摘要以淮北地区有代表性的34个中熟中粳品种为试材, 设置7个氮肥水平(0、150.0、187.5、225.0、262.5、300.0、337.5 kg hm-2), 得出各品种在这7个氮肥水平下出现的最高产量, 将该最高产量定义为氮肥群体最高生产力。在此基础上, 按氮肥群体最高生产力高低将品种划分为4个等级, 即顶层水平(≥10.50 t hm-2)、高层水平(9.75~10.50 t hm-2)、中层水平(9.00~9.75 t hm-2)和底层水平(≤9.00 t hm-2), 比较研究不同氮肥群体最高生产力等级品种的产量及其构成因素、群体光合物质生产和氮素吸收利用差异。结果表明, 所有品种的氮肥群体最高生产力均出现在225.0、262.5、300.0 kg hm-2三个氮肥水平, 不同氮肥群体生产力差异极显著; 随着生产力水平的提高, 单位面积穗数先增加后降低, 每穗粒数与群体颖花量显著增加, 结实率显著下降; 茎蘖成穗率、叶面积指数、光合势、有效叶面积率、高效叶面积率、粒叶比、总干物质积累量均以顶层水平最高, 底层水平最低; 移栽至拔节阶段的氮素积累比例表现为底层>中层>高层>顶层水平, 拔节至抽穗、抽穗至成熟阶段表现为顶层>高层>中层>底层水平; 移栽至拔节、拔节至抽穗及抽穗至成熟阶段的氮素吸收速率以顶层最高, 顶层水平较底层水平分别高36.59%、34.36%和51.85%; 随着氮肥群体生产力等级的提高, 氮素吸收利用率和百千克籽粒吸氮量均提高; 中熟中粳稻品种有氮低效型、氮中效型、氮较高效型和氮高效型, 武运粳27、中稻1号、宁粳4号、连粳7号为高产氮高效品种。
关键词:中熟中粳; 生产力; 产量; 氮肥吸收利用 Yield, Nitrogen Absorption and Utilization of Rice Varieties with the Highest Population Productivity of Nitrogen Fertilization in Huaibei Area LIANG Jian, LI Jun, LI Xiao-Feng, SHU Peng, ZHANG Hong-Cheng, HUO Zhong-Yang*, DAI Qi-Gen, XU Ke, WEI Hai-Yan, GUO Bao-Wei Innovation Center of Rice Cultivation Technology in Yangtze River Valley, Ministry of Agriculture / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China Fund:This study was supported by the National Science and Technology Project of Food Production (2011BAD16B03, 2013BAD07B09), the Special Fund for Agro-scientific Research in the Public Interest (201203102), the Key Projects of Jiangsu Province (BE2015340), and Cultivation of Science and Technology Innovation Fund of Yangzhou University (2015CXJ042) AbstractThe field experiment was carried out using 34 medium-maturing medium japonica rice varieties grown in Huaibei area with seven nitrogen application levels (0, 150.0, 187.5, 225.0, 262.5, 300.0, and 337.5 kg ha-1) to investigate their yield and nitrogen absorption and utilization. We defined the highest rice yields under different nitrogen levels as the highest population productivity of N fertilization. According to the highest population productivity of N fertilization, rice varieties were classified into four types including top type (TT), high type (HT), middle type (MT), and low type (LT). Yield components, population photosynthate production and N absorption and utilization of the four types rice varieties were compared. The main results indicated that optimum N levels of tested varieties corresponding to their highest population productivity of N fertilization converged in the range of 225.0-300.0 kg ha-1, while the highest grain yields were significantly different among tested varieties. With increasing productivity level, panicles per unit area increased firstly and decreased then, spikelets per panicle and total spikelet number increased and seed-setting rate declined percentage of productive tillers, leaf area index, photosynthetic potential, ratio of leaf area of productive tillers, ratio of leaf area from flag leaf to 3rd leaf, grain-leaf ratio and total dry matter accumulation increased. The ratio of nitrogen accumulation shown trend of LT > MT > HT > TT from transplanting to jointing stage and TT > HT > MT > LT from jointing to heading stage and from heading to maturity stage. N uptake rate was the fastest in the top type, and the slowest in low type and 36.59%, 34.36%, 51.85% higher in top type than in low type at translating to jointing, jointing to heading and heading to maturity growing stages. N use efficiency and N requirement for 100 kg kernel increased with increasing productivity level. According to the N use efficiency, 34 varieties were divided into low ANRE (apparent nitrogen recovery efficiency), middle ANRE, higher ANRE and high ANRE. Wuyunjing 27, Zhongdao 1, Ningjing 4, and Lianjing 7 belonged to high yield and high ANRE varieties.
