5 ab4.1 ab258.4 ab409.5 ab
3005.2 a8.7 a4.3 a264.1 a422.5 a
2014
甬优12
Yongyou 12
04.3 d7.7 c3.7 d240.0 d404.7 c
754.6 c8.0 bc3.9 cd252.0 c422.5 bc
1504.8 b8.2 ab4.1 bc260.0 bc436.7 ab
2255.1 a8.4 a4.3 ab270.0 ab450.9 a
3005.2 a8.4 a4.4 a272.0 a454.4 a
甬优538
Yongyou 538
04.5 d8.2 c3.4 c235.0 c371.2 c
754.9 c8.5 bc3.6 b247.9 b387.2 bc
1505.1 bc8.7 ab3.7 ab255.3 ab396.8 ab
2255.3 ab8.8 ab3.8 a260.9 a403.2 ab
3005.4 a8.9 a3.8 a264.6 a406.4 a
变异来源Sources of variance
年份 Year (Y)22.56* * 16.33* * 24.08* * 23.41* * 0.27 ns
品种 Variety (V)22.56* * 50.70* * 80.08* * 45.90* * 0.61 ns
钾肥处理 P treatment (K)60.16* * 25.65* * 45.92* * 48.11* * 41.69* *
年份× 品种 Y× V1.56 ns4.48* 10.08* * 3.74 ns0.01 ns
年份× 钾肥处理 Y× K0.22 ns0.13 ns1.17 ns0.04 ns0.48 ns
品种× 钾肥处理V× K0.84 ns0.24 ns0.75 ns0.27 ns0.48 ns
年份× 品种× 钾肥处理Y× V× K0.78 ns0.13 ns0.50 ns0.34 ns0.30 ns
Values followed by different letters are significantly different at the 5% probability level in the same variety under the same year.
标以不同字母的值在同一年份同一品种5%水平差异显著。

表4 各处理关键生育时期的叶面积指数和阶段光合势 Table 4 Leaf area index and leaf area duration at the main stages of each treatment

同一年份中, 钾肥各处理中产量表现较高的甬优538 (与对应处理的甬优12相比)在拔节至抽穗期和抽穗至成熟期的光合势均低于对应的甬优12 (表2)。总体上, 甬优538钾肥各处理在拔节、抽穗和成熟期叶面积指数略高于对应的甬优12, 因此, 甬优12和甬优538在拔节— 抽穗期、抽穗— 成熟期的光合势的差异势必与此两个阶段的生育阶段天数差异有关。实际上, 本研究中甬优12拔节— 抽穗期、抽穗— 成熟期的天数分别为40 d和72 d (2年平均值), 较甬优538分别高出3 d和8 d (表1), 即2个杂交稻在拔节— 抽穗期、抽穗— 成熟期的光合势差异与此两阶段生育天数相关。
2.4 花后剑叶叶绿素含量、光合速率和根系伤流变化随钾肥用量增加, 花后各时期剑叶叶片叶绿素含量随之增加, 甬优12在钾肥用量225 kg hm-2下花后0 d、15 d、30 d、45 d、60 d叶绿素含量分别较对照高出11.7%、11.5%、13.9%、16.8%和21.3% (图2)。与对照(0 kg hm-2)相比, 施钾处理提高了花后各生育时期剑叶叶片光合速率(图3)。钾肥各处理自抽穗后根系伤流强度呈下降趋势, 施钾处理下花后各生育时期根系伤流强度均高于对照(图4)。
图2
Fig. 2
Figure OptionViewDownloadNew Window
图2 各处理花后每隔10 d剑叶叶绿素含量变化Fig. 2 Changes in SPAD value of flag leaf every 10 d after heading of each treatment

