摘要2011—2012年以超级杂交籼稻金优785为试材, 研究贵州高原山区6个试验点的中产(9.0~10.5 t hm-2)、高产(10.5~12.0 t hm-2)、超高产(12.0~14.5 t hm-2)群体特征。结果表明: (1) 不同产量水平群体的有效穗数差异最大, 其次是穗粒数和结实率, 千粒重差异最小, 有效穗数与产量的直接通径系数2011年和2012年分别为0.5822和0.7304, 相关系数分别为0.7771和0.8858; (2) 抽穗期不同产量水平群体干物质积累量差异较小, 成熟期超高产群体干物质积累量两年平均为21.9 h hm-2, 分别比高产和中产群体提高了7.7%和15.9%, 差异达显著水平; (3) 抽穗期粒叶比以超高产群体最高, 与高产和中产群体相比, 超高产群体颖花数/叶面积分别提高9.7%和21.5%, 实粒数/叶面积分别提高10.9%和17.8%, 粒重/叶面积分别提高4.3%和8.4%; (4) 超高产和高产群体穗型较大, 每穗250粒以上的大穗比例较多, 100粒以下的小穗比例较少; (5) 顶四叶叶长顺序在不同产量水平群体间也有较大差异, 中产群体以顶一叶最长、顶四叶最短, 高产和超高产群体以顶二叶或顶三叶最长、顶四叶最短。因此, 要实现贵州高原水稻超高产, 需增加有效穗数、促大穗形成, 确保抽穗期拥有适宜叶面积和较高的抽穗后干物质积累量。
关键词:杂交籼稻; 不同产量; 群体质量; 干物质; 粒叶比; 穗型 Characterization of Populations with Different Yield Levels in Indica Hybrid Rice in Plateau Area of Guizhou Province LUO De-Qiang1,2, WANG Shao-Hua1,*, JIANG Xue-Hai2, LI Gang-Hua1, ZHOU Wei-Jia2, LI Min2, JI Guang-Mei2, DING Yan-Feng1, LING Qi-Hong1, LIU Zheng-Hui1 1 College of Agricultural of Nanjing Agricultural University / Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing 210095, China
2 Rice Research Institute of Guizhou Province, Guiyang 550006, China
Fund:The study was supported by the Guizhou Province Agricultural Scientific Research Program [NY(2014)3018], the Guizhou Province Agricultural Science and Technology Achievements Transformation Projects [(2015)5021], the Guizhou Academy of Agricultural Sciences Special Funds [(2014) 013], and Independent Innovation Special Funds [(2014)019]. AbstractRice is one of the most important staple food crops in Guizhou province, it is critical to ensure food safety through continually improving grain yield per unit area. In order to study the population quality characteristics of indica hybrid rice with different yield levels in Guizhou plateau mountain area, field experiments were conducted at six planting regions in 2011 and 2012. The populations with super-high-yielding (12.0-14.5 t ha-1), high-yielding (10.5-12.0 t ha-1), and medium-yielding levels (9.0-10.5 t ha-1) were obtained from super hybrid rice Jinyou 785. To study their yield, yield components, and population quality characteristics. Productive panicle number was the most important factor influencing the rice yield across planting regions and years, followed by spikelets per panicle and filled grain percentage. The correlation between yield and grain weight was not significant. Between productive panicle number and yield, the direct path coefficient was 0.5822 in 2011 and 0.7304 in 2012, the correlation coefficient was 0.7771 in 2011 and 0.8858 in 2012. There was little difference in dry matter accumulation at heading among different populations, however, a significant difference in dry matter accumulation at maturity. Compared with high-yielding rice and medium-yielding rice, the averaged dry matter accumulations of super-high-yielding rice were 7.7% and 15.9% higher, respectively. When values were averaged across years, compared with high-yielding rice and medium-yielding rice, the super-high-yielding rice had 9.7% and 21.5% higher ratio of spikelets per leaf area, 10.9% and 17.8% higher ratio of filled grains per leaf area, 4.3% and 8.4% higher grain weight per leaf area, respectively. As for the panicle size, compared with medium-yielding rice, both super-high-yielding and high-yielding rice had more percentage of large panicles with spikelets above 250 and less percentage of panicles with spikelets below 100. As to top four leaves, the medium-yielding rice had the longest 1st leaf and lowest 4th leaf from top, meanwhile, the super-high-yielding and high-yielding rice had the longest 2nd leaf and lowest 4th leaf from top. Therefore, increasing productive panicle number and promoting large panicle formation will be helpful to improve rice yield, in addition, it is also very important to ensure optimum leaf area index at heading and increase the dry matter accumulations after heading stage.
