关键词:烤烟; 株型; 密度; 干物质积累; MMF模型 Dynamic Simulation of Dry Matter Accumulation in Flue-cured Tobacco and Analysis of Its Characteristics Based on Normalized Method SHEN Jie1, CAI Yan1,*, HE Yu-Ting1, LI Qi-Quan1, DU Xuan-Yan1,3, WANG Chang-Quan1, LUO Ding-Qi2 1 College of Resources, Sichuan Agricultural University, Chengdu 611130, China
2 Luzhou Branch of Sichuan Provincial Tobacco Company, Luzhou 646000, China
3 Academy of Agriculture and Forestry Sciences, Panzhihua 617061, China
Fund:This study was supported by the National Science and Technology Support Program of 12th Five-Year (2012BAD14B18-02), the Key Projects of Sichuan Provincial Tobacco Corporation (SCYC201504), the Key Projects of Luzhou Branch of Sichuan Provincial Tobacco Company (2013003), and the “Double Support Plan” Foundation of Sichuan Agricultural University (03571890). AbstractTo investigate a model to simulate and effectively predict the dynamic dry matter accumulation (DMA) character in different flue-cured tobacco varieties. We conducted a field experiment using three plant types of Yunyan 97, NC71, and K326 with four density treatments of 13 890, 15 150, 16 660, and 18 510 plants ha-1. To measure and simulate growth parameters, hoping to provide a new theory and method for rational close planting and higher productivity. A MMF curve equation, y = ( ab+ cxd)/( b+ xd), was developed for relative DMA and relative accumulated time by the normalization method. The dynamic model could make a good estimation for DMA dynamics with the accuracies ( k) of 0.9032-1.0482, and the precision ( R2) above 0.94. It was also found that the equation had the characteristics of the origin, the boundedness and the monotone increasing, and it was in accordance with the biological significance. The DMA of flue-cured tobacco was divided into the slow growing stage, rapid growing stage and decelerated growing stage with further analysis of its characteristic parameters. The time to maximum rate ( Tm), the initiation time and ending time of rapid growing stage showed different degrees of advance with increasing plant density. The duration ( Td) and accumulation radio ( Ra) of rapid growing stage increased significantly under the condition of high density (D3, D4). Path analysis indicated that Td or Ra significantly correlated with DMA (0.6500*, 0.7758**), the direct path coefficient of Ra was 1.7097 and its regression contribution also reached 1.3264. The density-tolerance in different plant types was manifested as Piping (K326) > Drum (NC71) > Tower (Yunyan 97), with the suitable planting density of 18 510 (D4) plant ha-1, 16 660 (D3) plant ha-1 and 15 150 (D2) - 16 660 (D3) plant ha-1, respectively.
Keyword:Flue-cured tobacco; Plant types; Density; Dry matter accumulation; MMF simulation model Show Figures Show Figures
表1 相对群体干物质积累模型 Table 1 Normalized RDMA dynamic equations of tobacco
编号Number
模型 Simulation model
参数 Parameter
标准残差 SR
决定系数 R2
a
b
c
d
1
y=(a+bx)/(1+cx+dx2)
-0.0117
0.1884
-2.3756
1.6198
0.0225
0.9990* *
2
y=a× exp[(-(b-x)2)/(2× c2)]
1.0138
