关键词:生物炭; 水稻; 根系形态; 解剖结构 Effect of Biochar on Root Morphogenesis and Anatomical Structure of Rice Cultivated in Cold Region of Northeast China ZHOU Jin-Song1,2, YAN Ping2, ZHANG Wei-Ming1, ZHENG Fu-Yu2, CHENG Xiao-Yi1, CHEN Wen-Fu1,* 1Rice Research Institute, Shenyang Agricultural University / Biochar Engineering Technology Research Center of Liaoning Province / Northeast Key Laboratory of Rice Biology and Genetic Breeding, Ministry of Agriculture / Northern Key Laboratory of Super Rice Breeding, Ministry of Education, Shenyang 110866, China
2Wuchang Rice Institute, Heilongjiang Academy of Agricultural Sciences, Wuchang 150229, China
Fund:This study was supported by the State Key Special Program of Soil Fertility Improvement and Cropping Innovation for High Yield with High Efficiency in Rice Cropping Areas (2016YFD0300904), the Liaoning Provincial Major Science and Technology Platform for Universities (Biochar Engineering and Technical Research Center), the Shenyang Special Program for Apply Basic Research Program (F16-205-1-38), Special Fund for Agro-scientific Research in the Public Interest Program of China (201303095), and Program for Innovative Research Team of Ministry of Education (IRT13079) AbstractTo explore potential and practical application value of biochar in rice production in the cold region of Northeast China, we added 0-20.0% (w/w) biochar in rice nursery substrate of paddy soil and studied the root morphogenesis and anatomical structure of rice at 30 days after seed germination, The treatment of 5.0% biochar significantly increased the root length, root surface area and root volume, with the maximum value for all the root morphological indexes in the treatment of 10.0% biochar. When the biochar added more than 10.0%, the root morphological indexes started to decrease. It was indicated that the increase of root length, root surface area and root volume was the consequence of producing more fine roots. Meanwhile, when 5.0% biochar added in the rice nursery substrate, root epidermis thickness, cortex thickness, sclerenchyma tissue, number of vessels, sectional area of vessels, cortex cavity area, sectional area of whole root and root radius increased in comparison with those of the control. In the treatment of 5.0%-10.0% biochar application, all the indexes of anatomical structure of root reached the maximum. When the biochar added more than 10.0%, all the indexes of anatomical structure of root had a descending trend. It was revealed that the well-developed root epidermis and cortex were the main reason of promoting enlargement of roots when a moderate amount of biochar was added in the rice nursery substrate. Taken together, we conclude that the proper addition of 5.0%-10.0% (w/w) biochar is advantageous to the elongation, enlargement and formation of well-developed root system ,resulting in improved quality of rice seedlings in the dry rice-nursery of protected area when the paddy soil is used as the nursery substrate in the cold region of Northeast China.
Keyword:Biochar; Rice ( Oryza sativaL .); Root morphology; Anatomical structure Show Figures Show Figures
表1 生物炭对水稻秧苗根长的影响 Table 1 Effects of biochar on root length of rice seedling
生物炭添加量 Biochar content (%)
总根长度 Total root length (cm)
不同直径根长度 Length of roots in different diameters (cm)
d1
d2
d3
d4
0
49.55± 14.03 b
22.84± 7.77 b
14.39± 3.62 c
6.14± 2.39 b
6.18± 2.84 a
5.0
59.39± 12.55 a
26.53± 6.58 a
19.28± 4.75 b
7.46± 2.12 a
6.11± 1.57 a
10.0
62.60± 12.74 a
26.11± 5.70 a