图3
Fig. 3
Figure OptionViewDownloadNew Window
图3 各处理花后每隔10天剑叶光合速率变化Fig. 3 Changes in flag leaf photosynthetic rate every 10 d after heading of each treatment

图4
Fig. 4
Figure OptionViewDownloadNew Window
图4 各处理花后每隔10 d根系伤流强度变化Fig. 4 Changes in root bleeding rate every 10 d after heading of each treatment


2.5 关键生育期植株氮素和钾素吸收量、阶段氮素和钾素积累量及利用效率关键生育期植株氮素吸收量在钾肥处理间差异极显著。随钾肥用量的增加, 各主要生育期氮素吸收量随之增加, 2013年甬优12钾肥用量75、150、225、300 kg hm-2下成熟期氮素吸收量分别较对照(0 kg hm-2)高出12.37、18.62、25.86和31.55 kg hm-2。各施钾处理下甬优12成熟期氮素吸收量为188~207kg hm-2, 甬优538为188~207 kg hm-2。随钾肥用量增加, 植株拔节— 抽穗期随之增加; 抽穗— 成熟期氮素积累量呈先增后降趋势, 以施钾处理225 kg hm-2最高。
氮素利用效率方面, 氮肥偏生产力在品种、钾肥处理间差异极显著。氮肥偏生产力则随钾肥用量增加呈先增加后下降趋势, 以钾肥用量225 kg hm-2下的氮肥偏生产力最高(46 kg kg-1左右)。氮素籽粒生产率随钾肥用量增加呈先增加后下降趋势, 2013年以钾肥用量75 kg hm-2下的氮素籽粒生产率最高; 2014年以钾肥用量225 kg hm-2下的氮素籽粒生产率最高(表5)。
各主要生育期植株钾素吸收量和关键生育阶段植株钾素积累量在钾肥处理间差异极显著。随钾肥用量的增加, 各处理拔节、抽穗和成熟期的钾素吸收量随之增加。各施钾处理下甬优12成熟期钾素吸收量为266~295 kg hm-2, 甬优538为269~298 kg hm-2。随钾肥用量的增加, 各处理拔节— 抽穗期钾素积累量呈先增后降趋势, 以钾肥用量225 kg hm-2处理下最高; 抽穗— 成熟期钾素积累量亦呈上述趋势。钾素利用效率方面, 施钾处理下, 随钾肥用量的增加, 各处理钾素偏生产力、钾素籽粒生产率和钾素农艺效率随之下降(表6)。
表5
Table 5
表5(Table 5)
表5 钾肥各处理关键生育时期的氮素吸收、阶段氮素积累量及氮素利用效率 Table 5 Nitrogen absorption, nitrogen accumulation at the main stages, and nitrogen use efficiency of each treatment
表5 钾肥各处理关键生育时期的氮素吸收、阶段氮素积累量及氮素利用效率 Table 5 Nitrogen absorption, nitrogen accumulation at the main stages, and nitrogen use efficiency of each treatment

表6
Table 6
表6(Table 6)
表6 钾肥各处理关键生育时期的钾素吸收、阶段钾素积累量及钾素利用效率 Table 6 Potassium absorption, potassium accumulation at the main stages, and potassium use efficiency of each treatment
表6 钾肥各处理关键生育时期的钾素吸收、阶段钾素积累量及钾素利用效率 Table 6 Potassium absorption, potassium accumulation at the main stages, and potassium use efficiency of each treatment


