关键词:陆地棉; 微管结合蛋白; 微管; 表达分析 Identification and Expression Analysis of Microtubule Binding Protein CLASP Family Genes in Gossypium hirsutumL . ZHU Shou-Hong, ZHAO Lan-Jie, LIU Yong-Chang*, LI Yan-Jun, ZHANG Xin-Yu, SUN Jie College of Agronomy, Shihezi University / Key Laboratory of Oasis Eco-agriculture of Xinjiang Production and Construction Corps, Shihezi 832003, China Fund:This study was support by the National Natural Science Foundation of China (U1128301), the Special Research Funds for Doctor of Xinjiang Production and Constraction Crops (2013BB003), and the Startup Project for Outstanding Scholars of Shihezi University (RCZX201218). AbstractCLIP-Associated Proteins (CLASPs) are microtubule associated proteins (MAPS) which are regulators of microtubule structure and function, and play a key role in plant growth and morphogenesis. In this study, six CLASPs genes were preliminarily identified in Gossypium hirsutumL. by bioinformatics. Based on multiple sequence alignment and phylogenetic tree analysis, we divided the six CLASPs proteins into I and II subfamilies. The subfamily I has HEAT domain and CLASP-N structure; and the subfamily II only has CLASP-N structure. Real-time quantitative reverse transcription PCR (qRT-PCR) revealed that GhCLASPs genes expressed in root, stem, leaf, petal and fiber at different developmental periods, and there existed different expression patterns. CotAD_63740 (GenBank accession No. KX881965) and CotAD_04861 (GenBank accession No. KX881961) were preferentially expressed in fiber; CotAD_48232 (GenBank accession No. KX881962), CotAD_48665 (GenBank accession No. KX881963), CotAD_55570 (GenBank accession No. KX881964), and CotAD_68468 (GenBank accession No. KX881966) were preferentially expressed in stem. Different expression patterns suggest that they may play different roles during cotton development. The results will be helpful for the further analysis of CLASPs proteins in cotton.
Keyword: Gossypium hirsutumL.; Microtubule binding protein; Microtubule; Expression analysis Show Figures Show Figures
图2 陆地棉CLASPs蛋白与AtCLASP蛋白结构比较黑色和斜线区域分别表示蛋白的CLASP-N端结构域和HEAT 重复结构域。Fig. 2 GhCLASPs proteins and AtCLASP protein structureBlack blocks and that filled with oblique lines represent the CLASP-N terminal and HEAT repeat domain of protein, respectively.
图3 陆地棉CLASPs蛋白与拟南芥AtCLASP蛋白的CLASP-N端结构域多重序列比对黑色箭头表示2个CLASP-N端结构域。所用植物CLASP来自拟南芥(AAM13846)、陆地棉(CotAD_48232、CotAD_48665、CotAD_04861、CotAD_68468、CotAD_63740和CotAD_55570)和GhCLASP1(AKA60051)。Fig. 3 Amino acid sequences alignment of GhCLASPs proteins and AtCLASP proteinThe black arrows show two CLASP-N terminal domains of protein. The plant CLASP proteins used are from Arabidopsis thaliana(AAM13846), Gossypium hirsutum (CotAD_48232, CotAD_48665, CotAD_04861, CotAD_68468, CotAD_63740, and CotAD_55570), and GhCLASP1 (AKA60051).
图4 陆地棉CLASPs蛋白与拟南芥AtCLASP蛋白的系统进化树系统树各分支上数字是BootStrap 1000次循环检验的置信度; 标尺代表遗传距离。Fig. 4 Phylogenic relationship of GhCLASPs proteins and AtCLASP proteins所用植物CLASP来自拟南芥(AAM13846)、陆地棉(CotAD_48232、CotAD_48665、CotAD_04861、CotAD_68468、CotAD_63740和CotAD_55570)和GhCLASP1(AKA60051)。The numbers on the tree branches represent bootstrap confidence values as BootStrap is 1000; the scale bar represents genetic distance.The plant CLASP proteins used are from Arabidopsis thaliana(AAM13846), Gossypium hirsutum (CotAD_48232, CotAD_48665, CotAD_04861, CotAD_68468, CotAD_63740, and CotAD_55570), and GhCLASP1 (AKA60051).
