关键词:冬小麦; 形态结构; 生物量; 穗; 模型 Biomass-Based Main Spike Morphological Parameter Model for Winter Wheat CHEN Yu-Li1, YANG Ping1, ZHANG Wen-Yu2, ZHANG Wei-Xin2, ZHU Ye-Ping3, LI Shi-Juan3, GONG Fa-Jiang1, BI Hai-Bin1, YUE Ting1, CAO Hong-Xin2,* 1Zibo Academy of Agricultural Sciences, Zibo 255033, China
2Information Engineering Research Center for Digital Agriculture, Institute of Agricultural Economy, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
3 Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Fund:This study was supported by the National High Technology Research and Development Program of China (2013AA102305-1). AbstractSpike morphological structure model is an important basis for the function and structure model in winter wheat. We carried out a field experiment in the 2013-2014 and 2014-2015 growing reasons using winter wheat varieties Jimai 22, Tainong 18, and Luyuan 502 under different nitrogen application levels. The morphological-structure models of wheat spike were built through dissecting the quantitative relationship between spike morphological-structure parameters and organ biomass, as well as the internal connections of morphological-structure parameters. These models were then validated with an independent dataset collected in the 2014-2015 growing season. Except for spike length, all the models of spike width, spike thickness, glume length, glume width, glume thickness, grain length, grain width, and grain thickness had higher accuracy. These models can be used to simulate spike structure in diverse varieties under different nitrogen application levels.
图3 3个品种颖壳形态指标随穗干重的变化趋势(2013-2014)Fig. 3 Changing trends of the glumes architecture index along with the spike dry weight in three varieties (2013-2014)V1: 济麦22; V2: 泰农18; V3: 鲁原502; LV1: V1颖壳长度; LV2: V2颖壳长度; LV3: V3颖壳长度; WV1: V1颖壳宽度; WV2: V2颖壳宽度; WV3: V3颖壳宽度; TV1: V1颖壳厚度; TV2: V2颖壳厚度; TV3: V3颖壳厚度。V1, V2, and V3 represent varieties Jimai 22, Tainong 18, and Luyuan 502, respectively. LV1, LV2, and LV3 represent glume length for V1, V2, and V3, respectively. WV1, WV2, and WV3 represent glume width for V1, V2, and V3, respectively. TV1, TV2, and TV3 represent glume thickness for V1, V2, and V3, respectively.
图5 3个品种粒宽(A)和粒厚(B)随粒长的变化趋势(2013-2014)Fig. 5 Changing trends of grain width (A) and grain thickness (B) along with the grain length in three varieties (2013-2014)
曹宏鑫, 赵锁劳, 葛道阔, 刘永霞, 刘岩, 孙金英, 岳延滨, 张智优, 陈煜利. 作物模型发展探讨. , 2011, 44: 3520-3528Cao HX, Zhao SL, Ge DK, Liu YX, LiuY, Sun JY, Yue YB, Zhang ZY, Chen YL. Discussion on development of crop models. , 2011, 44: 3520-3528 (in Chinese with English abstract)[本文引用:1]
[2]
PerttunenJ, SievänenR, NikinmaaE, SalminenH, Vakev AJ. Lignum: a tree model based oil simple structural units. , 1996, 77: 87-98[本文引用:1]
[3]
PerttunenJ, SievänenR, NikinmaaE. Lignum: a model combining the structure and the functioning of trees. , 1998, 108: 189-198[本文引用:1]
[4]