3 讨论3.1 钾肥用量对甬优籼粳杂交稻花后光合物质生产的影响花后光合物质生产是影响群体库容充实的重要因素[17]。此前研究已表明, 甬优籼粳杂交稻每穗粒数多、群体库容大, 因此, 花后较强的物质生产能力是其发挥高产潜力的重要基础[6, 14]。籽粒灌浆所需的营养物质80%以上来自于抽穗后叶片的光合作用, 提高花后叶片光合生产能力以及减缓花后叶片光合功能的早衰可有效提高水稻花后物质生产能力[18]
罗一鸣等[19]研究表明, 施钾处理下桂香占和农香18叶绿素相对含量、光合势和净光合速率显著高于不施钾处理。张玉屏等[20]研究表明, 与对照相比, 施钾处理显著提高了中浙优1号和甬优9号成熟期上部3张功能叶的叶绿素含量。饶立华等[21]指出, 低钾处理使杂交稻净光合速率和气孔导度明显下降, 施钾处理可增加杂交稻的光合面积、避免早衰。本试验条件下, 与对照(0 kg hm-2)相比, 施钾处理显著提高了抽穗— 成熟期阶段群体干物质积累和光合势、剑叶叶绿素含量和光合速率。此外, 根系伤流强度是表征根系活力的重要指标[22], 本试验条件下, 施钾处理下花后各时期根系伤流强度较对照有明显提高。因此, 施钾处理下甬优籼粳杂交稻花后剑叶和根系衰老缓慢, 提高了群体花后光合物质生产能力。
3.2 钾肥用量对甬优籼粳杂交稻氮钾积累和利用的影响关于钾素对植株氮素吸收利用效率的影响已有相关报道[3, 23, 24]。胡泓等[23]研究表明, 与不施钾处理相比, 施钾处理增加了杂交稻的氮素、磷素和钾素的吸收总量。王强盛等[3]研究表明, 施钾处理提高水稻各生育阶段植株吸氮量, 其中以拔节期至抽穗期氮素积累量最大; 施钾处理增加了水稻抽穗到成熟期的植株吸氮量, 促进花后氮素转运量和转运率。本试验条件下, 随钾肥用量的增加, 各处理拔节、抽穗和成熟期氮素吸收量随之增加; 播种— 拔节、拔节— 抽穗期、抽穗— 成熟期氮素积累量亦随钾肥用量的增加而增加。此外, 本试验还表明钾肥处理的杂交稻不同生育阶段植株含氮率差异很小。本试验条件下, 钾肥各处理间的关键生育期植株含氮率差异很小(数据未列出)。因此, 施钾提高关键生育期植株氮素吸收量, 可能主要是由于施钾提高了关键生育期群体干物重, 而非植株含氮率。
王强盛等[3]研究表明, 施钾处理显著提高了植株氮素利用率和氮素收获指数, 但植株氮生产效率呈下降趋势。胡泓等[24]研究表明, 同不施钾处理相比, 施钾处理并未显著提高植株氮素籽粒生产率。本研究选取氮肥偏生产力和氮素籽粒生产率作为衡量植株氮素利用效率的指标, 结果表明, 两年中植株氮肥偏生产力均随钾肥用量增加呈先增加后下降趋势, 以钾肥用量225 kg hm-2下的氮肥偏生产力最高。同不施钾处理比较, 施钾处理(75、150、225 kg hm-2)显著提高了植株氮素籽粒生产率, 而钾肥用量300 kg hm-2下的氮素籽粒生产效率有所降低。本研究结果表明, 适宜钾肥用量(如本研究中的225 kg hm-2)利于提高植株氮素利用效率, 钾肥用量过高(如本研究中的300 kg hm-2)则不利于植株氮素利用效率的提高。
有关钾肥施用对植株钾素吸收利用效率的影响亦有较多报道[24, 25, 26]。胡泓等[24]研究表明, 同不施钾处理相比, 施钾处理增加了植株钾素吸收量, 但明显降低了钾素利用效率。鲁艳红等[25]结果表明, 施钾提高水稻对钾素的吸收和积累, 尤其是稻草对钾素的吸收和积累; 钾素利用率随施钾量提高而降低。王强盛等[26]结果表明, 施用钾肥能明显提高植株群体吸钾量, 但过量施钾(312 kg hm-2)却降低了群体吸钾量; 植株的钾素生理效率、农艺效率随钾肥用量的增多呈先增后降趋势。本试验条件下, 随钾肥用量的增加, 各处理拔节、抽穗和成熟期的钾素吸收量随之增加。拔节— 抽穗期钾素积累量随钾肥用量的增加呈先增后降趋势, 以钾肥用量225 kg hm-2处理下最高, 抽穗— 成熟期钾素积累量亦呈上述趋势。就钾素利用效率而言, 施钾处理下, 钾素偏生产力、钾素籽粒生产效率和钾素农艺效率随钾素用量的增加而降低, 这与王强盛等[26]提出的钾素农艺效率随钾肥用量的增加呈先增后降的趋势不一致。这可能与试验处理有关, 王强盛等[26]设置了0、72、192、312 kg hm-2钾肥用量处理。