Keyword: Indica hybrid rice; Different yield; Population quality; Dry matter; Grain leaf ratio; Panicle type Show Figures Show Figures
表3 产量及其构成因素 Table 3 Yield and yield components in different rice populations
示范方 Demonstration region
产量等级 Yield level
样本田 块数 Number
穗数 Panicles (× 104 hm-2)
穗粒数 Spikelets per panicle
结实率 Filled grain rate (%)
千粒重 1000-grain weight (g)
实际产量 Yield (t hm-2)
2011
余庆 Yuqing
中产Medium yield
22
220.2 c
185.3 b
85.5 c
27.8 a
9.5 c
高产High yield
25
241.8 b
190.7 a
88.6 a
28.0 a
11.4 b
超高产Super high yield
20
265.3 a
192.8 a
87.6 b
28.0 a
12.4 a
黄平 Huangping
中产Medium yield
21
231.7 c
180.5 b
85.5 b
28.0 b
9.8 c
高产High yield
20
239.5 b
188.4 a
89.2 a
29.0 a
11.0 b
超高产Super high yield
22
252.1 a
190.8 a
88.9 a
28.5 ab
12.1 a
绥阳 Suiyang
中产Medium yield
24
218.4 c
190.4 b
81.7 b
29.0 a
9.9 c
高产High yield
21
226.5 b
190.4 a
88.7 a
29.6 a
11.1 b
超高产Super high yield
21
238.5 a
203.1 a
91.2 a
30.0 a
12.8 a
锦屏 Jinping
中产Medium yield
21
230.1 b
181.6 b
82.2 b
27.7 b
9.4 c
高产High yield
20
238.6 a
188.4 a
85.3 b
29.0 a
11.1 b
超高产Super high yield
22
243.1 a
188.8 a
91.2 a
28.8 ab
12.3 a
三穗 Sansui
中产Medium yield
25
250.4 c
180.2 b
80.6 c
27.5 a
9.9 c
高产High yield
21
258.0 b
188.2 a
84.1 b
28.0 a
11.3 b
超高产Super high yield
22
267.8 a
187.4 a
88.5 a
28.0 a
12.5 a
兴义 Xingyi
中产Medium yield
26
242.0 c
186.5 b
80.8 b
28.6 b
9.8 c
高产High yield
23
258.2 b
188.5 b
82.8 b
28.7 b
11.3 b
超高产Super high yield
27
307.5 a
195.5 a
90.0 a
29.3 a
14.5 a
平均 Average
中产Medium yield
232.1
184.1
82.7
28.1
9.7
高产High yield
243.8
189.1
86.5
28.7
11.2
超高产Super high yield
262.4
193.1
89.6
28.8
12.8
2012
余庆 Yuqing
中产Medium yield
18
210.3 c
192.2 a
87.2 a
29.2 a
9.6 b
高产High yield
21
231.0 b
192.6 a
85.6 b
28.8 b
10.8 ab
超高产Super high yield
20
255.6 a
191.6 a
87.2 ab
28.8 b
12.2 a
黄平 Huangping
中产Medium yield
21
211.9 c
180.6 b
86.2 b
28.7 a
9.2 c
高产High yield
19
229.8 b
182.5 b
89.0 a
29.1 a
10.6 b
超高产Super high yield
19
250.1 a
189.8 a
89.9 a
28.3 a
12.1 a
绥阳 Suiyang
中产Medium yield
27
220.4 b
192.5 ab
84.6 b
28.3 a
9.8 c
高产High yield
20
216.9 c
195.3 a
87.3 a
29.0 a
10.5 b
超高产Super high yield
18
253.8 a
190.1 b
88.2 a
28.9 a
12.1 a
锦屏 Jinping
中产Medium yield
19
240.5 b
184.5 b
82.2 c
28.2 a
9.6 c
高产High yield
22
239.2 b
188.4 ab
85.3 b
28.0 a
10.6 b
超高产Super high yield
20
255.9 a
189.6 a
88.8 a
28.3 a
12.5 a
三穗 Sansui
