关键词:水稻; 有序摆抛栽; 三连孔; 二连孔; 氮素吸收利用与转运 Characteristics of Nitrogen Uptake, Utilization and Distribution in Ordered Transplanting and Optimized Broadcasting Rice GUO Bao-Wei, ZHANG Hong-Cheng*, ZHU Da-Wei, Xu Ke, HUO Zhong-Yang, WEI Hai-Yan, DAI Qi-Gen, GAO Hui, HU Ya-Jie, CUI Pei-Yuan Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture / Key Laboratory of Crop Genetic and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China Fund:This study was supported by the Special Fund for Agro-Scientific Research in the Public Interest (201303102), the Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province [CX(15)1002], the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (16KJB210014), the Science and Technology Innovation Foster Fund of Yangzhou University (2015CXJ042), and the Three New Agricultural Engineering Fund of Jiangsu Province [SXGC(2015)325, SXGC(2014)315] AbstractThe stable super high yield of broadcasting rice relies on the ordered plantation of rice. In this study, three planting methods including ordered transplanting (OT), optimized broadcasting (OB) and cast transplanting (CT) using dry-raised rice seedlings in plastic plates with 2-hole, 3-hole, and 1-hole were used with mechanical transplanting (MT) using blanket rice seedlings as control to investigate the nitrogen uptake, utilization and translocation characteristics. Ordered transplanting and optimized broadcasting rice had lower N content at the whole growing stage, lower N accumulation at critical stage for effective tillering (CS) and elongation stage (ES), and higher N accumulation after ES significantly or very significantly than CT rice, showing N accumulation in treatments was OT > OB > CT. And 2-hole and 3-hole plants kept higher N content than 1-hole plants at each stage with proper N accumulation before ES and stronger N uptake ability after ES. N accumulation and N uptake rate in treatments after heading were 2-hole > 3-hole > 1-hole. Nitrogen agronomic efficiency, physiological efficiency, partial factor productivity, N requirement for 100 kg, nitrogen use efficiency for biomass production, nitrogen use efficiency for grain production, nitrogen harvest index and grain yield among different transplanting ways showed the trend of OT > OB > CT and MT. N use efficiency, partial factor productivity and nitrogen harvest index (NHI) among different hole treatments had the trend of 2-hole > 3-hole and 1-hole, and N requirement for 100 kg grain 2-hole and 3-hole > 1-hole, while nitrogen use efficiency for biomass production and nitrogen use efficiency for grain production showed the trend of 2-hole and 3-hole < 1-hole. N content and accumulation in panicle among different transplanting ways after heading showed the trend of OT > OB > CT, while the opposite trend was shown in culm, sheath and leaf. And N content in leaf and panicle among different hole treatments was shown 2-hole > 3-hole and 1-hole and N accumulation among different hole treatments in each organ was 2-hole >3-hole > 1-hole. N transportation and transportation rate were OT > OB > CT among different transplanting ways, and 2-hole, 3-hole < 1-hole among hole treatments. Base on the above results, we conclude that ordered transplanting and optimized broadcasting rice, especially that with 2-hole treatment, had the rational N content and accumulation at early stage, stronger N uptake ability and higher N accumulation, transportation with higher transportation ratio after heading, and high nitrogen agronomic efficiency, physiological efficiency, partial factor productivity, N requirement for 100 kg, nitrogen use efficiency for biomass production, nitrogen use efficiency for grain production and nitrogen harvest index, which is the nutritional basis for high yield of OT and OB rice.
Keyword:Rice; Ordered transplanting and optimized broadcasting; 3-hole gathered; 2-hole gathered; Nitrogen uptake; utilization and translocation Show Figures Show Figures
OT-3: ordered transplanting with 3-hole seedlings; OT-2: ordered transplanting with 2-hole seedlings; OT-1: ordered transplanting with single hole seedlings; OB-3: optimized broadcasting with 3-hole seedlings; OB-2: optimized broadcasting with 2-hole seedlings; OB-1: optimized broadcasting with single hole seedlings; CT-3: cast transplanting with 3-hole seedlings; CT-2: cast transplanting with 2-hole seedlings; CT-1: cast transplanting with single hole seedlings; MT: mechanical transplanting.