22.47± 5.61 a
7.52± 2.00 a
6.49± 2.01 a
15.0
35.17± 8.18 c
11.47± 4.42 c
13.74± 3.65 cd
5.74± 1.93 b
4.21± 2.14 b
20.0
33.29± 8.07 c
10.88± 4.82 c
11.60± 2.83 d
7.22± 2.40 ab
3.59± 1.08 b
Data are shown in mean ± SD of three replicates. Different letters after SD indicate significant difference of data among treatments atP < 0.05. d1: Root diameter ≤ 0.3 mm, d2: 0.3 mm < Root diameter ≤ 0.6 mm, d3: 0.6 mm < Root diameter ≤ 0.9 mm, d4: Root diameter > 0.9 mm. 数据为3次重复的平均值± 标准差。数据后不同字母表示处理间有显著差异(P< 0.05)。d1:根直径 ≤ 0.3 mm, d2: 0.3 mm < 根直径 ≤ 0.6 mm, d3: 0.6 mm < 根直径 ≤ 0.9 mm, d4: 根直径 > 0.9 mm。
表1 生物炭对水稻秧苗根长的影响 Table 1 Effects of biochar on root length of rice seedling
表2 Table 2 表2(Table 2)
表2 生物炭对水稻秧苗根表面积的影响 Table 2 Effects of biochar on root surface area of rice seedling
生物炭添加量 Biochar content (%)
根表面积 Root surface area (cm2)
不同直径根的表面积 Surface area of roots with different diameters (cm2)
d1
d2
d3
d4
0
8.40± 2.69 b
1.23± 0.41 b
1.99± 0.50 c
1.41± 0.55 bc
2.73± 1.40 a
5.0
9.80± 2.09 a
1.44± 0.38 a
2.72± 0.67 b
1.71± 0.49 a
2.62± 0.69 a
10.0
10.55± 2.34 a
1.58± 0.34 a
3.14± 0.79 a
1.72± 0.46 a
2.74± 0.87 a
15.0
6.59± 1.62 c
0.75± 0.29 c
1.92± 0.49 cd
1.32± 0.45 c
1.75± 0.89 b
20.0
6.08± 1.24 c
0.69± 0.30 c
1.63± 0.42 d
1.63± 0.54 ab
1.42± 0.45 b
Data are shown in mean ± SD of three replicates. Different letters after SD indicate significant difference of data among treatments atP < 0.05. d1: Root diameter ≤ 0.3 mm, d2: 0.3 < Root diameter ≤ 0.6 mm, d3: 0.6 < Root diameter ≤ 0.9 mm, d4: Root diameter > 0.9 mm. 数据为3次重复的平均值± 标准差。数据后不同字母表示处理间有显著差异(P < 0.05)。d1: 根直径 ≤ 0.3 mm, d2: 0.3 < 根直径 ≤ 0.6 mm, d3: 0.6 < 根直径 ≤ 0.9 mm, d4: 根直径 > 0.9 mm。
表2 生物炭对水稻秧苗根表面积的影响 Table 2 Effects of biochar on root surface area of rice seedling
表3 生物炭对水稻秧苗根体积的影响 Table 3 Effects of biochar on root volume of rice seedling
生物炭添加量 Biochar content (%)
总根体积 Total root volume (cm3)
不同直径根的总根体积 Total volume of roots with different diameters (cm3)
d1
d2
d3
d4
0
115.40± 46.74 ab
6.13± 2.14 c
22.62± 5.65 c
26.15± 10.35 bc
108.90± 70.14 a
5.0
129.10± 29.74 a
7.19± 1.98 b
31.51± 7.77 b
31.80± 9.29 a
99.06± 30.59 a
10.0
142.27± 37.014 a
8.46± 1.85 a
36.11± 9.20 a
31.67± 8.49 a
101.70± 35.11 a
15.0
100.73± 36.21 b
4.24± 1.62 d
22.24± 5.46 c
24.34± 8.52 c
63.12± 32.57 b
20.0
89.33± 19.49 b
3.83± 1.65 d
19.06± 5.07 c
29.61± 9.70 ab
48.26± 17.60 b
Data are shown in mean ± SD of three replicates. Different letters after SD indicate significant difference of data among treatments atP < 0.05. d1: Root diameter ≤ 0.3 mm, d2: 0.3 mm < Root diameter ≤ 0.6 mm, d3: 0.6 mm < Root diameter ≤ 0.9 mm, d4: Root diameter > 0.9 mm. 数据为3次重复的平均值± 标准差。数据后不同字母表示处理间有显著差异(P < 0.05)。d1:根直径 ≤ 0.3 mm, d2: 0.3 mm < 根直径 ≤ 0.6 mm, d3: 0.6 mm < 根直径 ≤ 0.9 mm, d4: 根直径 > 0.9 mm。
表3 生物炭对水稻秧苗根体积的影响 Table 3 Effects of biochar on root volume of rice seedling
图2 不同生物炭施用量条件下水稻秧苗根系不同部位解剖结构图Fig. 2 Anatomical structures photograph of different parts of rice root under the condition of different biochar percentages
图3 不同用量生物炭对水稻秧苗根粗的影响 误差线表示3次重复的标准差。Fig. 3 Impacts of biochar application on root thickness of rice seedling Error bars show the standard deviations of three replicates.
图4 生物炭对水稻秧苗根系表皮发育的影响 误差线表示3次重复的标准差。Fig. 4 Impacts of biochar application on the epidermis development of rice seedling root Error bars show the standard deviations of three replicates.
图5 生物炭对水稻秧苗根系皮层发育的影响误差线表示3次重复的标准差。Fig. 5 Impacts of biochar application on cortex development of rice seedling rootError bars show the standard deviations of three replicates.