中产Medium yield
22
230.4 c
185.2 b
85.2 b
28.5 a
10.1 c
高产High yield
25
246.1 b
185.6 b
84.5 b
28.0 a
10.7 b
超高产Super high yield
23
257.5 a
188.4 a
89.3 a
28.0 a
12.3 a
兴义 Xingyi
中产Medium yield
25
225.8 c
183.6 a
86.3 b
28.8 a
10.0 b
高产High yield
20
237.2 b
184.7 a
85.2 b
28.3 a
10.7 b
超高产Super high yield
20
267.4 a
183.8 a
91.2 a
28.7 a
12.6 a
平均 Average
中产Medium yield
223.2
186.4
85.3
28.6
9.7
高产High yield
233.4
188.2
86.2
28.5
10.7
超高产Super high yield
256.7
188.9
89.2
28.5
12.3
Values followed by different letters are significantly different within the same year among treatments at the 0.05 probability level. 标以不同字母的数据在同一年度各处理间在0.05概率水平上差异显著。
表3 产量及其构成因素 Table 3 Yield and yield components in different rice populations
表4 Table 4 表4(Table 4)
表4 产量及其产量构成因素通径分析 Table 4 Path analysis of yield and yield components
相关系数 Correlation of coefficient
决定系数 Coefficient of determination
直接作用 Direct effect
间接作用 Indirect effect
通过X1 Th. X1
通过X2 Th. X2
通过X3 Th. X3
通过X4 Th. X4
2011
穗数 Panicles (X1)
0.7771* *
0.2749
0.5822
0.0879
0.1060
0.0009
穗粒数 Spikelets per panicle (X2)
0.7391* *
0.0270
0.2953
0.1733
0.2417
0.0288
结实率 Filled grain rate (X3)
0.7488* *
0.0863
0.3829
0.1612
0.1864
0.0183
千粒重 1000-grain weight (X4)
0.4530
0.0006
0.0388
0.0139
0.2195
0.1808
2012
穗数 Panicles (X1)
0.8858* *
0.2538
0.7304
-0.0123
0.1697
-0.0002
穗粒数 Spikelets per panicle (X2)
0.2211
0.0530
0.2327
-0.0385
0.0262
0.0007
结实率 Filled grain rate (X3)
0.7237* *
0.0747
0.3796
0.3266
0.0160
0.0015
千粒重 1000-grain weight (X4)
-0.1446
0.0000
0.0049
-0.2981
0.0341
0.1144
* * Correlation is significant at the 0.01 probability level. * * 表示0.01水平上相关显著。Pe(2011) = 0.1582, Pe(2012) = 0.1659
表4 产量及其产量构成因素通径分析 Table 4 Path analysis of yield and yield components
2.2 抽穗前后的干物质积累量比较抽穗期各产量等级水稻的干物质积累量均为11.0 t hm-2左右, 差异不大, 成熟期差异则达显著水平(表5)。超高产水稻成熟期的干物质积累量最高, 为21.00~24.97 t hm-2(2011)和20.12~22.96 t hm-2(2012), 两年各点超高产干物质积累量的平均值分别为22.36 t hm-2(2011)和21.46 t hm-2(2012), 超高产水平比高产水平和中产水平提高了7.7%和15.9% (两年平均)。比较抽穗至成熟阶段的干物质积累量, 超高产水稻2011年的干物质积累量平均为18.85 t hm-2, 分别比高产水平和中产水平提高14.0%、38.9%, 超高产水稻2012年的干物质积累量平均为10.15 t hm-2, 分别比高产水平和中产水平提高10.8%、27.3%。以上结果表明, 水稻抽穗后干物质的积累量对提高水稻产量有重要作用, 抽穗后干物质积累越多产量越高。 表5 Table 5 表5(Table 5)
表5 干物质积累量 Table 5 Amount of dry matter accumulation
示范点 Site
产量等级 Yield level
干物质量 Dry matter (t hm-2)
抽穗期 Heading
成熟期 Mature
抽穗至成熟 Heading-Mature
2011
余庆 Yuqing