表2 不同抛栽处理水稻氮素吸收特征指标的方差分析 Table 2 Analysis of variance (F-values) of nitrogen uptake characteristics among years, cultivars and transplanting ways
表2 不同抛栽处理水稻氮素吸收特征指标的方差分析 Table 2 Analysis of variance (F-values) of nitrogen uptake characteristics among years, cultivars and transplanting ways
表3 Table 3 表3(Table 3)
表3 抛栽方式与连孔处理水稻氮素吸收特征主要指标的方差分析 Table 3 Analysis of variance (F-values) of main nitrogen uptake characteristics among broadeasting ways and different hole treatments
表3 抛栽方式与连孔处理水稻氮素吸收特征主要指标的方差分析 Table 3 Analysis of variance (F-values) of main nitrogen uptake characteristics among broadeasting ways and different hole treatments
表4 Table 4 表4(Table 4)
表4 不同抛栽方式水稻各生育时期的氮素积累量 Table 4 N accumulation in rice plants with different transplanting ways at main growth stage
表4 不同抛栽方式水稻各生育时期的氮素积累量 Table 4 N accumulation in rice plants with different transplanting ways at main growth stage
表5 Table 5 表5(Table 5)
表5 不同抛栽方式水稻各生育阶段的氮素阶段吸收量 Table 5 N uptake in rice plants with different transplanting ways during different growth stages (kg hm-2)
抛栽方式 Transplanting way
武运粳24 Wuyunjing 24
南粳44 Nanjing 44
分蘖-拔节 CS-ES
拔节-抽穗 ES-HS
抽穗-成熟 HS-MS
分蘖-拔节 CS-ES
拔节-抽穗 ES-HS
抽穗-成熟 HS-MS
机插MT
51.49 Aab
96.16 BCbcd
53.73 ABCc
48.89 ABCabc
89.80 ABCab
47.49 Bc
摆-3 OT-3
51.11 Aab
97.99 ABCbc
55.16 ABCabc
51.54 Aa
82.75 BCDc
50.59 ABabc
摆-2 OT-2
51.98 Aa
103.87 Aa
60.56 Aa
51.19 Aa
90.38 ABab
51.98 ABab
摆-1 OT-1
49.00 BCc
94.52 BCDcd
54.70 ABCbc
46.97 ABCbcd
81.77 CDc
46.96 Bc
点-3 OB-3
50.93 Aab
94.46 BCDcd
54.64 ABCbc
49.78 ABab
84.55 BCDbc
49.14 ABbc
点-2 OB-2
51.31 Aab
100.99 ABab
59.90 ABab
51.82 Aa
95.15 Aa
54.03 Aa
点-1 OB-1
47.79 Ccd
91.42 CDde
51.53 Cc
48.34 ABCabc
82.20 BCDc
47.14 Bc
撒-3 CT-3
48.98 BCc
91.24 CDde
52.19 BCc
45.78 BCcd
86.26 BCDbc
49.16 ABbc
撒-2 CT-2
50.56 ABb
98.12 ABCbc
55.86 ABCabc
50.25 ABab
95.35 Aa
53.17 Aa
撒-1 CT-1
47.43 Cd
88.10 De
51.83 Cc
44.63 Cd
80.78 Dc
46.94 Bc
Values followed by a different letter within a column are significantly different at the 1% (capital letter) and 5% (small letter) probability levels. CS: critical stage for effective tillering; ES: elongation stage; HS: heading stage; MS: maturing stage. Other abbreviations are the same as those given in Table 1. 同一栏内标以不同大、小写字母的值分别在1%和5%水平上差异显著。其余缩写同表1。