0.8105
0.2268
0.0296
0.9981* *
3
y=(a× b+c× xd)/(b+xd)
0.0177
0.0714
1.2025
4.8141
0.0491
0.9955* *
4
y=a× exp[-exp(b-cx)]
1.2766
2.5776
4.9702
0.0544
0.9938* *
5
y=a+b× cos(cx+d)
0.5364
0.5648
3.7256
2.6770
0.0606
0.9932* *
In the model, x and y denote relative time and relative dry matter accumulation, respectively. * * Significant at the 0.01 probability level. 模型内x为相对生长时间, y为相对群体干物质积累量。* * 表示在0.01水平下显著。
表1 相对群体干物质积累模型 Table 1 Normalized RDMA dynamic equations of tobacco
表2 Table 2 表2(Table 2)
表2 不同品种烤烟相对群体干物质积累模型参数(MMF模型) Table 2 Parameters of normalized RDMA dynamic equations in different tobacco varieties
品种 Cultivar
密度 Density
参数 Parameter
标准残差 SR
决定系数 R2
a
b
c
d
云烟97 Yunyan 97
D1
0.0177
0.0714
1.2025
4.8140
0.0491
0.9955* *
D2
0.0121
0.0934
1.2397
4.3405
0.0410
0.9969* *
D3
0.0053
0.1105
1.2560
3.8683
0.0399
0.9970* *
D4
-0.0008
0.0833
1.1682
3.6821
0.0170
0.9963* *
NC71
D1
0.0048
0.0187
1.0550
6.4053
0.0138
0.9996* *
D2
0.0061
0.0237
1.0691
6.0135
0.0136
0.9990* *
D3
0.0062
0.0167
1.0618
6.0352
0.0147
0.9988* *
D4
0.0039
0.0204
1.0613
5.4295
0.0168
0.9995* *
K326
D1
0.0080
0.0171
1.0632
5.6445
0.0191
0.9994* *
D2
0.0086
0.0226
1.0769
5.2782
0.0221
0.9991* *
D3
0.0069
0.0264
1.0829
4.9802
0.0191
0.9991* *
D4
0.0070
0.0243
1.0698
4.6835
0.0142
0.9996* *
表2 不同品种烤烟相对群体干物质积累模型参数(MMF模型) Table 2 Parameters of normalized RDMA dynamic equations in different tobacco varieties
表3 不同烤烟品种相对群体干物质模型模拟精度(2015年) Table 3 Simulation accuracy of RDMA of simulation equation (2015)
品种 Cultivar
密度 Density
MAD (kg hm-2)
RMSE (kg hm-2)
NRMSE
NS
P(t)
云烟97 Yunyan 97
D1
294.9
304.0
0.1810
0.9464
0.8140
D2
234.9
252.8
0.1411
0.9675
0.7345
D3
259.1
282.4
0.1445
0.9592
0.7743
D4
191.0
235.3
0.1197
0.9704
0.7680
NC71
D1
311.7
343.8
0.2036
0.9448
0.6641
D2
240.0
247.3
0.1248
0.9741
0.7573
D3
148.4
164.5
0.0810
0.9391
0.7604
D4
273.9
289.0
0.1226
0.9676
0.8560
K326
D1
307.7
315.3
0.1616
0.9495
0.6725
D2
318.5
326.1
0.1714
0.9379
0.6344
D3
316.9
335.1
0.1452
0.9502
0.7501
D4
254.2
270.8
0.1024
0.9440
0.7108
MAD: mean absolute deviation of measured and simulated values; RMSE: root mean square error of measured and simulated values; NRMSE: relative root mean square error of measured and simulated values; NS: nash-sutcliffe; P(t): t-test, when P(t)> 0.05, measured and simulated values have no significant difference. MAD为实测值与模拟值的平均绝对偏差; RMSE为实测值与模拟值的均方根误差; NRMSE为归一化均方根误差; NS为效率系数; P(t)为t检验结果, 当P(t)> 0.05时, 实测值与模拟值差异不显著。
表3 不同烤烟品种相对群体干物质模型模拟精度(2015年) Table 3 Simulation accuracy of RDMA of simulation equation (2015)
张明达, 李蒙, 胡雪琼, 李晓燕, 朱勇. 基于辐热积法模拟烤烟叶面积与烟叶干物质产量. , 2013, 33: 7108-7115Zhang MD, LiM, Hu XQ, Li XY, ZhuY. Simulation of leaf area and dry matter production of tobacco leaves based on product of thermal effectiveness and photosynthetically active radiation. , 2013, 33: 7108-7115 (in Chinese with English abstract)[本文引用:1]
张永丽, 肖凯, 李雁鸣. 种植密度对杂种小麦C6-38/Py85-1旗叶光合特性和产量的调控效应及其生理机制. , 2005, 31: 498-505Zhang YL, XiaoK, Li YM. Effects and physiological mechanism of planting densities on photosynthesis characteristics of flag leaf and grain yield in wheat hybrid C6-38/Py85-1. , 2005, 31: 498-505 (in Chinese with English abstract)[本文引用:1]