中产Medium yield
10.74 a
18.37 c
7.63
高产High yield
10.11 b
20.12 b
10.01
超高产Super high yield
10.72 a
21.00 a
10.28
黄平 Huangping
中产Medium yield
10.38 c
18.19 c
7.81
高产High yield
11.03 b
20.97 b
9.94
超高产Super high yield
11.57 a
21.89 a
10.32
绥阳 Suiyang
中产Medium yield
11.00 b
19.06 c
8.06
高产High yield
11.12 b
19.79 b
8.67
超高产Super high yield
11.42 a
22.32 a
10.90
锦屏 Jinping
中产Medium yield
11.06 a
18.65 c
7.59
高产High yield
11.09 a
20.47 b
9.38
超高产Super high yield
10.98 b
21.49 a
10.51
三穗 Sansui
中产Medium yield
11.07 c
18.82 c
7.75
高产High yield
11.19 b
20.32 b
9.13
超高产Super high yield
11.88 a
22.46 a
10.58
兴义 Xingyi
中产Medium yield
11.65 b
19.86 c
8.21
高产High yield
11.08 c
21.00 b
9.92
超高产Super high yield
12.46 a
24.97 a
12.51
平均 Average
中产Medium yield
10.98
18.83
7.84
高产High yield
10.94
20.45
9.51
超高产Super high yield
11.51
22.36
10.85
2012
余庆 Yuqing
中产Medium yield
10.51 a
18.12 b
7.61
高产High yield
10.23 a
19.87 a
9.64
超高产Super high yield
10.53 a
20.12 a
9.59
2012
黄平 Huangping
中产Medium yield
10.42 c
18.06 c
7.64
高产High yield
11.00 b
20.02 b
9.02
超高产Super high yield
11.39 a
20.96 a
9.57
绥阳 Suiyang
中产Medium yield
11.15 b
19.17 c
8.02
高产High yield
11.08 b
20.17 b
9.09
超高产Super high yield
11.37 a
21.97 a
10.60
锦屏 Jinping
中产Medium yield
11.12 a
19.67 c
8.55
高产High yield
11.10 a
20.06 b
8.96
超高产Super high yield
11.03 a
20.99 a
9.96
三穗 Sansui
中产Medium yield
11.14 b
19.01 c
7.87
高产High yield
11.16 b
20.28 b
9.12
超高产Super high yield
11.68 a
21.76 a
10.08
兴义 Xingyi
中产Medium yield
11.56 b
19.67 c
8.11
高产High yield
11.76 a
20.87 b
9.11
超高产Super high yield
11.87 a
22.96 a
11.09
平均 Average
中产Medium yield
10.98
18.95
7.97
高产High yield
11.06
20.21
9.16
超高产Super high yield
11.31
21.46
10.14
Values followed by different letters are significantly different within the same year among treatments at the 0.05 probability level. 标以不同字母的数据在同一年度各处理间在0.05 概率水平上差异显著。
表5 干物质积累量 Table 5 Amount of dry matter accumulation
表6 不同产量水平抽穗期粒叶比 Table 6 Grain-leaf ratio of populations with different yield levels at heading stage in 2012
示范点 Site
产量等级 Yield level
颖花数/叶面积 Ratio of spikelets number to leaf area (cm-2)
实粒数/叶面积 Ratio of grain number to leaf area (cm-2)
粒重/叶面积 Ratio of grain weight to leaf area (mg cm-2)
余庆 Yuqing
中产Medium yield
0.50 b
0.45 b
14.26 c
高产High yield
0.54 ab
0.50 a
15.34 b
超高产Super high yield
0.60 a
0.55 a
15.87 a
黄平 Huangping