表5 不同抛栽方式水稻各生育阶段的氮素阶段吸收量 Table 5 N uptake in rice plants with different transplanting ways during different growth stages (kg hm-2)
表6 不同抛栽方式水稻的氮素利用效率和百千克籽粒需氮量 Table 6 N use efficiency and N requirement for 100 kg grain of rice with different transplanting ways
表6 不同抛栽方式水稻的氮素利用效率和百千克籽粒需氮量 Table 6 N use efficiency and N requirement for 100 kg grain of rice with different transplanting ways
表7 Table 7 表7(Table 7)
表7 不同抛栽方式水稻抽穗期各器官含氮率与吸氮量 Table 7 N uptake and N content in different organs of rice with different transplanting ways at heading
抛栽方式Transplanting way
含氮率N content (%)
吸氮量N uptake (kg hm-2)
茎鞘 Stem and sheath
叶 Leaf
穗 Panicle
茎鞘 Stem and sheath
叶 Leaf
穗 Panicle
武运粳24 Wuyunjing 24
机插MT
1.00 Aa
1.83 Aabc
1.09 Dd
62.29 Aab
69.25 ABCcde
16.25 EFe
摆-3 OT-3
0.99 Aab
1.80 Ac
1.23 ABab
61.95 Aabc
71.42 ABCabc
19.54 ABab
摆-2 OT-2
0.99 Aab
1.82 Aabc
1.25 Aa
62.47 Aa
73.04 Aa
20.52 Aa
摆-1 OT-1
0.98 Ab
1.80 Ac
1.22 ABb
61.63 Aabc
70.49 ABCabcd
18.65 BCbc
点-3 OB-3
0.99 Aab
1.81 Abc
1.15 Cc
61.78 Aabc
71.36 ABcabc
17.62 CDEcd
点-2 OB-2
0.99 Aab
1.84 Aabc
1.21 Bb
62.32 Aab
72.41 ABab
19.37 ABb
点-1 OB-1
0.99 Aab
1.80 Ac
1.11 Dd
61.51 Aabc
69.55 ABCbcde
16.91 DEFde
撒-3 CT-3
1.00 Aab
1.85 Aab
1.10 Dd
61.36 Abc
68.28 BCde
16.51 DEFe
撒-2 CT-2
1.01 Aab
1.86 Aa
1.15 Cc
61.95 Aabc
69.97 ABCbcde
17.77 CDcd
撒-1 CT-1
0.99 Aab
1.84 Aabc
1.09 Dd
61.06 Ac
67.38 Ce
15.85 Fe
南粳44 Nanjing 44
机插MT
0.98 ABab
1.90 Aa
0.95 Ee
63.82 Aab
70.03 CDde
12.20 De
摆-3 OT-3
0.96 Bb
1.88 ABa
1.18 Bb
62.34 BCcd
72.92 ABCDbcd
15.25 Bb
摆-2 OT-2
0.97 ABb
1.89 ABa
1.24 Aa
63.25 ABbc
73.06 ABCDbcd
16.57 Aa
摆-1 OT-1
0.96 Bb
1.87 ABab
1.18 Bb
62.28 BCcd
71.75 BCDcde
14.75 Bbc
点-3 OB-3
0.97 ABb
1.87 ABab
1.05 Dd
62.46 BCcd
74.93 ABab
13.54 Cd
点-2 OB-2
0.97 ABb
1.91 Aa
1.11 Cc
62.46 BCcd
76.63 Aa
14.32 BCc
点-1 OB-1
0.96 Bb
1.83 Bb
0.96 Ee
61.59 Cde
73.81 ABCDabc
12.20 De
撒-3 CT-3
0.97 ABb
1.89 ABa
0.90 Ff
61.99 BCde
70.66 BCDde
11.00 Ef
撒-2 CT-2
1.00 Aa
1.91 Aa
0.96 Ef
64.51 Aa
74.32 ABCabc
12.37 De
Values followed by a different letter within a column are significantly different at the 1% (capital letter) and 5% (small letter) probability levels. Abbreviations are the same as those given in Table 1. 同一栏内标以不同大、小写字母的值分别在1%和5%水平上差异显著。缩写同表1。