图6 生物炭对水稻秧苗根系中柱发育的影响误差线表示3次重复的标准差。 Error bars show the standard deviations of three replicates.Fig. 6 Impacts of biochar application on stele of rice seedling root
孙强, 张三元, 张俊国, 杨春刚. 东北水稻生产现状及对策. , 2010, 40(2): 72-74SunQ, Zhang SY, Zhang JG, Yang CG. Current situation of rice production in northeast of China and countermeasures. , 2010, 40(2): 72-74 (in Chinese with English abstract)[本文引用:1]
[2]
陈温福, 潘文博, 徐正进. 我国粳稻生产现状及发展趋势. , 2006, 37: 801-805Chen WF, Pan WB, Xu ZJ. Current situation and trends in production of japonica rice in China. , 2006, 37: 801-805 (in Chinese with English abstract)[本文引用:1]
[3]
金颖. 近代水稻传入东北及其影响研究. , 2010, (3): 35-41JinY. A study on the rice spread and inpluence to Northeastern Region in Modern Times. , 2010, (3): 35-41 (in Chinese with English abstract)[本文引用:1]
[4]
徐正进, 邵国军, 韩勇, 张学军, 全成哲, 潘国君, 陈温福. 东北三省水稻产量和品质及其与穗部性状关系的初步研究. , 2006, 32: 1878-1883Xu ZJ, Shao GJ, HanY, Zhang XJ, Quan CZ, Pan GJ, Chen WF. A preliminary study on yield and quality of rice and their relationship with panicle characters in northeast region of China. , 2006, 32: 1878-1883 (in Chinese with English abstract)[本文引用:1]
王松良, 林文雄. 我国水稻旱育稀植技术的发展和问题探讨. , 1999, 5(5): 12-14Wang SL, Lin WX. Development and Problem of Rice Dry-Raising and Thin-Planting Technology in China. , 1999, 5(5): 12-14 (in Chinese)[本文引用:1]
[7]
刘华招. 水稻育苗基质研究进展. , 2012, (10): 30-31Liu HZ. Research progress on seedling substrate of rice. , 2012, (10): 30-31 (in Chinese)[本文引用:1]
[8]
尹桂花. 东北地区水稻育苗新技术探讨. , 2007, (1): 23-24Yin GH. The new rice nursery technique investigation in northeast of China. , 2007, (1): 23-24 (in Chinese with English abstract)[本文引用:1]
TillyC, The art, science, and technology of charcoal production. , 2003, 42: 1619-1640[本文引用:1]
[11]
LehmannJ, Silva J P D, Steiner C, Nehls T, Zech W, Glaser B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. , 2003, 249: 343-357[本文引用:3]
[12]
WhitmanT, LehmannJ. Biochar—One way forward for soil carbon in offset mechanisms in Africa?, 2009, 12: 1024-1027[本文引用:1]
[13]
GerardC, ZofiaK, StavrosK, KimonC, ÖrjanG. Relations between environmental black carbon sorption and geochemical sorbent characteristics. , 2004, 38: 3632-3640[本文引用:1]
[14]
AsaiH, Samson BK, Stephan HM, SongyikhangsuthorK, HommaK, KiyonoY, InoueY, ShiraiwaT, HorieT. Biochar amendment techniques for upland rice production in Northern Laos: soil physical properties, leaf SPAD and grain yield. , 2009, 111: 81-84[本文引用:1]
[15]
SteinerC, GlaserB, Teixeira WG, LehmannJ, Blum W E H, Zech W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. , 2008, 171: 893-899[本文引用:1]
[16]
GlaserB, LehmannJ, ZechW. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. , 2002, 35: 219-230[本文引用:2]
[17]
KizitoS, WuS, Kirui WK, MingL, LuQ, BahH, DongR. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. , 2015, 505: 102-112[本文引用:1]
[18]
LehmannJ. Bioenergy in the black. , 2007, 5: 381-387[本文引用:1]
[19]
SteinerC, Teixeira WG, LehmannJ, NehlsT, Blum W E H, Zech W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. , 2007, 291: 275-290[本文引用:1]
[20]
EladY, David DR, Harel YM, BorenshteinM, Kalifa HB, SilberA, Graber ER. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. , 2010, 100: 913-921[本文引用:1]
[21]
PietikäinenJ, KiikkiläO, FritzeH. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. , 2000, 89: 231-242[本文引用:1]
[22]
Huang WK, Ji HL, GheysenG, DebodeJ, KyndtT. Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections. , 2015, 15: 267[本文引用:1]
[23]