中产Medium yield
0.47 b
0.44 b
14.54 c
高产High yield
0.53 a
0.47 ab
14.75 b
超高产Super high yield
0.57 a
0.50 a
15.42 a
绥阳 Suiyang
中产Medium yield
0.53 b
0.47 b
14.16 c
高产High yield
0.56 b
0.50 ab
14.62 b
超高产Super high yield
0.63 a
0.56 a
14.46 a
锦屏 Jinping
中产Medium yield
0.49 b
0.46 b
15.00 c
高产High yield
0.52 b
0.48 ab
15.52 b
超高产Super high yield
0.59 a
0.52 a
15.62 a
三穗 Sansui
中产Medium yield
0.53 b
0.50 a
15.15 c
高产High yield
0.55 ab
0.51 a
15.48 b
超高产Super high yield
0.61 a
0.56 a
16.00 a
兴义 Xingyi
中产Medium yield
0.55 b
0.51 b
15.32 c
高产High yield
0.58 b
0.48 b
15.78 b
超高产Super high yield
0.68 a
0.59 a
17.08 a
平均 Average
中产Medium yield
0.51
0.47
14.74
高产High yield
0.55
0.49
15.25
超高产Super high yield
0.61
0.55
15.74
Values followed by different letters are significantly different within the same year among treatments at the 0.05 probability level. 标以不同字母的数据在同一年度各处理间在0.05概率水平上差异显著。
表6 不同产量水平抽穗期粒叶比 Table 6 Grain-leaf ratio of populations with different yield levels at heading stage in 2012
图2 不同产量水平群体齐穗期顶四叶叶长比较L1、L2、L3和L4分别表示倒数第1、第2、第3和第4片叶的长度。Fig. 2 Top four leaves length of populations with different yield levels at full heading stage in 2012L1, L2, L3, and L4 indicate leaf length of reciprocal the 1st leaf, the 2nd leaf, the 3rd leaf, and the 4th leaf.
4 结论在贵州高原山区实现水稻产量提升的有效途径是在稳定穗数的基础上提高结实率至90%左右, 增加大穗比例, 确保大库容量。在抽穗期适宜叶面积的基础上提高粒叶比, 确保颖花数/叶面积0.60左右、实粒数/叶面积0.55左右、粒重/叶面积为15.50左右, 抽穗至成熟的干物质积累量为11.0 t hm-2左右。 The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000. pp 42-216Ling QH. The Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 42-216(in Chinese)[本文引用:6]
[2]
吴桂成, 张洪程, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 沙安勤, 徐宗进, 钱宗华, 孙菊英. 南方粳型超级稻物质生产积累及超高产特征的研究. , 2010, 36: 1921-1930Wu GC, Zhang HC, Dai QG, Huo ZY, XuK, GaoH, Wei HY, Sha AQ, Xu ZJ, Qian ZH, Sun JY. Characteristics of dry matter production and accumulation and super-high yield of, 2010, 36: 1921-1930 (in Chinese with English abstract)[本文引用:2]
[3]
许轲, 张军, 花劲, 张洪程, 周培建, 程飞虎, 黄大山, 陈忠平, 陈国梁, 戴其根, 霍中洋, 魏海燕, 高辉. 双季杂交晚粳稻超高产形成特征. , 2014, 40: 678-690XuK, ZhangJ, HuaJ, Zhang HC, Zhou PJ, Cheng FH, Huang DS, Chen ZP, Chen GL, Dai QG, Huo ZY, Wei HY, GaoH. Yield components and population characteristics of super-high- yielding late, 2014, 40: 678-690 (in Chinese with English abstract)[本文引用:1]
[4]