Keyword:Medium-maturing medium Japonica; Productivity; Yield; Nitrogen absorption and utilization Show Figures Show Figures
2 结果与分析2.1 水稻氮肥最高生产力及产量构成因素2.1.1 不同水稻品种氮肥群体最高生产力及其差异 对34个中熟中粳水稻两年的氮肥群体最高生产力平均值及其对氮肥的响应分析表明, 不同水稻品种间差异极显著(表1)。供试品种中有19个产量达到9.75 t hm-2以上, 其中有7个品种达到10.5 t hm-2。15个品种产量低于9.75 t hm-2, 其中4个品种产量低于9 t hm-2。相同生产力等级品种对应的施氮量也不同。如达到高层生产力水平的品种有12个, 其中连粳9号、淮稻14及徐稻3号等3个品种在施氮量225 kg hm-2下产量最高, 苏秀10号等7个品种在施氮量262.5 kg hm-2下产量最高, 郑稻19、盐稻12等2个品种在施氮量300.0 kg hm-2下产量最高。其他3个生产力等级也有相似规律。这说明, 不同品种氮肥群体最高生产力的适宜施氮量差异显著, 过高或过低均不利于高产的形成。此外, 由表1还可以看出, 施氮量低于225.0 kg hm-2均不能发挥中熟中粳稻品种的产量潜力。 2.1.2 水稻氮肥最高生产力等级与产量构成因素的关系 从表2可以看出, 4个生产力等级间的产量差异达极显著水平, 两年趋势一致。两年最高产较最低产分别高27.70%和23.72%。随着生产力等级的递增, 穗数表现出先增加后下降的趋势, 高层和中层水平较顶层和底层差异显著; 穗粒数和颖花数表现出增加的趋势, 变异系数较大, 两年分别达9.32%、9.24%和9.14%、10.96%; 千粒重差异不显著, 结实率下降, 但中层和高层差异不显著, 两年规律一致。 2.2 氮肥群体最高生产力水稻的群体特征2.2.1 群体茎蘖动态特征 高层、中层、底层水平在有效分蘖临界叶龄期的茎蘖数差异不显著, 顶层水平极显著低于其他3个生产力水平(表3)。拔节期各生产力等级茎蘖数达最大, 底层水平显著高于其他3个水平, 顶层水平最少, 随后平缓下降并在成熟期趋于稳定。以2015年数据分析, 顶层水平4个关键时期茎蘖数分别低于平均水平2.49%、5.76%、0.94%和0.77%。中层和高层水平在抽穗期和成熟期茎蘖数差异不显著但与底层水平差异极显著。底层水平在拔节期分蘖高而后下降迅速, 导致最终茎蘖成穗率低。群体茎蘖成穗率随着生产力等级的递增而升高, 两年趋势一致。以2015年为例, 中层水平比底层水平高1.24%, 高层水平比中层水平高0.69%, 顶层水平比高层水平高2.57%。由此可以看出, 生产力等级越高, 拔节后的分蘖也越稳定, 茎蘖成穗率也越高。 表1 Table 1 表1(Table 1)
表1 供试水稻品种最高生产力等级及其对应施氮量 Table 1 Highest productivity level and its N application rates of rice varieties
表1 供试水稻品种最高生产力等级及其对应施氮量 Table 1 Highest productivity level and its N application rates of rice varieties
表2 Table 2 表2(Table 2)
表2 不同氮肥群体最高生产力等级水稻品种产量及其构成因素 Table 2 Highest population productivity of N fertilization and yield components at different productivity levels
生产力等级 Productivity level
穗数 Panicle (× 104 hm-2)
每穗粒数 Spikelets per panicle
总颖花数 Total spikelets (× 104 hm-2)
千粒重 1000-kernel weight (g)
结实率 Seed-setting rate (%)
实际产量Actual yield (kg hm-2)
2014
顶层水平 TL ( ≥ 10.50 t hm-2)
298.57 Bb
160.40 Aa
47872.71 Aa
25.9 Aa
87.93 Cc
10640.64 Aa
高层水平 HL (9.75-10.50 t hm-2)
310.45 Aa
143.53 Bb
44558.89 Bb
25.8 Aa
89.42 Bb
10072.76 Bb
中层水平 ML (9.00-9.75 t hm-2)
312.54 Aa
138.68 Cc
43343.05 Cc
26.3 Aa
89.72 ABb
9352.73 Cc
底层水平 LL ( ≤ 9.00 t hm-2)
297.34 Bb
128.45 Dd
38193.32 Dd
26.0 Aa
90.59 Aa
8332.63 Dd
平均数 Mean
304.73
142.75
43491.99
26.0
89.42
9599.69
变异系数 CV (%)
2.59
9.32
9.24
0.83
1.24
10.37
2015
顶层水平 TL ( ≥ 10.50 t hm-2)
301.27 Bb
162.31 Aa
48899.13 Aa
25.9 Aa
88.04 Cc
10702.67 Aa
高层水平 HL (9.75-10.50 t hm-2)
313.31 Aa
145.39 Bb
45552.14 Bb
25.9 Aa
89.35 Bb
10180.54 Bb
中层水平 ML (9.00-9.75 t hm-2)
313.71 Aa
140.23 Cc
43991.55 Cc
26.2 Aa
89.81 ABb
9510.48 Cc
底层水平 LL ( ≤ 9.00 t hm-2)
286.19 Cc
130.76 Dd
37422.20 Dd
26.1 Aa
90.64 Aa
8650.52 Dd
平均数 Mean
303.62
144.67
43966.26
26.0
89.46
9761.05
变异系数 CV (%)
4.27
9.14
10.96
0.58
1.21
9.08