与对照(0 kg hm-2)相比, 本研究在钾肥用量较低水平(75 kg hm-2)下的增产幅度为1100 kg hm-2, 高于王强盛等[26]在钾肥用量较低水平(72 kg hm-2)下的增产幅度(450~600 kg hm-2); 本研究中产量最高处理(225 kg hm-2)的增产幅度与王强盛等[26] (钾肥用量192 kg hm-2)等基本接近(1800 kg hm-2), 但对应的钾肥用量较王强盛等[26]高出33 kg hm-2; 此后再增加钾肥用量, 增产幅度变小。从而使得本研究中钾肥农艺效率随钾肥用量增加而降低, 而王强盛等[26]随钾肥用量增加, 钾肥农艺效率先增后降。
3.3 钾肥用量对甬优籼粳杂交稻产量及其构成因素的影响近些年, 钾肥在水稻生产上的增产效果日益突出, 尤其在我国南方稻区[27, 28]。薛欣欣等[29]设置7个钾肥施用水平(试验地土壤速效钾含量36 mg kg-1), 结果表明, 各施钾处理均具有显著的增产效果, 增产率达15%~24%, 且以施钾180 kg hm-2最好。王强盛等[3]研究表明, 在基础土壤缺钾条件下(速效钾含量78.9 mg kg-1), 施钾对水稻有明显的增产左右, 增产率4.56%~14.77%, 且产量以钾素用量180 kg hm-2下最高。鲁艳红等[25]通过5年定位试验(速效钾含量62.0 mg kg-1)研究钾肥用量对双季稻产量和施钾效应的影响, 结果表明, 不同钾肥用量处理对早稻增产率最高达8.01%、晚稻则为9.07%, 且提出了湖南地区双季稻的适宜钾肥用量, 即早稻施钾量在120~156 kg hm-2、晚稻则在150~195 kg hm-2。按照孙健等[30]提出宁波水稻速效钾临界值80 mg kg-1为依据, 本试验土壤速效钾含量78.45 mg kg-1, 属缺钾土壤, 与对照(0 kg hm-2)相比, 施钾处理使甬优12、甬优538的2年分别增产9.2%~14.0%、9.8%~15.0%, 两年中两品种均以钾肥用量225 kg hm-2下的产量最高, 为该地区不同速效钾含量土壤的钾素适宜用量提供参考。
此外, 本研究中, 与施钾处理225 kg hm-2相比, 施钾处理300 kg hm-2下的群体颖花量较高, 但钾肥用量300 kg hm-2处理下甬优12和甬优538的产量较225 kg hm-2处理下持平或略有降低。这可能是由于施钾处理300 kg hm-2下甬优12和甬优538结实率和千粒重下降幅度较大, 较大的群体颖花量不足以弥补结实率和千粒重的较大降幅对产量增长的负面效应。这也说明施钾处理225 kg hm-2下甬优12和甬优538的产量构成因素最为协调。
目前就施钾对产量构成因素影响的研究结果尚存在较多分歧。王伟妮等[31]研究表明施钾对早、中、晚稻具有显著的增产效果, 且早稻主要是由于单位面积有效穗数的增加; 中稻主要是由于单位面积有效穗数和每穗粒数的增加; 晚稻则主要是由于每穗粒数的增加和结实率的提高。胡泓等[23]研究施钾提高杂交稻的有效穗数、穗实粒数和千粒重, 从而提高产量。张国发等[32]以空育31为试材, 研究表明, 施钾处理显著提高群体穗数和穗粒数, 对结实率和千粒重提高幅度不明显。王强盛等[33]研究表明, 与不施钾相比, 施钾同时增加了水稻穗数、穗粒数、结实率和千粒重, 但在高钾处理下有所降低。本试验条件下, 随钾肥用量的增加, 各处理群体有效穗数和每穗粒数呈上升趋势, 结实率和千粒重呈下降趋势; 钾肥对水稻的增产作用主要是由于增加了群体有效穗数和每穗粒数, 而非结实率和千粒重。

4 结论与对照(0 kg hm-2)相比, 施钾处理使甬优12增产9.2%~14.0%, 甬优538增产9.8%~15.0%, 且两年中两品种均以钾肥用量225 kg hm-2处理产量最高; 施钾主要通过增加群体穗数和穗粒数提高产量。施钾处理显著增加了主要生育期的干物重和叶面积指数, 延缓了花后叶片和根系衰老, 且提高了植株主要生育期的氮素和钾素吸收量。
The authors have declared that no competing interests exist.


