摘要针对目前小麦高产栽培中大量投入氮肥引起的土壤板结、肥效降低等突出问题, 2013—2014和2014—2015年度大田条件下设置自然降水(W1)、适墒(W2, 70% ± 5%)、足墒(W3, 80% ± 5%) 3个水分处理和3个氮肥水平处理, 即不施氮肥(N1)、减氮(N2, 195 kg hm-2)和高氮(N3, 270 kg hm-2), 研究了不同水肥条件对冬小麦旗叶功能期内光响应曲线特征参数、水分利用效率和籽粒产量及其构成因素的影响。在W1和W2条件下, N2处理不同时期旗叶净光合速率( Pn)、气孔导度( Gs)和蒸腾速率( Tr)的光响应曲线逐渐上升的幅度均高于N1和N3处理, 胞间二氧化碳浓度( Ci)光响应曲线下降的幅度也大于N1和N3处理; 在W3条件下, N2、N3光响应曲线的变化趋势相近。N2W2处理的旗叶光合参数在开花期最具优势, 最大净光合速率为33.20 μmol CO2 m-2 s-1, 光饱和点达1507.4 μmol m-2 s-1, 分别比其他处理平均提高21.4%和9.5%, 而光补偿点最低, 表现出较高的光合潜能。连续两年产量结果显示, N2W2处理穗粒数和千粒重在9个处理中最高, 差异显著( P < 0.01); 籽粒产量在9500 kg hm-2以上, 水分利用效率比W2和W3条件下的其他处理平均提高18.8%。上述结果表明, 在适墒条件下施氮量从270 kg hm-2减少至195 kg hm-2, 能充分发挥旗叶功能期的光合潜力, 增加穗粒数和千粒重, 提高籽粒产量。
关键词:减氮适墒; 小麦; 旗叶; 光响应曲线; 产量 Nitrogen-Reducing and Suitable Soil Moisture Enhance Photosynthetic Potential of Flag Leaf and Grain Yield in Winter Wheat ZHOU Su-Mei, ZHANG Ke-Ke, ZHANG Man, LI Lei, ZHANG Chun-Li, YIN Jun*, HE De-Xian College of Agronomy, Henan Agricultural University / National Engineering Research Centre for Wheat / Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, China Fund:This study was supported by the National Technology R&D Program of China (2011BAD16B07, 2015BAD26B01) AbstractThis study aimed at seeking a possibility of reducing nitrogen (N) fertilizer input on getting high yield in wheat ( Triticum aestivumL.) production in Huang-Huai Rivers Valley region. A field experiment was carried out with treatments of three soil moistures and three N application levels, to measure light-response curve parameters of flag leaf, water use efficiency and yield-component traits in the 2013-2014 and 2014-2015 growing seasons. The soil moisture treatments included no irrigation (W1), medium irrigation to 70% ± 5% of soil relative moisture after jointing stage (W2), and well-irrigation to 80% ± 5% of soil relative moisture after jointing stage (W3). The N application rates were 0 (N1), 195 (N2), and 270 kg ha-1 (N3). Under W1 and W2 conditions, N2 treatment showed greater increases in net photosynthetic rate ( Pn), stomatal conductance ( Gs), and transpiration rate ( Tr) of flag leaf and greater reduction rate of intercellular CO2 concentration ( Ci) than N1 and N3 treatments. Under W3 treatments, N2 and N3 treatments had similar changing trend of light response curves. N2W2 was the most superior treatment in photosynthesis at anthesis stage, with the maximum Pn of 33.20 μmol CO2 m-2 s-1 and the light saturation point (LSP) of 1507.4 μmol m-2 s-1, which were 21.4% and 9.5% higher than these averages of other treatments, respectively. In addition, N2W2 showed the lowest light compensation point, indicating its high photosynthetic potential. As a result, N2W2 had the largest kernal number and the highest thousand-grain weight across two years, with significant difference than other treatments ( P < 0.01). The grain yield of N2W2 was more than 9500 kg ha-1, and the water use efficiency was 18.8% higher than that of other treatments under W2 and W3 conditions. These results suggest that reducing N application from 270 to 195 kg ha-1 under suitable soil moisture (medium irrigation) may increase wheat yield by enhancing the photosynthetic potential of flag leaf, which is a good management of irrigation and fertilizer for high yield and high N use efficiency in Huang-Huai Rivers Valley wheat region.