TL: top level; HL: high level; ML: middle level; LL: low level. Values within the same column and year followed by a different letter are significantly different at the 1% (capital) and 5% (small) probability levels, respectively. TL: 顶层水平; HL: 高层水平; ML: 中层水平; LL: 底层水平。同栏同年内比较, 标以不同大小写字母的数值分别在1%和5%水平差异显著。
表2 不同氮肥群体最高生产力等级水稻品种产量及其构成因素 Table 2 Highest population productivity of N fertilization and yield components at different productivity levels
表3 Table 3 表3(Table 3)
表3 不同氮肥群体最高生产力等级水稻品种茎蘖数及成穗率 Table 3 Number of stems and tillers and percentage of productive tillers in different highest population productivity of N fertilization levels
生产力等级 Productivity level
茎蘖数 Number of stems and tillers (× 104 hm-2 )
成穗率 Percentage of productive tillers (%)
有效分蘖临界期 Critical stage of productive tillering
拔节期 Jointing stage
抽穗期 Heading stage
成熟期 Mature stage
2014
顶层水平 TL ( ≥ 10.50 t hm-2)
298.64 Bb
383.63 Dd
321.67 Bc
298.57 Bb
77.83 Aa
高层水平 HL (9.75-10.50 t hm-2)
310.32 Aa
413.46 Cc
325.55 Bb
310.45 Aa
75.09 Ab
中层水平 ML (9.00-9.75 t hm-2)
309.39 Aa
416.72 Bb
324.36 Bb
312.54 Aa
75.00 Ab
底层水平 LL ( ≤ 9.00 t hm-2)
310.43 Aa
421.43 Aa
330.23 Aa
297.34 Bb
70.56 Bc
平均数 Mean
307.20
408.81
325.45
304.73
74.62
变异系数 CV (%)
1.86
4.18
1.10
2.59
4.03
2015
顶层水平 TL ( ≥ 10.50 t hm-2)
300.31 Bb
391.24 Dd
331.72 Bb
301.27 Bb
77.00 Aa
高层水平 HL (9.75-10.50 t hm-2)
309.80 Aa
417.32 Cc
333.53 Bb
313.31 Aa
75.08 Ab
中层水平 ML (9.00-9.75 t hm-2)
310.26 Aa
420.72 Bb
333.46 Bb
313.71 Aa
74.57 Ab
底层水平 LL ( ≤ 9.00 t hm-2)
311.58 Aa
431.29 Aa
340.28 Aa
286.19 Cc
66.36 Bc
平均数 Mean
307.99
415.14
334.75
303.62
73.25
变异系数 CV (%)
1.68
4.10
1.13
4.27
6.44
TL: top level; HL: high level; ML: middle level; LL: low level. Values within the same column and year followed by a different letter are significantly different at the 1% (capital) and 5% (small) probability levels, respectively. TL: 顶层水平; HL: 高层水平; ML: 中层水平; LL: 底层水平。同栏同年内比较, 标以不同大小写字母的数值分别在1%和5%水平差异显著。
表3 不同氮肥群体最高生产力等级水稻品种茎蘖数及成穗率 Table 3 Number of stems and tillers and percentage of productive tillers in different highest population productivity of N fertilization levels
图1 不同氮肥群体最高生产力等级水稻品种各生育期的叶面积指数 A: 2014年各生育期叶面积指数; B: 2015年各生育期叶面积指数。JO: 拔节; HE: 抽穗; MA: 成熟。Fig. 1 Leaf area index at each growth stage in different highest population productivity of N fertilization levels A: Leaf area index at each growth stage in 2014; B: Leaf area index at each growth stage in 2015. JO: jointing; HE: heading; MA: maturity.
图2 不同氮肥群体最高生产力等级水稻品种各生育阶段的光合势 A: 2014年各生育阶段光合势; B: 2015年各生育阶段光合势。TR-JO: 移栽至拔节; JO-HE: 拔节至抽穗; HE-MA: 抽穗至成熟。Fig. 2 Photosynthetic potential at each growth stage in different highest population productivity of N fertilization levels A: Photosynthetic potential at each growth stage in 2014; B: Photosynthetic potential at each growth stage in 2015. TR-JO: Transplanting- Jointing; JO-HE: Jointing-Heading; HE-MA: Heading-Maturity.