Singh BP, Hatton BJ, BalwantS, Cowie AL, KathuriaA. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. , 2010, 39: 1224-1235[本文引用:1]
[24]
王耀锋, 刘玉学, 吕豪豪, 杨生茂. 水洗生物炭配施化肥对水稻产量及养分吸收的影响. , 2015, 21: 1049-1055Wang YF, Liu YX, Lyu HH, Yang SM. Effect of washing biochar and chemical fertilizers on rice yield and nutrient uptake. , 2015, 21: 1049-1055 (in Chinese with English abstract)[本文引用:1]
[25]
郑小龙. 减量施肥和生物质炭配施对水稻田面水水质和水稻产量的影响. 浙江农林大学博士学位论文, , 2014Zheng XL. Effects of Reducing Nitrogen and Biomass Carbon Application on Water Quality in Field Surface Water and Rice Yields. PhD Dissertation of Zhejiang A&F University, Lin’an, , 2014 (in Chinese with English abstract)[本文引用:1]
[26]
Kim HS, Kim KR, Yang JE, Yong SO, OwensG, NehlsT, WessolekG, Kim KH. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L. ) response. , 2016, 142: 153-159[本文引用:1]
[27]
Chidumayo EN. Effects of wood carbonization on soil and initial development of seedlings in miombo woodland , Zambia. , 1994, 70: 353-357[本文引用:1]
[28]
Yan GZ, ShimaK, FujiwaraS, ChibaK. The effects of bamboo charcoal and phosphorus fertilization on mixed planting with grasses and soil improving species under the nutrients poor condition. , 2004, 30: 33-38[本文引用:1]
[29]
Zwieten LV, KimberS, MorrisS, Chan KY, DownieA, RustJ, JosephS, CowieA. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. , 2010, 327: 235-246[本文引用:1]
[30]
李正理. . 北京: 科学出版社, 1987. pp 60-72Li Z L. Plant Sectioning Technology, Beijing: Science Press, 1987. pp 60-72(in Chinese)[本文引用:1]
[31]
郑国. . 北京: 高等教育出版社, 1992. pp 75-90Zheng G C. Biology Microscopy Technique, Beijing: Higher Education Press, 1993. pp 75-90(in Chinese)[本文引用:1]
[32]
InukaiY, AshikariM, KitanoH. Function of the root system and molecular mechanism of crown root formation in rice. , 2004, 45(suppl): 17[本文引用:1]
刘晓冰, 王光华, 金剑, 张秋英. 作物根际和产量生理研究. 北京: 科学出版社, 2010. p 30Liu XB, Wang GH, JinJ, Zhang QY. Beijing: Science Press, 2010. p 30 (in Chinese)[本文引用:1]
[35]
杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. , 2011, 44: 36-46Yang JC. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. , 2011, 44: 36-46 (in Chinese with English abstract)[本文引用:1]
[36]
Oguntunde PG, Abiodun BJ, Ajayi AE, Giesen N V D. Effects of charcoal production on soil physical properties in Ghana. , 2008, 171: 591-596[本文引用:1]
[37]
张伟明, 孟军, 王嘉宇, 范淑秀, 陈温福. 生物炭对水稻根系形态与生理特性及产量的影响. , 2013, 39: 1445-1451Zhang WM, MengJ, Wang JY, Fan SX, Chen WF. Effect of biochar on root morphological and physiological characteristics and yield in rice. , 2013, 39: 1445-1451 (in Chinese with English abstract)[本文引用:1]
[38]
张伟明. 生物炭的理化性质及其在作物生产上的应用. 沈阳农业大学博士学位论文, , 2012Zhang WM. Physical and Chemical Properties of Biochar and Its Application in Crop Production. PhD Dissertation of Shenyang Agricultural University, Shenyang, , 2012 (in Chinese with English abstract)[本文引用:1]
[39]
陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景. , 2013, 46: 3324-3333Chen WF, Zhang WM, MengJ. Advances and prospects in research of biochar utilization in agriculture. , 2013, 46: 3324-3333 (in Chinese with English abstract)[本文引用:2]
[40]
李合生. . 北京: 高等教育出版社, 2012. pp 163-211Li H S. Modern Plant Physiology, Beijing: Higher Education Press, 2012. pp 163-211[本文引用:1]
[41]
GlaserB, HaumaierL, GuggenbergerG, ZechW. The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. , 2001, 88: 37-41[本文引用:1]
[42]
Deenik JL, Mcclellan AT, UeharaG, Deenik JL, McClellan AT, Uehara G. Biochar volatile matter content effects on plant growth and nitrogen and nitrogen transformations in a tropical soil. , 2009, Vol. 8, pp 26-31[本文引用:1]