表7 不同抛栽方式水稻抽穗期各器官含氮率与吸氮量 Table 7 N uptake and N content in different organs of rice with different transplanting ways at heading
表8 Table 8 表8(Table 8)
表8 不同抛栽方式水稻成熟期各器官含氮率与积累量 Table 8 N content and accumulation in each organ of rice with different transplanting ways at mature
抛栽方式Transplanting way
含氮率N content (%)
吸氮量N uptake (kg hm-2)
茎鞘 Stem and sheath
叶 Leaf
穗 Panicle
茎鞘 Stem and sheath
叶 Leaf
穗 Panicle
武运粳24 Wuyunjing 24
机插MT
0.72 ABb
1.29 ABa
1.45 Aa
44.81 Bb
35.38 ABCabc
146.06 ABCabc
摆-3 OT-3
0.68 DEe
1.21 Dc
1.38 CDc
43.16 CDde
33.87 BCde
145.92 ABCabc
摆-2 OT-2
0.68 DEe
1.23 CDc
1.42 ABCab
43.81 Ccd
35.20 ABCabcd
153.13 Aa
摆-1 OT-1
0.66 Ef
1.20 Dc
1.38 CDc
42.16 Ef
33.28 Ce
143.48 ABCbc
点-3 OB-3
0.69 CDde
1.26 BCb
1.39 BCDbc
43.12 CDde
34.69 ABCcde
144.68 ABCabc
点-2 OB-2
0.69 CDde
1.29 ABa
1.42 ABCab
43.66 Ccd
36.24 Aab
151.26 ABab
点-1 OB-1
0.68 DEe
1.23 CDc
1.36 Dc
42.59 DEef
33.81 BCde
139.52 BCc
撒-3 CT-3
0.71 BCbc
1.29 ABa
1.43 ABa
44.08 BCc
35.71 ABabc
139.87 BCc
撒-2 CT-2
0.74 Aa
1.31 Aa
1.45 Aa
46.06 Aa
36.60 Aa
144.54 ABCabc
撒-1 CT-1
0.70 BCDcd
1.28 ABab
1.42 ABCab
43.91 BCc
34.87 ABCbcd
137.14 Cc
南粳44 Nanjing 44
机插MT
0.69 BCb
1.19 Aa
1.48 Aa
47.11 Bb
33.07 ABabc
137.78 ABab
摆-3 OT-3
0.67 CDcd
1.10 Cc
1.39 DEcd
45.28 Cc
31.80 ABcd
136.87 ABab
摆-2 OT-2
0.67 CDcd
1.12 BCc
1.42 BCDbc
45.91 Cc
32.55 ABabcd
140.84 Aa
摆-1 OT-1
0.66 Dd
1.11 Cc
1.37 Ed
43.88 Dd
31.21 Bd
133.99 ABabc
点-3 OB-3
0.68 CDbc
1.15 Bb
1.42 BCDbc
45.92 Cc
32.97 ABabc
137.72 ABab
点-2 OB-2
0.69 BCb
1.15 Bb
1.45 ABab
47.03 Bb
33.43 Aab
142.32 Aa
点-1 OB-1
0.68 CDbc
1.15 Bb
1.40 CDEcd
45.71 Cc
32.85 ABabc
135.26 ABab
撒-3 CT-3
0.71 ABa
1.19 Aa
1.42 BCDbc
47.15 Bb
32.13 ABbcd
131.18 ABbc
撒-2 CT-2
0.72 Aa
1.20 Aa
1.44 ABCb
48.79 Aa
33.63 Aa
139.78 Aab
撒-1 CT-1
0.71 ABa
1.19 Aa
1.38 DEd
45.73 Cc
31.39 Bd
126.51 Bc
Values followed by a different letter within a column are significantly different at the 1% (capital letter) and 5% (small letter) probability levels. Abbreviations are the same as those given in Table 1. 同一栏内标以不同大、小写字母的值分别在1%和5%水平上差异显著。缩写同表1。
表8 不同抛栽方式水稻成熟期各器官含氮率与积累量 Table 8 N content and accumulation in each organ of rice with different transplanting ways at mature
表9 Table 9 表9(Table 9)
表9 不同抛栽方式水稻穗后茎鞘叶的氮素转运 Table 9 N transportation among stem, sheath and leaf of rice with different transplanting ways after heading