表4 Table 4 表4(Table 4)
表4 不同氮肥群体最高生产力等级水稻品种叶面积组成及粒叶比 Table 4 Components of leaf area and grain-leaf ratio in different highest population productivity of N fertilization levels
生产力等级Productivity level
倒一叶长Length of first leaf from top (cm)
倒二叶长Length of second leaf from top (cm)
倒三叶长Length of third leaf from top (cm)
有效叶面积率Ratio of leaf area of productive tillers (%)
高效叶面积率Ratio of leaf area from flag leaf to 3rd leaf (%)
粒叶比 Grain-leaf ratio
颖花/叶 Spikelets/ leaf area (cm2)
实粒/叶 Filled grains/ leaf area (cm2)
粒重/叶 Kernel weight (mg)/leaf area (cm2)
2014
顶层水平 TL (≥ 10.50 t hm-2)
37.14 Aa
46.62 Aa
44.42 Aa
94.21 Aa
77.82 Aa
0.593 Aa
0.521 Aa
13.38 Aa
高层水平 HL (9.75-10.50 t hm-2)
35.37 ABb
44.21 Bb
42.61 Bb
92.31 Bb
73.65 Bb
0.561 Bb
0.501 Bb
13.01 Bb
中层水平 ML (9.00-9.75 t hm-2)
35.11 Bb
43.62 Bb
42.29 Bb
92.30 Bb
72.21 Bc
0.534 Cc
0.482 Cc
12.77 Bc
底层水平 LL (≤ 9.00 t hm-2)
33.60 Bc
42.12 Bc
42.15 Bb
87.36 Cc
68.31 Cd
0.468 Dd
0.411 Dd
12.09 Cd
平均数 Mean
35.31
44.14
42.87
91.55
73.00
0.54
0.48
12.81
变异系数 CV (%)
4.11
4.24
2.46
3.20
5.38
9.86
10.00
4.24
2015
顶层水平 TL (≥ 10.50 t hm-2)
37.34 Aa
47.03 Aa
44.53 Aa
94.38 Aa
77.92 Aa
0.602 Aa
0.531 Aa
13.51 Aa
高层水平 HL (9.75-10.50 t hm-2)
35.47 ABb
45.12 Ab
42.81 Ab
92.48 Bb
74.62 Bb
0.567 Bb
0.508 ABb
12.95 Bb
中层水平 ML (9.00-9.75 t hm-2)
35.38 Bb
44.68 Ab
42.58 Ab
92.50 Bb
72.59 Bc
0.537 Cc
0.490 Bb
12.80 Bb
底层水平 LL (≤ 9.00 t hm-2)
33.79 Bc
42.14 Bc
42.05 Ab
88.19 Cc
69.07 Cd
0.470 Dd
0.424 Cc
12.13 Cc
平均数 Mean
35.50
44.74
42.99
91.89
73.55
0.54
0.49
12.85
变异系数 CV (%)
4.09
4.50
2.50
2.85
5.04
10.30
9.42
4.42
TL: top level; HL: high level; ML: middle level; LL: low level. Values within the same column and year followed by a different letter are significantly different at the 1% (capital) and 5% (small) probability levels, respectively. TL: 顶层水平; HL: 高层水平; ML: 中层水平; LL: 底层水平。同栏同年内比较, 标以不同大小写字母的数值分别在1%和5%水平差异显著。
表4 不同氮肥群体最高生产力等级水稻品种叶面积组成及粒叶比 Table 4 Components of leaf area and grain-leaf ratio in different highest population productivity of N fertilization levels
表5 不同氮肥群体最高生产力等级水稻品种阶段干物质积累量及比例 Table 5 Dry matter accumulation and ratio at each growth stage in different highest population productivity of N fertilization levels
生产力等级 Productivity level
总生物量 Total accumulation (t hm-2)
移栽-拔节 Transplanting-Jointing
拔节-抽穗 Jointing-Heading
抽穗-成熟 Heading-Maturity
积累量 Biomass (t hm-2)
比例 Ratio (%)
积累量 Biomass (t hm-2)
比例 Ratio (%)
积累量 Biomass (t hm-2)
比例 Ratio (%)
2014
顶层水平 TL ( ≥ 10.50 t hm-2)
20.20 Aa
4.29 Bb
21.22
8.72 Aa
43.19
7.19 Aa
35.59
高层水平 HL (9.75-10.50 t hm-2)
19.13 Bb
4.46 Aa
23.31
7.94 Bb
41.52
6.73 Bb
35.17
中层水平 ML (9.00-9.75 t hm-2)
17.63 Cc
4.17 Cc
23.65
7.28 Cc
41.31
6.18 Cc
35.04
底层水平 LL ( ≤ 9.00 t hm-2)
15.38 Dd
3.96 Dd
25.73
6.19 Dd
40.17
5.24 Dd
34.10
平均数 Mean
18.09
4.22
23.48
7.53
41.55
6.33
34.98
变异系数 CV (%)
11.55
5.00
7.86
14.31
3.00
13.20
1.80
2015
顶层水平 TL ( ≥ 10.50 t hm-2)
20.32 Aa
4.28 Bb
21.05
8.78 Aa
43.21
7.26 Aa