PerttunenJ, NikinmaaE, MartinJ, Lechowicz, SievänenR, Messier C. Application of the functional-structural tree model Lignum to sugarmaple saplings (, 2001, 88: 471-481[本文引用:1]
[5]
CieslakM, Seleznyova AN, HananJ. A functional-structural kiwifruit vine model integrating architecture, carbon dynamics and effects of the environment. , 2010, 107: 747-764[本文引用:1]
[6]
Hanan JS, Hearn AB. Linking physiological and architectural models of cotton. , 2003, 75: 47-77[本文引用:1]
[7]
WatanabeT, Hanan JS, Room PM, HasegawaT, NakagawaH, TakahashiW. Rice morphogenesis and plant architecture: measurement, specification and the reconstruction of structural deve- lopment by 3D architectural modelling. , 2005, 95: 1131-1143[本文引用:1]
[8]
Yan HP, Kang M Z, de Reffye P, Dingkuhn M. A dynamic architectural plant model simulating resource-dependent growth. , 2004, 93: 591-602[本文引用:1]
[9]
Cao HX, LiuY, Liu YX, Hanan JS, Yue YB, Zhu DW, Lu JF, Sun JY, Shi CL, Ge DK, Wei XF, Yao AQ, Tian PP, Bao TL. Biomass-based rice (, 2012, 11: 1621-1632[本文引用:1]
[10]
刘岩, 陆建飞, 曹宏鑫, 石春林, 刘永霞, 朱大威, 孙金英, 岳延滨, 魏秀芳, 田平平, 包太林. 基于生物量的水稻叶片主要几何属性模型研究. , 2009, 42: 4093-4099LiuY, Lu JF, Cao HX, Shi CL, Liu YX, Zhu DW, Sun JY, Yue YB, Wei XF, Tian PP, Bao TL. Main geometrical parameter models of rice blade based on biomass. , 2009, 42: 4093-4099 (in Chinese with English abstract)[本文引用:1]
张文宇, 汤亮, 朱相成, 杨月, 曹卫星, 朱艳. 基于过程的小麦茎鞘夹角动态模拟. , 2011, 22: 1765-1770Zhang WY, TangL, Zhu XC, YangY, Cao WX, ZhuY. Dynamic simulation of wheat stem-sheath angle based on process. , 2011, 22: 1765-1770 (in Chinese with English abstract)[本文引用:2]
[13]
陈昱利, 杨平, 张文宇, 张伟欣, 诸叶平, 李世娟, 巩法江, 毕海滨, 岳霆, 曹宏鑫. 越冬前冬小麦主茎叶片几何参数模型研究. , 2015, 35: 1719-1726Chen YL, YangP, Zhang WY, Zhang WX, Zhu YP, Li SJ, Gong FJ, Bi HB, YueT, Cao HX. Study on main geometrical parameter models of leaf blade at pre-overwintering of winter wheat. , 2015, 35: 1719-1726 (in Chinese with English abstract)[本文引用:1]
[14]
张伟欣, 曹宏鑫, 朱艳, 刘岩, 张文宇, 陈昱利, 傅坤亚. 基于生物量的油菜越冬前植株叶片空间形态结构模型. , 2015, 41: 318-328Zhang WX, Cao HX, ZhuY, LiuY, Zhang WY, Chen YL, Fu KY. Morphological structure model of leaf space based on biomass at pre-overwintering stage in rapeseed (, 2015, 41: 318-328 (in Chinese with English abstract)[本文引用:1]
[15]
陈国庆, 朱艳, 曹卫星. 小麦叶鞘和节间生长过程的模拟研究. , 2005, 25(1): 71-74Chen GQ, ZhuY, Cao WX. Modeling leaf sheath and internode growth dynamics in wheat. , 2005, 25(1): 71-74 (in Chinese with English abstract)[本文引用:1]
[16]
谭子辉, 朱艳, 姚霞, 田永超, 刘小军, 曹卫星. 冬小麦麦穗生长过程的模拟研究. , 2006, 26(4): 93-97Tan ZH, ZhuY, YaoX, Tian YC, Liu XJ, Cao WX. Modeling spike growth dynamics in winter wheat. , 2006, 26(4): 93-97 (in Chinese with English abstract)[本文引用:2]
[17]
聂志刚, 李广. 基于APSIM模型的可视化小麦生长系统分析. , 2013, 30: 795-598Nie ZG, LiG. Analysis of APSIM-based visual growth system in wheat. , 2013, 30: 795-598 (in Chinese with English abstract)[本文引用:1]
[18]
伍燕莲, 曹卫星, 汤亮, 朱艳, 刘慧. 基于OpenGL的小麦形态可视化技术. , 2009, 25(1): 121-126Wu YL, Cao WX, TangL, ZhuY, LiuH. OpenGL-based visual technology for wheat morphology. , 2009, 25(1): 121-126 (in Chinese with English abstract)[本文引用:1]