[4]
张广富, 赵铭钦, 王冬, 赵进恒, 叶金果, 拓阳阳. 不同种植密度烤烟净光合速率日变化与生理生态因子的关系. , 2011, 17(1): 54-61Zhang GF, Zhao MQ, WangD, Zhao JH, Ye JG, Tuo YY. Relationship between diurnal changes of net photosynthetic rate and physio-ecological factors in flue-cured tobacco in different planting densities. , 2011, 17(1): 54-61 (in Chinese with English abstract)[本文引用:1]
[5]
骆兰平, 于振文, 王东, 张永丽, 石玉. 土壤水分和种植密度对小麦旗叶光合性能和干物质积累与分配的影响. , 2011, 37: 1049-1059Luo LP, Yu ZW, WangD, Zhang YL, ShiY. Effects of planting density and soil moisture on flag leaf photosynthetic characteristics and dry matter accumulation and distribution in wheat. , 2011, 37: 1049-1059 (in Chinese with English abstract)[本文引用:1]
[6]
张明, 宋振伟, 陈涛, 闫孝贡, 朱平, 任军, 邓艾兴, 张卫建. 不同春玉米品种干物质生产和子粒灌浆对种植密度的响应. , 2015, 23(3): 57-65ZhangM, Song ZW, ChenT, Yan XG, ZhuP, RenJ, Deng AX, Zhang WJ. Differences in responses of biomass production and grain-filling to planting density between spring maize cultivars. , 2015, 23(3): 57-65 (in Chinese with English abstract)[本文引用:1]
[7]
DaiJ, LiW, TangW, Zhan DM, Li ZH, Lu HQ, Eneji AE, Dong HZ. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. , 2015, 180: 207-215[本文引用:1]
[8]
刘伟, 张吉旺, 吕鹏, 杨今胜, 刘鹏, 董树亭, 李登海, 孙庆泉. 种植密度对高产夏玉米登海661产量及干物质积累与分配的影响. , 2011, 37: 1301-1307LiuW, Zhang JW, LyuP, Yang JS, LiuP, Dong ST, Li DH, Sun QQ. Effect of plant density on grain yield dry matter accumulation and parti-tioning in summer maize cultivar Denghai 661. , 2011, 37: 1301-1307 (in Chinese with English abstract)[本文引用:1]
[9]
曹志洪. 优质烤烟生产的土壤与施肥. 南京: 江苏科学技术出版社, 1991. pp 3-9Cao ZH. Soil and Fertilizer Application on the Production of Good Quality Flue-cured Tobacco. Nanjing: Jiangsu Scientific and Technical Publishers, 1991. pp 3-9(in Chinese)[本文引用:1]
[10]
王瑞, 刘国顺, 倪国仕, 毕庆文, 杨林波, 甄才红. 种植密度对烤烟不同部位叶片光合特性及其同化物积累的影响. , 2009, 35: 2288-2295WangR, Liu GS, Ni GS, Bi QW, Yang LB, Zhen CH. Effects of planting density on photosynthetic characteristics and assimilate accumulation of leaves in different positions in flue-cured tobacco. , 2009, 35: 2288-2295 (in Chinese with English abstract)[本文引用:1]
[11]
曹宏鑫, 赵锁劳, 葛道阔, 刘永霞, 刘岩, 孙金英, 岳延滨, 张智优, 陈煜利. 作物模型发展探讨. , 2011, 44: 3520-3528Cao HX, Zhao SL, Ge DK, Liu YX, LiuY, Sun JY, Yue YB, Zhang ZY, Chen YL. Discussion on development of crop models. , 2011, 44: 3520-3528 (in Chinese with English abstract)[本文引用:1]
[12]
PerssonT, HöglindM, Gustavsson AM, HallingM, JauhiainenL, NiemeläinenO, ThorvaldssonG, VirkajärviP. Evaluation of the LINGRA timothy model under Nordic conditions. , 2014, 161: 87-97[本文引用:1]
[13]
赵姣, 郑志芳, 方艳茹, 周顺利, 廖树华, 王璞. 基于动态模拟模型分析冬小麦干物质积累特征对产量的影响. , 2013, 39: 300-308ZhaoJ, Zheng ZF, Fang YR, Zhou SL, Liao SH, WangP. Effect of dry matter accumulation characteristics on yield of winter wheat analyzed by dynamic simulation model. , 2013, 39: 300-308 (in Chinese with English abstract)[本文引用:1]
[14]