35.74
高层水平 HL (9.75-10.50 t hm-2)
19.31 Bb
4.48 Aa
23.21
8.03 Bb
41.58
6.80 Bb
35.21
中层水平 ML (9.00-9.75 t hm-2)
17.78 Cc
4.22 Bb
23.76
7.36 Cc
41.40
6.19 Cc
34.84
底层水平 LL ( ≤ 9.00 t hm-2)
15.64 Dd
4.05 Cc
25.92
6.30 Dd
40.25
5.29 Dd
33.83
平均数 Mean
18.26
4.26
23.49
7.62
41.61
6.39
34.91
变异系数 CV (%)
11.15
4.14
8.52
13.85
2.93
13.33
2.31
TL: top level; HL: high level; ML: middle level; LL: low level. Values within the same column and year followed by a different letter are significantly different at the 1% (capital) and 5% (small) probability levels, respectively. TL: 顶层水平; HL: 高层水平; ML: 中层水平; LL: 底层水平。同栏同年内比较, 标以不同大小写字母的数值分别在1%和5%水平差异显著。
表5 不同氮肥群体最高生产力等级水稻品种阶段干物质积累量及比例 Table 5 Dry matter accumulation and ratio at each growth stage in different highest population productivity of N fertilization levels
表6 不同氮肥群体最高生产力等级水稻品种阶段氮素积累量及比例 Table 6 N accumulation and ratio at each growth stage in different highest population productivity of N fertilization levels
生产力等级 Productivity level
积累量 Total accumulation (kg hm-2)
移栽-拔节 Transplanting-Jointing
拔节-抽穗 Jointing-Heading
抽穗-成熟 Heading-Maturity
积累量 Biomass (kg hm-2)
比例 Ratio (%)
积累量 Biomass (kg hm-2)
比例 Ratio (%)
积累量 Biomass (kg hm-2)
比例 Ratio (%)
2014
顶层水平 TL ( ≥ 10.50 t hm-2)
225.03 Aa
87.20 Aa
38.75
96.85 Aa
43.04
40.98 Aa
18.21
高层水平 HL (9.75-10.50 t hm-2)
196.10 Bb
78.21 Bb
39.88
82.81 Bb
42.23
35.08 Bb
17.89
中层水平 ML (9.00-9.75 t hm-2)
175.29 Cc
71.03 Cc
40.52
73.17 Cc
41.74
31.10 Cc
17.74
底层水平 LL ( ≤ 9.00 t hm-2)
124.28 Dd
52.86 Dd
42.53
49.75 Dd
40.03
21.67 Dd
17.44
平均数 Mean
180.18
72.33
40.42
75.65
41.76
32.21
17.82
变异系数 CV (%)
23.58
20.14
3.92
26.19
3.05
25.19
1.79
2015
顶层水平 TL ( ≥ 10.50 t hm-2)
230.43 Aa
87.13 Aa
37.81
100.10 Aa
43.44
43.21 Aa
18.75
高层水平 HL (9.75-10.50 t hm-2)
195.57 Bb
76.55 Bb
39.14
83.08 Bb
42.48
35.95 Bb
18.38
中层水平 ML (9.00-9.75 t hm-2)
181.55 Cc
73.89 Cc
40.70
75.54 Cc
41.61
32.12 Cc
17.69
底层水平 LL ( ≤ 9.00 t hm-2)
128.54 Dd
55.82 Dd
43.43
50.85 Dd
39.56
21.86 Dd
17.01
平均数 Mean
184.02
73.35
40.27
77.39
41.77
33.29
17.96
变异系数 CV (%)
22.99
17.74
6.00
26.44
3.96
26.73
4.28
TL: top level; HL: high level; ML: middle level; LL: low level. Values within the same column and year followed by a different letter are significantly different at the 1% (capital) and 5% (small) probability levels, respectively. TL: 顶层水平; HL: 高层水平; ML: 中层水平; LL: 底层水平。同栏同年内比较, 标以不同大小写字母的数值分别在1%和5%水平差异显著。
表6 不同氮肥群体最高生产力等级水稻品种阶段氮素积累量及比例 Table 6 N accumulation and ratio at each growth stage in different highest population productivity of N fertilization levels
图3 不同氮肥群体最高生产力等级水稻品种氮素阶段吸收速率 A: 2014年各生育阶段氮素吸收速率; B: 2015年各生育阶段氮素吸收速率。TR-JO: 移栽至拔节; JO-HE: 拔节至抽穗; HE-MA: 抽穗至成熟。Fig. 3 N uptake rate in different highest population productivity of N fertilization levels A: N uptake rate at each growth stage in 2014; B: N uptake rate at each growth stage in 2015. TR-JO: Transplanting-Jointing; JO-HE: Jointing-Heading; HE-MA: Heading-Maturity.