Keyword:Nitrogen-reducing and suitable soil moisture; Winter wheat; Flag leaves; Light-response curves; Grain yield Show Figures Show Figures
图1 2013-2014年度和2014-2015年度小麦生长季的降水量分布 2013-2014年度总降水量为193.7 mm, 2014-2015年度总降水量为216.8 mm。Fig. 1 Precipitation distribution in 2013-2014 and 2014-2015 wheat seasons Total precipitations were 193.7 mm in the 2013-2014 growing season and 216.8 mm in the 2014-2015 growing season.
采用二因素裂区设计, 水分处理为主区, 氮肥处理为副区, 3次重复。主区为自然降水(W1, 无灌溉)、适墒(W2, 拔节后土壤相对含水量维持在70%± 5%)和足墒(W3, 拔节后土壤相对含水量维持在80%± 5%), 不同灌水处理小区间设置1 m隔离带。副区包括3个施氮水平, 分别是不施氮(N1)、减氮施肥(N2, 施纯氮195 kg hm-2)和高氮施肥(N3, 施纯氮270 kg hm-2)。共27个小区, 小区面积7 m × 3 m = 21 m2。按小区于播前施基肥, 其中磷肥(过磷酸钙)按P2O5 180 kg hm-2, 钾肥(硫酸钾)按K2O 150 kg hm-2, 同时施入40%氮肥(尿素), 拔节期追施剩余60%氮肥。供试材料为河南省主推高产品种周麦22, 两年度均在10月14日播种, 基本苗为237.5万株 hm-2, 三叶期从各小区选定1 m双行的植株定点追踪观察。于5月25日至29日依成熟先后分次收获。其他管理措施同一般高产大田。 1.2 测墒补灌方法及土壤含水量、土壤容量测定小麦拔节后, 每隔10 d测一次土壤墒情, 按公式M = 10γ Η (β i - β j)计算灌水量。式中, M为灌水量(mm), Η 为计划湿润层的土壤深度(cm), γ 为计划湿润层的土壤容重(g cm-3), β i为目标含水量, β j为灌溉前土壤含水量。用水表计量实际灌水量, 要求土壤含水量不小于允许的最小储水量和不大于允许的最大储水量。 用土钻取0~60 cm土层的土壤, 每20 cm为一层取样, 立即装入铝盒, 称鲜重, 105℃烘干至恒重, 称干重。土壤含水量(%) = [(土壤鲜重 - 土壤干重)/土壤干重] × 100; 土壤相对含水量(%) = (土壤含水量/田间持水量) × 100。小麦生育过程中不同水分条件下的土壤含水量见表1, 各处理土壤含水量控制在试验要求的范围。 表1 Table 1 表1(Table 1)
表1 小麦生育过程中不同水分处理的土壤含水量 Table 1 Soil relative moisture content under different water treatments during wheat growth (%)
土层 Soil layer
处理 Treatment
越冬期 Over-wintering
拔节期 Jointing
孕穗期 Booting
开花期 Anthesis
灌浆期 Grain-filling
成熟期 Maturity
0-20 cm
W1
64.33
47.95
58.34
56.37
57.86
32.77
W2
71.52
62.31
74.19
72.56
72.40
58.94
W3
76.66
74.52
78.37
79.73
80.74
67.62
20-40 cm
W1
71.56
49.92
58.18
54.44
44.14
36.63
W2
73.17
71.26
73.37
75.30
66.37
57.81
W3
85.17
80.29
80.89
84.58
77.38
70.25
40-60 cm
W1
71.35
51.67
56.81
49.43
47.32
45.84
W2
72.45
66.41
71.34
71.06
72.91
65.54
W3
78.19
75.71
81.07
78.12
73.60
73.30
The field maximum moisture capacities were 24.21%, 23.13%, and 25.25% in 0-20, 20-40, and 40-60 cm soil layers, respectively. 各土层田间最大持水量为24.21% (0-20 cm)、23.13% (20-40 cm)和25.25% (40-60 cm)。
表1 小麦生育过程中不同水分处理的土壤含水量 Table 1 Soil relative moisture content under different water treatments during wheat growth (%)
图2 不同生育时期旗叶净光合速率的光响应曲线 2013-2014年度仅在开花期测定; 2014-2015年度在抽穗期、开花期和灌浆期测定。Pn: 净光合速率; PAR: 光合有效辐射。Fig. 2 Response curve of Pnto light in flag leaves at different growth stages Measurements were conducted at anthesis stage in the 2013-2014 growing season and at heading, anthesis, and grain-filling stages in the 2014-2015 growing season. Pn: net photosynthetic rate; PAR: photosynthetically active radiation.