参考文献View Option
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

[1]Jiang Y, Meng J J, Zhang L L, Cai M L, Li C F, Zhang M, Wang J P, Wang B F, Mohamed I, Cao C G. Non-target effects of Bt transgenes on grain yield and related traits of an elite restorer rice line in response to nitrogen and potassium applications. Field Crops Res, 2014, 169: 39-48[本文引用:1]
[2]He P, Yang L P, Xu X P, Zhao S C, Chen F, Li S T, Tu S H, Jin J Y, Johnston A M. Temporal and spatial variation of soil available potassium in China (1990 -2012). Field Crops Res, 2015, 173: 49-56[本文引用:1]
[3]王强盛, 甄若宏, 丁艳锋, 朱艳, 王绍华, 曹卫星. 钾对不同类型水稻氮素吸收利用的影响. 作物学报, 2009, 35: 704-710
Wang Q S, Zhen R H, Ding Y F, Zhu Y, Wang S H, Cao W X. Effect of potassium application rates on nitrogen absorption and utilization of different types of rice. Acta Agron Sin, 2009, 35: 704-710 (in Chinese with English abstract)[本文引用:5]
[4]刘秋霞, 戴志刚, 鲁剑巍, 任涛, 周先竹, 王忠良, 李小坤, 丛日环. 湖北省不同稻作区区域秸秆还田替代钾肥效果. 中国农业科学, 2015, 48: 1548-1557
Liu Q X, Dai Z G, Lu J W, Ren T, Zhou X Z, Wang Z L, Li X K, Cong R H. Effect of the substitution of straw incorporation for K fertilization in different rice producing regions of Hubei Province. Sci Agric Sin, 2015, 48: 1548-1557 (in Chinese with English abstract)[本文引用:1]
[5]刘国栋, 刘更另. 论缓解我国钾源短缺问题的新对策. 中国农业科学, 1995, 28: 25-32
Liu G D, Liu G L. A new strategy alleviating shortage of potassium resource in China. Sci Agric Sin, 1995, 28: 25-32 (in Chinese with English abstract)[本文引用:1]
[6]韦还和, 姜元华, 赵可, 许俊伟, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郑飞. 甬优系列杂交稻品种的超高产群体特征. 作物学报, 2013, 39: 2201-2210
Wei H H, Jiang Y H, Zhao K, Xu J W, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Zheng F. Characteristics of super-high yield population in Yongyou series of hybrid rice. Acta Agron Sin, 2013, 39: 2201-2210 (in Chinese with English abstract)[本文引用:2]
[7]韦还和, 李超, 张洪程, 孙玉海, 马荣荣, 王晓燕, 杨筠文, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 水稻甬优12不同产量群体的株型特征. 作物学报, 2014, 40: 2160-2168
Wei H H, Li C, Zhang H C, Sun Y H, Ma R R, Wang X Y, Yang J W, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Plant-type characteristics in populations with different yield of Yongyou 12. Acta Agron Sin, 2014, 40: 2160-2168 (in Chinese with English abstract)[本文引用:1]
[8]王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 王珏, 许跃进, 孙玉海. 水稻甬优12产量13. 5 t hm-2以上超高产群体的生育特征. 作物学报, 2014, 40: 2149-2159
Wang X Y, Wei H H, Zhang H C, Sun J, Zhang J M, Li C, Lu H B, Yang J W, Ma R R, Xu J F, Wang J, Xu Y J, Sun Y H. Population characteristics for super-high yielding hybrid rice Yongyou 12 ( >13. 5 t ha-1). Acta Agron Sin, 2014, 40: 2149-2159 (in Chinese with English abstract)[本文引用:1]
[9]胡雅杰, 朱大伟, 钱海军, 曹伟伟, 邢志鹏, 张洪程, 周有炎, 陈厚存, 汪洪洋, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 籼粳杂交稻甬优2640钵苗机插超高产群体若干特征探讨. 作物学报, 2014, 40: 2016-2027