吴玮, 马玉平, 俄有浩, 孙琳丽, 景元书. GECROS模型在黄淮海地区模拟夏玉米生长的适应性评价. , 2015, 41: 123-135WuW, Ma YP, E Y H, Sun L L, Jing Y S. Adaptability evaluation of GECROS simulating summer maize growth in the Yellow-Huaihe-Haihe rivers. , 2015, 41: 123-135 (in Chinese with English abstract)[本文引用:1]
[15]
Ojeda JJ, Pembleton KG, Islam MR, Agnussdei MG, Garcia SC. Evaluation of the agricultural production systems simulator simulating Lucerne and annual ryegrass dry matter yield in the Argentine Pampas and south-eastern Australia. , 2016, 143: 61-75[本文引用:1]
[16]
ManiruzzamanM, Talukder M S U, Khan M H, Biswas J C, Nemes A. Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh. , 2015, 159: 331-340[本文引用:1]
[17]
MäkinenH, KasevaJ, VirkajärviP, KahiluotoH. Managing resilience of forage crops to climate change through response diversity. , 2015, 183: 23-30[本文引用:1]
[18]
赵爽, 翟欣, 许自成, 陈雪, 董安玮, 杨双剑, 张玲. 乌蒙烟区气候生态特点分析. , 2013, 41(10): 70-73ZhaoS, ZhaiX, Xu ZC, ChenX, Dong AW, Yang SJ, ZhangL. Climatic and ecological characteristics of Wumeng tobacco- growing area. , 2013, 41(10): 70-73 (in Chinese with English abstract)[本文引用:1]
[19]
马国庆, 黄大年, 李丽丽, 于平. 重磁异常解释的归一化局部波数法. , 2014, 57: 1300-1309Ma GQ, Huang DN, Li LL, YuP. A normalized local wavenumber method for interpretation of gravity and magnetic anomalies. , 2014, 57: 1300-1309 (in Chinese with English abstract)[本文引用:1]
[20]
李树忱, 冯现大, 李术才, 李利平, 袁超. 矿井顶板突水模型试验多场信息的归一化处理方法. , 2011, 36: 447-451Li SC, Feng XD, Li SC, Li LP, YuanC. The normalization process of the multi-field information from a coal mine water- inrush model test. , 2011, 36: 447-451 (in Chinese with English abstract)[本文引用:1]
[21]
付雪丽, 赵明, 周宝元, 崔国美, 丁在松. 小麦、玉米粒重动态共性特征及其最佳模型的筛选与应用. , 2009, 35: 309-316Fu XL, ZhaoM, Zhou BY, Cui GM, Ding ZS. Optimal model for dynamic characteristics of grain weight commonly used in wheat and maize. , 2009, 35: 309-316 (in Chinese with English abstract)[本文引用:1]
[22]
张宾, 赵明, 董志强, 李建国, 陈传永, 孙锐. 作物高产群体LAI动态模拟模型的建立与检验. , 2007, 33: 612-619ZhangB, ZhaoM, Dong ZQ, Li JG, Chen CY, SunR. Establishment and test of LAI dynamic simulation model for high yield population. , 2007, 33: 612-619 (in Chinese with English abstract)[本文引用:2]
[23]
KobayashiK, Salam MU. Comparing simulated and measured values using mean squared deviation and its components. , 2000, 92: 345-352[本文引用:1]
[24]
纪洪亭, 冯跃华, 何腾兵, 潘剑, 范乐乐, 李云, 武彪, 肖铭, 粱显林. 超级杂交稻群体干物质和养分积累动态模型与特征分析. , 2012, 45: 3709-3720Ji HT, Feng YH, He TB, PanJ, Fan LL, LiY, WuB, XiaoM, Liang XL. A dynamic model of dry matter and nutrient accumulation in super hybrid rice and analysis of its characteristics. , 2012, 45: 3709-3720 (in Chinese with English abstract)[本文引用:1]
[25]
王军保, 刘新荣, 李鹏, 郭建强. MMF模型在采空区地表沉降预测中的应用. , 2012, 37: 411-415Wang JB, Liu XR, LiP, Guo JQ. Study on prediction of surface subsidence in mined-out region with the MMF model. , 2012, 37: 411-415 (in Chinese with English abstract)[本文引用:1]
Morgan R PC, Quinton JN, Smith RE, GoversG, Poesen J WA, AuerswaldK, ChisciG, TorriD, Styczen ME. The european soil erosion model (eurosem): a dynamic approach for predicting sediment transport from fields and small catchment. , 1998, 23: 527-544[本文引用:1]
[28]