图3 不同时期旗叶气孔导度的光响应曲线 2013-2014年度仅在开花期测定; 2014-2015年度在抽穗期、开花期和灌浆期测定。Gs: 气孔导度; PAR: 光合有效辐射。Fig. 3 Response curve of Gs to light in flag leaves at different growth stages Measurements were conducted at anthesis stage in the 2013-2014 growing season and at heading, anthesis, and grain-filling stages in the 2014-2015 growing season.Gs: stomatal conductance; PAR: photosynthetically active radiation.
图4 不同时期旗叶胞间二氧化碳的光响应曲线 2013-2014年度仅在开花期测定; 2014-2015年度在抽穗期、开花期和灌浆期测定。Ci: 胞间CO2浓度; PAR: 光合有效辐射。Fig. 4 Response curve of Ci to light in flag leaves at different growth stages Measurements were conducted at anthesis stage in the 2013-2014 growing season and at heading, anthesis, and grain-filling stages in the 2014-2015 growing season. Ci: intercellular CO2 concentration; PAR: photosynthetically active radiation.
图5 不同时期旗叶蒸腾速率的光响应曲线 2013-2014年度仅在开花期测定; 2014-2015年度在抽穗期、开花期和灌浆期测定。Tr: 蒸腾速率; PAR: 光合有效辐射。Fig. 5 Response curve of Tr to light in flag leaves at different growth stages Measurements were conducted at anthesis stage in the 2013-2014 growing season and at heading, anthesis, and grain-filling stages in the 2014-2015 growing season. Tr: transpiration rate; PAR: photosynthetically active radiation.
表4 减氮适墒对冬小麦产量及产量构成要素的影响 Table 4 Effects on yield and yield components of winter wheat under nitrogen-reducing and suitable soil moisture
处理 Treatment
2013-2014
2014-2015
SN (× 104 hm-2)
GNS
TGW (g)
GY (kg hm-2)
SN (× 104 hm-2)
GNS
TGW (g)
GY (kg hm-2)
N1W1
532.8 f
36.5 e
46.7 e
7625.4 f
503.6 g
32.0 g
46.7 f
7237.5 g
N2W1
536.5 f
37.5 de
47.5 de
8344.5 d
575.3 f
35.2 e
47.9 de
8259.0 de
N3W1
550.3 ef
38.3 bcd
48.0 cde
8698.4 cd
566.1 f
32.6 g
47.2 ef
8041.5 e
N1W2
543.4 ef
37.8 cd
47.6 de
9012.6 bc
592.8 e
34.3 f
48.5 d
7815.0 f
N2W2
559.7 b
41.6 a
51.0 a
9621.3 a
627.0 c
39.9 a
53.2 a
9703.5 a
N3W2
567.4 ab
38.5 bcd
48.6 cd
9031.0 bc
656.2 b
39.0 b
50.3 c
9402.0 b
N1W3
552.9 cde
38.3 bcd
48.8 cd
8521.3 cd
607.8 d
36.3 d
50.0 c
8359.5 d
N2W3
555.9 abc
39.1 b
50.3 ab
9337.6 ab
646.2 b
37.9 c
52.2 b
8844.0 c
N3W3
577.0 a
38.9 bc
49.3 bc
8937.6 bc
675.3 a
38.3 c
51.5 b
9192.0 b
SN: spike number; GNS: grain number per spike; TGW: thousand-grain weight; GY: grain yield. Values followed by different letters are significantly different at P < 0.05. SN: 穗数; GNS: 穗粒数; TGW: 千粒重; GY: 籽粒产量。数据后不同字母表示处理间差异显著(P< 0.05)。
表4 减氮适墒对冬小麦产量及产量构成要素的影响 Table 4 Effects on yield and yield components of winter wheat under nitrogen-reducing and suitable soil moisture
表5 不同处理小麦生育期的总耗水量和水分利用效率 Table 5 Evapotranspiration and water use efficiency in wheat growth period under different treatments
处理 Treatment
2013-2014
2014-2015
SWC (mm)
ET (mm)
GY (kg hm-2)
WUE (kg hm-2 mm-1)
SWC (mm)
ET (mm)
GY (kg hm-2)
WUE (kg hm-2 mm-1)
N1W1
0.867
194.6
7625.4
39.2