Hu Y J, Zhu D W, Qian H J, Cao W W, Xing Z P, Zhang H C, Zhou Y Y, Chen H C, Wang H Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Some characteristics of mechanically transplanted pot seedlings in super high yielding population of indica- japonica hybrid rice Yongyou2640. Acta Agron Sin, 2014, 40: 2016-2027 (in Chinese with English abstract)[本文引用:1]
[10]许德海, 王晓燕, 马荣荣, 禹盛苗, 朱练峰, 欧阳由男, 金千瑜. 重穗型籼粳杂交稻甬优6号超高产生理特性. 中国农业科学, 2010, 43: 4796-4804
Xu D H, Wang X Y, Ma R R, Yu S M, Zhu L F, Ou-Yang Y N, Jin Q Y. Analysis on physiological properties of the heavy panicle type of indica-japonica inter-subspecific hybrid rice Yongyou 6. Sci Agric Sin, 2010, 43: 4796-4804 (in Chinese with English abstract)[本文引用:1]
[11]姜元华, 张洪程, 赵可, 许俊伟, 韦还和, 龙厚元, 王文婷, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 长江下游地区不同类型水稻品种产量及其构成因素特征的研究. 中国水稻科学, 2014, 28: 621-631
Jiang Y H, Zhang H C, Zhao K, Xu J W, Wei H H, Long H Y, Wang W T, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Difference in yield and its components characteristics of different type rice cultivars in the lower reaches of the Yangtze River. Chin J Rice Sci, 2014, 28: 621-631 (in Chinese with English abstract)[本文引用:3]
[12]姜元华, 许俊伟, 赵可, 韦还和, 孙建军, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 甬优系列籼粳杂交稻根系形态与生理特征. 作物学报, 2015, 41: 89-99
Jiang Y H, Xu J W, Zhao K, Wei H H, Sun J J, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Root system morphological and physiological characteristics of indica-japonica hybrid rice of Yongyou series. Acta Agron Sin, 2015, 41: 89-99 (in Chinese with English abstract)[本文引用:2]
[13]姜元华, 许轲, 赵可, 孙建军, 韦还和, 许俊伟, 魏海燕, 郭保卫, 霍中洋, 戴其根, 张洪程. 甬优系列籼粳杂交稻的冠层结构与光合特性. 作物学报, 2015, 41: 286-296
Jiang Y H, Xu K, Zhao K, Sun J J, Wei H H, Xu J W, Wei H Y, Guo B W, Huo Z Y, Dai Q G, Zhang H C. Canopy structure and photosynthetic characteristics of Yongyou series of indica- japonica hybrid rice under high-yielding cultivation condition. Acta Agron Sin, 2015, 41: 286-296 (in Chinese with English abstract)[本文引用:2]
[14]孟天瑶, 许俊伟, 邵子彬, 葛梦婕, 张洪程, 魏海燕, 戴其根, 霍中洋, 许轲, 郭保卫, 荆培培. 甬优系列籼粳杂交稻氮肥群体最高生产力的优势及形成特征. 作物学报, 2015, 41: 1711-1725
Meng T Y, Xu J W, Shao Z B, Ge M J, Zhang H C, Wei H Y, Dai Q G, Huo Z Y, Xu K, Guo B W, Jing P P. Advantages and their formation characteristics of the highest population productivity of nitrogen fertilization in japonica/indica hybrid rice of Yongyou series. Acta Agron Sin, 2015, 41: 1711-1725 (in Chinese with English abstract)[本文引用:3]
[15]姚利鹏, 黄标, 孙维侠. 鄱阳湖流域典型区限制水稻产量的土壤因素分析. 土壤, 2015, 47: 675-681
Yao L P, Huang B, Sun W X. Limiting soil factors on rice yield in typical area of Poyang lake region, China. Soil, 2015, 47: 675-681 (in Chinese with English abstract)[本文引用:1]