抛栽方式Transplanting way
茎鞘Stem and sheath
叶 Leaf
茎鞘叶Stem, sheath, and leaf
转运量NT (kg hm-2)
转运率NTT (%)
转运量NT (kg hm-2)
转运率NTT (%)
转运量NT (kg hm-2)
转运率NTT (%)
武运粳24 Wuyunjing 24
机插MT
17.48 Cc
28.07 Cd
33.85 Cd
48.89 CDe
51.33 Bd
39.03 Dd
摆-3 OT-3
18.79 Bb
30.33 Bbc
37.56 ABab
52.58 Aab
56.34 Aab
42.24 ABab
摆-2 OT-2
18.67 Bb
29.88 Bc
37.84 Aa
51.80 ABbc
56.51 Aa
41.69 Bb
摆-1 OT-1
19.48 Aa
31.59 Aa
37.20 ABabc
52.78 Aa
56.67 Aa
42.89 Aa
点-3 OB-3
18.67 Bb
30.21 Bbc
36.67 ABabc
51.38 Bc
55.34 Aabc
41.56 BCb
点-2 OB-2
18.67 Bb
29.94 Bc
36.18 ABbc
49.95 Cd
54.83 Abc
40.70 Cc
点-1 OB-1
18.91 Bb
30.75 ABb
35.74 Bc
51.40 Bc
54.66 Ac
41.70 Bb
撒-3 CT-3
17.27 Ccd
28.16 Cd
32.56 Cd
47.70 Ef
49.85 Be
38.45 Dd
撒-2 CT-2
15.89 De
25.65 De
33.39 Cd
47.71 Ef
49.28 Be
37.35 Ee
撒-1 CT-1
17.15 Cd
28.10 Cd
32.50 Cd
48.24 DEef
49.66 Be
38.66 Dd
南粳44 Nanjing 44
机插MT
1.114 ABCDbcd
26.17 Ccd
36.96 Dc
52.78 Ee
53.67 Bd
40.09 Dd
摆-3 OT-3
1.137 ABCbc
27.35 Bb
41.12 ABc
56.40 Aa
58.17 Aabc
43.01 ABb
摆-2 OT-2
1.157 ABab
27.43 Bb
40.99 ABb
55.74 ABbc
57.86 Aabc
42.44 Bbc
摆-1 OT-1
1.228 Aa
29.56 Aa
40.52 BCb
56.48 Aa
58.94 Aa
43.97 Aa
点-3 OB-3
1.103 ABCDbcd
26.48 Cc
41.98 ABab
56.01 ABab
58.52 Aab
42.59 Bbc
点-2 OB-2
1.029 BCDde
24.70 EFef
43.19 Aa
56.37 Aa
58.62 Aab
42.15 Bbc
点-1 OB-1
1.060 BCDcde
25.79 CDd
40.94 ABb
55.48 BCc
56.84 Abc
41.97 BCc
撒-3 CT-3
0.990 De
23.93 Fg
38.53 CDc
54.53 Dd
53.37 Bd
40.24 Dd
撒-2 CT-2
1.050 BCDcde
24.39 EFfg
40.69 BCb
54.76 CDd
56.43 Ac
40.65 Dd
撒-1 CT-1
1.022 CDde
25.11 DEe
38.14 Dc
54.85 CDd
53.48 Bd
40.95 CDd
Values followed by a different letter within a column are significantly different at the 1% (capital letter) and 5% (small letter) probability levels. NT: nitrogen translocation; NTT: nitrogen translocation rate. Other abbreviations are the same as those given in Table 1. 同一栏内标以不同大、小写字母的值分别在1%和5%水平上差异显著。其余缩写同表1。
表9 不同抛栽方式水稻穗后茎鞘叶的氮素转运 Table 9 N transportation among stem, sheath and leaf of rice with different transplanting ways after heading
4 结论水稻有序摆抛栽能有效提高植株氮素积累量、氮素生产效率, 促进抽穗后茎鞘和叶片氮素向穗的转运, 保证氮素在各器官中的合理分配, 提高其干物质生产效率、籽粒生产效率和偏生产力。水稻二连孔、三连孔稀植有序栽插穗后能保持较强的氮素吸收能力, 提高了氮素利用率和偏生产力。水稻有序摆抛栽提高氮素吸收利用和转化效率, 是高产、超高产的营养基础, 二连孔、三连孔有序摆抛栽是高产栽培下氮素高效利用的一个栽培技术方向。 The authors have declared that no competing interests exist.