熊伟, 林而达, 杨婕, 李迎春. 作物模型区域应用两种参数校准方法的比较. , 2008, 28: 2140-2147XiongW, Lin ED, YangJ, Li YC. Comparison of two calibration approaches for regional simulation of crop model. , 2008, 28: 2140-2147 (in Chinese with English abstract)[本文引用:1]
[29]
李国强, 汤亮, 张文宇, 曹卫星, 朱艳. 不同株型小麦干物质积累与分配对氮肥响应的动态分析. , 2009, 35: 2258-2265Li GQ, TangL, Zhang WY, Cao WX, ZhuY. Dynamic analysis on response of dry matter accumulation and partitioning to nitrogen fertilizer in wheat cultivars with different plant types. , 2009, 35: 2258-2265 (in Chinese with English abstract)[本文引用:1]
[30]
邓飞, 王丽, 刘利, 刘代银, 任万军, 杨文钰. 不同生态条件下栽培方式对水稻干物质生产和产量的影响. , 2012, 38: 1930-1942DengF, WangL, LiuL, Liu DY, Ren WJ, Yang WY. Effects of cultivation methods on dry matter production and yield of rice under different ecological conditions. , 2012, 38: 1930-1942 (in Chinese with English abstract)[本文引用:1]
[31]
张喜峰, 张立新, 高梅, 李云飞, 翟优雅, 韦成才, 马英明, 陈明山, 黄金辉. 密度与氮肥互作对烤烟氮钾含量、光合特性及产量的影响. , 2013, (2): 32-36Zhang XF, Zhang LX, GaoM, Li YF, Zhai YY, Wei CC, Ma YM, Chen MS, Huang JH. Effects of interaction between nitrogen application rate and planting density on nitrogen and potassium contents, photosynthesis characteristics and yield of flue-cured tobacco. , 2013, (2): 32-36 (in Chinese with English abstract)[本文引用:1]
[32]
王存凯, 陈鹏飞, 陶洪斌, 孟祥盟, 刘慧涛, 刘武仁, 王璞, 廖树华. 玉米产量潜力及超高产物质积累途径优化分析方法. , 2014, 22: 1414-1423Wang CK, Chen PF, Tao HB, Meng XM, Liu HT, Liu WR, WangP, Liao SH. Optimized FAO-AEZ model for estimation of maize yield potential and dry matter accumulation for super-high yield cultivation. , 2014, 22: 1414-1423 (in Chinese with English abstract)[本文引用:1]
[33]
黄振喜, 王永军, 王空军, 李登海, 赵明, 柳京国, 董树亭, 王洪军, 王军海, 杨今胜. 产量15000 kg hm-2以上夏玉米灌浆期间的光合特性. , 2007, 40: 1898-1906Huang ZX, Wang YJ, Wang KJ, Li DH, ZhaoM, Liu JG, Dong ST, Wang HJ, Wang JH, Yang JS. Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15000 kg hm-2. , 2007, 40: 1898-1906 (in Chinese with English abstract)[本文引用:1]
[34]
宋珍霞, 高明, 关博谦, 许安定, 代先强. 硼对烤烟干物质积累和养分吸收的动态模拟. , 2006, 12: 565-570Song ZX, GaoM, Guan BQ, Xu AD, Dai XQ. Simulating the dynamics of dry matter and nutrient accumulation of flue-cured tobacco under different boron concentration. , 2006, 12: 565-570 (in Chinese with English abstract)[本文引用:1]
[35]
黄冲平, 王爱华, 胡秉民. 马铃薯生育期和干物质积累的动态模拟研究. , 2003, 18: 314-320Huang CP, Wang AH, Hu BM. Study on the simulation of potato phenology development and dry-matter accumulation. , 2003, 18: 314-320 (in Chinese with English abstract)[本文引用:1]
[36]
刘娟, 熊淑萍, 杨阳, 翟清云, 王严峰, 王静, 马新明. 基于归一化法的小麦干物质积累动态预测模型. , 2012, 32: 5512-5520LiuJ, Xiong SP, YangY, Zhai QY, Wang YF, WangJ, Ma XM. A model to predict dry matter accumulation dynamics in wheat based on the normalized method. , 2012, 32: 5512-5520 (in Chinese with English abstract)[本文引用:1]
[37]
李向岭, 赵明, 李从锋, 葛均筑, 侯海鹏, 李琦, 侯立白. 播期和密度对玉米干物质积累动态的影响及其模型的建立. , 2010, 36: 2143-2153Li XL, ZhaoM, Li CF, Ge JZ, Hou HP, LiQ, Hou LB. Effect of sowing-date and planting density on dry matter accumulation dynamic and establishment of its simulated model in maize. , 2010, 36: 2143-2153 (in Chinese with English abstract)[本文引用:1]