表7 Table 7 表7(Table 7)
表7 不同氮肥群体最高生产力等级水稻品种氮素吸收利用效率 Table 7 N uptake and utilization efficiency in different highest population productivity of N fertilization levels
生产力等级 Productivity level
氮素吸收利用率 N use efficiency (%)
百千克籽粒吸氮量 N requirement for 100 kg kernel (kg)
籽粒产量 Grain yield (kg hm-² )
2014
顶层水平 TL ( ≥ 10.50 t hm-2)
40.21 Aa
2.11 Aa
10640.64 Aa
高层水平 HL (9.75-10.50 t hm-2)
37.22 Bb
1.95 Bb
10072.76 Bb
中层水平 ML (9.00-9.75 t hm-2)
34.86 Cc
1.87 Bc
9352.73 Cc
底层水平 LL ( ≤ 9.00 t hm-2)
31.52 Dd
1.49 Cd
8332.63 Dd
平均数 Mean
35.95
1.86
9599.69
变异系数 CV (%)
10.23
14.18
10.37
2015
顶层水平 TL ( ≥ 10.50 t hm-2)
40.38 Aa
2.15 Aa
10702.67 Aa
高层水平 HL (9.75-10.50 t hm-2)
37.77 Bb
1.92 Bb
10180.54 Bb
中层水平 ML (9.00-9.75 t hm-2)
35.02 Cc
1.90 Bb
9510.48 Cc
底层水平 LL ( ≤ 9.00 t hm-2)
31.50 Dd
1.49 Cc
8650.52 Dd
平均数 Mean
36.17
1.87
9761.05
变异系数 CV (%)
10.52
14.73
9.08
TL: top level; HL: high level; ML: middle level; LL: low level. Values within the same column and year followed by a different letter are significantly different at 1% (capital) and 5% (small) probability levels, respectively. TL: 顶层水平; HL: 高层水平; ML: 中层水平; LL: 底层水平。同栏同年内比较, 标以不同大小写字母的数值分别在1%和5%水平差异显著。
表7 不同氮肥群体最高生产力等级水稻品种氮素吸收利用效率 Table 7 N uptake and utilization efficiency in different highest population productivity of N fertilization levels
4 结论淮北地区中熟中粳稻氮肥群体最高生产力的施氮量在225.0~300.0 kg hm-2之间; 顶层水平等级的群体颖花数、成穗率、最大叶面积指数、粒叶比、群体干物质积累总量、氮素总积累量、阶段吸收速率、氮素利用率和百千克籽粒吸氮量均高; 移栽至拔节阶段高层水平等级干物质积累量高, 拔节后顶层水平等级高; 移栽至拔节阶段底层水平等级干物质积累比例和氮素积累比例高, 拔节后顶层水平等级高; 连粳7号、中稻1号、武运粳27和宁粳4号等4个中熟中粳稻品种属于高产氮高效型水稻品种。 The authors have declared that no competing interests exist.
凌启鸿, 张洪程, 丁艳锋, 张益彬. 水稻高产技术的新发展——精确定量栽培. 中国稻米, 2005, (1): 3-7Ling QH, Zhang HC, Ding YF, Zhang YB. The new development of the technique for high yield rice—precise and quantitative cultivation. China Rice, 2005, (1): 3-7 (in Chinese)[本文引用:1]
[2]
王志敏, 王树安. 发展超高产技术, 确保中国未来16亿人口的粮食安全. , 2000, 2(7): 8-11Wang ZM, Wang SA. Develop super high yield techniques of grain crops for feeding 1. 6 billion people in future. , 2000, 2(7): 8-11 (in Chinese)[本文引用:1]
[3]
巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014, 20: 783-795Ju XT, Gu BJ. Status-quo, problem and trend of nitrogen fertilization in China. Plant Nutr Fert Sci, 2014, 20: 783-795 (in Chinese with English abstract)[本文引用:1]
[4]
刘金山, 戴健, 刘洋, 郭雄, 王朝辉. 过量施氮对旱地土壤碳、氮及供氮能力的影响. 植物营养与肥料学报, 2015, 21: 112-120Liu JS, DaiJ, LiuY, GuoX, Wang ZH. Effects of excessive nitrogen fertilization on soil organic carbon and nitrogen and nitrogen supply capacity in dryland . Plant Nutr Fert Sci, 2015, 21: 112-120 (in Chinese with English abstract)[本文引用:1]
[5]
Peng SB, Tang QY, Zou YB. Current status and challenges of rice production in China. Plant Prod Sci, 2009, 12: 3-8[本文引用:1]
[6]
李晓, 陈春燕, 郑家奎, 唐莎. 基于文献计量学的超级稻研究动态. 中国农业科学, 2009, 42: 4197-4208LiX, Chen CY, Zheng JK, TangS. Research dynamics on super rice based on bibliometric. Sci Agric Sin, 2009, 42: 4197-4208 (in Chinese with English abstract)[本文引用:1]
[7]
安宁. 我国水稻高产高效的实现途径研究. , 2015AnN. Approach to Realize High Yield and High Nitrogen Use Efficiency of Irrigated Rice in China. , 2015 (in Chinese with English abstract)[本文引用:1]