李虎, 唐启源. 我国水稻氮肥利用率及研究进展. , 2006, (5): 401-404LiH, Tang QY. Research of nitrogen utilization rate in rice. , 2006, (5): 401-404 (in Chinese with English abstract)[本文引用:1]
[2]
张亚洁, 林强森, 孙斌, 刁广华, 杨建昌. 种植方式对水稻和陆稻氮素吸收利用的影响. , 2005, 19: 539-544Zhang YJ, Lin QS, SunB, Diao GH, Yang JC. Effects of cultivation methods on nitrogen absorption and use efficient of upland and paddy rice. , 2005, 19: 539-544 (in Chinese with English abstract)[本文引用:1]
[3]
殷晓燕, 徐阳春, 沈其荣, 周春霖, 黄新宇, 李曼莉, 尹金来, DittertK. 直播旱作和水作水稻的氮素吸收利用特征研究. , 2004, 41: 983-986Yin XY, Xu YC, Shen QR, Zhou CL, Huang XY, Li ML, Yin JL, DittertK. Nitrogen uptake and use efficiency by rice crops cultivated in waterlogged field and sowed on dry field without or with different mulchings. , 2004, 41: 983-986 (in Chinese with English abstract)[本文引用:1]
[4]
徐世宏, 梁天锋, 曾华忠, 江立庚, 丁成泉, 张玉. 不同耕作方式下水分管理对水稻氮素吸收利用的影响. , 2009, 23: 1065-1069Xu SH, Liang TF, Zeng HZ, Jiang LG, Ding CQ, ZhangY. Influence of water management and tillage patterns on nitrogen utilization of rice. , 2009, 23: 1065-1069 (in Chinese with English abstract)[本文引用:1]
[5]
梁天锋, 徐世宏, 刘开强, 王殿君, 梁和, 董登峰, 韦善清, 周佳民, 胡钧铭, 江立庚. 栽培方式对水稻氮素吸收利用与分配特性影响的研究. , 2010, 16: 20-26Liang TF, Xu SH, Liu KQ, Wang DJ, LiangH, Dong DF, Wei SQ, Zhou JM, Hu JM, Jiang LG. Studies on influence of cultivation patterns on characteristics of nitrogen utilization and distribution in rice. , 2010, 16: 20-26 (in Chinese with English abstract)[本文引用:2]
[6]
刁守雨. 里下河地区杂交中粳盘育摆栽高产特点与密度研究. 扬州大学硕士学位论文, , 2007. pp 12-14Diao SY. Characteristic of High Yield and Density in Hybrid Medium Japonica Rice Planting with Raised Seedling in Plastic Trays in Lixiahe Area. MS Thesis of Yangzhou University, Yangzhou, , 2007. pp 12-14 (in Chinese with English abstract)[本文引用:1]
[7]
卢维盛, 李华兴, 刘远金, 陈喜崇. 不同耕作方法对抛秧水稻生长和氮素利用的影响. , 2001, 22(4): 8-10Lu WS, Li HX, Liu YJ, Chen XC. Effect of glucosinolates of host vegetables on preference of stripped flea beetle. , 2001, 22(4): 8-10 (in Chinese with English abstract)[本文引用:1]
[8]
蓝平. 不同移栽方式对水稻群体生长及产量的影响. 四川农业大学硕士学位论文, , 2010. pp 8-19LanP. Effects of Transplanting Patterns on Population Development and Grain Yield. MS Thesis of Sichuan Agricultural University, Ya’an, , 2010. pp 8-19 (in Chinese with English abstract)[本文引用:1]
[9]
邓飞, 王丽, 任万军, 刘代银, 杨文钰. 不同生态条件下栽植方式对中籼迟熟杂交稻组合II优498氮素积累与分配的影响. , 2012, 45: 4310-4325DengF, WangL, Ren WJ, Liu DY, Yang WY. Effects of planting methods on nitrogen accumulation and distribution of mid-late indica hybrid rice combination II you 498 under different ecological conditions. , 2012, 45: 4310-4325 (in Chinese with English abstract)[本文引用:3]
[10]