0.785
217.6
7237.5
33.3
N2W1
0.840
194.5
8343.5
42.9
0.739
217.5
8259.0
38.0
N3W1
0.939
194.6
8698.4
44.7
0.635
217.4
8041.5
37.0
N1W2
0.695
328.5
9011.6
27.4
0.675
338.7
7815.0
23.1
N2W2
0.731
328.5
9621.3
29.3
0.618
338.6
9703.5
28.7
N3W2
0.655
328.5
9031.0
27.5
0.53
338.5
9402.0
27.8
N1W3
0.481
375.9
8521.3
22.7
0.365
396.1
8359.5
21.1
N2W3
0.568
376.0
9536.6
25.4
0.423
396.1
8844.0
22.3
N3W3
0.608
376.0
8936.6
23.8
0.442
396.1
9192.0
23.2
Precipitation in the 2013-2014 and 2014-2015 growing seasons was 193.7 mm and 216.8 mm, respectively. Irrigation amounts in W2 and W3 were 134.1 mm and 181.7 mm in the 2013-2014 growing season and 121.2 mm and 178.9 mm in the 2014-2015 growing season, respectively. SWC: soil water consumption; ET: evapotranspiration; GY: grain yield; WUE: water use efficiency. 降雨量, 2013-2014年度为193.7 mm, 2014-2015年度为216.8 mm; W2和W3处理的灌水量, 2013-2014年度分别为134.1 mm和181.7 mm, 2014-2015年度分别为121.2 mm和178.9 mm。SWC: 土壤贮水消耗量; ET: 总耗水量; GY: 籽粒产量; WUE: 水分利用率。
表5 不同处理小麦生育期的总耗水量和水分利用效率 Table 5 Evapotranspiration and water use efficiency in wheat growth period under different treatments
表6 冬小麦产量及其构成因素与旗叶最大净光合速率的相关系数 Table 6 Correlation coefficients of grain yield and its components of winter wheat with maximum net photosynthetic rate of leaf flag
抽穗期 Heading stage
开花期 Anthesis stage
灌浆期 Grain-filling stage
穗粒数 Grain number per spike
0.951* *
0.967* *
0.961* *
千粒重 Thousand-grain weight
0.905* *
0.856* *
0.888* *
籽粒产量 Grain yield
0.961* *
0.963* *
0.992* *
* * 表示在0.01概率水平显著相关。* * indicates significant correlation at the 0.01 probability level.
表6 冬小麦产量及其构成因素与旗叶最大净光合速率的相关系数 Table 6 Correlation coefficients of grain yield and its components of winter wheat with maximum net photosynthetic rate of leaf flag
4 结论河南省小麦生产中氮肥施用量一般在270 kg hm-2以上。施氮量减少25%~30%, 即减至195 kg hm-2时, 通过对0~60 cm的土壤墒情监控, 并及时补灌, 使拔节后土壤相对含水量维持在70%± 5%, 能够充分发挥肥效, 提高水分利用效率, 增强小麦旗叶功能期的光合性能和蒸腾作用, 尤其使开花期旗叶最大净光合速率增大, 光补偿点降低, 光饱和点升高, 为高产奠定基础。经2年试验, 该水肥配置模式的产量水平可达到9500 kg hm-2以上, 可在河南省相似小麦生态区推广应用。 The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
马东辉, 赵长星, 王月福, 吴刚, Jaleel CA. 施氮量对花后土壤含水量对冬小麦旗叶光合特性和产量的影响. 生态学报, 2008, 28: 1428-1437Ma DH, Zhao CX, Wang YF, WuG, Jaleel CA. Effects of nitrogen fertilizer rate and post anthesis soil water content on photosynthesis characteristics in flag leaves and yield of wheat. Acta Ecol Sin, 2008, 28: 1428-1437 (in Chinese with English abstract)[本文引用:2]
[3]
张福锁, 王激清, 张卫峰, 崔振岭, 陈新平, 江荣风. 中国主要粮食作物肥料利用现状与提高途径. 土壤学报, 2008, 45: 915-924Zhang FS, Wang JQ, Zhang WF, Cui ZL, Chen XP, Jiang YF. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915-924 (in Chinese with English abstract)[本文引用:2]
[4]