[19]
雷晓俊, 汤亮, 张永会, 姜海燕, 曹卫星, 朱艳. 小麦麦穗几何模型构建与可视化. , 2011, 27(3): 179-184Lei XJ, TangL, Zhang YH, Jiang HY, Cao WX, ZhuY. Geometric model and visualization of wheat spike. , 2011, 27(3): 179-184 (in Chinese with English abstract)[本文引用:1]
[20]
孟军, 郭新宇, 赵春江. 小麦地上部器官几何造型与可视化研究. , 2009, 29: 106-109MengJ, Guo XY, Zhao CJ. Geometry modeling and visualization of above-ground organs of wheat. , 2009, 29: 106-109 (in Chinese with English abstract)[本文引用:2]
[21]
陈国庆, 朱艳, 刘慧, 曹卫星. 基于形态模型的小麦器官和单株虚拟生长系统研究. , 2007, 23(3): 126-130Chen GQ, ZhuY, LiuH, Cao WX. Morphogenesis model-based virtual growth system for organs and plant of wheat. , 2007, 23(3): 126-130 (in Chinese with English abstract)[本文引用:2]
[22]
MabilleF, AbecassisJ. Parametric modeling of wheat grain morphology: a new perspective. , 2003, 37: 43-53[本文引用:2]
[23]
刘铁梅, 曹卫星, 罗卫红, 王绍华, 郭文善, 邹薇, 周琴. 小麦器官间干物质分配动态的定量模拟. , 2001, 21(1): 25-31Liu TM, Cao WX, Luo WH, Wang SH, Guo WS, ZouW, ZhouQ. Quantitative simulation on dry matter partitioning dynamic in wheat organs. , 2001, 21(1): 25-31 (in Chinese with English abstract)[本文引用:1]
[24]
AssengS, Bar-TalA, Bowden JW, Keating BA, Van HewraardenA, Palat JA, Hhut NI, Probert ME. Simulation of grain protein content with APSIM-N wheat. , 2002, 16: 25-42[本文引用:1]
[25]
田梦雨, 李丹丹, 戴廷波, 姜东, 荆奇, 曹卫星. 水分胁迫下不同基因型小麦苗期的形态生理差异. , 2010, 21: 41-47Tian MY, Li DD, Dai TB, JiangD, JingQ, Cao WX. Morphological and physiological differences of wheat genotypes at seedling stage under water stress. , 2010, 21: 41-47 (in Chinese with English abstract)[本文引用:1]
[26]
李存东, 曹卫星, 戴廷波, 严美春. 小麦不同品种和播期对发育阶段的效应. , 2001, 12: 218-222Li CD, Cao WX, Dai TB, Yan MC. Effects of different varieties and sowing dates on development stages of wheat. , 2001, 12: 218-222 (in Chinese with English abstract)[本文引用:1]
[27]
张定一, 张永清, 闫翠萍, 裴雪霞. 基因型、播期和密度对不同成穗型小麦籽粒产量和灌浆特性的影响. , 2009, 15(1): 28-34Zhang DY, Zhang YQ, Yan CP, Pei XX. Effects of genotype, sowing date and planting density on grain filling and yield of wheat varieties with different ears forming characteristics. , 2009, 15(1): 28-34 (in Chinese with English abstract)[本文引用:1]
[28]
李宁, 段留生, 李建民, 翟志席, 李召虎. 播期与密度组合对不同穗型小麦品种花后旗叶光合特性、籽粒库容能力及产量的影响. , 2010, 30: 296-302LiN, Duan LS, Li JM, Zhai ZX, Li ZH. Effect of sowing date and planting density on flag leaf photosynthesis, storage capacity after anthesis and yield in different spike type cultivars, , 2010, 30: 296-302 (in Chinese with English abstract)[本文引用:1]
[29]
河南省小麦高稳优低研究推广协作组. 小麦生态与生产技术. 郑州: 河南科技出版社, 1986. pp 150-164The Collaboration GroupforHigh-Yield, Stable-Yield, High-QualityHigh-Efficient WheatProduction. Wheat Ecology and Production Technologies. Zhengzhou: Henan Scientific and Technical Publishers, 1986. pp 150-164(in Chinese)[本文引用:1]
[30]
马溶慧, 朱云集, 郭天财, 闫耀礼, 刘万代. 国麦1号播期播量对群体发育及产量的影响. , 2004, (4): 12-15Ma RH, Zhu YJ, Guo TC, Yan YL, Liu WD. Effects of planting date and seed rate in group development and yield of Guomai 1. , 2004, (4): 12-15 (in Chinese with English abstract)[本文引用:1]