郭保卫, 张春华, 魏海燕, 张洪程, 陈厚存, 戴其根, 霍中洋, 许轲, 邢琳, 管文文, 黄幸福, 杨雄. 抛秧物理立苗对水稻生长的影响及其调控因素的研究. , 2010, 43: 3945-3953Guo BW, Zhang CH, Wei HY, Zhang HC, Chen HC, Dai QG, Huo ZY, XuK, XingL, Guan WW, Huang XF, YangX. Effects of different postures on growth of broadcasted rice and the regulating factors of physical stand ing of broadcasted seedlings. , 2010, 43: 3945-3953 (in Chinese with English abstract)[本文引用:2]
[11]
许轲, 周兴涛, 曹利强, 张洪程, 郭保卫, 陈厚存, 吴中华, 朱聪聪, 杨岩. 不同类型钵苗及摆栽密度对粳型超级稻氮素吸收利用与转运特征的影响. , 2013, 46: 4876-4892XuK, Zhou XT, Cao LQ, Zhang HC, Guo BW, Chen HC, Wu ZH, Zhu CC, YangY. Effect of different types of bowl seedlings and densities on characteristics of nitrogen uptake, utilization and translocation of bowel transplanted japonica super rice. , 2013, 46: 4876-4892 (in Chinese with English abstract)[本文引用:1]
[12]
郭保卫, 朱大伟, 许轲, 张洪程, 周兴涛, 朱聪聪, 曹利强, 陈厚存, 陈京都, 戴其根, 霍中洋, 魏海燕, 李明银. 有序摆抛栽对超级稻植株抗倒伏能力的影响. , 2015, 29: 45-55Guo BW, Zhu DW, XuK, Zhang HC, Zhou XT, Zhu CC, Cao LQ, Chen HC, Chen JD, Dai QG, Huo ZY, Wei HY, Li MY. Effects of ordered transplanting and optimized broadcasting on the clum lodging resistance of super rice. , 2015, 29: 45-55 (in Chinese with English abstract)[本文引用:1]
[13]
梁尹明, 林贤青, 孙永飞, 朱德峰, 陈惠哲. 不同作物管理技术对水稻氮素吸收和利用的影响. , 2007, 38: 191-193Liang YM, Lin QX, Sun YF, Zhu DF, Chen HZ. Effects of crop management on nitrogen up take and utilization of rice (Oryza sativa L. ). , 2007, 38: 191-193 (in Chinese with English abstract)[本文引用:1]
[14]
江立庚, 曹卫星. 水稻高效利用氮素的生理机制及有效途径. , 2002, 16: 261-264Jiang LG, Cao WX. Physiological mechanism and approaches for efficient nitrogen utilization in rice. , 2002, 16: 261-264 (in Chinese with English abstract)[本文引用:1]
[15]
Li GH, Xue LH, GuW, Yang CD, Wang SH, Ling QH, QinX, Ding YF. Comparison of yield components and plant type characteristics of high-yield rice between Taoyuan, a ‘special eco-site’ and Nanjing, China. , 2009, 112: 214-221[本文引用:1]
[16]
Camargo F AO, GianelloC, Tedesco MJ. Soil nitrogen availability evaluated by kinetic mineralization parameters. , 2004, 35: 1293-1307[本文引用:1]
[17]
SinghU, Lagha JK, Castillo EG, PunzalanG, Tirol-PadreA, DuquezaM. Genotypic variation in nitrogen use efficiency in medium and long duration rice. , 1998, 58: 35-53[本文引用:1]
[18]
张耀鸿, 张亚丽, 黄启为, 徐阳春, 沈其荣. 不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较. , 2006, 12: 616-621Zhang YH, Zhang YL, Huang QW, Xu YC, Shen QR. Effects of different nitrogen application rates on grain yields and nitrogen uptake and utilization by different rice cultivars. , 2006, 12: 616-621 (in Chinese with English abstract)[本文引用:1]
[19]