王晓凤, 吴文良, 潘志勇, 陈淑峰, 刘光栋, 夏训峰. 不同水氮处理对冬小麦生长及土壤水分利用效率的影响. 农业环境科学学报, 2007, 26(增刊): 741-745Wang XF, Wu WL, Pan ZY, Chen SF, Liu GD, Xia XF. Effects of various water and nitrogen managements on growth of winter wheat and water use efficiency. J Agro-Environ Sci, 2007, 26(suppl): 741-745 (in Chinese with English abstract)[本文引用:3]
[5]
SuiJ, Wang JD, Gong SH, XuD, Zhang YQ. Effect of nitrogen and irrigation application on water movement and nitrogen transport for a wheat crop under drip irrigation in the North China Plain. Water, 2015, 7: 6651-6672[本文引用:2]
[6]
李建民, 周殿玺, 王璞, 兰林旺. . 北京: 中国农业大学出版社, 2000. pp 5-6Li JM, Zhou DX, WangP, Lan LW. . Beijing: China Agricultural University Press, 2000. pp 5-6(in Chinese)[本文引用:2]
[7]
王志敏, 王璞, 兰林旺, 周殿玺. 黄淮海地区优质小麦节水栽培研究. 中国农学通报, 2003, 19(4): 22-25Wang ZM, WangP, Lan LW, Zhou DX. A water-saving and high-yielding cultivation system for bread wheat in Huang-Huai- Hai area of China. Chin Agric Sci Bull, 2003, 19(4): 22-25 (in Chinese with English abstract)[本文引用:2]
[8]
范仲卿, 赵广才, 田奇卓, 常旭虹, 王德梅, 杨玉双, 亓振. 拔节至开花期控水对冬小麦氮素吸收运转的影响. 核农学报, 2014, 28: 1478-1483Fan ZQ, Zhao GC, Tian QZ, Chang XH, Wang DM, Yang YS, QiZ. Effect of soil moisture control during jointing to anthesis on the absorption and translocation of nitrogen in winter wheat. J Nucl Agric Sci, 2014, 28: 1478-1483 (in Chinese with English abstract)[本文引用:2]
[9]
Evans JR. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L. ). , 1983, 72: 292-302[本文引用:2]
[10]
孙旭生, 林琪, 赵长星, 翟延举, 吴刚, Jaleel CA. 施氮量对超高产冬小麦灌浆期旗叶光响应曲线的影响. , 2009, 19: 1428-1437Sun XS, LiQ, Zhao CX, Zhai YJ, WuG, Jaleel CA. Effects of nitrogen application rate on light-response curves of flag leaves in super-high yielding winter wheat at grain filling stage. , 2009, 19: 1428-1437 (in Chinese with English abstract)[本文引用:3]
[11]
姚战军, 张永刚. 水氮运筹对小麦光合作用及产量的影响. 江苏农业科学, 2013, 41(7): 58-59Yao ZJ, Zhang YG. Effects on photosynthesis and yield under water and nitrogen interaction in winter wheat. Jiangsu Agric Sci, 2013, 41(7): 58-59 (in Chinese)[本文引用:2]
[12]
徐国伟, 王贺正, 尼娇娇, 陈明灿, 李友军. 水氮耦合对郑麦9023结实期叶片衰老及产量的影响. 草业学报, 2015, 24(11): 137-145Xu GW, Wang HZ, Ni JJ, Chen MC, Li YJ. Effect of water and nitrogen coupling on leaf senescence and yield of zhengmai 9023 wheat during the grain filling ftage. Acta Pratacult Sin, 2015, 24(11): 137-145 (in Chinese with English abstract)[本文引用:2]
[13]
陆佩玲, 罗毅, 刘建栋, 于强. 华北地区冬小麦光合作用的光响应曲线的特征参数. , 2000, 11: 236-241Lu PL, LuoY, Liu JD, YuQ. Characteristic parameters of light response curves of photosynthesis of winter wheat in North China. , 2000, 11: 236-241 (in Chinese with English abstract)[本文引用:2]
[14]
郭增江, 于振文, 石玉, 赵俊晔, 张永丽, 王东. 不同土层测墒补灌对小麦旗叶光合特性和干物质积累与分配的影响. 作物学报, 2014, 40: 731-738Guo ZJ, Yu ZW, ShiY, Zhao JY, Zhang YL, WangD. Photosynthesis characteristics of flag leaf and dry matter accumulation and allocation in winter wheat under supplemental irrigation after Measuring moisture content in different soil layers. Acta Agron Sin, 2014, 40: 731-738 (in Chinese with English abstract)[本文引用:1]