[8]
李敏, 张洪程, 李国业, 魏海燕, 殷春渊, 马群, 杨雄. 水稻氮效率基因型差异及其机理研究进展. 核农学报, 2011, 25: 1057-1063LiM, Zhang HC, Li GY, Wei HY, Yin CY, MaQ, YangX. Genotypic difference of nitrogen use efficiency in rice its morphological and physiological mechanisms. J Nucl Agric Sci, 2011, 25: 1057-1063 (in Chinese with English abstract)[本文引用:1]
[9]
苏祖芳, 周培南, 许乃霞, 张亚洁. 密肥条件对水稻氮素吸收和产量形成的影响. 中国水稻科学, 2001, 15: 281-286Su ZF, Zhou PN, Xu NX, Zhang YJ. Effects of nitrogen and planting density on N-absorption and yield of rice. Chin J Rice Sci, 2001, 15: 281-286 (in Chinese with English abstract)[本文引用:1]
[10]
叶全宝. 不同水稻基因型对氮肥反应的差异及氮素利用效率的研究. , 2005Ye QB. Study on Differences in Response of Rice Genotypes to Nitrogen Fertilization and Nitrogen Use Efficiency. , 2005 (in Chinese with English abstract)[本文引用:1]
[11]
杨雄. 不同氮肥群体最高生产力水稻品种氮磷钾的积累、分配与转运的差异性分析. , 2012Yang X. TheAccumulation, Distribution and Translocation of NPK of Rice Varieties with Different Productivity Levels. , 2012 (in Chinese with English abstract)[本文引用:1]
[12]
孟天瑶, 许俊伟, 邵子彬, 葛梦婕, 张洪程, 魏海燕, 戴其根, 霍中洋, 许轲, 郭保卫, 荆培培. 甬优系列籼粳杂交稻氮肥群体最高生产力的优势及形成特征. 作物学报, 2015, 41: 1711-1725Meng TY, Xu JW, Shao ZB, Ge MJ, Zhang HC, Wei HY, Dai QG, Huo ZY, XuK, Guo BW, Jing PP. Advantages and their formation characteristics of the highest population productivity of nitrogen fertilization in japonica/indica hybrid rice of Yongyou series. Acta Agron Sin, 2015, 41: 1711-1725 (in Chinese with English abstract)[本文引用:2]
[13]
姜元华, 张洪程, 赵可, 许俊伟, 韦还和, 龙厚元, 王文婷, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 长江下游地区不同类型水稻品种产量及其构成因素特征的研究. 中国水稻科学, 2014, 28: 621-631Jiang YH, Zhang HC, ZhaoK, Xu JW, Wei HH, Long HY, Wang WT, Dai QG, Huo ZY, XuK, Wei HY, Guo BW. Differences in yield and its components characteristics of different type rice cultivars in the lower reaches of the Yangtze River. Chin J Rice Sci, 2014, 28: 621-631 (in Chinese with English abstract)[本文引用:1]
[14]
花劲, 周年兵, 张军, 张洪程, 霍中洋, 周培建, 程飞虎, 李国业, 黄大山, 陈忠平, 陈国梁, 戴其根, 许轲, 魏海燕, 高辉, 郭保卫. 双季稻区晚稻”籼改粳”品种筛选. , 2014, 47: 4582-4594HuaJ, Zhou NB, ZhangJ, Zhang HC, Huo ZY, Zhou PJ, Cheng FH, Li GY, Huang DS, Chen ZP, Chen GL, Dai QG, XuK, Wei HY, GaoH, Guo BW. Selection of late rice cultivars of japonica rice switched from indica rice in double cropping rice area. , 2014, 47: 4582-4594 (in Chinese with English abstract)[本文引用:1]
[15]
龚金龙, 胡雅杰, 葛梦婕, 龙厚元, 常勇, 马群, 杨雄, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕. 南方粳型超级稻氮肥群体最高生产力及其形成特征的研究. , 2012, 26: 558-572Gong JL, Hu YJ, Ge MJ, Long HY, ChangY, MaQ, YangX, Zhang HC, Dai QG, Huo ZY, XuK, Wei HY. The highest population productivity of N fertilization and its formation characteristics on japonica super rice in south China. , 2012, 26: 558-572 (in Chinese with English abstract)[本文引用:1]
[16]
Ying JF, Peng SB, He QR, YangH, Yang CD, Visperas RM, Cassman KG. Comparison of high-yield in tropical and subtropical environments: I. Determinants of grain and dry matter yields. Field Crops Res, 1998, 57: 71-84[本文引用:1]
[17]