韦还和, 姜元华, 赵可, 许俊伟, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郑飞. 甬优系列杂交稻品种的超高产群体特征. , 2013, 39: 2201-2210Wei HH, Jiang YH, ZhaoK, Xu JW, Zhang HC, Dai QG, Huo ZY, XuK, Wei HY, ZhengF. Characteristics of super-high yield population in Yongyou series of hybrid rice. , 2013, 39: 2201-2210 (in Chinese with English abstract)[本文引用:1]
[5]
孙永健, 马均, 孙园园, 徐徽, 严奉君, 代邹, 蒋明金, 李玥. 水氮管理模式对杂交籼稻冈优527群体质量和产量的影响. , 2014, 47: 2047-2061Sun YJ, MaJ, Sun YY, XuH, Yan FJ, DaiZ, Jiang MJ, LiY. Effects of water and nitrogen management patterns on population quality and yield of hybrid rice Gangyou 527. , 2014, 47: 2047-2061 (in Chinese with English abstract)[本文引用:1]
[6]
薛亚光, 葛立立, 王康君, 颜晓元, 尹斌, 刘立军, 杨建昌. 不同栽培模式对杂交粳稻群体质量的影响. , 2013, 39: 280-291Xue YG, Ge LL, Wang KJ, Yan XY, YinB, Liu LJ, Yang JC. Effects of different cultivation patterns on population quality of, 2013, 39: 280-291 (in Chinese with English abstract). [本文引用:3]
[7]
胡雅杰, 邢志鹏, 龚金龙, 刘国涛, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 沙安勤, 周有炎, 罗学超, 刘国林. 钵苗机插水稻群体动态特征及高产形成机制的探讨. , 2014, 47: 865-879Hu YJ, Xing ZP, Gong JL, Liu GT, Zhang HC, Dai QG, Huo ZY, XuK, Wei HY, Guo BW, Sha AQ, Zhou YY, Luo XC, Liu GL. Study on population characteristics and formation mechanisms for high yield of pot-seedling mechanical transplanting rice. , 2014, 47: 865-879 (in Chinese with English abstract)[本文引用:2]
[8]
杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. , 2006, 39: 1336-1345Yang JC, DuY, Wu CF, Liu LJ, Wang ZQ, Zhu QS. Growth and development characteristics of super-high-yielding mid-season, 2006, 39: 1336-1345 (in Chinese with English abstract)[本文引用:2]
[9]
敖和军, 王淑红, 邹应斌, 彭少兵, 唐启源, 方远祥, 肖安民, 陈玉梅, 熊昌明. 超级杂交稻干物质生产特点与产量稳定性研究. , 2008, 41: 1927-1936Ao HJ, Wang SH, Zou YB, Peng SB, Tang QY, Fang YX, Xiao AM, Chen YM, Xiong CM. Study on yield stability and dry matter characteristics of super high yield. , 2008, 41: 1927-1936 (in Chinese with English abstract)[本文引用:1]
[10]
潘圣刚, 黄胜奇, 张帆, 汪金平, 蔡明历, 曹凑贵, 唐湘如, 黎国喜. 超高产栽培杂交中籼稻的生长发育特性. , 2011, 37: 537-544Pan SG, Huang SQ, ZhangF, Wang JP, Cai ML, Cao CG, Tang XR, Li GX. Growth and development characteristics of super- high-yielding mid-season2011, 37: 537-544 (in Chinese with English abstract)[本文引用:1]
[11]