[16]廖育林, 郑圣先, 黄建余, 聂军, 谢坚, 向艳文. 施钾对缺钾稻田土壤钾肥效应及土壤钾素状况的影响. 中国农学通报, 2008, 24: 255-260
Liao Y L, Sheng S X, Huang J Y, Nie J, Xie J, Xiang Y W. Effect of application of K fertilizer on potassium efficiency and soil K status in deficit K of paddy soil. Chin Agric Sci Bull, 2008, 24: 255-260 (in Chinese with English abstract)[本文引用:1]
[17]吴桂成, 张洪程, 戴齐根, 霍中洋, 许轲, 高辉, 魏海燕, 沙安勤, 徐宗进, 钱宗华, 孙菊英. 南方粳型杂交稻物质生产积累及超高产特征的研究. 作物学报, 2010, 36: 1921-1930
Wu G C, Zhang H C, Dai Q G, Huo Z Y, Xu k, Gao H, Wei H Y, Sha A Q, Xu Z J, Qian Z H, Sun J Y. Characteristics of dry matter production and accumulation and super-high yield of japonica super rice in South China. Acta Agron Sin, 2010, 36: 1921-1930 (in Chinese with English abstract)[本文引用:1]
[18]李敏, 张洪程, 杨雄, 葛梦婕, 魏海燕, 戴其根, 霍中洋, 许轲. 高产氮高效粳稻品种的叶片光合及衰老特性研究. 中国水稻科学, 2013, 27: 168-176
Li M, Zhang H C, Yang X, Ge M J, Wei H Y, Dai Q G, Huo Z Y, Xu K. Leaf photosynthesis and senescence characteristics of japonica rice cultivars with high yield and high N-efficiency. Chin J Rice Sci, 2013, 27: 168-176 (in Chinese with English abstract)[本文引用:1]
[19]罗一鸣, 唐湘如, 潘圣刚, 聂俊, 朱鹏, 肖立中. 钾肥对香稻产量及光合生产特征的影响. 江苏农业学报, 2014, 30: 237-242
Luo Y M, Tang X R, Pan S G, Nie J, Zhu P, Xiao L Z. Changes of yield and photosynthetic production of aromatic rice in response to potassium application. Jiangsu J Agric Sci, 2014, 30: 237-242(in Chinese with English abstract)[本文引用:1]
[20]张玉屏, 曹卫星, 朱德峰, 周爱珠, 林贤青, 陈惠哲, 周正春. 红壤稻田钾肥施用量对杂交稻生长及产量的影响. 中国水稻科学, 2009, 23: 633-638
Zhang Y P, Cao W X, Zhu D F, Zhou A Z, Lin X Q, Chen H Z, Zhou Z C. Effects of potassium fertilizer rate on growth and yield formation of super high yielding rice in red paddy soil. Chin J Rice Sci, 2009, 23: 633-638 (in Chinese with English abstract)[本文引用:1]
[21]饶立华, 薛建明, 蒋德安, 洪键, 陈玉银. 钾营养对杂交稻光合作用动态及产量形成的效应. 中国水稻科学, 1990, 4: 106-112
Rao L H, Xue J M, Jiang D A, Hong J, Chen Y Y. Effect of potassium on dynamic aspects of photosynthesis and yield formation of hybrid rice plants. Chin J Rice Sci, 1990, 4: 106-112 (in Chinese with English abstract)[本文引用:1]
[22]Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015, 175: 47-55[本文引用:1]
[23]胡泓, 王光火. 施钾条件下杂交水稻氮磷养分吸收利用特点. 土壤通报, 2003, 34(3): 202-204
Hu H, Wang G H. Natune of nitrogen and phosphorus uptake by a hybrid rice under the potassium fertilizer treatment. Chin J Soil Sci, 2003, 34(3): 202-204 (in Chinese with English abstract)[本文引用:3]
[24]胡泓, 王光火. 施钾对杂交水稻养分积累以及生理效率的影响. 植物营养与肥料学报, 2003, 9: 184-189
Hu H, Wang G H. Influence of potassium fertilizer on nutrient accumulation and physiological efficiency of hybrid rice. Plant Nutr Fert Sci, 2003, 9: 184-189 (in Chinese with English abstract)[本文引用:4]
[25]鲁艳红, 廖育林, 聂军, 谢坚, 杨曾平, 周兴. 五年定位试验钾肥用量对双季稻产量和施钾效应的影响. 植物营养与肥料学报, 2014, 20: 598-605