霍中洋, 顾海永, 马群, 杨雄, 李敏, 李国业, 戴其根, 许轲, 魏海燕, 高辉, 芦燕, 张洪程. 不同氮肥群体最高生产力水稻品种的氮素吸收利用差异. 作物学报, 2012, 38: 2061-2068Huo ZY, Gu HY, MaQ, YangX, LiM, Li GY, Dai QG, XuK, Wei HY, GaoH, LuY, Zhang HC. Differences of nitrogen absorption and utilization in rice varieties with different productivity levels. Acta Agron Sin, 2012, 38: 2061-2068 (in Chinese with English abstract)[本文引用:1]
[18]
张洪程, 马群, 杨雄, 李敏, 葛梦婕, 李国业, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 刘艳阳. 水稻品种氮肥群体最高生产力及其增长规律. 作物学报, 2012, 38: 86-98Zhang HC, MaQ, YangX, LiM, Ge MJ, Li GY, Dai QG, Huo ZY, XuK, Wei HY, GaoH, Liu YY. The highest population productivity of nitrogen fertilization and its variation rules in rice cultivars. Acta Agron Sin, 2012, 38: 86-98 (in Chinese with English abstract)[本文引用:2]
[19]
徐正进, 陈温福, 张龙步, 王进民, 董克. 从日本超高产品种(系)的选育看粳稻高产的方向. , 1991, 22(增刊): 27-33Xu ZJ, Chen WF, Zhang LB, Wang JM, DongK. Judging the way forward of breeding japonica rice for high-yield from the advance of breeding super-hybrid yield varieties in Japan. , 1991, 22(suppl): 27-23 (in Chinese with English abstract)[本文引用:1]
[20]
吴桂成, 张洪程, 钱银飞, 李德剑, 周有炎, 徐军, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 徐宗进, 钱宗, 孙菊英, 赵品恒. 粳型超级稻产量构成因素协同规律及超高产特征的研究. 中国农业科学, 2010, 43: 266-276Wu GC, Zhang HC, Qian YF, Li DJ, Zhou YY, XuJ, Wu WG, Dai QG, Huo ZY, XuK, GaoH, Xu ZJ, QianZ, Sun JY, Zhao PH. Rule of grain yield components from high yield to super high yield and the characters of super-high yielding japonica super rice. Sci Agric Sin, 2010, 43: 266-276 (in Chinese with English abstract)[本文引用:1]
[21]
杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. 中国农业科学, 2006, 39: 1336-1345Yang JC, DuY, Wu CF, Liu LJ, Wang ZQ, Zhu QS. Growth and development characteristics of super-high-yielding mid-season japonica rice. Sci Agric Sin, 2006, 39: 1336-1345 (in Chinese with English abstract)[本文引用:1]
[22]
Mohapatra PK, Sahu SK. Heterogeneity of primary branch development and spikelet survival in rice in relation to assimilates of primary branches. J Exp Bot, 1991, 42: 871-879[本文引用:1]
[23]
葛梦婕, 王亚江, 颜希亭, 张洪程, 魏海燕, 戴其根, 霍中洋, 许轲, 江峰, 朱聪聪. 长江中下游稻区粳型超级稻高产形成及氮素利用的研究. 植物营养与肥料学报, 2014, 20: 259-270Ge MJ, Wang YJ, Yan XT, Zhang HC, Wei HY, Dai QG, Huo ZY, XuK, JiangF, Zhu CC. Research on the formation of high yield and the nitrogen use of japonica super rice in the middle and lower areas of the Yangtze River. Plant Nutr Fert Sci, 2014, 20: 259-270 (in Chinese with English abstract)[本文引用:2]
[24]
陈爱忠, 潘晓华, 吴建富, 石庆华, 杨上勤. 施氮量对双季超级稻产量、干物质生产及氮素吸收利用的影响. , 2011, 26(2): 58-63Chen AZ, Pan XH, Wu JF, Shi QH, Yang SQ. Effects of nitrogen application amount on yield, dry matter production and N-uptake and utilization of double-cropping super rice. , 2011, 26(2): 58-63 (in Chinese)[本文引用:1]
[25]
TakaiT, MatsuuraS, NishioT, OhsumiA, ShiraiwaT, HorieT. Rice yield potential is closely related to crop growth rate during late reproductive period. Field Crops Res, 2006, 96: 328-335[本文引用:1]
[26]
马均, 朱庆森, 马文波, 田彦华, 杨建昌, 周开达. 重穗型水稻光合作用、物质积累与运转的研究. 中国农业科学, 2003, 36: 375-381MaJ, Zhu QS, Ma WB, Tian YH, Yang JC, Zhou KD. Studies on the photosynthetic characteristics and accumulation and transformation of assimilation product in heavy panicle type of rice. Sci Agric Sin, 2003, 36: 375-381 (in Chinese with English abstract)[本文引用:1]