[15]
杨晴, 李雁鸣, 肖凯, 杜艳华. 不同施氮量对小麦旗叶衰老特性和产量性状的影响. 河北农业大学学报, 2002, 25(2): 20-24YangQ, Li YM, XiaoK, Du YH. Effect of different amount of nitrogen on flag leaf senescence and yield components of wheat. J Agric Univ Hebei, 2002, 25(2): 20-24 (in Chinese with English abstract)[本文引用:2]
[16]
张法全, 王小燕, 于振文, 王西芝, 白洪立. 公顷10000 kg小麦氮素和干物质积累与分配特征. 作物学报, 2009, 35: 1086-1096Zhang FQ, Wang XY, Yu ZW, Wang XZ, Bai HL. Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare. Acta Agron Sin, 2009, 35: 1086-1096 (in Chinese with English abstract)[本文引用:1]
[17]
叶子飘. 光合作用对光响应新模型及其应用. 生物数学学报, 2008, 23: 710-716Ye ZP. A new model of light-response of photosynthesis. J Biomath, 2008, 23: 710-716 (in Chinese with English abstract)[本文引用:1]
[18]
LiY, Gao YX, Xu XM, Shen QR, Guo SW. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L. ) leaves is related to chloroplastic CO2 concentration. J Exp Bot, 2009, 60: 2351-2360[本文引用:1]
[19]
LiY, Yang XX, Ren BB, Shen QR, Guo SW. Why nitrogen use efficiency decreased under high nitrogen supply of rice seedlings (Oryza sativa L. ). J Plant Growth Regul, 2012, 31: 47-52[本文引用:1]
[20]
孙永健, 孙园园, 李旭毅, 郭翔, 马均. 水氮互作下水稻氮代谢关键酶活性与氮素利用的关系. 作物学报, 2009, 35: 2055-2063Sun YJ, Sun YY, Li XY, GuoX, MaJ. Relationship of activities of key enzymes involved in nitrogen metabolism with nitrogen utilization in rice under water-nitrogen interaction. Acta Agron Sin, 2009, 35: 2055-2063 (in Chinese with English abstract)[本文引用:1]
[21]
BaratiV, GhadiriH, Zand -ParsaS, KarimianN. Nitrogen and water use efficiencies and yield response of barley cultivars under different irrigation and nitrogen regimes in a semi-arid Mediterranean climate. Arch Agron Soil Sci, 2015, 61: 15-32[本文引用:1]
[22]
王小燕, 于振文. 不同施氮条件下灌溉对小麦氮素吸收运转和分配的影响. 中国农业科学, 2008, 41: 3015-3024Wang XY, Yu ZW. Effect of irrigation rate on absorption and translocation of nitrogen under different nitrogen fertilizer rate in wheat. Sci Agric Sin, 2008, 41: 3015-3024 (in Chinese with English abstract)[本文引用:2]
[23]
马伯威, 王红光, 李东晓, 李瑞奇, 李雁鸣. 水氮运筹模式对冬小麦产量和水氮生产效率的影响, 麦类作物学报, 2015, 35: 1141-1147Ma BW, Wang HG, Li DX, Li RQ, Li YM. Influence of water-nitrogen patterns on yield and productive efficiency of water and nitrogen of winter wheat. J Triticeae Crop, 2015, 35: 1141-1147 (in Chinese with English abstract)[本文引用:1]
[24]
栗丽, 洪坚平, 王宏庭, 谢英荷, 张璐. 水氮处理对冬小麦生长、产量和水氮利用效率的影响. 应用生态学报, 2013, 24: 1367-1373LiL, Hong JP, Wang HT, Xie YH, ZhangL. Effects of watering and nitrogen fertilization on the growth, grain yield, and water and nitrogen use efficiency of winter wheat. Chin J Appl Ecol, 2013, 24: 1367-1373 (in Chinese with English abstract)[本文引用:1]