马均, 朱庆森, 马文波, 田彦华, 杨建昌, 周开达. 重穗型水稻光合作用、物质积累与运转的研究. , 2003, 36: 375-381MaJ, Zhu QS, Ma WB, Tian YH, Yang JC, Zhou KD. Studies on the photosynthetic characteristics and accumulation and transformation of assimilation product in heavy panicle type of rice. , 2003, 36: 375-381 (in Chinese with English abstract)[本文引用:2]
[12]
杨从党, 李刚华, 李贵勇, 夏琼梅, 邓安凤, 刘正辉, 王绍华, 凌启鸿, 丁艳锋. 立体生态区水稻定量促控栽培技术的增产机理. , 2012, 45: 1904-1913Yang CD, Li GH, Li GY, Xia QM, Deng AF, Liu ZH, Wang SH, Ling QH, Ding YF. Research on the mechanism of grain yield increase of rice by quantitative intensifying and controlling cultivation under an erect ecology in Yunnan province of China. , 2012, 45: 1904-1913 (in Chinese with English abstract)[本文引用:2]
[13]
罗德强, 王绍华, 江学海, 李刚华, 周维佳, 李敏, 姬广梅, 丁艳锋, 凌启鸿, 刘正辉. 精确定量施肥对贵州高原山区杂交籼稻产量与群体质量的影响. , 2014, 47: 2099-2108Luo DQ, Wang SH, Jiang XH, Li GH, Zhou WJ, LiM, Ji GM, Ding YF, Ling QH, Liu ZH. Effects of accurate fertilizer model on yield and population quality of hybrid, 2014, 47: 2099-2108 (in Chinese with English abstract)[本文引用:2]
[14]
Ying JF, Peng SB, He QR, YangH, Yang CD, Visperas RM, Cassman KG. Comparison of high-yield rice in tropical and subtropical environments: I. Determinants of grain and dry matter yields. , 1998, 57: 71-84[本文引用:2]
[15]
Peng SB. Progress in ideotype breeding to increase rice yield potential. , 2008, 108: 32-38[本文引用:1]
[16]
袁隆平. 新株型育种进展. , 2011, 26(4): 72-74Yuan LP. Progress of new plant type breeding. , 2011, 26(4): 72-74 (in Chinese)[本文引用:1]
[17]
凌启鸿. 水稻精确定量栽培理论与技术. 北京: 中国农业出版社, 2007Ling QH. Beijing: China Agriculture Press, 2007 (in Chinese)[本文引用:1]
[18]
余显权. 贵州水稻超高产育种目标及实现途径探讨. , 2002, (4): 46-47Yu XQ. Study the breeding objectives and approaches of super high yield rice in Guizhou province. , 2002, (4): 46-47 (in Chinese)[本文引用:1]
[19]
杨建昌. 水稻弱势粒灌浆机理与调控途径. , 2010, 36: 2011-2019Yang JC. Mechanism and regulation in the filling of inferior spikelets of rice. 2010, 36: 2011-2019 (in Chinese with English abstract)[本文引用:1]
[20]
张发丽, 黄婷婷, 石明, 张恒栋, 钱晓刚, 罗德强. 穗肥调控时期对大穗型水稻品种结实率及产量的影响. , 2014, 42(7): 24-26Zhang FL, Huang TT, ShiM, Zhang HD, Qian XG, Luo DQ. Rice heading and fruiting under different head dressing regulation dat. , 2014, 42(7): 24-26 (in Chinese with English abstract)[本文引用:1]
[21]
江学海, 罗德强, 周维佳, 涂丹. 基蘖肥与穗肥比例对杂交水稻氮素吸收利用的影响. , 2001, 28(5): 80-83Jiang XH, Luo DQ, Zhou WJ, TuD. Influence of basic tillering and panicle proportion on absorption and utilization of nitrogen in rice. , 2001, 28(5): 80-83 (in Chinese)[本文引用:1]