张传胜, 龙银成, 周娟, 董桂春, 王余龙. 不同产量类型籼稻品种氮素吸收利用特征的研究. , 2004, 25(2): 17-21Zhang CS, Long YC, ZhouJ, Dong GC, Wang YL. Study on nitrogen uptake and use efficiency in different grain yield types of indica rice (Oryza sativa L. ). , 2004, 25(2): 17-21 (in Chinese with English abstract)[本文引用:1]
[20]
MasclauxC, Valadier MH, BrugiereN. Characterization of the sink/source transition in tobacco shoots in relation to nitrogen management and leaf senescence. , 2000, 211: 510-518[本文引用:1]
[21]
殷春渊, 张庆, 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 马群, 杭杰, 张胜飞. 不同产量类型水稻基因型氮素吸收、利用效率的差异. , 2010, 43: 39-50Yin CY, ZhangQ, Wei HY, Zhang HC, Dai QG, Huo ZY, XuK, MaQ, HangJ, Zhang SF. Differences in nitrogen absorption and use efficiency in rice genotypes with different yield performance. , 2010, 43: 39-50 (in Chinese with English abstract)[本文引用:1]
[22]
张洪程, * 郭保卫, 陈厚存, 周兴涛, 张军, 朱聪聪, 陈京都, 李桂云, 吴中华, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 杨雄. 水稻有序摆抛栽的生理生态特征及超高产形成机制. , 2013, 46: 463-475Zhang HC, Guo BW, Chen HC, Zhou XT, ZhangJ, Zhu CC, Chen JD, Li GY, Wu ZH, Dai QG, Huo ZY, XuK, Wei HY, GaoH, YangX. The eco-physiological characteristics and the super high yield formation mechanism of ordered transplanting and optimized broadcasting rice. , 2013, 46: 463-475 (in Chinese with English abstract)[本文引用:1]
[23]
胡雅杰, 朱大伟, 钱海军, 曹伟伟, 邢志鹏, 张洪程, 周有炎, 陈厚存, 汪洪洋, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 籼粳杂交稻甬优2640钵苗机插超高产群体若干特征探讨. , 2014, 40: 2016-2027Hu YJ, Zhu DW, Qian HJ, Cao WW, Xing ZP, Zhang HC, Zhou YY, Chen HC, Wang HY, Dai QG, Huo ZY, XuK, Wei HY, Guo BW. Some characteristics of mechanically transplanted pot seedlings in super high yielding population of indica-japonica hybrid rice Yongyou 2640. , 2014, 40: 2016-2027 (in Chinese with English abstract)[本文引用:1]
[24]
郭保卫, 许轲, 张洪程, 周兴涛, 朱聪聪, 曹利强, 陈厚存, 陈京都, 戴其根, 霍中洋, 魏海燕, 李明银. 有序摆抛栽对超级稻植株抗倒伏能力的影响. , 2015, 29: 45-55Guo BW, XuK, Zhang HC, Zhou XT, Zhu CC, Cao LQ, Chen HC, Chen JD, Dai QG, Huo ZY, Wei HY, Li MY. Effect of ordered transplanting and optimized broadcasting on the culm lodging resistance of super rice. , 2015, 29: 45-55 (in Chinese with English abstract)[本文引用:1]
[25]
张小平, 吴小京, 易镇邪, 屠乃美, 张阳. 栽培方式对陆两优996产量形成与氮利用效率的影响. , 2010, 24(1): 12-15Zhang XP, Wu XJ, Yi ZX, Tu NM, ZhangY. Effect of wide-narrow-row on yield formation and nitrogen utilization efficiency of Luliangyou 996. , 2010, 24(1): 12-15 (in Chinese with English abstract)[本文引用:1]
[26]
杨祥田, 林贤青, 曾孝元, 王旭辉, 罗三镯. 水稻强化栽培下不同氮肥管理对产量与氮素利用的影响. , 2007, 38: 463-464Yang XT, Lin QX, Zeng XY, Wang XH, Luo SZ. Effect of nitrogen management on grain yield and nitrogen utilization under the system intensified rice cultivation. , 2007, 38: 463-464 (in Chinese with English abstract)[本文引用:1]