Lu Y H, Liao Y L, Nie J, Xie J, Yang Z P, Zhou X. Effect of potassium rates on rice yields and potassium application efficiency in double-rice cropping system under a 5-year located experiment. Plant Nutr Fert Sci, 2014, 20: 598-605 (in Chinese with English abstract)[本文引用:3]
[26]王强盛, 甄若宏, 丁艳锋, 吉志军, 曹卫星, 黄丕生. 钾肥用量对优质粳稻钾素积累利用及稻米品种的影响. 中国农业科学, 2004, 37: 1444-1450
Wang Q S, Zhen R H, Ding Y F, Ji Z J, Cao W X, Huang P S. Effects of potassium fertilizer application rates on plant potassium accumulation and grain quality of japonica rice. Sci Agric Sin, 2004, 37: 1444-1450 (in Chinese with English abstract)[本文引用:8]
[27]唐旭, 计小江, 李超英, 吴春艳, 杨生茂, 刘玉学, 吕豪豪, 陈义. 水稻-大麦长期轮作体系对钾肥效率及土壤钾素平衡. 中国农业科学, 2014, 47: 90-99
Tang X, Ji X J, Li C Y, Wu C Y, Yang S M, Liu Y X, Lü H H, Chen Y. Study on potassium use efficiency and apparent soil potassium balance under long-term rice-barley rotation. Sci Agric Sin, 2014, 47: 90-99 (in Chinese with English abstract)[本文引用:1]
[28]杜加银, 茹美, 倪吾钟. 减氮控磷稳钾施肥对水稻产量及养分积累的影响. 植物营养与肥料学报, 2013, 19: 523-533
Du J Y, Ru M, Ni W Z. Effects of fertilization with reducing nitrogen, controlling phosphorus and stabilizing potassium on rice yield and nutrient accumulation. Plant Nutr Fert Sci, 2013, 19: 523-533 (in Chinese with English abstract)[本文引用:1]
[29]薛欣欣, 李岚涛, 鲁剑巍, 李小坤, 任涛, 丛日环, 周鹏. 利用功能叶钾含量作为水稻钾素营养诊断指标的可行性研究. 植物营养与肥料学报, 2015, 21: 492-499
Xue X X, Li L T, Lu J W, Li X K, Ren T, Cong R H, Zhou P. Feasibility study of using potassium content of functional leaves of rice as potassium diagnostic index. Plant Nutr Fert Sci, 2015, 21: 492-499 (in Chinese with English abstract)[本文引用:1]
[30]孙健, 张建民, 王斌, 杨筠文. 28年来宁波市郊水稻土钾素变化及钾肥有效施用. 浙江农业科学, 2011, (1): 136-137
Sun J, Zhang J M, Wang B, Yang J W. Change in soil potassium content and effective application in suburb of Ningbo in the past 28 years. Zhejiang Agric Sci, 2011, (1): 136-137 (in Chinese)[本文引用:1]
[31]王伟妮, 鲁剑巍, 鲁明星, 李小坤, 李云春, 李慧. 湖北省早、中、晚稻施钾增产效应及钾肥利用率研究. 植物营养与肥料学报, 2011, 17: 1058-1065
Wang W N, Lu J W, Lu M X, Li X K, Li Y C, Li H. Effects of potassium fertilizer and potassium use efficiency on early-, mid- and late-season rice in Hubei Province, China. Plant Nutr Fert Sci, 2011, 17: 1058-1065 (in Chinese with English abstract)[本文引用:1]
[32]张国发, 崔玉波, 尤娟, 张虹, 徐长君. 钾肥用量对寒地水稻产量和品质的影响. 土壤通报, 2010, 41: 413-416
Zhang G F, Cui Y B, You J, Zhang H, Xu C J. Effects of K fertilizer application amount on yield and qualities of rice in cold region. Chin J Soil Sci, 2010, 41: 413-416 (in Chinese with English abstract)[本文引用:1]
[33]王强盛, 丁艳锋, 朱艳, 王绍华, 曹卫星. 不同基因型水稻钾素吸收利用对施钾量的生理响应. 水土保持学报, 2009, 23(4): 190-194, 199
Wang Q S, Ding Y F, Zhu Y, Wang S H, Cao W X. Physiological response of potassium absorption and utilization of different genotypes rice to potassium application rates. J Soil & Water Conserv, 2009, 23(4): 190-194 (in Chinese with English abstract)[本文引用:1]
相关话题/生育 土壤 物质 作物 钾肥