Sedbrook JC. MAPs in plant cells: delineating microtubule growth dynamics and organization. , 2004, 7: 632-640[本文引用:1]
[2]
HamadaT. Microtubule-associated proteins in higher plants. , 2007, 120: 79-98[本文引用:2]
[3]
HamadaT. Microtubule organization and microtubule-associated proteins in plant cells. , 2014, 312: 1-52[本文引用:2]
[4]
TianJ, Han LB, Feng ZD, Wang GD, Liu WW, Ma YP, Yu YJ, Kong ZS. Orchestration of microtubules and the actin cytoskeleton in trichome cell shape determination by a plant-unique kinesin. , 2015, 4: e09351[本文引用:1]
[5]
Kong ZS, IokiM, BraybrookS, Li SD, Ye ZH, Lee Y R J, Hotta T, Chang A, Tian J, Wang G D, Liu B. Kinesin-4 functions in vesicular transport on cortical microtubules and regulates cell wall mechanics during cell elongation in plants. , 2015, 8: 1011-1023[本文引用:1]
[6]
AkhmanovaA, Hoogenraad CC, DrabekK, StepanovaT, Dortland B, VerkerkT, VermeulenW, Burgering BM, Zeeuw C I D, Grosveld F, Galjart N. CLASPs are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. , 2001, 104: 923-935[本文引用:1]
KirikV, HerrmannU, ParupalliC, Sedbrook JC, Ehrhardt DW, HülskampM. CLASP localizes in two discrete patterns on cortical microtubules and is required for cell morphogenesis and cell division in Arabidopsis. , 2007, 120: 4416-4425[本文引用:4]
AmbroseC, RuanY, GardinerJ. CLASP interacts with sorting Nexin 1 to link microtubules and auxin transport via PIN2 recycling in, 2013, 24: 649-659[本文引用:3]
[11]
GardinerJ. The evolution and diversification of plant microtubule-associated proteins. , 2013, 75: 219-229[本文引用:1]
[12]
PietraS, GustavssonA, KieferC, KalmbachL, HorstedtP, IkedaY, Stepanova AN, Alonso JM, GrebeM. Arabidopsis SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity. , 2013, 4: 2779[本文引用:1]
Mimori-KiyosueY, TsukitaS. “Search-and -capture” of microtubules through plus-end-binding proteins (+TIPs). , 2003, 134: 321-326[本文引用:1]
[15]
AkhmanovaA, Hoogenraad CC. Microtubule plus-end-tracking proteins: mechanisms and functions. , 2005, 17: 47-54[本文引用:1]
[16]
Inoue YH, Avides MC, ShirakiM, DeakP, YamaguchiM, NishimotoY, Matsukage A. Glover D M. Orbit, a novel microtubule-associated protein essential for mitosis in, 2000, 149: 153-166[本文引用:1]
[17]
Lemos CL, SampaioP, MaiatoH, CostaM, Omelyanchuk LV, LiberalV, Sunkel CE. Mast, a conserved microtubule associated protein required for bipolar mitotic spindle organization. , 2000, 19: 3668-3682[本文引用:1]
[18]
DhonuksheP, Weits DA, Cruz-RamirezA, Deinum EE, Tindemans SH, KakarK, PrasadK, Maehoenen AP, AmbroseC, SasabeM, WachsmannG, LuijtenM, BennettT, MachidaY, HeidstraR, WasteneysG, Mulder BM, ScheresB. A PLETHOR-auxin transcription module controls cell division plane rotation through MAP65 and CLASP. , 2012, 149: 383-396[本文引用:3]
[19]
Ambrose JC, Wasteneys GO. CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules. , 2008, 19: 4730-4737[本文引用:1]
[20]
Jawdat AB, FredC. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP. , 2011, 21: 604-614[本文引用:1]
[21]
MaiatoH, KhodjakovA, Rieder CL. Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres. , 2004, 7: 42-47[本文引用:1]
[22]
WittmanT, Waterman-storer C M. Spatial regulation of CLASP affinity for microtubules by Rac1 and GSK3 beta in migrating epithelial cells. , 2005, 169: 929-939[本文引用:1]
[23]
朱守鸿, 薛飞, 赵兰杰, 刘永昌, 李艳军, 熊显鹏, 孙杰. 棉花微管结合蛋白基因 GhCLASP1的克隆与表达分析. , 2015, 35: 1941-1948Zhu SH, XueF, Zhao LJ, Liu YC, Li YJ, Xiong XP, SunJ. Cloning and expression analysis of, 2015, 35: 1941-1948 (in Chinese with English abstract)[本文引用:2]
ZhangT, HuY, JiangW, FangL, GuanX, ChenJ, ZhangJ, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp A M, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride R C, Chen X, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen Z J. Sequencing of allotetraploid cotton (, 2015, 33: 531-537[本文引用:2]
[26]
蒋建雄, 张天真. 利用CTAB/酸酚法提取棉花组织总RNA. , 2003, 15: 166-167Jiang JX, Zhang TZ. Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. , 2003, 15: 166-167 (in Chinese with English abstract)[本文引用:1]
[27]
Andrade MA, BorkP. HEAT repeats in the Huntington’s disease protein. , 1995, 11: 115-116[本文引用:1]
[28]
Groves MR, HanlonN, TurowskiP, Hemmings BA, BarfordD. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tand emly repeated HEAT motifs. , 1999, 96: 99-110[本文引用:1]
Brand izziF, Wasteneys GO. Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules. , 2013, 75: 339-349[本文引用:1]
ZhangC, Raikhel NV, Hicks GR. CLASPing microtubules and auxin transport. , 2013, 24: 569-571[本文引用:1]
[34]
Basra AS, Malik CP. Development of the cotton fiber. , 1984, 89: 65-113[本文引用:1]
[35]
Kim HJ, Triplett BA. Cotton fiber growth in planta and in vitro: models for plant cell elongation and cell wall biogenesis. , 2001, 127: 1361-1366[本文引用:1]
[36]
Yatsu LY, Jacks TJ. An ultrastructural study of the relationship between microtubules and microfibrils in cotton (, 1981, 68: 771-777[本文引用:1]
[37]
DixitR, CyrR. Encounters between dynamic cortical microtubules promoter ordering of the cortical array through angle- dependent modifications of microtubule behavior. , 2004, 16: 3274-3284[本文引用:1]
[38]
DixitR, CyrR. The cortical microtubule array: from dynamics to organization. , 2004, 16: 2546-2552[本文引用:1]
[39]
NangakuM, Sato-YoshitakeR, OkadaY, NodaY, TakemuraR, YamazakiH, HirokawaN. KIF1B, novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. , 1994, 79: 1209-1220[本文引用:1]
[40]
Yaffe MP, StuurmanN, Vale RD. Mitochondrial positioning in fission yeast is driven by association with dynamic microtubules and mitotic spindle poles. , 2003, 100: 11424-11428[本文引用:1]